
Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Vihang Patil * 1 Markus Hofmarcher * 1 Marius-Constantin Dinu 1 2 Matthias Dorfer 3 Patrick Blies 3

Johannes Brandstetter 1 4 José Arjona-Medina 1 2 Sepp Hochreiter 1 5

Abstract
Reinforcement learning algorithms require many
samples when solving complex hierarchical tasks
with sparse and delayed rewards. For such com-
plex tasks, the recently proposed RUDDER uses
reward redistribution to leverage steps in the Q-
function that are associated with accomplishing
sub-tasks. However, often only few episodes
with high rewards are available as demonstra-
tions since current exploration strategies can-
not discover them in reasonable time. In this
work, we introduce Align-RUDDER, which uti-
lizes a profile model for reward redistribution
that is obtained from multiple sequence align-
ment of demonstrations. Consequently, Align-
RUDDER employs reward redistribution effec-
tively and, thereby, drastically improves learn-
ing on few demonstrations. Align-RUDDER out-
performs competitors on complex artificial tasks
with delayed rewards and few demonstrations.
On the Minecraft ObtainDiamond task, Align-
RUDDER is able to mine a diamond, though not
frequently. Code is available at github.com/
ml-jku/align-rudder.

1. Introduction
Reinforcement learning algorithms struggle with learning
complex tasks that have sparse and delayed rewards (Sutton
& Barto, 2018; Rahmandad et al., 2009; Luoma et al., 2017).
For delayed rewards, temporal difference (TD) suffers from
vanishing information (Arjona-Medina et al., 2019). On the
other hand Monte Carlo (MC) has high variance since it
must average over all possible futures (Arjona-Medina et al.,

*Equal contribution 1ELLIS Unit Linz and LIT AI Lab, In-
stitute for Machine Learning, Johannes Kepler University Linz
2Dynatrace Research 3enliteAI 4Now at Microsoft Research
5Institute of Advanced Research in Artificial Intelligence. Corre-
spondence to: Vihang Patil <patil@ml.jku.at>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2019). Monte-Carlo Tree Search (MCTS), used for Go and
chess, can handle delayed and rare rewards since it has a
perfect environment model (Silver et al., 2016; 2017). RUD-
DER (Arjona-Medina et al., 2019; 2018) has been shown to
excel in model-free learning of policies when only sparse
and delayed rewards are given. RUDDER requires episodes
with high rewards to store them in its lessons replay buffer
for learning a reward redistribution model like an LSTM
network. However, for complex tasks, current exploration
strategies find episodes with high rewards only after an in-
commensurate long time. Humans and animals obtain high
reward episodes by teachers, role models, or prototypes.
Along this line, we assume that episodes with high rewards
are given as demonstrations. Since generating demonstra-
tions is often tedious for humans and time-consuming for
exploration strategies, typically, only a few demonstrations
are available. However, RUDDER’s LSTM (Hochreiter,
1991; Hochreiter & Schmidhuber, 1997a) as a deep learning
method requires many examples for learning. Therefore,
we introduce Align-RUDDER, which replaces RUDDER’s
LSTM with a profile model obtained from multiple sequence
alignment (MSA) of the demonstrations. Profile models are
well known in bioinformatics. They are used to score new se-
quences according to their sequence similarity to the aligned
sequences. Like RUDDER also Align-RUDDER performs
reward redistribution —using an alignment model—, which
considerably speeds up learning even if only a few demon-
strations are available.

Our main contributions are:

• We suggest a reinforcement algorithm that works well
for sparse and delayed rewards, where standard explo-
ration fails but few demonstrations with high rewards
are available.

• We adopt multiple sequence alignment from bioinfor-
matics to construct a reward redistribution technique
that works with few demonstrations.

• We propose a method that uses alignment techniques
and reward redistribution for identifying sub-goals and
sub-tasks which in turn allow for hierarchical reinforce-
ment learning.

github.com/ml-jku/align-rudder
github.com/ml-jku/align-rudder

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

2. Review of RUDDER
Basic insight: Q-functions for complex tasks are step
functions. Complex tasks are typically composed of sub-
tasks. Therefore the Q-function of an optimal policy resem-
bles a step function. The Q-function is the expected future
return and it increases (i.e, makes a step) when a sub-task is
completed. Identifying large steps in the Q-function speeds
up learning since it allows us (i) to increase the return by
performing actions that cause the step and (ii) to sample
episodes with a larger return for learning.

An approximation of the Q-function must predict the ex-
pected future return for every state-action pair. However,
a Q-function that resembles a step-function is mostly con-
stant. Therefore predictions are only necessary at the steps.
We have to identify the relevant state-actions that cause the
steps and then predict the size of the steps. An LSTM net-
work (Hochreiter, 1991; Hochreiter & Schmidhuber, 1995;
1997a;b) can identify relevant state-actions that open the
input gate to store the size of the steps in the memory cells.
Consequently, an LSTM only updates its states and changes
its return prediction when a new relevant state-action pair
is observed. Therefore, for an LSTM network that predicts
the return of an episode both the change of the prediction
and opening input gates indicate Q-function steps.

Reward Redistribution. We consider episodic Markov de-
cision processes (MDPs), i.e., the reward is only given once
at the end of the sequence. The Q-function is assumed to be
a step function, that is, the task can be decomposed into sub-
tasks (see previous paragraph). Reward redistribution aims
at giving the differences in the Q-function of an optimal
policy as a new immediate reward. Since the Q-function
of an optimal policy is not known, we approximate it by
predicting the expected return by an LSTM network or by an
alignment model in this work. The differences in predictions
determine the reward redistribution. The prediction model
will first identify the largest steps in the Q-function as they
decrease the prediction error most. It turns out that just iden-
tifying the largest steps even with poor predictions speeds
up learning considerably (Arjona-Medina et al., 2019). See
Figure 1 for a description of the reward redistribution.

Learning methods based on reward redistribution. The
redistributed reward serves as reward for a subsequent learn-
ing method: (A) The Q-values can be directly estimated
(Arjona-Medina et al., 2019), which is used in the ex-
periments for the artificial tasks and BC pre-training for
MineCraft. (B) Redistributed rewards can serve for learn-
ing with policy gradients like Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2018), which is used in the
MineCraft experiments. (C) Redistributed rewards can serve
for temporal difference learning like Q-learning (Watkins,
1989). Recently, the convergence of RUDDER learning
methods has been proven under commonly used assump-

tions (Holzleitner et al., 2021).

LSTM models for reward redistribution. RUDDER uses
an LSTM model for predicting the future return. The reward
redistribution is the difference between two subsequent pre-
dictions. If a state-action pair increases the prediction of
the return, then reward is immediately given. Using state-
action sub-sequences (s, a)0:t = (s0, a0, . . . , st, at), the re-
distributed reward is Rt+1 = g((s, a)0:t)− g((s, a)0:t−1),
where g is an LSTM model that predicts the return of the
episode. The LSTM model learns at first to approximate
the largest steps of the Q-function since they reduce the
prediction error the most. Modern Hopfield networks (Ram-
sauer et al., 2021; Widrich et al., 2020; Fürst et al., 2022;
Paischer et al., 2022; Schäfl et al., 2022) can also be used to
redistribute reward (Widrich et al., 2021).

3. Align-RUDDER: RUDDER with Few
Demonstrations

In bioinformatics, sequence alignment identifies similarities
between biological sequences to determine their evolution-
ary relationship (Needleman & Wunsch, 1970; Smith &
Waterman, 1981). The result of the alignment of multiple
sequences is a profile model, i.e. a consensus sequence,
a frequency matrix, or a Position-Specific Scoring Ma-
trix (PSSM) (Stormo et al., 1982). New sequences can
be aligned to a profile model and receive an alignment score
that indicates how well the new sequences agree to the pro-
file model.

Align-RUDDER uses such alignment techniques to align
two or more high return demonstrations. For the alignment,
we assume that the demonstrations follow the same underly-
ing strategy, therefore they are similar to each other analog
to being evolutionary related. If the agent generates a state-
action sequence (s, a)0:t−1, then this sequence is aligned to
the profile model g giving a score g((s, a)0:t−1). The next
action of the agent extends the state-action sequence by one
state-action pair (st, at). The extended sequence (s, a)0:t
is also aligned to the profile model g giving another score
g((s, a)0:t). The redistributed reward Rt+1 is the difference
of these scores: Rt+1 = g((s, a)0:t) − g((s, a)0:t−1) (see
Eq. (1)). This difference indicates how much of the return
is gained or lost by adding another sequence element.

Align-RUDDER scores how closely an agent follows an
underlying strategy, which has been extracted by the profile
model. Consequently, the profile model can also be used to
explain the strategy of an agent (Dinu et al., 2022). Similar
to the LSTM model, we identify the largest steps in the
Q-function via relevant events determined by the profile
model. Therefore, redistributing the reward by sequence
alignment fits into the RUDDER framework with all its
theoretical guarantees. RUDDER’s theory for reward re-

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

+

+

+

LSTM
Celly

c

i
z

1.0

actionstate

Figure 1: Basic insight into reward redistribution. Left panel, Row 1: An agent has to take a key to unlock a door. Both
events increase the probability of receiving the treasure, which the agent always gets as delayed reward, when the door is
unlocked at sequence end. Row 2: The Q-function approximation typically predicts the expected return at every state-action
pair (red arrows). Row 3: However, the Q-function approximation requires only to predict the steps (red arrows). Right
panel, Row 1: The Q-function is the future expected return (blue curve). Green arrows indicate Q-function steps and the
big red arrow the delayed reward at sequence end. Row 2 and 3: The redistributed rewards correspond to steps in the
Q-function (small red arrows). Row 4: After redistributing the reward, only the redistributed immediate reward remains (red
arrows). Reward is no longer delayed.

Human EVVCAPPTAYIDFARQKLD.....PKIAVAAQNCYKVTNG
Chicken EVVCGAPSIYLDFARQKLD.....AKIGVAAQNCYKVPKG
Yeast EVIVGVPFIYIPKVQQILAGEANGANILVSAENAWTKS.G
E. coli EVVICPPATYLDYSVSLVKK....PQVTVGAQNAYLKASG
Amoeba AVAIAPPEMYIDMAKREAEG....SHIMLGAQNVNLNLSG
Archaeon GVTIVVAPQLVDLRMIAES.....VEIPVFAQHIDPIKPG
consensus EVVIAPP.IYIDFARQ.LD.......I.VGAQN.Y.V..G

conservation score

demo 1 ASSSSSS.MMPPPP..L.V.NLAAAA...YLQQQ.F....ED
demo 2 ASSSSSSSM.PP....L.V..L.......YLQQQ.FKKK.AD
demo 3 SSASSSS...PP....L.V.ALAAAAAAAYLQ...FKKK.AD
demo 4 SSAMMMMMM.PP....L.VVALAAAAAA.YAQQQ.FAAA.AD
demo 5 SSSLSS....PAPPPPLLV.NL.......Y.Q...FKKK.ED
demo 6 SSSL......PAPPPPL.V.NLMMMM...YAQ...FAAAAAD
consensus SSS.SS....PP....L.V..L.......Y.Q...F....AD

reward redistribution

Figure 2: The function of a protein is largely determined
by its structure. The relevant regions of this structure are
even conserved across organisms, as shown in the top panel.
Similarly, solving a task can often be decomposed into sub-
tasks which are conserved across multiple demonstrations.
As shown in the bottom panel where events are mapped to
the letter code for amino acids. Sequence alignment makes
those conserved regions visible and enables redistribution
of reward to important events.

distribution is valid for LSTM, other recurrent networks,
attention mechanisms, or sequence and profile models.

Advantages of alignment compared to LSTM. Learning
an LSTM model is severely limited when very few demon-
strations are available. First, LSTM is known to require a
large number of samples to generalize to new sequences. In
contrast, sequence alignment requires only two examples
to generalize well as known from bioinformatics. Second,
expert demonstrations have high rewards. Therefore random
demonstrations with very low rewards have to be generated.

LSTM does not generalize well when only these extreme
reward cases can be observed in the training set. In contrast,
sequence alignment only uses examples that are closely
related; that is, they belong to the same category (expert
demonstrations).

Reward Redistribution by Sequence Alignment. The
new reward redistribution approach consists of five steps,
see Fig. 3: (I) Define events to turn episodes of state-action
sequences into sequences of events. (II) Determine an align-
ment scoring scheme, so that relevant events are aligned
to each other. (III) Perform a multiple sequence alignment
(MSA) of the demonstrations. (IV) Compute the profile
model like a PSSM. (V) Redistribute the reward: Each sub-
sequence τt of a new episode τ is aligned to the profile.
The redistributed reward Rt+1 is proportional to the differ-
ence of scores S based on the PSSM given in step (IV), i.e.
Rt+1 ∝ S(τt)− S(τt−1).

In the following, the five steps of Align-RUDDER’s reward
redistribution are outlined. For the interested reader, each
step is detailed in Sec. A.3 in the Appendix. Finally, in
Sec. A.6.3 in the Appendix, we illustrate these five steps on
the example of Minecraft.

(I) Defining Events. Instead of states, we consider differ-
ences of consecutive states to detect a change caused by
an important event like achieving a sub-goal. An event is
defined as a cluster of state differences. We use similarity-
based clustering like affinity propagation (AP) (Frey &
Dueck, 2007). If states are only enumerated, we suggest to
use the “successor representation” (Dayan, 1993) or “suc-
cessor features” (Barreto et al., 2017). We use the demon-
strations combined with state-action sequences generated by
a random policy to construct the successor representation.

A sequence of events is obtained from a state-action se-

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

III) Multiple Sequence Alignment

d1

d2

d3

d1

d2

d3

I) Defining Events II) Scoring Matrix

IV) PSSM and Profile V) Reward Redistribution

d4 d4

τt−1

τt

Profile
Model

S(τt)

S(τt−1)

Rt+1 = (S(τt) − S(τt−1)) C

Figure 3: The five steps of Align-RUDDER’s reward redistribution. (I) Define events and turn demonstrations into sequences
of events. Each block represent an event to which the original state is mapped. (II) Construct a scoring matrix using event
probabilities from demonstrations for diagonal elements and setting off-diagonal to a constant value. (III) Perform an
MSA of the demonstrations. (IV) Compute a PSSM. Events with highest column scores are indicated at the top row. (V)
Redistribute reward as the difference of scores of sub-sequences aligned to the profile.

quence by mapping states s to its cluster identifier e (the
event) and ignoring the actions. Alignment techniques from
bioinformatics assume sequences composed of a few events,
e.g. 20 events. If there are too many events, good fitting
alignments cannot be distinguished from random alignments.
This effect is known in bioinformatics as “Inconsistency of
Maximum Parsimony” (Felsenstein, 1978).

(II) Determining the Alignment Scoring System. A
scoring matrix S with entries si,j determines the score for
aligning event i with j. A priori, we only know that a
relevant event should be aligned to itself but not to other
events. Therefore, we set si,j = 1/pi for i = j and si,j = α
for i ̸= j. Here, pi is the relative frequency of event i in the
demonstrations. α is a hyper-parameter, which is typically
a small negative number. This scoring scheme encourages
alignment of rare events, for which pi is small. For more
details see Appendix Sec. A.3.

(III) Multiple sequence alignment (MSA). An MSA al-
gorithm maximizes the sum of all pairwise scores SMSA =∑

i,j,i<j

∑L
t=0 si,j,ti,tj ,t in an alignment, where si,j,ti,tj ,t

is the score at alignment column t for aligning the event
at position ti in sequence i to the event at position tj in
sequence j. L ≥ T is the alignment length, since gaps
make the alignment longer than the length of each sequence.
We use ClustalW (Thompson et al., 1994) for MSA. MSA
constructs a guiding tree by agglomerative hierarchical clus-
tering of pairwise alignments between all demonstrations.
This guiding tree allows to identify multiple strategies. For
more details see Appendix Sec. A.3.

(IV) Position-Specific Scoring Matrix (PSSM) and MSA

profile model. From the alignment, we construct a profile
model as a) column-wise event probabilities and b) a PSSM
(Stormo et al., 1982). The PSSM is a column-wise scoring
matrix to align new sequences to the profile model. More
details are given in Appendix Sec. A.3.

(V) Reward Redistribution. The reward redistribution
is based on the profile model. A sequence τ = e0:T (et
is event at position t) is aligned to the profile, which gives
the score S(τ) =

∑L
l=0 sl,tl . Here, sl,tl is the alignment

score for event etl at position l in the alignment. Alignment
gaps are columns to which no event was aligned, which
have tl = T + 1 with gap penalty sl,T+1. If τt = e0:t is
the prefix sequence of τ of length t + 1, then the reward
redistribution Rt+1 for 0 ⩽ t ⩽ T is

Rt+1 = (S(τt)− S(τt−1)) C

= g((s, a)0:t)− g((s, a)0:t−1),

RT+2 = G̃0 −
T∑

t=0

Rt+1,

(1)

whereC = Edemo

[
G̃0

]
/Edemo

[∑T
t=0 S(τt)− S(τt−1)

]
with S(τ−1) = 0. The original return of the sequence
τ is G̃0 =

∑T
t=0 R̃t+1. Edemo

[
G̃0

]
is the expectation

(average) of the return over demonstrations, while
Edemo

[∑T
t=0 S(τt)− S(τt−1)

]
is the expectation of the

sum of unscaled redistributed rewards over demonstrations.
The constant C scales Rt+1 to the range of G̃0. RT+2 is
the correction of the redistributed reward (Arjona-Medina
et al., 2019), with zero expectation for demonstrations:

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Edemo [RT+2] = 0. Since τt = e0:t and et = f(st, at),
we can set g((s, a)0:t) = S(τt)C. We ensure strict
return equivalence (Arjona-Medina et al., 2019) by
G0 =

∑T+1
t=0 Rt+1 = G̃0. The redistributed reward

depends only on the past: Rt+1 = h((s, a)0:t).

Sub-tasks. The reward redistribution identifies sub-tasks as
alignment positions with high redistributed rewards. These
sub-tasks are indicated by high scores s in the PSSM. Re-
ward redistribution also determines the terminal states of
sub-tasks since it assigns rewards for solving the sub-tasks.
However, reward redistribution and Align-RUDDER can-
not guarantee that the redistributed reward is Markov. For
redistributed Markov reward, options (Sutton et al., 1999),
MAXQ (Dietterich, 2000), or recursive option composition
(Silver & Ciosek, 2012) can be used.

Higher Order Markov Reward Redistribution. Align-
RUDDER may lead to higher-order Markov redistribution.
Corollary 1 in the Appendix states that the optimality crite-
rion from Theorem 2 in Arjona-Medina et al. (2019) also
holds for higher-order Markov reward redistribution, if the
expected redistributed higher-order Markov reward is the
difference of Q-values. In that case the redistribution is
optimal, and there is no delayed reward. Furthermore, the
optimal policies are the same as for the original problem.
This corollary is the motivation for redistributing the reward
to the steps in the Q-function. In the Appendix, Corollary 2
states that under a condition, an optimal higher-order re-
ward redistribution can be expressed as the difference of
Q-values.

4. Experiments
Align-RUDDER is compared on three artificial tasks with
sparse & delayed rewards and few demonstrations to Behav-
ioral Cloning with Q-learning (BC+Q), Soft Q Imitation
Learning (SQIL) (Reddy et al., 2020), RUDDER (LSTM),
and Deep Q-learning from Demonstrations (DQfD) (Hester
et al., 2018). GAIL (Ho & Ermon, 2016) failed to solve the
two artificial tasks, as reported previously for similar tasks
(Reddy et al., 2020). Then, we test Align-RUDDER on the
complex Minecraft ObtainDiamond task with episodic
rewards (Guss et al., 2019b). All experiments use finite time
MDPs with γ = 1 and episodic reward. More details are in
Appendix Sec. A.5.

Alignment vs LSTM in 1D key-chest environment. We
use a 1D key-chest environment to show the effectiveness
of sequence alignment in a low data regime compared to
an LSTM model. The agent has to collect the key and then
open the chest to get a positive reward at the last timestep.
See Appendix Fig. A.10 for a schematic representation of
the environment. As the key-events (important state-action
pairs) in this environment are known, we can compute the

key-event detection rate of a reward redistribution model. A
key event is detected if the redistributed reward of an impor-
tant state-action pair is larger than the average redistributed
reward in the sequence. We train the reward redistribution
models with 2, 5, and 10 training episodes and test on 1000
test episodes, averaged over ten trials. Align-RUDDER
significantly outperforms LSTM (RUDDER) for detecting
these key events in all cases, with an average key-event de-
tection rate of 0.96 for sequence alignment vs. 0.46 for the
LSTM models overall dataset sizes. See Appendix Fig. A.11
for the detailed results.

Artificial tasks (I) and (II). They are variations of the
gridworld rooms example (Sutton et al., 1999), where cells
are the MDP states. In our setting, the states do not have
to be time-aware for ensuring stationary optimal policies,
but the unobserved used-up time introduces a random effect.
The grid is divided into rooms. The agent’s goal is to reach
a target from an initial state with the fewest steps. It has to
cross different rooms, which are connected by doors, except
for the first room, which is only connected to the second
room by a teleportation portal. The portal is introduced to
avoid BC initialization alone, solving the task. It enforces
that going to the portal entry cells is learned when they
are at positions not observed in demonstrations. At every
location, the agent can move up, down, left, right. The state
transitions are stochastic. An episode ends after T = 200
time steps. Suppose the agent arrives at the target. In that
case, it goes into an absorbing state where it stays until
T = 200 without receiving further rewards. The reward is
only given at the end of the episode. Demonstrations are
generated by an optimal policy with a 0.2 exploration rate.

The five steps of Align-RUDDER’s reward redistribution
are: (1) Events are clusters of states obtained by Affinity
Propagation using as similarity the successor representation
based on demonstrations. (2) The scoring matrix is obtained
according to (II), using ϵ = 0 and setting all off-diagonal
values of the scoring matrix to −1. (3) ClustalW is used for
the MSA of the demonstrations with zero gap penalties and
no biological options. (4) The MSA supplies a profile model
and a PSSM as in (IV). (5) Sequences generated by the agent
are mapped to sequences of events according to (I). The
reward is redistributed via differences of profile alignment
scores of consecutive sub-sequences according to Eq. (1)
using the PSSM. The reward redistribution determines sub-
tasks like doors or portal arrival. The sub-tasks partition the
Q-table into sub-tables that represent a sub-agent. However,
we optimize a single Q-table in these experiments. Defining
sub-tasks has no effect on learning in the tabular case.

All compared methods learn a Q-table and use an ϵ-greedy
policy with ϵ = 0.2. TheQ-table is initialized by behavioral
cloning (BC). The state-action pairs which are not initial-
ized since they are not visited in the demonstrations get an

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

demo 1

demo 2

demo 3

demo 4

demo 5

demo 6

human demonstrations

alignment

log dirt planks crafting table stick wooden pickaxe cobblestone stone pickaxe iron ore iron ingot iron pickaxe diamond orefurnace

events

0

1

0.8

sub-goals

reward redistribution

consensus

Figure 4: Example of alignment and identification of sub-goals from demonstrations of ObtainDiamond. Thresholding
the redistributed reward identifies sub-goals. First, state-action pairs are mapped to events. Then, the demonstrations
from human players are mapped to sequences of events. Next, the mapped demonstrations are aligned via MSA. This
results in a consensus sequence and profile model (we only depict the consensus sequence here). The consensus sequence
represents those events that can be aligned across demonstrations, i.e. the underlying strategy of human demonstrations. By
thresholding the redistributed reward we identify sub-goals and extract sub-sequences from demonstrations for pre-training
sub-agents using BC.

initialization by drawing a sample from a normal distribu-
tion. Align-RUDDER learns the Q-table via RUDDER’s
Q-value estimation (learning method (A) from Sec.2). For
BC+Q, RUDDER (LSTM), SQIL, and DQfD a Q-table is
learned by Q-learning. Hyperparameters are selected via
grid search using the same amount of time for each method.
For different numbers of demonstrations, performance is
measured by the number of episodes to achieve 80% of the
average return of the demonstrations. A Wilcoxon rank-sum
test determines the significance of performance differences
between Align-RUDDER and the other methods.

Task (I) environment is a 12×12 gridworld with four rooms.
The target is in room #4, and the start is in room #1 with 20
portal entry locations. The state contains the portal entry for
each episode. Fig. 5 shows the number of episodes required
for achieving 80% of the average reward of the demonstra-
tions for different numbers of demonstrations. Results are
averaged over 100 trials. Align-RUDDER significantly
outperforms all other methods, for ⩽ 10 demonstrations
(p-values < 10−10).
Task (II) is a 12×24 gridworld with eight rooms: target

in room #8, and start in room #1 with 20 portal entry lo-
cations. Fig. 5 shows the results with settings as in Task
(I). Align-RUDDER significantly outperforms all other
methods, for ⩽ 10 demonstrations (p-values < 10−19).
We also conduct an ablation study to study performance of
Align-RUDDER, while changing various parameters, like
environment stochasticity (see Sec. A.5.4) and number of
clusters (see Sec. A.5.5).

Minecraft. We further test Align-RUDDER on Minecraft
ObtainDiamond task from the MineRL dataset (Guss
et al., 2019b). We do not use intermediate rewards given
by achieving sub-goals from the challenge, since Align-
RUDDER is supposed to discover such sub-goals automat-
ically via reward redistribution. We only give a reward
for mining the diamond. This requires resource gathering
and tool building in a hierarchical way. To the best of our
knowledge, no pure learning method (sub-goals are also
learned) has mined a diamond yet (Scheller et al., 2020).
The dataset contains demonstrations which are insufficient
to directly learn a single policy (117 demonstrations, 67
mined a diamond).

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Demonstrations

25000
50000
75000

100000

2 5 10 50 100

Demonstrations of the FourRooms-v0 Environment

0

2500

5000

7500

10000

12500

15000

17500

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL

Demonstrations

50000
75000

100000

2 5 10 50 100

Demonstrations of the EightRooms-v0 Environment

0

10000

20000

30000

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL

Figure 5: Comparison of Align-RUDDER and other meth-
ods on Task (I) (top) and Task (II) (bottom) with respect to
the number of episodes required for learning on different
numbers of demonstrations. Results are the average over
100 trials. Align-RUDDER significantly outperforms all
other methods.

Implementation: (1) A state consists of visual input and an
inventory (incl. equip state). Both inputs are normalized
to the same information, that is, the same number of com-
ponents and the same variance. We cluster the differences
of consecutive states (Arjona-Medina et al., 2019). Very
large clusters are removed, and small merged, giving 19
clusters corresponding to events, which are characterized
by inventory changes. Finally, demonstrations are mapped
to sequences of events. (2) The scoring matrix is computed
according to (II). (3) The ten shortest demonstrations that
obtained a diamond are aligned by ClustalW with zero gap
penalties and no biological options. (4) The multiple align-
ments gives a profile model and a PSSM. (5) The reward is
redistributed via differences of profile alignment scores of
consecutive sub-sequences according to Eq. (1) using the
PSSM. Based on the reward redistribution, we define sub-
goals. Sub-goals are identified as profile model positions
that obtain an average redistributed reward above a thresh-
old for the demonstrations. Demonstration sub-sequences
between sub-goals are considered as demonstrations for the
sub-tasks. New sub-sequences generated by the agent are
aligned to the profile model to determine whether a sub-
goal is achieved. The redistributed reward between two
sub-goals is given at the end of the sub-sequence, therefore,

the sub-tasks also have an episodic reward. Fig. 4 shows
how sub-goals are identified. Sub-agents are pre-trained on
the demonstrations for the sub-tasks using BC, and further
trained in the environment using Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2018). BC pre-training corre-
sponds to RUDDER’s Q-value estimation (learning method
(A) from above), while PPO corresponds to RUDDER’s
PPO training (learning method (B) from above).

Our main agent can perform all actions but additionally can
execute sub-agents and learns via the redistributed reward.
The main agent corresponds to and is treated like a Manager
module (Vezhnevets et al., 2017). The main agent is initial-
ized by executing sub-agents according to the alignment but
can deviate from this strategy. When a sub-agent success-
fully completes its task, the main agent executes the next
sub-agent according to the alignment. More details can be
found in Appendix Sec. A.6.1. Using only ten demonstra-
tions, Align-RUDDER is able to learn to mine a diamond. A
diamond is obtained in 0.1% of the cases. With 0.5 success
probability for each of the 31 extracted sub-tasks (skilled
agents not random agents), the resulting success rate for
mining the diamond would be 4.66×10−10. Tab. 1 shows a
comparison of methods on the Minecraft MineRL dataset by
the maximum item score (Milani et al., 2020). Results are
taken from (Milani et al., 2020), in particular from Figure 2,
and completed by (Skrynnik et al., 2019; Kanervisto et al.,
2020; Scheller et al., 2020). Align-RUDDER was not evalu-
ated during the Minecraft MineRL challenge, but it follows
the timesteps limit (8 million) imposed by the challenge.
Align-RUDDER did not receive the intermediate rewards
provided by the challenge that hint at sub-tasks, thus tries to
solve a more difficult task. Recently, ForgER++ (Skrynnik
et al., 2020) was able to mine a diamond in 0.0667% of the
cases. We do not include it in Table 1 as it did not have any
limitations on the number of timesteps. Also, ForgER++
generates sub-goals for Minecraft using a heuristic, while
Align-RUDDER uses redistributed reward to automatically
obtain sub-goals.

Analysis of Minecraft Agent Behaviour. For each agent
and its sub-task, we estimate the success rate and its im-
provement during fine-tuning by averaging over return of
multiple runs (see Fig. 6). For earlier sub-tasks, the agent
has a relatively higher sub-task success rate. This also cor-
responds to the agent having access to much more data
for earlier sub-tasks. During learning from demonstrations,
much less data is available for training for later sub-tasks, as
not all expert demonstrations achieve the later tasks. During
online training using reinforcement learning, an agent has
to successfully complete all earlier sub-tasks to generate tra-
jectories for later sub-tasks. This is exponentially difficult.
Lack of demonstrations and difficulty of the learned agent
to generate data for later sub-tasks leads to degradation of
the success rate in Minecraft.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Table 1: Maximum item score of methods on the Minecraft
task. “Auto”: Sub-goals/sub-tasks are found automati-
cally. Demonstrations are used for hierarchical reinforce-
ment learning (“HRL”). Methods: Soft-Actor Critic (SAC,
(Haarnoja et al., 2018)), DQfD, Meta Learning Shared Hi-
erarchies (MLSH, (Frans et al., 2018)), Rainbow (Hessel
et al., 2017), PPO, and BC.

Method Team Name HRL/Auto

Align-RUDDER Ours ✓/✓

DQfD CDS ✓/✕

BC MC_RL ✓/—

CLEAR I4DS ✕/✓

Options&PPO CraftRL ✓/✕

BC UEFDRL ✕/✓

SAC TD240 ✕/✓

MLSH LAIR ✓/✓

Rainbow Elytra ✕/✓

PPO karolisram ✕/✓

5. Related work
Learning from demonstrations has been widely studied over
the last 50 years (Billard et al., 2008). An example is imita-
tion learning, which uses supervised techniques when the
number of demonstrations is large enough (Michie et al.,
1990; Pomerleau, 1991; Michie & Camacho, 1994; Schaal,
1996; Kakade & Langford, 2002). However, policies trained
with imitation learning tend to drift away from demonstra-
tion trajectories due to a distribution shift (Ross & Bagnell,
2010). This effect can be mitigated (III et al., 2009; Ross
& Bagnell, 2010; Ross et al., 2011; Judah et al., 2014; Sun
et al., 2017; 2018). Many approaches use demonstrations
for initialization, e.g. of policy networks (Taylor et al., 2011;
Silver et al., 2016), value function networks (Hester et al.,
2017; 2018), both networks (Zhang & Ma, 2018; Nair et al.,
2018), or an experience replay buffer (Hosu & Rebedea,
2016). Beyond initialization, demonstrations are used to
define constraints (Kim et al., 2013; Diouane et al., 2022),
generate sub-goals (Eysenbach et al., 2019), enforce reg-
ularization (Reddy et al., 2020), guide exploration (Sub-
ramanian et al., 2016; Jing et al., 2019), offline learning
(Schweighofer et al., 2021) or shape rewards (Judah et al.,
2014; Brys et al., 2015; Suay et al., 2016). Demonstrations
may serve for inverse reinforcement learning (Ng & Russell,
2000; Abbeel & Ng, 2004; Ho & Ermon, 2016), which aims
at learning a (non-sparse) reward function that best explains
the demonstrations. Learning reward functions requires a
large number of demonstrations (Syed & Schapire, 2007;
Ziebart et al., 2008; Silva et al., 2019). Some approaches
rely on few-shot or/and meta learning (Duan et al., 2017;
Finn et al., 2017; Zhou et al., 2020; Adler et al., 2020; Gauch
et al., 2022). However, few-shot and meta learning demand
a large set of auxiliary tasks or prerecorded data. Conclud-
ing, most methods that learn from demonstrations rely on
the availability of many demonstrations (Khardon, 1999;

* S S S S S S S P P P P P L V N L A A A A Y L Q Q Q F K K K E D

Consensus

0.00

0.01

0.10

1.00

F
re

qu
en

cy
(s

ym
lo

g)

Exact consensus path

Human demonstrations

RL fine tuning

BC

Figure 6: Comparison of the frequencies of solving sub-
tasks as determined by the consensus sequence of ObtainDi-
amond. The consensus represents the aligned events, where
each event is mapped to a letter code (for full mapping see
Fig. A.20). For example, the letter S corresponds to col-
lecting a log. Behavioral cloning (BC, green) represents
individual agents trained on demonstrations for the respec-
tive sub-task. These agents have been further fine-tuned
(orange) via PPO in the MineRL environment. As a com-
parison, human demonstrations (blue) show how closely
human players followed the consensus sequence. The plot
is in symmetric log scale (symlog in matplotlib).

Lopes et al., 2009), in particular, if using deep learning
methods (Bengio & Lecun, 2007; Lakshminarayanan et al.,
2016). Some methods can learn on few demonstrations
like Soft Q Imitation Learning (SQIL) (Reddy et al., 2020),
Generative Adversarial Imitation Learning (GAIL) (Ho &
Ermon, 2016), and Deep Q-learning from Demonstrations
(DQfD) (Hester et al., 2018).

Align-RUDDER allows to identify sub-goals and sub-tasks,
therefore it is related to hierarchical reinforcement learning
(HRL) approaches like the option framework (Sutton et al.,
1999), the MAXQ framework (Dietterich, 2000), or the
recursive composition of option models (Silver & Ciosek,
2012). However, these methods do not address the problem
of finding good options, good sub-goals, or good sub-tasks.
Methods to learn good options have been proposed. Fre-
quently observed states in solutions are chosen as targets
(Stolle & Precup, 2002). Gradient-based approaches im-
proving the termination function for options (Comanici &
Precup, 2010; Mankowitz et al., 2016). Policy gradient op-
timized a unified policy consisting of intra-option policies,
option termination conditions, and an option selection policy
(Levy & Shimkin, 2012). Parametrized options are learned
by treating the termination functions as hidden variables
and using expectation maximization (Daniel et al., 2016).
Intrinsic rewards are used to learn the policies within op-

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

tions, and extrinsic rewards to learn the policy over options
(Kulkarni et al., 2016). Options have been jointly learned
with an associated policy using the policy gradient theorem
for options (Bacon et al., 2017). A slow time-scale manager
module learns sub-goals that are achieved by fast time-scale
worker (Vezhnevets et al., 2017).

Next, we relate Align-RUDDER to imitation learning and
trajectory matching. Imitation learning aims at learning
a behavior close to the data generating policy by match-
ing the trajectories of single demonstrations. In contrast,
Align-RUDDER does not try to match single trajectories but
identifies relevant events that are shared among successful
demonstrations. In complex tasks like Minecraft trajectory
matching fails, since large state spaces do not allow to match
one of the few demonstrations. However, relevant events
can still be matched as they appear in most demonstrations,
therefore Align-RUDDER excels in such complex tasks.

6. Discussion and Conclusion
Discussion. Firstly, reward redistributions do not change
the optimal policies (see Theorem 1 in Appendix). Thus,
suboptimal reward redistributions due to alignment errors
or choosing events that are non-essential for reaching the
goal might not speed up learning, but also do not change
the optimal policies. Secondly, while Align-RUDDER can
speed up learning even in complex environments, the result-
ing performance depends on the quality of the alignment
model. A low quality alignment model can arise from mul-
tiple factors, one of which is having large number (≫ 20)
of distinct events. Clustering can be used to reduce the
number of events, which could also lead to a low quality
alignment model if too many relevant events are clustered
together. While the optimal policy is not changed by poor
demonstration alignment, the benefit of employing reward
redistribution based on it diminishes. Thirdly, the alignment
could fail if the demonstrations have different underlying
strategies i.e no events are common in the demonstrations.
We assume that the demonstrations follow the same under-
lying strategy, therefore they are similar to each other and
can be aligned. However, if no underlying strategy exists,
then identifying those relevant events via alignment may
fail. In this case, reward is given at sequence end, when the
redistributed reward is corrected, which leads to an episodic
reward without reducing the delay of the rewards.In gen-
eral, we feel Align-RUDDER is a significant step forward
in settings with sparse and delayed rewards.

Conclusions. We have introduced Align-RUDDER to solve
highly complex tasks with delayed and sparse reward from
few demonstrations. We have shown experimentally that
Align-RUDDER outperforms state of the art methods de-
signed for learning from demonstrations in the regime of
few demonstrations. On the Minecraft ObtainDiamond

task, Align-RUDDER is, to the best of our knowledge, the
first pure learning method to mine a diamond.

Acknowledgements
The ELLIS Unit Linz, the LIT AI Lab, the Institute for
Machine Learning, are supported by the Federal State Up-
per Austria. IARAI is supported by Here Technologies.
We thank the projects AI-MOTION (LIT-2018-6-YOU-
212), AI-SNN (LIT-2018-6-YOU-214), DeepFlood (LIT-
2019-8-YOU-213), Medical Cognitive Computing Center
(MC3), INCONTROL-RL (FFG-881064), PRIMAL (FFG-
873979), S3AI (FFG-872172), DL for GranularFlow (FFG-
871302), AIRI FG 9-N (FWF-36284, FWF-36235), ELISE
(H2020-ICT-2019-3 ID: 951847). We thank Audi.JKU Deep
Learning Center, TGW LOGISTICS GROUP GMBH, Sil-
icon Austria Labs (SAL), FILL Gesellschaft mbH, Any-
line GmbH, Google, ZF Friedrichshafen AG, Robert Bosch
GmbH, UCB Biopharma SRL, Merck Healthcare KGaA,
Verbund AG, Software Competence Center Hagenberg
GmbH, TÜV Austria, Frauscher Sensonic and the NVIDIA
Corporation.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the Twenty-
First International Conference on Machine Learning, pp.
1, 2004. ISBN 1581138385.

Adler, T., Brandstetter, J., Widrich, M., Mayr, A., Kreil,
D., Kopp, M., Klambauer, G., and Hochreiter, S. Cross-
domain few-shot learning by representation fusion, 2020.
URL https://arxiv.org/abs/2010.06498.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and
Lipman, D. J. Basic local alignment search tool. J. Molec.
Biol., 214:403–410, 1990.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J.,
Zhang, Z., Miller, W., and Lipman, D. J. Gapped BLAST
and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17):3389–
3402, 1997. doi: 10.1093/nar/25.17.3389.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Un-
terthiner, T., and Hochreiter, S. RUDDER: return de-
composition for delayed rewards. ArXiv, 2018.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Un-
terthiner, T., Brandstetter, J., and Hochreiter, S. RUD-
DER: return decomposition for delayed rewards. In Ad-
vances in Neural Information Processing Systems 32, pp.
13566–13577, 2019.

Bacon, P. L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, pp. 1726–1734. AAAI
Press, 2017. doi: 10.5555/3298483.3298491.

Bairoch, A. and Bucher, P. PROSITE: recent developments.
Nucleic acids research, 22(17):3583–9, 1994.

Barreto, A., Dabney, W., Munos, R., Hunt, J., Schaul, T.,
vanHasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. In Advances in Neural
Information Processing Systems 30, pp. 4055–4065, 2017.
ArXiv 1606.05312.

Bengio, Y. and Lecun, Y. Large-scale kernel machines,
chapter Scaling learning algorithms towards AI, pp. 321–
359. MIT Press, 2007.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. Robot
programming by demonstration. In Siciliano, B. and
Khatib, O. (eds.), Springer Handbook of Robotics, pp.
1371–1394. Springer, 2008.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
ArXiv, 2016.

Brys, T., Harutyunyan, A., Suay, H. B., Chernova, S., Tay-
lor, M. E., and Nowé, A. Reinforcement learning from
demonstration through shaping. In Proc. of the 24th
Int. Joint Conf. on Artificial Intelligence, (IJCAI’15), pp.
3352–3358, 2015.

Chao, K. and Zhang, L. Sequence comparison: theory and
methods. Springer, 2009. ISBN 9781848003200.

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A.,
Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T.,
Kauff, F., Wilczynski, B., and de Hoon, M. J. L. Biopy-
thon: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics,
25(11):1422–1423, 03 2009. ISSN 1367-4803. doi:
10.1093/bioinformatics/btp163.

Comanici, G. and Precup, D. Optimal policy switching
algorithms for reinforcement learning. In Proceedings
of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), volume 2, pp.
709–714, 2010. doi: 10.1145/1838206.1838300.

Corpet, F. Multiple sequence alignment with hierarchical
clustering. Nucleic Acids Research, 16(22):10881–10890,
1988.

Daniel, C., vanHoof, H., Peters, J., and Neumann, G. Proba-
bilistic inference for determining options in reinforce-
ment learning. Machine Learning, 104, 2016. doi:
10.1007/s10994-016-5580-x.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural Computa-
tion, 5(4):613–624, 1993.

Dayhoff, M. O. Atlas of Protein Sequence and Structure,
volume 3. Silver Spring, 1978.

Dietterich, T. G. Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of Ar-
tificial Intelligence Research, 13(1):227–303, 2000. doi:
10.5555/1622262.1622268. arXiv 9905014.

Dinu, M.-C., Hofmarcher, M., Patil, V. P., Dorfer, M.,
Blies, P. M., Brandstetter, J., Arjona-Medina, J. A., and
Hochreiter, S. XAI and Strategy Extraction via Reward
Redistribution, pp. 177–205. Springer International Pub-
lishing, Cham, 2022. ISBN 978-3-031-04083-2. doi:
10.1007/978-3-031-04083-2_10.

Diouane, Y., Lucchi, A., and Prakash Patil, V. A
globally convergent evolutionary strategy for stochas-
tic constrained optimization with applications to re-
inforcement learning. In Camps-Valls, G., Ruiz, F.
J. R., and Valera, I. (eds.), Proceedings of The 25th
International Conference on Artificial Intelligence and
Statistics, volume 151 of Proceedings of Machine

https://arxiv.org/abs/2010.06498

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Learning Research, pp. 836–859. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/
v151/diouane22a.html.

Duan, Y., Andrychowicz, M., Stadie, B. C., Ho, J., Schnei-
der, J., Sutskever, I., Abbeel, P., and Zaremba, W. One-
shot imitation learning. In Advances in Neural Informa-
tion Processing Systems 30, pp. 1087–1098, 2017.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-Explore: A new approach for hard-
exploration problems. arXiv, abs/1901.10995, 2019.

Edgar, R. C. MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Re-
search, 32(5):1792–1797, 2004.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: Scalable dis-
tributed Deep-RL with importance weighted actor-learner
architectures. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, 2018. ArXiv: 1802.01561.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search on
the replay buffer: Bridging planning and reinforcement
learning. In Advances in Neural Information Processing
Systems 32, pp. 15220–15231, 2019.

Felsenstein, J. Cases in which parsimony or compatibil-
ity methods will be positively misleading. Systematic
Zoology, 27(4):401–410, 1978. doi: 10.2307/2412923.

Finn, C., Yu, T., Zhang, T., Abbeel, P., and Levine, S. One-
shot visual imitation learning via meta-learning. In 1st An-
nual Conference on Robot Learning (CoRL), volume 78
of Proceedings of Machine Learning Research, pp. 357–
368. PMLR, 2017.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. Meta learning shared hierarchies. In International
Conference on Learning Representations, 2018. arXiv
1710.09767.

Frey, B. J. and Dueck, D. Clustering by passing messages
between data points. Science, 315(5814):972–976, 2007.
doi: 10.1126/science.1136800.

Fürst, A., Rumetshofer, E., Lehner, J., Tran, V., Tang, F.,
Ramsauer, H., Kreil, D., Kopp, M., Klambauer, G., Bitto-
Nemling, A., and Hochreiter, S. Cloob: Modern hopfield
networks with infoloob outperform clip, 2022.

Gauch, M., Beck, M., Adler, T., Kotsur, D., Fiel, S., Eghbal-
zadeh, H., Brandstetter, J., Kofler, J., Holzleitner, M.,
Zellinger, W., Klotz, D., Hochreiter, S., and Lehner, S.

Few-shot learning by dimensionality reduction in gradi-
ent space, 2022. URL https://arxiv.org/abs/
2206.03483.

Gotoh, O. An improved algorithm for matching biological
sequences. Journal of Molecular Biology, 162(3):705–
708, 1982.

Guss, W. H., Codel, C., Hofmann, K., Houghton, B., Kuno,
N., Milani, S., Mohanty, S. P., Liebana, D. P., Salakhutdi-
nov, R., Topin, N., Veloso, M., and Wang, P. The MineRL
competition on sample efficient reinforcement learning
using human priors. arXiv, 2019a.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel,
C., Veloso, M., and Salakhutdinov, R. MineRL: A large-
scale dataset of Minecraft demonstrations. In Proc. of the
28th Int. Joint Conf. on Artificial Intelligence (IJCAI’19),
2019b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Dy, J. and Krause, A.
(eds.), Proceedings of Machine Learning Research, vol-
ume 80, pp. 1861–1870. PMLR, 2018. arXiv 1801.01290.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020. doi: 10.
1038/s41586-020-2649-2.

Henikoff, S. and Henikoff, J. G. Amino acid substitution
matrices from protein blocks. Proceedings of the National
Academy of Sciences of the United States of America, 89
(22):10915–10919, 1992.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M. G.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. ArXiv, 2017.

Hester, T., Vecerík, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Sendonaris, A., Dulac-Arnold, G., Osband,
I., Agapiou, J., Leibo, J. Z., and Gruslys, A. Learning
from demonstrations for real world reinforcement learn-
ing. ArXiv, 2017.

Hester, T., Vecerík, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Os-
band, I., Dulac-Arnold, G., Agapiou, J., Leibo, J. Z., and
Gruslys, A. Deep q-learning from demonstrations. In The
Thirty-Second AAAI Conference on Artificial Intelligence

https://proceedings.mlr.press/v151/diouane22a.html
https://proceedings.mlr.press/v151/diouane22a.html
https://arxiv.org/abs/2206.03483
https://arxiv.org/abs/2206.03483

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

(AAAI-18). Association for the Advancement of Artificial
Intelligence, 2018.

Hirschberg, D. S. A linear space algorithm for computing
maximal common subsequences. Communications of
the ACM, 18(6):341–343, 1975. doi: 10.1145/360825.
360861.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems 29, pp. 4565–4573, 2016.

Hochreiter, S. Untersuchungen zu dynamischen neuronalen
Netzen. Master’s thesis, Technische Universität München,
1991.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Technical Report FKI-207-95, Fakultät für Informatik,
Technische Universität München, 1995.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997a.

Hochreiter, S. and Schmidhuber, J. LSTM can solve hard
long time lag problems. In Mozer, M. C., Jordan, M. I.,
and Petsche, T. (eds.), Advances in Neural Information
Processing Systems 9, pp. 473–479, Cambridge, MA,
1997b. MIT Press.

Holzleitner, M., Gruber, L., Arjona-Medina, J. A., Brand-
stetter, J., and Hochreiter, S. Convergence proof for actor-
critic methods applied to PPO and RUDDER. arXiv,
2020.

Holzleitner, M., Gruber, L., Arjona-Medina, J., Brand-
stetter, J., and Hochreiter, S. Convergence Proof for
Actor-Critic Methods Applied to PPO and RUDDER, pp.
105–130. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2021. ISBN 978-3-662-63519-3. doi: 10.1007/
978-3-662-63519-3_5. URL https://doi.org/10.
1007/978-3-662-63519-3_5.

Hosu, I. A. and Rebedea, T. Playing Atari games with
deep reinforcement learning and human checkpoint re-
play. ArXiv, 2016.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

III, H. D., Langford, J., and Marcu, D. Search-based struc-
tured prediction, 2009.

Jing, M., Ma, X., Huang, W., Sun, F., Yang, C., Fang,
B., and Liu, H. Reinforcement learning from imper-
fect demonstrations under soft expert guidance. ArXiv,
abs/1911.07109, 2019.

Judah, K., Fern, A. P., Dietterich, T. G., and Adepalli, P.
Active imitation learning: Formal and practical reductions
to i.i.d. learning. J. Mach. Learn. Res., 15(1):3925–3963,
2014. ISSN 1532-4435.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In 19th International
Conference on Machine Learning (ICML), pp. 267–274,
2002.

Kanervisto, A., Karttunen, J., and Hautamäki, V. Playing
Minecraft with behavioural cloning. In Escalante, H. J.
and Hadsell, R. (eds.), Proceedings of Machine Learning
Research (PMLR), volume 123, pp. 56–66. PMLR, 2020.

Karlin, S. and Altschul, S. F. Methods for assessing the
statistical significance of molecular sequence features
by using general scoring schemes. Proceedings of the
National Academy of Sciences of the United States of
America, 87(6):2264–2268, 1990. doi: 10.1073/pnas.87.
6.2264.

Karlin, S., Dembo, A., and Kawabata, T. Statistical com-
position of high-scoring segments from molecular se-
quences. Ann. Statist., 18(2):571–581, 1990. doi:
10.1214/aos/1176347616.

Khardon, R. Learning to take actions. Machine Learning,
35(1):57–90, 1999.

Kim, B., Farahmand, A., Pineau, J., and Precup, D. Learning
from limited demonstrations. In Advances in Neural
Information Processing Systems 26, 2013.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and J. Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 29, pp. 3675–3683. Curran As-
sociates, Inc., 2016.

Lakshminarayanan, A. S., Ozair, S., and Bengio, Y. Rein-
forcement learning with few expert demonstrations. In
NIPS Workshop on Deep Learning for Action and Inter-
action, 2016.

Levy, K. Y. and Shimkin, N. Unified inter and intra options
learning using policy gradient methods. In Sanner, S.
and Hutter, M. (eds.), Recent Advances in Reinforcement
Learning, pp. 153–164. Springer Berlin Heidelberg, 2012.
doi: 10.1007/978-3-642-29946-9_17.

Lopes, M., Melo, F. S., and Montesano, L. Active learn-
ing for reward estimation in inverse reinforcement learn-
ing. In European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML,PKDD), vol-
ume 5782 of Lecture Notes in Computer Science, pp.
31–46. Springer, 2009.

https://doi.org/10.1007/978-3-662-63519-3_5
https://doi.org/10.1007/978-3-662-63519-3_5

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Luoma, J., Ruutu, S., King, A. W., and Tikkanen, H. Time
delays, competitive interdependence, and firm perfor-
mance. Strategic Management Journal, 38(3):506–525,
2017. doi: 10.1002/smj.2512.

Machado, M., Rosenbaum, C., Guo, X., Liu, M., Tesauro,
G., and Campbell, M. Eigenoption discovery through the
deep successor representation. arXiv, abs/1710.11089,
2017.

Mankowitz, D. J., Mann, T. A., and Mannor, S. Adaptive
skills adaptive partitions (ASAP). In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 29, pp. 1588–1596. Curran Associates, Inc., 2016.

Mccammon, J. A. and Wolynes, P. G. Highly specific protein
sequence motifs for genome analysis. Computational
Biomolecular Science, 95(May):5865–5871, 1998.

Michie, D. and Camacho, R. Building Symbolic Represen-
tations of Intuitive Real-Time Skills from Performance
Data, pp. 385–418. Oxford University Press, Inc., USA,
1994. ISBN 0198538502.

Michie, D., Bain, M., and Hayes-Michie, J. Cognitive mod-
els from subcognitive skills, pp. 71–99. Control, Robotics
and Sensors. Institution of Engineering and Technology,
1990. doi: 10.1049/PBCE044E_ch5.

Milani, S., Topin, N., Houghton, B., Guss, W. H., Mohanty,
S. P., Nakata, K., Vinyals, O., and Kuno, N. S. Retrospec-
tive analysis of the 2019 MineRL competition on sample
efficient reinforcement learning. arXiv, abs/2003.05012,
2020.

Morgenstern, B. DIALIGN: Multiple DNA and protein
sequence alignment at BiBiServ. Nucleic Acids Research,
32:W33–6, 2004.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation, ICRA 2018,
Brisbane, Australia, May 21-25, 2018, pp. 6292–6299.
IEEE, 2018.

Needleman, S. B. and Wunsch, C. D. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

Ng, A. Y. and Russell, S. J. Algorithms for inverse reinforce-
ment learning. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, pp. 663–670,
2000. ISBN 1558607072.

Notredame, C., Higgins, D. G., and Heringa, J. T-coffee:
a novel method for fast and accurate multiple sequence
alignment. Journal of Molecular Biology, 302(1):205–
217, 2000.

Paischer, F., Adler, T., Patil, V., Bitto-Nemling, A., Holzleit-
ner, M., Lehner, S., Eghbal-zadeh, H., and Hochreiter, S.
History compression via language models in reinforce-
ment learning. 2022. doi: 10.48550/ARXIV.2205.12258.
URL https://arxiv.org/abs/2205.12258.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural Comput., 3(1):
88–97, 1991. ISSN 0899-7667.

Puterman, M. L. Markov Decision Processes. John Wiley &
Sons, Inc., 2nd edition, 2005. ISBN 978-0-471-72782-8.

Rahmandad, H., Repenning, N., and Sterman, J. Effects of
feedback delay on learning. System Dynamics Review, 25
(4):309–338, 2009. doi: 10.1002/sdr.427.

Ramesh, R., Tomar, M., and Ravindran, B. Successor op-
tions: An option discovery framework for reinforcement
learning. In Proc. of the 28th Int. Joint Conf. on Artificial
Intelligence (IJCAI’19), 2019.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich,
M., Gruber, L., Holzleitner, M., Adler, T., Kreil, D.,
Kopp, M. K., Klambauer, G., Brandstetter, J., and Hochre-
iter, S. Hopfield networks is all you need. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=tL89RnzIiCd.

Reddy, S., Dragan, A. D., and Levine, S. SQIL: imitation
learning via regularized behavioral cloning. In Eighth
International Conference on Learning Representations
(ICLR), 2020. arXiv 1905.11108.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., and
Wayne, G. Experience replay for continual learning. In
Advances in Neural Information Processing Systems 32,
pp. 348–358, 2019.

https://arxiv.org/abs/2205.12258
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, vol-
ume 9 of Proceedings of Machine Learning Research, pp.
661–668, 2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, vol-
ume 15 of Proceedings of Machine Learning Research,
pp. 627–635, 2011.

Schaal, S. Learning from demonstration. In Proceedings
of the 9th International Conference on Neural Informa-
tion Processing Systems (NIPS’96), pp. 1040–1046, Cam-
bridge, MA, USA, 1996. MIT Press.

Scheller, C., Schraner, Y., and Vogel, M. Sample efficient
reinforcement learning through learning from demon-
strations in Minecraft. In Escalante, H. J. and Hadsell,
R. (eds.), Proceedings of Machine Learning Research
(PMLR), volume 123, pp. 67–76. PMLR, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, 2018.

Schweighofer, K., Hofmarcher, M., Dinu, M., Renz, P.,
Bitto-Nemling, A., Patil, V. P., and Hochreiter, S. Under-
standing the effects of dataset characteristics on offline
reinforcement learning. CoRR, abs/2111.04714, 2021.
URL https://arxiv.org/abs/2111.04714.

Schäfl, B., Gruber, L., Bitto-Nemling, A., and Hochre-
iter, S. Hopular: Modern hopfield networks for tabular
data, 2022. URL https://arxiv.org/abs/2206.
00664.

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K.,
Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding,
J., Thompson, J. D., and Higgins, D. G. Fast, scalable gen-
eration of high-quality protein multiple sequence align-
ments using Clustal Omega. Molecular Systems Biology,
7(1):539–539, 2014.

Silva, J. A. R., Grassi, V., and Wolf, D. F. Continuous deep
maximum entropy inverse reinforcement learning using
online POMDP. In 19th International Conference on
Advanced Robotics (ICAR), pp. 382–387. IEEE, 2019.

Silver, D. and Ciosek, K. Compositional planning using
optimal option models. In Proceedings of the 29th In-
ternational Conference on Machine Learning (ICML),
volume 2, 2012. arXiv 1206.6473.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and Has-
sabis, D. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489,
2016. doi: 10.1038/nature16961.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T. P., Simonyan, K., and Hassabis, D.
Mastering Chess and Shogi by self-play with a general
reinforcement learning algorithm. ArXiv, 2017.

Skrynnik, A., Staroverov, A., Aitygulov, E., Aksenov, K.,
Davydov, V., and Panov, A. I. Hierarchical deep q-
network with forgetting from imperfect demonstrations
in Minecraft. arXiv, abs/1912.08664, 2019.

Skrynnik, A., Staroverov, A., Aitygulov, E., Aksenov, K.,
Davydov, V., and Panov, A. I. Forgetful experience replay
in hierarchical reinforcement learning from demonstra-
tions, 2020.

Smith, T. F. and Waterman, M. S. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195–197, 1981.

Stolle, M. and Precup, D. Learning options in reinforcement
learning. In Lecture Notes in Computer Science, volume
2371, pp. 212–223, 2002. doi: 10.1007/3-540-45622-8_
16.

Stormo, G. D., Schneider, T. D., Gold, L., and Ehrenfeucht,
A. Use of the ’Perceptron’ algorithm to distinguish trans-
lational initiation sites in E. coli. Nucleic Acids Research,
10(9):2997–3011, 1982.

Suay, H. B., Brys, T., Taylor, M. E., and Chernova, S. Learn-
ing from demonstration for shaping through inverse rein-
forcement learning. In Proceedings of the 2016 Interna-
tional Conference on Autonomous Agents & Multiagent
Systems, pp. 429–437. ACM, 2016.

Subramanian, K., Isbell, C. L., and Thomaz, A. L. Explo-
ration from demonstration for interactive reinforcement
learning. In Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems, pp.
447–456, 2016.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply AggreVaTeD: Differentiable imita-
tion learning for sequential prediction. In Proceedings of
the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
pp. 3309–3318. PMLR, 2017.

https://arxiv.org/abs/2111.04714
https://arxiv.org/abs/2206.00664
https://arxiv.org/abs/2206.00664

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Sun, W., Bagnell, J., and Boots, B. Truncated horizon policy
search: Combining reinforcement learning & imitation
learning. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings,
2018.

Sutton, R. S. and Barto, A. G. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 2 edition,
2018.

Sutton, R. S., Precup, D., and Singh, S. P. Between MDPs
and Semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence, 112
(1-2):181–211, 1999.

Syed, U. and Schapire, R. E. A game-theoretic approach to
apprenticeship learning. In Advances in Neural Informa-
tion Processing Systems 20, 2007.

Taylor, M. E., Suay, H. B., and Chernova, S. Integrating
reinforcement learning with human demonstrations of
varying ability. In 10th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pp. 617–624,
2011.

Thompson, J. D., Higgins, D. G., and Gibson, T. J.
CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice.
Nucleic Acids Research, 22(22):4673–4680, 1994.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. FeUdal net-
works for hierarchical reinforcement learning. arXiv,
abs/1703.01161, 2017.

Wang, L. and Jiang, T. On the Complexity of Multiple
Sequence Alignment. Journal of Computational Biology,
1(4):337–348, 1994.

Watkins, C. J. C. H. Learning from Delayed Rewards. PhD
thesis, King’s College, 1989.

Widrich, M., Schäfl, B., Pavlović, M., Ramsauer, H.,
Gruber, L., Holzleitner, M., Brandstetter, J., Sandve,
G. K., Greiff, V., Hochreiter, S., and Klambauer, G.
Modern hopfield networks and attention for immune
repertoire classification. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 18832–18845. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
da4902cb0bc38210839714ebdcf0efc3-Paper.
pdf.

Widrich, M., Hofmarcher, M., Patil, V. P., Bitto-Nemling,
A., and Hochreiter, S. Modern hopfield networks for
return decomposition for delayed rewards. In Deep
RL Workshop NeurIPS 2021, 2021. URL https://
openreview.net/forum?id=t0PQSDcqAiy.

Zhang, X. and Ma, H. Pretraining deep actor-critic rein-
forcement learning algorithms with expert demonstra-
tions. ArXiv, abs/1801.10459, 2018.

Zhou, A., Jang, E., Kappler, D., Herzog, A., Khansari, M.,
Wohlhart, P., Bai, Y., Kalakrishnan, M., Levine, S., and
Finn, C. Watch, try, learn: Meta-learning from demon-
strations and rewards. In International Conference on
Learning Representations, 2020.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 3, AAAI’08, pp. 1433–1438. AAAI
Press, 2008. ISBN 9781577353683.

Zuo, X. mazelab: A customizable framework to create
maze and gridworld environments. https://github.
com/zuoxingdong/mazelab, 2018.

https://proceedings.neurips.cc/paper/2020/file/da4902cb0bc38210839714ebdcf0efc3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/da4902cb0bc38210839714ebdcf0efc3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/da4902cb0bc38210839714ebdcf0efc3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/da4902cb0bc38210839714ebdcf0efc3-Paper.pdf
https://openreview.net/forum?id=t0PQSDcqAiy
https://openreview.net/forum?id=t0PQSDcqAiy
https://github.com/zuoxingdong/mazelab
https://github.com/zuoxingdong/mazelab

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

A. Appendix

Contents of the appendix

A.1 Introduction to the Appendix . 18

A.2 Review Reward Redistribution . 18

A.3 The Five Steps of Align-RUDDER’s Reward Redistribution . 23

A.4 Sequence Alignment . 25

A.5 Artificial Task Experiments . 27

A.5.1 Hyperparameter Selection . 27

A.5.2 Figures . 27

A.5.3 Artificial Task p-values . 28

A.5.4 Stochastic Environments . 28

A.5.5 Changing number of Clusters . 28

A.5.6 Key-Event Detection . 29

A.6 Minecraft Experiments . 30

A.6.1 Minecraft . 30

A.6.2 Related Work and Steps Towards a General Agent . 31

A.6.3 The Five Steps of Align-RUDDER Demonstrated on Minecraft 34

A.6.4 Implementation of our Algorithm for Minecraft . 37

A.6.5 Policy and Value Network Architecture . 38

A.6.6 Imitation Learning of Sub-Task Agents . 39

A.6.7 Reinforcement Learning on Sub-Task Agents . 39

A.7 Reproducing the Artificial Task Results . 39

A.8 Software Libraries . 40

A.9 Compute . 40

List of figures

A.2 Clusters formed in the FourRooms and EightRooms environment . 27

A.3 Clusters formed in the FourRooms and EightRooms environment . 28

A.4 Clusters formed in the FourRooms and EightRooms environment . 28

A.5 FourRooms and EightRooms environments . 29

A.6 Reward redistribution for the FourRooms and EightRooms environments 29

A.7 FourRooms Learning Curve . 31

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

A.12 Step (I): Define events and map demonstrations into sequences of events. First, we extract the sequence
of states from human demonstrations, transform images into feature vectors using a pre-trained network
and transform them into a sequence of consecutive state deltas (concatenating image feature vectors and
inventory states). We cluster the resulting state deltas and remove clusters with a large number of members
and merge smaller clusters. In the case of demonstrations for the ObtainDiamond task in Minecraft the
resulting clusters correspond to obtaining specific resources and items required to solve the task. Then we
map the demonstrations to sequences of events. 35

A.13 Step (II): Construct a scoring matrix using event probabilities from demonstrations for diagonal elements
and setting off-diagonal to a constant value. The scores in the diagonal position are proportional to the
inverse of the event frequencies. Thus, aligning rare events has higher score. Darker colors signify higher
score values. 35

A.14 Step (III) Perform multiple sequence alignment (MSA) of the demonstrations. The MSA algorithm
maximizes the pairwise sum of scores of all alignments. The score of an alignment at each position is given
by the scoring matrix. As the off-diagonal entries are negative, the algorithm will always try to align an
event to itself, while giving preference to events which give higher scores. 36

A.15 Step (IV) Compute a position-specific scoring matrix (PSSM). This matrix can be computed using the MSA
(Step (III)) and the scoring matrix (Step (II)). Every column entry is for a position from the MSA. The score
at a position (column) and for an event (row) depends on the frequency of that event at that position in the
MSA. For example, the event in the last position is present in all the sequences, and thus gets a high score at
the last position. But it is absent in the remaining position, and thus gets a score of zero elsewhere. 36

A.16 Step (V) A new sequence is aligned step by step to the profile model using the PSSM, resulting in an
alignment score for each sub-sequence. The redistributed reward is then proportional to the difference of
scores of subsequent alignments. 36

A.17 Conceptual overview of our MineRL agent . 37

A.18 Conceptual architecture of Align-RUDDER MineRL policy and value networks 38

A.19 Discretization and interpolation of camera angles . 39

A.20 Mapping of clusters to letters . 40

A.21 Trajectory replay given by an exemplary consensus . 40

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

A.1. Introduction to the Appendix

This is the appendix to the paper “Align-RUDDER: Learning from few Demonstrations by Reward Redistribution”. The
appendix aims at supporting the main document and provides more detailed information about the implementation of our
method for different tasks. The content of this document is summarized as follows:

• Section A.3 describes the five steps of Align-RUDDER’s reward redistribution in more detail. In particular, the scoring
systems are described in more detail. • Section A.4 provides a brief overview of sequence alignment methods and the
hyperparameters used in our experiments. • Section A.5 provides figures and tables to support the results of the experiments
in Artificial Tasks (I) and (II). • Section A.6 explains in detail the experiments conducted in the Minecraft ObtainDiamond
task.

A.2. Review Reward Redistribution

Reward redistribution and return decomposition are concepts introduced in RUDDER but also apply to Align-RUDDER as
it is a variant of RUDDER. Reward redistribution based on return decomposition eliminates – or at least mitigates – delays
of rewards while preserving the same optimal policies. Align-RUDDER is justified by the theory of return decomposition
and reward redistribution when using multiple sequence alignment for constructing a reward redistribution model. In this
section, we review the concepts of return decomposition and reward redistribution.

Preliminaries. We consider a finite MDP defined by the 5-tuple P = (S,A,R, p, γ) where the state space S and
the action space A are sets of finite states s and actions a and R the set of bounded rewards r. For a given time
step t, the corresponding random variables are St, At and Rt+1. Furthermore, P has transition-reward distributions
p(St+1 = s′, Rt+1 = r | St = s,At = a), and a discount factor γ ∈ (0, 1], which we keep at γ = 1. A Markov policy
π(a | s) is a probability of an action a given a state s. We consider MDPs with finite time horizon or with an absorbing
state. The discounted return of a sequence of length T at time t is Gt =

∑T−t
k=0 γ

kRt+k+1. As usual, the Q-function for a
given policy π is qπ(s, a) = Eπ [Gt | St = s,At = a]. Eπ[x | s, a] is the expectation of x, where the random variable is a
sequence of states, actions, and rewards that is generated with transition-reward distribution p, policy π, and starting at (s, a).
The goal is to find an optimal policy π∗ = argmax π Eπ[G0] maximizing the expected return at t = 0. We assume that the
states s are time-aware (time t can be extracted from each state) in order to assure stationary optimal policies. According to
Proposition 4.4.3 in (Puterman, 2005), a deterministic optimal policy π∗ exists.

Definitions. A sequence-Markov decision process (SDP) is defined as a decision process that has Markov transition
probabilities but a reward probability that is not required to be Markov. Two SDPs P̃ and P with different reward probabilities
are return-equivalent if they have the same expected return at t = 0 for each policy π, and strictly return-equivalent if they
additionally have the same expected return for every episode. Since for every π the expected return at t = 0 is the same,
return-equivalent SDPs have the same optimal policies. A reward redistribution is a procedure that —for a given sequence
of a delayed reward SDP P̃— redistributes the realization or expectation of its return G̃0 along the sequence. This yields a
new SDP P with R as random variable for the redistributed reward and the same optimal policies as P̃:

Theorem 1 ((Arjona-Medina et al., 2019)). Both the SDP P̃ with delayed reward R̃t+1 and the SDP P with redistributed
reward Rt+1 have the same optimal policies.

Proof. The proof can be found in (Arjona-Medina et al., 2019).

The delay of rewards is captured by the expected future rewards κ(m, t− 1) at time (t− 1). κ is defined as κ(m, t− 1) :=
Eπ [

∑m
τ=0Rt+1+τ | st−1, at−1], that is, at time (t− 1) the expected sum of future rewards from Rt+1 to Rt+1+m but not

the immediate reward Rt. A reward redistribution is defined to be optimal, if κ(T − t− 1, t) = 0 for 0 ⩽ t ⩽ T − 1, which
is equivalent to Eπ [Rt+1 | st−1, at−1, st, at] = q̃π(st, at) − q̃π(st−1, at−1):

Theorem 2 ((Arjona-Medina et al., 2019)). We assume a delayed reward MDP P̃ , with episodic reward. A new SDP P is
obtained by a second order Markov reward redistribution, which ensures that P is return-equivalent to P̃ . For a specific π,
the following two statements are equivalent:
(I) κ(T − t− 1, t) = 0, i.e. the reward redistribution is optimal,

(II) Eπ [Rt+1 | st−1, at−1, st, at] = q̃π(st, at) − q̃π(st−1, at−1) (2)

An optimal reward redistribution fulfills for 1 ⩽ t ⩽ T and 0 ⩽ m ⩽ T − t: κ(m, t− 1) = 0.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Proof. The proof can be found in (Arjona-Medina et al., 2019).

This theorem shows that an optimal reward redistribution relies on steps q̃π(st, at) − q̃π(st−1, at−1) of the Q-function.
Identifying the largest steps in the Q-function detects the largest rewards that have to be redistributed, which makes the
largest progress towards obtaining an optimal reward redistribution.

Corollary 1 (Higher order Markov reward redistribution optimality conditions). We assume a delayed reward MDP P̃ , with
episodic reward. A new SDP P is obtained by a higher order Markov reward redistribution. The reward redistribution
ensures that P is return-equivalent to P̃ . If for a specific π

Eπ [Rt+1 | st−1, at−1, st, at] = q̃π(st, at) − q̃π(st−1, at−1) (3)

holds, then the higher order reward redistribution Rt+1 is optimal, that is, κ(T − t− 1, t) = 0.

Proof. The proof is just PART (II) of the proof of Theorem 2 in (Arjona-Medina et al., 2019). We repeat it here for
completeness.

We assume that

Eπ [Rt+1 | st−1, at−1, st, at] = ht = q̃π(st, at) − q̃π(st−1, at−1) , (4)

where we abbreviate the expected Rt+1 by ht:

Eπ [Rt+1 | st−1, at−1, st, at] = ht . (5)

The expectations Eπ [. | st−1, at−1] like Eπ

[
R̃T+1 | st−1, at−1

]
are expectations over all episodes that contain the state-

action pair (st−1, at−1) at time t − 1. The expectations Eπ [. | st−1, at−1, st, at] like Eπ

[
R̃T+1 | st−1, at−1, st, at

]
are

expectations over all episodes that contain the state-action pairs (st−1, at−1) at time t − 1 and (st, at) at time t. The
Q-values are defined as

q̃π(st, at) = Eπ

[
T−t∑
k=0

R̃t+k+1 | st, at

]
= Eπ

[
R̃T+1 | st, at

]
, (6)

qπ(st, at) = Eπ

[
T−t∑
k=0

Rt+k+1 | st, at

]
, (7)

which are expectations over all trajectories that contain (st, at) at time t. Since P̃ is Markov, for q̃π only the suffix
trajectories beginning at (st, at) enter the expectation.

The definition of κ(m, t− 1) for 1 ⩽ t ⩽ T and 0 ⩽ m ⩽ T − t was κ(m, t− 1) = Eπ [
∑m

τ=0Rt+1+τ | st−1, at−1]. We
have to prove κ(T − t− 1, t) = 0.

First, we consider m = 0 and 1 ⩽ t ⩽ T , therefore κ(0, t− 1) = Eπ [Rt+1 | st−1, at−1]. Since the original MDP P̃ has
episodic reward, we have r̃(st−1, at−1) = E

[
R̃t | st−1, at−1

]
= 0 for 1 ⩽ t ⩽ T . Therefore, we obtain:

q̃π(st−1, at−1) = r̃(st−1, at−1) +
∑
st,at

p(st, at | st−1, at−1) q̃
π(st, at) (8)

=
∑
st,at

p(st, at | st−1, at−1) q̃
π(st, at) .

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Using this equation we obtain for 1 ⩽ t ⩽ T :

κ(0, t− 1) = Eπ [Rt+1 | st−1, at−1] (9)
= Est,at

[q̃π(st, at) − q̃π(st−1, at−1) | st−1, at−1]

=
∑
st,at

p(st, at | st−1, at−1) (q̃π(st, at) − q̃π(st−1, at−1))

= q̃π(st−1, at−1) −
∑
st,at

p(st, at | st−1, at−1) q̃
π(st−1, at−1)

= q̃π(st−1, at−1) − q̃π(st−1, at−1) = 0 .

Next, we consider the expectation of
∑m

τ=0Rt+1+τ for 1 ⩽ t ⩽ T and 1 ⩽ m ⩽ T − t (for m > 0)

κ(m, t− 1) = Eπ

[
m∑

τ=0

Rt+1+τ | st−1, at−1

]
(10)

= Eπ

[
m∑

τ=0

(q̃π(sτ+t, aτ+t) − q̃π(sτ+t−1, aτ+t−1)) | st−1, at−1

]
= Eπ [q̃

π(st+m, at+m) − q̃π(st−1, at−1) | st−1, at−1]

= Eπ

[
Eπ

[
T∑

τ=t+m

R̃τ+1 | st+m, at+m

]
| st−1, at−1

]

− Eπ

[
Eπ

[
T∑

τ=t−1

R̃τ+1 | st−1, at−1

]
| st−1, at−1

]
= Eπ

[
R̃T+1 | st−1, at−1

]
− Eπ

[
R̃T+1 | st−1, at−1

]
= 0 .

We used that R̃t+1 = 0 for t < T .

For the particualr cases t = τ + 1 and m = T − t = T − τ − 1 we have

κ(T − τ − 1, τ) = 0 . (11)

That is exactly what we wanted to proof.

Corollary 1 explicitly states that the optimality criterion ensures an optimal reward redistribution even if the reward
redistribution is higher order Markov. For Align-RUDDER we may obtain a higher order Markov reward redistribution due
to the profile alignment of the sub-sequences.

Corollary 2 (Higher order Markov reward redistribution optimality representation). We assume a delayed reward MDP
P̃ , with episodic reward and that a new SDP P is obtained by a higher order Markov reward redistribution. The reward
redistribution ensures that P is strictly return-equivalent to P̃ . We assume that the reward redistribuition is optimal, that is,
κ(T − t− 1, t) = 0. If the condition

Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | s0, a0, . . . , st, at

]
(12)

holds, then

Eπ [Rt+1 | st−1, at−1, st, at] = q̃π(st, at) − q̃π(st−1, at−1) . (13)

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Proof. By and large, the proof is PART (I) of the proof of Theorem 2 in (Arjona-Medina et al., 2019). We repeat it here for
completeness.

We assume that the reward redistribution is optimal, that is,

κ(T − t− 1, t) = 0 . (14)

We abbreviate the expected Rt+1 by ht:

Eπ [Rt+1 | st−1, at−1, st, at] = ht . (15)

In (Arjona-Medina et al., 2019) Lemma A4 is as follows.

Lemma 1. Two strictly return-equivalent SDPs P̃ and P have the same expected return for each start state-action
sub-sequence (s0, a0, . . . , st, at), 0 ⩽ t ⩽ T :

Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at] . (16)

The assumptions of Lemma 1 hold for for the delayed reward MDP P̃ and the redistributed reward SDP P , since a reward
redistribution ensures strictly return-equivalent SDPs. Therefore for a given state-action sub-sequence (s0, a0, . . . , st, at),
0 ⩽ t ⩽ T :

Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at] (17)

with G0 =
∑T

τ=0Rτ+1 and G̃0 = R̃T+1. The Markov property of the MDP P̃ ensures that the future reward from t+ 1 on
is independent of the past sub-sequence s0, a0, . . . , st−1, at−1:

Eπ

[
T−t∑
τ=0

R̃t+1+τ | st, at

]
= Eπ

[
T−t∑
τ=0

R̃t+1+τ | s0, a0, . . . , st, at

]
. (18)

According to Eq. (12), the future reward from t+ 2 on is independent of the past sub-sequence s0, a0, . . . , st−1, at−1:

Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | s0, a0, . . . , st, at

]
. (19)

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Using these properties we obtain

q̃π(st, at) = Eπ

[
T−t∑
τ=0

R̃t+1+τ | st, at

]
(20)

= Eπ

[
T−t∑
τ=0

R̃t+1+τ | s0, a0, . . . , st, at

]
= Eπ

[
R̃T+1 | s0, a0, . . . , st, at

]
= Eπ

[
T∑

τ=0

R̃τ+1 | s0, a0, . . . , st, at

]
= Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at]

= Eπ

[
T∑

τ=0

Rτ+1 | s0, a0, . . . , st, at

]

= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | s0, a0, . . . , st, at

]
+

t∑
τ=0

hτ

= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
+

t∑
τ=0

hτ

= κ(T − t− 1, t) +

t∑
τ=0

hτ

=

t∑
τ=0

hτ .

We used the optimality condition

κ(T − t− 1, t) = Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
= 0 . (21)

It follows that

Eπ [Rt+1 | st−1, at−1, st, at] = ht = q̃π(st, at) − q̃π(st−1, at−1) . (22)

This is exactly what we wanted to proof.

This corollary shows that optimal reward redistributions can be expressed as difference of Q-values if Eq. (12) holds.
Eq. (12) states that the past can be averaged out. However, there may exist optimal reward redistributions for which Eq. (12)
does not hold.

If the reward redistribution is optimal, the Q-values of P are given by qπ(st, at) = q̃π(st, at) − ψπ(st) and therefore P̃
and P have the same advantage function:

Theorem 3 ((Arjona-Medina et al., 2019)). If the reward redistribution is optimal, then the Q-values of the SDP P are
qπ(st, at) = r(st, at) and

qπ(st, at) = q̃π(st, at) − Est−1,at−1
[q̃π(st−1, at−1) | st] = q̃π(st, at) − ψπ(st) . (23)

The SDP P and the original MDP P̃ have the same advantage function.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Proof. The proof can be found in (Arjona-Medina et al., 2019).

For an optimal reward redistribution only the expectation of the immediate reward r(st, at) = Eπ [Rt+1 | st, at] must be
estimated. This considerably simplifies learning.

Learning methods according to Arjona-Medina et al. (2019). The redistributed reward serves as reward for a subsequent
learning method, which can be Type A, B, and C as described in Arjona-Medina et al. (2019). Type A methods estimate
the Q-values. They can be estimated directly according to Eq. (23) assuming an optimal redistribution (Type A variant i).
Q-values can be corrected for a non-optimal reward redistribution by additionally estimating κ (Type A variant ii). Q-value
estimation can use eligibility traces (Type A variant iii). Type B methods use the redistributed rewards for policy gradients
like Proximal Policy Optimization (PPO) (Schulman et al., 2018). Type C methods use TD learning like Q-learning
(Watkins, 1989), where immediate and future reward must be drawn together as typically done. For all these learning
methods, demonstrations can be used for initialization (e.g. experience replay buffer) or pre-training (e.g. policy network
with behavioral cloning). Recently, the convergence of RUDDER learning methods has been proven under commonly used
assumptions (Holzleitner et al., 2020).

Non-optimal reward redistribution and Align-RUDDER. According to Theorem 1, non-optimal reward redistributions
do not change the optimal policies. The value κ(T − t− 1, t) measures the remaining delayed reward. The smaller κ is,
the faster is the learning process. For Monte Carlo (MC) estimates, smaller κ reduces the variance of the future rewards,
and, therefore the variance of the estimation. For temporal difference (TD) estimates, smaller κ reduces the amount of
information that has to flow back. Align-RUDDER dramatically reduces the amount of delayed rewards by identifying key
events via multiple sequence alignment, to which reward is redistributed. For an episodic MDP, a reward that is redistributed
to time t reduces all κ(m, τ) with t ⩽ τ < T by the expectation of the reward. Therefore, in most cases Align-RUDDER
makes κ-values much smaller.

A.3. The Five Steps of Align-RUDDER’s Reward Redistribution

The new reward redistribution approach consists of five steps, see Fig. A.1: (I) Define events to turn episodes of state-action
sequences into sequences of events. (II) Determine an alignment scoring scheme, so that relevant events are aligned to each
other. (III) Perform a multiple sequence alignment (MSA) of the demonstrations. (IV) Compute the profile model and the
PSSM. (V) Redistribute the reward: Each sub-sequence τt of a new episode τ is aligned to the profile. The redistributed
rewardRt+1 is proportional to the difference of scores S based on the PSSM given in step (IV), i.e.Rt+1 ∝ S(τt)−S(τt−1).

(I) Defining Events. Alignment techniques assume that sequences consist of few symbols, e.g. about 20 symbols, the
events. It is crucial to keep the number of events small in order to increase the difference between a random alignment and an
alignment of demonstrations. If there are many events, then two demonstrations might have few events that can be matched,
which cannot be well distinguished from random alignments. This effect is known in bioinformatics as “Inconsistency
of Maximum Parsimony” (Felsenstein, 1978). The events can be the original state-action pairs, clusters thereof, or other
representations of state-action pairs, e.g. indicating changes of inventory, health, energy, skills etc. In general, we define
events as a cluster of states or state-actions. A sequence of events is obtained from a state-action sequence by substituting
states or state-actions by their cluster identifier. In order to cluster states, a similarity measure between them is required. We
suggest to use the “successor representation” (Dayan, 1993) of the states, which gives a similarity matrix based on how
connected two states are given a policy. Successor representation have been used before (Machado et al., 2017; Ramesh et al.,
2019) to obtain important events, for option learning. For computing the successor representation, we use the demonstrations
combined with state-action sequences generated by a random policy. For high dimensional state spaces “successor features”
(Barreto et al., 2017) can be used. We use similarity-based clustering methods like affinity propagation (AP) (Frey & Dueck,
2007). For AP the similarity matrix does not have to be symmetric and the number of clusters need not be known. State
action pairs (s, a) are mapped to events e.

(II) Determining the Alignment Scoring System. Alignment algorithms distinguish similar sequences from dissimilar
sequences using a scoring system. A scoring matrix S has entries si,j that give the score for aligning event i with j. The
MSA score SMSA of a multiple sequence alignment is the sum of all pairwise scores: SMSA =

∑
i,j,i<j

∑L
t=0 sxi,t,xj,t

,
where xi,t means that event xi,t is at position t for sequence τi = ei,0:T in the alignment, analog for xj,t and the sequence
τj = ej,0:T , and L is the alignment length. Note that L ≥ T and xi,t ̸= ei,t, since gaps are present in the alignment.
In the alignment, events should have the same probability of being aligned as they would have if we know the strategy
and align demonstrations accordingly. The theory of high scoring segments gives a scoring scheme with these alignment

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

III) Multiple Sequence Alignment

d1

d2

d3

d1

d2

d3

I) Defining Events II) Scoring Matrix

IV) PSSM and Profile V) Reward Redistribution

d4 d4

τt−1

τt

Profile
Model

S(τt)

S(τt−1)

Rt+1 = (S(τt) − S(τt−1)) C

Figure A.1: The five steps of Align-RUDDER’s reward redistribution. (I) shows several demonstrations, where each
demonstration is composed of a sequence of events. Events are defined as difference of state-actions or clusters thereof.
Step (II) depicts a scoring matrix, which we construct using event probabilities from demonstrations. With demonstrations
and the scoring matrix we then perform MSA in step (III). In step (IV) to construct the profile model and PSSM from the
alignment. These are then used to align a new sequence to the model in step (V), one timestep at a time. The differences in
alignment score are then used to redistribute reward for this new sequence.

probabilities (Karlin & Altschul, 1990; Karlin et al., 1990; Altschul et al., 1990). Event i is observed with probability pi
in the demonstrations, therefore a random alignment aligns event i with j with probability pipj . An alignment algorithm
maximizes the MSA score SMSA and, thereby, aligns events i and j with probability qij for demonstrations. High values
of qij means that the MSA often aligns events i and j in the demonstrations using the scoring matrix S with entries si,j .
According to Theorem 2 and Equation [3] in Karlin & Altschul (1990), asymptotically with the sequence length, we have
si,j = ln(qij/(pipj))/λ

∗, where λ∗ is the unique positive root of
∑n,n

i=1,j=1 pipj exp(λsi,j) = 1 (Equation [4] in Karlin &
Altschul (1990)).
We can now choose a desired probability qij and then compute the scoring matrix S with entries si,j . High values of qij
should indicate relevant events for the strategy. A priori, we only know that a relevant event should be aligned to itself, while
we do not know which events are relevant. Therefore we set qij to large values for every i = j and to low values for i ̸= j.
Concretely, we set qij = pi − ϵ for i = j and qij = ϵ/(n− 1) for i ̸= j, where n is the number of different possible events.
Events with smaller pi receive a higher score si,i when aligned to themselves since this self-match is less often observed
when randomly matching events (pipi is the probability of a random self-match). Any prior knowledge about events should
be incorporated into qij .

(III) Multiple sequence alignment (MSA). MSA first produces pairwise alignments between all demonstrations. Then, a
guiding tree (agglomerative hierarchical clustering) is produced via hierarchical clustering sequences, according to their
pairwise alignment scores. Demonstrations which follow the same strategy appear in the same cluster in the guiding tree.
Each cluster is aligned separately via MSA to address different strategies. However, if there is not a cluster of demonstrations,
then the alignment will fail. MSA methods like ClustalW (Thompson et al., 1994) or MUSCLE (Edgar, 2004) can be used.

(IV) Position-Specific Scoring Matrix (PSSM) and Profile. From the final alignment, we construct a) an MSA profile
(column-wise event frequencies qi,j) and b) a PSSM (Stormo et al., 1982) which is used for aligning new sequences to
the profile of the MSA. To compute the PSSM (column-wise scores si,t), we apply Theorem 2 and Equation [3] in Karlin
& Altschul (1990). Event i is observed with probability pi in the data. For each position t in the alignment, we compute
qi,t, which indicates the frequency of event i at position t. The PSSM is si,t = ln(qi,t/pi)/λ

∗
t , where λ∗t is the single

unique positive root of
∑n

i=1 pi exp(λsi,t) = 1 (Equation [1] in (Karlin & Altschul, 1990)). If we align a new sequence that
follows the underlying strategy (a new demonstration) to the profile model, we would see that event i is aligned to position t
in the profile with probability qi,t.

(V) Reward Redistribution. The reward redistribution is based on the profile model. A sequence τ = e0:T (et is event at
position t) is aligned to the profile, which gives the score S(τ) =

∑L
t=0 sxt,t. Here, si,t is the alignment score for event i

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

and xt is the event of τ at position t in the alignment. L is the profile length, where L ≥ T and xt ̸= et, because of gaps in
the alignment. If τt = e0:t is the prefix sequence of τ of length t+ 1, then the reward redistribution Rt+1 for 0 ⩽ t ⩽ T is

Rt+1 = (S(τt) − S(τt−1))C = g((s, a)0:t)− g((s, a)0:t−1), RT+2 = G̃0 −
T∑

t=0

Rt+1, (24)

where C = Edemo

[
G̃0

]
/ Edemo

[∑T
t=0 S(τt)− S(τt−1)

]
and G̃0 =

∑T
t=0 R̃t+1 is the original return of the sequence

τ and S(τt−1) = 0. Edemo is the expectation over demonstrations, and C scales Rt+1 to the range of G̃0. RT+2

is the correction of the redistributed reward (Arjona-Medina et al., 2019), with zero expectation for demonstrations:
Edemo [RT+2] = 0. Since τt = e0:t and et = f(st, at), we can set g((s, a)0:t) = S(τt)C. We ensure strict return
equivalence, sinceG0 =

∑T+1
t=0 Rt+1 = G̃0. The redistributed reward depends only on the past, that is, Rt+1 = h((s, a)0:t).

For computational efficiency, the alignment of τt−1 can be extended to one for τt, like exact matches are extended to
high-scoring sequence pairs with the BLAST algorithm (Altschul et al., 1990; 1997).

Sub-tasks. The reward redistribution identifies sub-tasks, which are alignment positions with high redistributed reward. It
also determines the terminal states and automatically assigns reward for solving the sub-tasks. However, reward redistribution
and Align-RUDDER cannot guarantee that the reward is Markov. For redistributed reward that is Markov, the option
framework (Sutton et al., 1999), the MAXQ framework (Dietterich, 2000), or recursive composition of option models (Silver
& Ciosek, 2012) can be used as subsequent approaches to hierarchical reinforcement learning.

A.4. Sequence Alignment

In bioinformatics, sequence alignment identifies regions of significant similarity among different biological sequences to
establish evolutionary relationships between those sequences. In 1970, Needleman and Wunsch proposed a global alignment
method based on dynamic programming (Needleman & Wunsch, 1970). This approach ensures the best possible alignment
given a substitution matrix, such as PAM (Dayhoff, 1978) or BLOSUM(Henikoff & Henikoff, 1992), and other parameters
to penalize gaps in the alignment. The method of Needlemann and Wunsch is of O(mn) complexity both in memory and
time, which could be prohibitive in long sequences like genomes. An optimization of this method by Hirschberg (1975),
reduces memory to O(m+ n), but still requires O(mn) time.

Later, Smith and Waterman developed a local alignment method for sequences (Smith & Waterman, 1981). It is a variation
of Needleman and Wunsch’s method, keeping the substitution matrix and the gap-scoring scheme but setting cells in the
similarity matrix with negative scores to zero. The complexity for this algorithm is of O(n2M). Osamu Gotoh published an
optimization of this method, running in O(mn) runtime (Gotoh, 1982).

The main difference between both methods is the following:

• The global alignment method by Needleman and Wunsch aligns the sequences fixing the first and the last position of
both sequences. It attempts to align every symbol in the sequence, allowing some gaps, but the main purpose is to get a
global alignment. This is especially useful when the two sequences are highly similar. For instance:

ATCGGATCGACTGGCTAGATCATCGCTGG
CGAGCATC-ACTGTCT-GATCGACCTTAG

* *** **** ** **** * * *

• As an alternative to global methods, the local method of Smith and Waterman aligns the sequences with a higher degree
of freedom, allowing the alignment to start or end with gaps. This is extremely useful when the two sequences are
substantially dissimilar in general but suspected of having a highly related sub region.

ATCAAGGAGATCATCGCTGGACTGAGTGGCT----ACGTGGTATGT
ATC----CGATCATCGCTGG-CTGATCGACCTTCTACGT-------

*** ************ **** * * ****

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

A.4.0.1Multiple Sequence Alignment algorithms. The sequence alignment algorithms by Needleman and Wunsch and
Smith and Waterman are limited to aligning two sequences. The approaches for generalizing these algorithms to multiple
sequences can be classified into four categories:

• Exact methods (Wang & Jiang, 1994).

• Progressive methods: ClustalW (Thompson et al., 1994), Clustal Omega (Sievers et al., 2014), T-Coffee (Notredame
et al., 2000).

• Iterative and search algorithms: DIALIGN (Morgenstern, 2004), MultiAlign (Corpet, 1988).

• Local methods: eMOTIF (Mccammon & Wolynes, 1998), PROSITE (Bairoch & Bucher, 1994).

For more details, visit Sequence Comparison: Theory and methods (Chao & Zhang, 2009).

In our experiments, we use ClustalW from Biopython (Cock et al., 2009) with the following parameters:

clustalw2 -ALIGN -CLUSTERING=UPGMA -NEGATIVE " \
"-INFILE={infile} -OUTFILE={outfile} " \
"-PWMATRIX={scores} -PWGAPOPEN=0 -PWGAPEXT=0 " \
"-MATRIX={scores} -GAPOPEN=0 -GAPEXT=0 -CASE=UPPER " \
"-NOPGAP -NOHGAP -MAXDIV=0 -ENDGAPS -NOVGAP " \
"-NEWTREE={outputtree} -TYPE=PROTEIN -OUTPUT=GDE

where the PWMATRIX and MATRIX are computed according to step (II) in Sec. 3 of the main paper.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

A.5. Artificial Task Experiments

This section provides additional information that supports the results reported in the main paper for Artificial Tasks (I) and
(II).

A.5.1. HYPERPARAMETER SELECTION

For (BC)+Q-Learning and Align-RUDDER, we performed a grid search to select the learning rate from the following values
[0.1, 0.05, 0.01]. We used 20 different seeds for each value and each number of demonstrations and then selected the setting
with the highest success for all number of demonstrations. The final learning rate for (BC)+Q-Learning and DQfD is 0.01
and for Align-RUDDER it is 0.1.

For DQfD, we set the experience buffer size to 30, 000 and the number of experiences sampled at every timestep to 10.
The DQfD loss weights are set to 0.01, 0.01 and 1.0 for the Q-learning loss term, n-step loss term and the expert loss
respectively during pre-training. During online learning, we change the loss terms to 1.0, 1.0 and 0.01 for the Q-learning
loss term, n-step loss term and the expert loss term. This was necessary to enable faster learning for DQfD. The expert
action margin is 0.8.

For successor representation, we use a learning rate of 0.1 and a gamma of 0.99. We update the successor table multiple
times using the same transition (state, action, next state) from the demonstration.

For affinity propagation, we use a damping factor of 0.5 and set the maximum number of iterations to 1000. Furthermore, if
we obtain more than 15 clusters, then we combine clusters based on the similarity of the cluster centers.

A.5.2. FIGURES

Figure A.5 shows sample trajectories in the FourRooms and EightRooms environment, with the initial and target positions
marked in red and green respectively. Figure A.2 shows the clusters after performing clustering with Affinity Propagation
using the successor representation with 25 demonstrations and an environment with 1% stochasticity on the transitions.
Different colors indicate different clusters. Figures A.3 and A.4 show clusters for different environment settings. Figure A.3
shows clusters when using 10 demonstrations and for Figure A.4 environments with 5% stochastictiy on transitions was
used. Figure A.6 shows the reward redistribution for the given example trajectories in the FourRooms and EightRooms
environments.

Figure A.2: Examples of clusters formed in the FourRooms (left) and EightRooms (right) environment with 1% stochas-
ticity on the transitions after performing clustering with Affinity Propagation using the successor representation with 25
demonstrations. Different colors represent different clusters.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Figure A.3: Examples of clusters formed in the FourRooms (left) and EightRooms (right) environment with 1% stochas-
ticity on the transitions after performing clustering with Affinity Propagation using the successor representation with 10
demonstrations. Different colors represent different clusters.

Figure A.4: Examples of clusters formed in the FourRooms (left) and EightRooms (right) environment with 5% stochas-
ticity on the transitions after performing clustering with Affinity Propagation using the successor representation with 25
demonstrations. Different colors represent different clusters.

A.5.3. ARTIFICIAL TASK P-VALUES

Tables A.1 and A.2 show the p-values obtained by performing a Mann-Whitney-U test between Align-RUDDER and
BC+Q-Learning and DQfD respectively.

A.5.4. STOCHASTIC ENVIRONMENTS

Figure A.8 shows results for the FourRooms environment with different levels of stochasticity (5%, 10%, 15%, 25% and
40%) on the transitions. Figure A.9 shows results for the EightRooms environment with different levels of stochasticity (5%
and 10%) on the transitions.

A.5.5. CHANGING NUMBER OF CLUSTERS

We use Affinity Propagation for clustering, and do not set the number of clusters. Although, we set the max number of
clusters allowed. If Affinity propagation results in more clusters, they are combined and reduced to the maximum clusters
allowed. This is necessary due to the limitations of the underlying alignment library we are using. For the experiments on

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Figure A.5: Exemplary trajectories in the FourRooms (left) and EightRooms (right) environments. Initial position is
indicated in red, the portal between the first and second room in yellow and the goal in green.

Figure A.6: Reward redistribution for the above trajectories in the FourRooms (left) and EightRooms (right) environments.

FourRooms and EightRooms in the main paper, we fix the max number of clusters to 15.

We conduct an experimental study on how changing the max number of clusters changes the performance of Align-RUDDER
on the FourRooms environment. The results are in table A.3.

A.5.6. KEY-EVENT DETECTION

1D key-chest environment. We use a 1D key-chest environment to show the effectiveness of sequence alignment in a
low data regime compared to an LSTM model. The agent has to collect the key and then open the chest, to get a positive
reward at the last timestep. See Appendix Fig. A.10 for a schematic representation of the environment. As the key-events
(important state-action pairs) in this environment are known we can compute the key-event detection rate of a reward
redistribution model. A key event is detected if the redistributed reward of an important state-action pair is larger than the
average redistributed reward in the sequence. We train the reward redistribution models with 2, 5 and 10 training episodes
and test on 1000 test episodes, averaged over 10 trials. Align-RUDDER significantly outperforms LSTM (RUDDER) for
detecting these key events in all cases, with an average key-event detection rate of 0.96 for sequence alignment vs. 0.46 for
the LSTM models over all dataset sizes. See Appendix Fig. A.11 for the detailed results.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

2 5 10 50 100

Align-RUDDER vs. BC+Q-Learn. 8.8e-31 2.8e-30 1.1e-09 3.5e-01 1.6e-01
Align-RUDDER vs. SQIL 3.6e-39 5.2e-39 3.1e-37 8.6e-36 1.9e-36
Align-RUDDER vs. DQfD 2.7e-29 4.3e-30 1.3e-32 1.0e+00 1.0e+00
Align-RUDDER vs. RUDDER (LSTM) 1.9e-31 1.9e-27 3.7e-20 1.7e-15 7.3e-01

Table A.1: p-values for Artificial Task (I), FourRooms, obtained by performing a Mann-Whitney-U test.

2 5 10 50 100

Align-RUDDER vs. BC+Q-Learn. 4.5e-20 1.3e-34 4.9e-25 3.7e-01 6.1e-01
Align-RUDDER vs. SQIL 1.8e-37 2.8e-39 1.9e-36 1.7e-35 1.9e-37
Align-RUDDER vs. DQfD 1.2e-08 8.9e-20 5.6e-31 1.0e+00 1.0e+00
Align-RUDDER vs. RUDDER (LSTM) 1.2e-29 1.3e-34 3.9e-31 8.7e-22 1.0e-18

Table A.2: p-values for Artificial Task (II), EightRooms, obtained by performing a Mann-Whitney-U test.

A.6. Minecraft Experiments

In this section we explain in detail the implementation of Align-RUDDER for solving the task ObtainDiamond.

A.6.1. MINECRAFT

We show that our approach can be applied to complex tasks by evaluating it on the MineRL Minecraft dataset (Guss et al.,
2019b). This dataset provides a large collection of demonstrations from human players solving six different tasks in the
sandbox game Minecraft. In addition to the human demonstrations the MineRL dataset also provides an OpenAI-Gym
wrapper for Minecraft. The dataset includes demonstrations for the following tasks:

• navigating to target location following a compass,

• collecting wood by chopping trees,

• obtaining an item by collecting resources and crafting, and

• free play "survival" where the player is free to choose his own goal.

The demonstrations include the video showing the players’ view (without user interface), the players’ inventory at every
time step and the actions performed by the player. We focus on the third task of obtaining a target item, namely a diamond.

Max. # of Clusters 2 5 10 50 100

2 5782.1 2378 7624 18 14
5 4462.1 1277 7892 19 14
8 985 1417 1372 19 14

10 985 1417 1372 19 14
12 985 1417 1372 19 14
15 985 1417 1372 19 14

Table A.3: Results for different numbers of clusters for the FourRooms artificial task are shown in the table. It shows the
number episodes required to reach 80% optimal return, using a demonstrations given in column headers. These results are
averaged over 10 seeds. For the results we report in the paper we set the maximum number of clusters to 15, the results
show that even when reducing the number of clusters to 8, results stay similar. We only see worse performance for when
only allowing 2 or 5 clusters.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

0 1000 2000 3000 4000 5000 6000 7000

Steps

0.0

0.5

1.0

1.5

2.0

2.5

R
et

u
rn

Learning Curves for FourRooms-v0 with 2 Demonstrations

BC + Q-Learning

Align-RUDDER

DQfD

0 500 1000 1500 2000 2500 3000

Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
et

u
rn

Learning Curves for FourRooms-v0 with 5 Demonstrations

BC + Q-Learning

Align-RUDDER

DQfD

0 500 1000 1500 2000 2500 3000

Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
et

u
rn

Learning Curves for FourRooms-v0 with 10 Demonstrations

BC + Q-Learning

Align-RUDDER

DQfD

Figure A.7: Learning curves for FourRooms-v0 environment. All experiments are stopped after reaching 80% of the optimal
return. These curves are averaged over 10 seeds. Align-RUDDER is able to reach higher return values faster than other
methods.

This task is very challenging as it is necessary to obtain several different resources and tools and has been the focus of a
challenge (Guss et al., 2019a) at NeurIPS’19. By the end of this challenge no entry was able to obtain the diamond.

We show that our method is well suited for solving the task of obtaining the diamond, which can be decomposed into
sub-tasks by reward redistribution after aligning successful demonstrations.

A.6.2. RELATED WORK AND STEPS TOWARDS A GENERAL AGENT

In the following, we review two approaches Skrynnik et al. (2019); Scheller et al. (2020) where more details are available
and compare them with our approach.

Skrynnik et al. (2019) address the problem with a TD based hierarchical Deep Q-Network (DQN) and by utilizing the
hierarchical structure of expert trajectories by extracting sequences of meta-actions and sub-goals. This approach allowed
them to achieve the 1st place in the official NeurIPS’19 MineRL challenge (Skrynnik et al., 2019). In terms of pre-processing,
our approaches have in common that both rely on frame skipping and action space discretization. However, they reduce the
action space to ten distinct joint environment actions (e.g. move camera & attack) and treat inventory actions separately
by executing a sequence of semantic actions. We aim at taking a next step towards a more general agent by introducing
an action space preserving the agent’s full freedom of action in the environment (more details are provided below). This
allows us to avoid the distinction between item (environment) and semantic (inventory) agents and to train identically
structured agents in the same fashion regardless of facing a mining, crafting, placing or smelting sub-task. Skrynnik et al.
(2019) extract a sub-task chain by separately examining each expert trajectory and by considering the time of appearance of
items in the inventory in chronological order. For agent training their approach follows a heuristic where they distinguish
between collecting the item log and all remaining items. The log-agent is trained by starting with the TreeChop expert

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Demonstrations

25000
50000
75000

100000

2 5 10 50 100

Demonstrations of the FourRooms-v1 Environment

0

2500

5000

7500

10000

12500

15000

17500

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL Demonstrations

25000
50000
75000

100000

2 5 10 50 100

Demonstrations of the FourRooms-v2 Environment

0

2500

5000

7500

10000

12500

15000

17500

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL

Demonstrations

25000
50000
75000

100000

2 5 10 50 100

Demonstrations of the FourRooms-v3 Environment

0

2500

5000

7500

10000

12500

15000

17500

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL Demonstrations

25000
50000
75000

100000

2 5 10 50 100

Demonstrations of the FourRooms-v4 Environment

0

2500

5000

7500

10000

12500

15000

17500

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL

Demonstrations

25000
50000
75000

100000

2 5 10 50 100

Demonstrations of the FourRooms-v5 Environment

0

2500

5000

7500

10000

12500

15000

17500

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL

Figure A.8: Comparison of Align-RUDDER and other methods on Task (I) (FourRooms) with increasing levels of
stochasticity (from top left to bottom: 5%, 10%, 15%, 25% and 40%). Results are the average over 50 trials.

trajectories and then gradually injecting trajectories collected from interactions with the environment into the DQN’s replay
buffer. For the remaining items they rely on the expert data of ObtainIronPickaxeDense and imitation learning. Given our
proposed sequence alignment and reward redistribution methodology we are able to avoid this shift in training paradigm and
to leverage all available training data (ObtainDiamond, ObtainIronPickaxe and TreeChop) at the same time. In short, we
collect all expert trajectories in one pool, perform sequence alignment yielding a common diamond consensus along with
the corresponding reward redistribution and the respective sub-task sequences. Given this restructuring of the problem into
local sub-problems with redistributed reward all sub-task agents are then trained in the same fashion (e.g. imitation learning
followed by RL-based fine-tuning). Reward redistribution guarantees that the optimal policies are preserved (Arjona-Medina
et al., 2019).

Scheller et al. (2020) achieved the 3rd place on the official leader board following a different line of research and addressed
the problem with a single end-to-end off-policy IMPALA (Espeholt et al., 2018) actor-critic agent, again utilizing experience
replay to incorporate the expert data (Scheller et al., 2020). To prevent catastrophic forgetting of the behavior for later, less
frequent sub-tasks they introduce value clipping and apply CLEAR (Rolnick et al., 2019) to both, policy and value networks.
Treating the entire problem as a whole is already the main distinguishable feature compared to our method. To deal with
long trajectories they rely on a trainable special form of frame skipping where the agent also has to predict how many
frames to skip in each situation. This helps to reduce the effective length (step count) of the respective expert trajectories. In

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Demonstrations

50000
75000

100000

2 5 10 50 100

Demonstrations of the EightRooms-v1 Environment

0

10000

20000

30000

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL Demonstrations

50000
75000

100000

2 5 10 50 100

Demonstrations of the EightRooms-v2 Environment

0

10000

20000

30000

E
p

is
o
d

es
to

80
%

op
ti

m
al

re
tu

rn

Align-RUDDER

BC + Q-Learning

DQfD

RUDDER (LSTM)

SQIL

Figure A.9: Comparison of Align-RUDDER and other methods on Task (II) (EightRooms) with increasing levels of
stochasticity (from top left to bottom: 5%, 10%). Results are the average over 50 trials.

Figure A.10: The agent has to collect the key and then open the chest, to get a positive reward at the last timestep. The
environment episode runs for a fixed 32 timesteps.

contrast to the approach of (Scheller et al., 2020) we rely on a constant frame skip irrespective of the states and actions we
are facing. Finally, there are also several common features including:

1. a supervised BC pre-training stage prior to RL fine-tuning,

2. separate networks for policy and value function,

3. independent action heads on top of a sub-sequence LSTM,

4. presenting the inventory state in a certain form to the agent and

5. applying a value-function-burn-in prior to RL fine-tuning.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

2 5 10

Number of Demonstrations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

K
ey

-E
ve

nt
D

et
ec

ti
on

R
at

e
Align-RUDDER

RUDDER (LSTM)

Figure A.11: We use Align-RUDDER and RUDDER to detect key events for Key-Chest environment, where we already
know which state-action pairs are important for return. A key event is detected if the redistributed reward at an important
state-action is larger than the average redistributed reward in the sequence. We test on 1000 test episodes and average over
10 trials. Align-RUDDER outperforms LSTM (RUDDER) for detecting these key events.

A.6.3. THE FIVE STEPS OF ALIGN-RUDDER DEMONSTRATED ON MINECRAFT

In this subsection, we give an example of the five steps of Align-RUDDER using demonstrations from the MineRL
ObtainDiamond task. Figures A.12 to A.16 illustrate these steps.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Clustering

diamond ore

10

0

02

0

0

0

0

0

0

0

0

0

1

24

0

0

0

4

0

00

0

0

0

0

0

0

0

0

12

6

2

1

16

1

0

1

4

0

0

0

6

8

124

8

1

18

1

36

1

4

0

0

0

00

0

0

0

0

0

0

0

0

24

0

00

8

1

10

1

0

0

0

0

events

log planksdirt

crafting table stick wooden pickaxe

cobblestone iron orestone pickaxe

iron pickaxeiron ingot furnace

demo 1

demo 2

demo 3

demo 4

demo 5

demo 6

mapped demonstrations

Figure A.12: Step (I): Define events and map demonstrations into sequences of events. First, we extract the sequence
of states from human demonstrations, transform images into feature vectors using a pre-trained network and transform
them into a sequence of consecutive state deltas (concatenating image feature vectors and inventory states). We cluster
the resulting state deltas and remove clusters with a large number of members and merge smaller clusters. In the case of
demonstrations for the ObtainDiamond task in Minecraft the resulting clusters correspond to obtaining specific resources
and items required to solve the task. Then we map the demonstrations to sequences of events.

400

10,000

75

8,00015,000

500 4,000

9,000 700300

150350 250

event
frequencies

Scoring
Matrix

Figure A.13: Step (II): Construct a scoring matrix using event probabilities from demonstrations for diagonal elements
and setting off-diagonal to a constant value. The scores in the diagonal position are proportional to the inverse of the event
frequencies. Thus, aligning rare events has higher score. Darker colors signify higher score values.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

demo 1

demo 2

demo 3

demo 4

demo 5

demo 6

human demonstrations

demo 1

demo 2

demo 3

demo 4

demo 5

demo 6

alignment

Figure A.14: Step (III) Perform multiple sequence alignment (MSA) of the demonstrations. The MSA algorithm maximizes
the pairwise sum of scores of all alignments. The score of an alignment at each position is given by the scoring matrix. As
the off-diagonal entries are negative, the algorithm will always try to align an event to itself, while giving preference to
events which give higher scores.

Figure A.15: Step (IV) Compute a position-specific scoring matrix (PSSM). This matrix can be computed using the MSA
(Step (III)) and the scoring matrix (Step (II)). Every column entry is for a position from the MSA. The score at a position
(column) and for an event (row) depends on the frequency of that event at that position in the MSA. For example, the event
in the last position is present in all the sequences, and thus gets a high score at the last position. But it is absent in the
remaining position, and thus gets a score of zero elsewhere.

reward redistribution

align new sequence

consensus

Figure A.16: Step (V) A new sequence is aligned step by step to the profile model using the PSSM, resulting in an alignment
score for each sub-sequence. The redistributed reward is then proportional to the difference of scores of subsequent
alignments.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Figure A.17: Conceptual overview of our MineRL agent.

A.6.4. IMPLEMENTATION OF OUR ALGORITHM FOR MINECRAFT

The architecture of the training pipeline incorporates three learning stages:

• sequence alignment and reward redistribution

• learning from demonstrations via behavioral cloning (pre-training) and

• model fine-tuning with reinforcement learning.

Figure A.17 shows a conceptual overview of all components.

Sequence alignment and reward redistribution. First, we extract the sequence of states from human demonstrations,
transform images into feature vectors using a standard pre-trained network and transform them into a sequence of consecutive
state deltas (concatenating image feature vectors and inventory states). A pre-trained network can be model trained for
image classification or an auto-encoder model trained on images. In our case, we used an auto-encoder model trained on the
MineRL obtainDiamond dataset. We cluster the resulting state deltas and remove clusters with a large number of members
and merged smaller clusters. This results in 19 events and we map the demonstrations to sequences of events. These events
correspond to inventory changes. For each human demonstration we get a sequence of events which we map to letters from
the amino acid code, resulting in a sequence of letters. In Fig. A.20 we show all events with their assigned letter encoding
that we defined for the Minecraft environment.

We then calculate a scoring matrix according to step (II) in Sec. 3 in the main document. Then, we perform multiple
sequence alignment to align sequences of events of the top N demonstrations, where shorter demonstrations are ranked
higher. This results in a sequence of common events which we denote as the consensus. In order to redistribute the reward,
we use the PSSM model and assign the respective reward. Reward redistribution allows the sub-goal definition i.e. positions
where the reward redistribution is larger than a threshold or positions where the reward redistribution has a certain value. In
our implementation sub-goals are obtained by applying a threshold to the reward redistribution. The main agent is initialized
by executing sub-agents according to the alignment. Figure 4 shows how sub-goals are identified using reward redistribution.

Learning from demonstrations via behavioral cloning. We extract demonstrations for each individual sub-task in the
form of sub-sequences taken from all demonstrations. For each sub-task we train an individual sub-agent via behavioral
cloning.

Model fine-tuning with reinforcement learning. We fine-tune the agent in the environment using PPO (Schulman et al.,
2018). During fine-tuning with PPO, an agent receives reward if it manages to reach its sub-goal.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Figure A.18: Conceptual architecture of our MineRL policy and value networks.

To evaluate the performance of an agent for its current sub-goal, we average the return over multiple roll-outs. This gives us
a good estimate of the success rate and if trained models have improved during fine tuning or not. In Fig. 6, we plot the
overall success rate of all models evaluated sequentially from start to end.

In order to shorten the training time of our agent, we use trajectory replay and state resetting, similar to the idea proposed
in (Ecoffet et al., 2019), allowing us to train sub-task agents in parallel. This is not necessary for the behavioral cloning
stage, since here we can independently train agents according to the extracted sub-goals. However, fine-tuning a sub-task
agent with reinforcement learning requires agents for all previous sub-tasks. To fine-tune agents for all sub-tasks, we record
successful experiences (states, actions, rewards) for earlier goals and use them to reset the environment where a subsequent
agent can start its training. In Fig. A.21, we illustrate a trajectory replay given by an exemplary consensus.

A.6.5. POLICY AND VALUE NETWORK ARCHITECTURE

Figure A.18 shows a conceptual overview of the policy and value networks used in our MineRL experiments. The networks
are structured as two separate convolutional encoders with an LSTM layer before the respective output layer, without sharing
any model parameters.

The input to the model is the sequence of the 32 most recent frames, which are pre-processed in the following way: first, we
add the currently equipped item as a color-coded border around each RGB frame. Next, the frames are augmented with an
inventory status bar representing all 18 available inventory items (each inventory item is drawn as an item-square consisting
of 3 × 3 pixels to the frame). Depending on the item count the respective square is drawn with a linearly interpolated
gray-scale ranging from white (no item at all) to black (item count > 95). The count of 95 is the 75-quantile of the total
amount of collected cobblestones and dirt derived from the inventory of all expert trajectories. Intuitively, this count should
be related to the current depth (level) where an agent currently is or at least has been throughout the episode. In the last
pre-processing step the frames are resized from 64× 64 to 48× 48 pixels and divided by 255 resulting in an input value
range between zero and one.

The first network stage consists of four batch-normalized convolution layers with ReLU activation functions. The layers are
structured as follows: Conv-Layer-1 (16 feature maps, kernel size 4, stride 2, zero padding 1), Conv-Layer-2 (32 feature
maps, kernel size 4, stride 2, zero padding 1), Conv-Layer-3 (64 feature maps, kernel size 3, stride 2), and Conv-Layer-4 (32
feature maps, kernel size 3, stride 2). The flattened latent representation (∈ R32×288) of the convolution stage is further
processed with an LSTM layer with 256 units. Given this recurrent representation we only keep the last time step (e.g. the
prediction for the most recent frame).

The value head is a single linear layer without non-linearity predicting the state-value for the most recent state. For action
prediction, two types of output heads are used depending on the underlying action distribution. The binary action head
represents the actions attack, back, forward, jump, left, right, sneak and sprint which can be executed concurrently and
are therefore modeled based on a Bernoulli distribution. Since only one item can be equipped, placed, or crafted at a time

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

Figure A.19: Discretization and interpolation of camera angles.

these actions are modeled with a categorical distribution. The equip head selects from none, air, wooden-axe, wooden-
pickaxe, stone-axe, stone-pickaxe, iron-axe and iron-pickaxe. The place head selects from none, dirt, stone, cobblestone,
crafting-table, furnace and torch. The craft head selects from none, torch, stick, planks and crafting-table. Items which
have to be crafted nearby are none, wooden-axe, wooden-pickaxe, stone-axe, stone-pickaxe, iron-axe, iron-pickaxe and
furnace. Finally, items which are smelted nearby are none, iron-ingot and coal. For predicting the camera angles (up/down
as well as left/right) we introduce a custom action space outlined in Figure A.19. This space discretizes the possible camera
angles into 11 distinct bins for both orientations leading to the 22 output neurons of the camera action head. Each bin holds
the probability for sampling the corresponding angle as a camera action, since in most of the cases the true camera angle
lies in between two such bins. We share the bin selection probability by linear interpolation with respect to the distance of
the neighboring bin centers to the true camera angle. This way we are able to train the model with standard categorical
cross-entropy during behavioral cloning and sample actions from this categorical distribution during exploration and agent
deployment.

A.6.6. IMITATION LEARNING OF SUB-TASK AGENTS

Given the sub-sequences of expert data separated by task and the network architectures described above we perform
imitation learning via behavioral cloning (BC) on the expert demonstrations. All sub-task policy networks are trained with a
cross-entropy loss on the respective action distributions using stochastic gradient decent with a learning rate of 0.01 and a
momentum of 0.9. Mini-batches of size 256 are sampled uniformly from the set of sub-task sequences. As we have the
MineRL simulator available during training we are able to include all sub-sequences in the training set and evaluate the
performance of the model by deploying it in the environment every 10 training epochs. Once training over 300 epochs is
complete we select the model checkpoint based on the total count of collected target items over 12 evaluation trials per
checkpoint. Due to presence of only successful sequences, the separate value network is not pre-trained with BC.

A.6.7. REINFORCEMENT LEARNING ON SUB-TASK AGENTS

After the pretraining of the Sub-Task agents, we further fine tune the agents using PPO in the MineRL environment. The
reward is the redistributed reward given by Align-RUDDER. The value function is initialized in a burn-in stage prior to
policy improvement where the agent interacts with the environment for 50k timesteps and only updates the value function.
Finally, both policy and the value function are trained jointly for all sub-tasks. All agents are trained between 50k timesteps
and 500k timesteps. We evaluate each agent periodically during training and in the end select the best performing agent
per sub-task. A.22 - A.26 present evaluation curves of some sub-task agents during learning from demonstrations using
behavioral cloning and learning online using PPO.

A.7. Reproducing the Artificial Task Results

The code to reproduce the results and figures of both artificial tasks is provided as supplementary material. The README
contains step-by-step instructions to set up an environment and run the experiments. By default, instead of using 100 seeds
per experiment only 10 are used in the demonstration code.

Finally, a video showcasing the Minecraft agent is also provided as supplementary material.

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

M [dirt]

S [log]

I [stone]

A [cobblestone]

G [coal]

Q [iron ore]

P [planks]

V [stick]

H [torch]

L [crafting table]

F [furnace]

R [wooden axe]

N [wooden pickaxe]

C [stone axe]

Y [stone pickaxe]

W [iron axe]

E [iron pickaxe]

D [diamond ore]

K [iron ingot]

Figure A.20: Mapping of clusters to letters.

SSSSS S S

...
PP P P L V N

PP P P

...
L V NSSSSS S S

replay until L

Agent

replay until P

...
L V NSSSSS S S PP P P

Figure A.21: Trajectory replay given by an exemplary consensus. The agent can execute training or evaluation processes of
various sub-tasks by randomly sampling and replaying previously recorded trajectories on environment reset. Each letter
defines a task. L (log), P (planks), V (stick), L (crafting table) and N (wooden pickaxe).

A.8. Software Libraries

We are thankful towards the developers of Mazelab (Zuo, 2018), PyTorch (Paszke et al., 2019), OpenAI Gym (Brockman
et al., 2016), Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007) and Minecraft (Guss et al., 2019b).

A.9. Compute

Artificial task (I) and (II) experiments were performed using CPU only as GPU speed-up was negligible. The final results
for all methods were created on an internal CPU cluster with 128 CPU cores with a measured wall-clock time of 10,360
hours. The majority of compute is spent on baseline methods.

For Minecraft, during development 6 to 8 nodes each with 4 GPUs of an internal GPU cluster were used for roughly six
months of GPU compute time (Nvidia Titan V and 2080 TI).

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

0 10 20 30 40 50 60 70
Epoch (PPO Learning)

2

3

4

5

6

7

8

M
ea

n_
Lo

g

Log

Figure A.22: Average number of logs collected during training: left: Behavioral Cloning, Right: PPO Training

0 50 100 150 200
Epoch (PPO Learning)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n_
Pl

an
ks

Planks

Figure A.23: Average number of planks crafted during training: left: Behavioral Cloning, Right: PPO Training

0 25 50 75 100 125 150 175
Epoch (PPO Learning)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n_
Cr

af
tin

g_
Ta

bl
e

Crafting-Table

Figure A.24: Average number of table crafted during training: left: Behavioral Cloning, Right: PPO Training

The compute required for training the final agent was well within the challenge parameters (4 days on a single node with
one GPU).

Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

0 10 20 30 40 50
Epoch (PPO Learning)

5

10

15

20

25

M
ea

n_
Co

bb
le

st
on

e

Cobblestone

Figure A.25: Average number of stone collected during training: left: Behavioral Cloning, Right: PPO Training

0 10 20 30 40 50
Epoch (PPO Learning)

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n_
Iro

n_
Or

e

Iron-Ore

Figure A.26: Average number of iron-ore collected during training: left: Behavioral Cloning, Right: PPO Training

	Introduction
	Review of RUDDER
	Align-RUDDER: RUDDER with Few Demonstrations
	Experiments
	Related work
	Discussion and Conclusion
	Appendix
	Introduction to the Appendix
	Review Reward Redistribution
	The Five Steps of Align-RUDDER's Reward Redistribution
	Sequence Alignment
	Artificial Task Experiments
	Hyperparameter Selection
	Figures
	Artificial Task p-values
	Stochastic Environments
	Changing number of Clusters
	Key-Event Detection

	Minecraft Experiments
	Minecraft
	Related Work and Steps Towards a General Agent
	The Five Steps of Align-RUDDER Demonstrated on Minecraft
	Implementation of our Algorithm for Minecraft
	Policy and Value Network Architecture
	Imitation Learning of Sub-Task Agents
	Reinforcement Learning on Sub-Task Agents

	Reproducing the Artificial Task Results
	Software Libraries
	Compute

