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Abstract

Pruning methods can considerably reduce the size
of artificial neural networks without harming their
performance and in some cases they can even un-
cover sub-networks that, when trained in isolation,
match or surpass the test accuracy of their dense
counterparts. Here, we characterize the inductive
bias that pruning imprints in such “winning lot-
tery tickets”: focusing on visual tasks, we analyze
the architecture resulting from iterative magni-
tude pruning of a simple fully connected network.
We show that the surviving node connectivity is
local in input space, and organized in patterns
reminiscent of the ones found in convolutional
networks. We investigate the role played by data
and tasks in shaping the architecture of the pruned
sub-network. We find that pruning performances,
and the ability to sift out the noise and make lo-
cal features emerge improve by increasing the
size of the training set, and the semantic value of
the data. We also study different pruning proce-
dures, and find that iterative magnitude pruning
is particularly effective in distilling meaningful
connectivity out of features present in the original
task. Our results suggest the possibility to auto-
matically discover new and efficient architectural
inductive biases in other datasets and tasks.

1. Introduction

In the last decade deep and over-parametrized neural
networks achieved breakthroughs in a variety of con-
texts (Krizhevsky et al., 2012; He et al., 2016; Vaswani
et al., 2017; Brown et al., 2020; Silver et al., 2017). To keep
pushing the boundaries of their capacity, these networks
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have grown in size to over billions of parameters (Tan & Le,
2020). Network pruning approaches have recently received
renewed attention as effective procedures to counterbalance
this growth by reducing networks size without harming their
performance. Several pruning methods have been intro-
duced (Hoefler et al., 2021): they are mostly based on the
idea of cutting weights from a trained, or partially trained,
network in order to obtain a sparse sub-network with similar
accuracy to the original one. For applications, pruning is
very efficient in improving storage and computational cost;
on the theoretical side, it led to the discovery that within
a randomly-initialized network one can find sub-networks,
winning lottery tickets, that even when trained in isolation
can match the test accuracy of the original network (Frankle
& Carbin, 2019).

Advanced network architectures, with geometries suited to
specific tasks, resulting in faster training and overall bet-
ter generalizing properties, can also be seen from a sim-
ilar perspective. For instance, Convolutional Neural Net-
works (Krizhevsky et al., 2012; He et al., 2016; LeCun et al.,
1989; Simonyan & Zisserman, 2015; Szegedy et al., 2015)
(CNN), which are very efficient for visual tasks, can be
embedded in the Fully Connected Network (FCN) class.
CNNs can therefore be interpreted as sparse FCNs trained
from very specific initial conditions well adapted to the
task (d’Ascoli et al., 2019). Also in this case the size is
drastically reduced (with respect to the FCN counterpart).
The difference with pruning is that the main characteristics
of CNNs—Ilocal connectivity and weight sharing—do not
come from an automatic procedure but are “hand-designed”
features introduced starting from analogies with the visual
cortex (Hubel & Wiesel, 1962; Fukushima, 1980), studies
of the invariant properties of natural images (Ruderman,
1994), and engineering improvements (LeCun et al., 1989).
Pruning instead proceeds in an agnostic way in order to
find smaller and efficient architectures; it takes advantage
of properties which are imprinted in the network through
training and which result from the interplay of data, task
and optimization algorithm. Pruning induces an inductive
bias customized to the learning task at hand, which leads
to a network with better training and generalization prop-
erties compared to one of similar size trained from scratch.
Surprisingly, it has been shown that the same winning lot-
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tery ticket generalizes across training conditions and similar
datasets (Morcos et al., 2019). This implies that the bias
induced by pruning is sufficiently generic to transfer the
pruned networks within the same data domain.

Here, we characterize the nature of such inductive bias in
the case of dense networks trained to classify natural images,
and reveal that the winning lottery tickets of FCNs display
the key features of CNNs. We apply iterative magnitude
pruning (IMP) (Frankle & Carbin, 2019) on FCNs trained
on a low resolution version of ImageNet (Chrabaszcz et al.,
2017). We show that the sub-network obtained by IMP is
characterized by local connectivity, especially in the first
hidden layer, and masks leading to local features with pat-
terns very reminiscent of the ones of trained CNNs (Zeiler
& Fergus, 2014). We study how data and task affect these
pruning abilities. We show a crossover from a large dataset
regime (large signal-to-noise ratio), where the inductive bias
is present, to a small dataset regime in which pruning loses
performance and concomitantly the properties described
above disappear. A similar crossover takes place when go-
ing from a meaningful task to one with low semantic value.
We also compare different pruning procedures: IMP seems
to be particularly effective in producing well defined local
structures, as opposed to more direct pruning procedures.

2. Related works

Several recent works have studied pruning from the per-
spective of the lottery ticket hypothesis (Frankle & Carbin,
2019): some investigated more general weight reinitializa-
tions (Zhou et al., 2019), whereas others actually questioned
its validity on larger nets (Liu et al., 2019; Gale et al., 2019).
Later, Frankle et al. (2019; 2020a) showed that in order
to obtain good results for complex networks, datasets, and
tasks it is important to modify the rewinding time compared
to the initial formulation of the hypothesis. Other studies
concerned hyperparameters modifications (Frankle et al.,
2020b; Renda et al., 2020), and concentrated on the trans-
ferability (Morcos et al., 2019; Sabatelli et al., 2020) of
the pruned networks. To the best of our knowledge, our
work is the first to analyze the internal structure of winning
tickets in order to characterize the inductive bias induced by
pruning and relate it to architectural properties.

The possibility of learning CNN-like inductive bias from
data and through training was investigated in Neyshabur
(2020). It was shown that training using a modified ¢/,
regularization is a way to induce local masks for visual
tasks. This is similar to our results on pruning: enforcing
sparsity during training leads to structures characterized by
locality. d’Ascoli et al. (2019) studies the role of CNN-like
inductive biases by embedding convolutional architectures
within the general FCN class. It shows that enforcing CNN-
like features in an FCN can improve performance even

beyond that of its CNN counterpart. Finally, Tolstikhin et al.
(2021) shows that by considering a particular multilayer
perceptron architecture, called MLP-mixer, some of the
CNN features can be learned from scratch using a large
training dataset.

3. Method, observables and notation

Data, networks, and training procedure Throughout
this work our reference dataset, referred to as ImageNet32,
consists of the almost 1.3M images classified in 1000
categories of the ILSVRC-12 image classification chal-
lenge (Russakovsky et al., 2015), cropped and scaled down
to 32 x 32 resolution as detailed in (Chrabaszcz et al., 2017)
(some experiments at higher resolution are presented in SM
C.5). Considering the 3 color channels (RGB) the input
size is ng = 3072 (we index the input as layer 0). The
validation test contains 10k images. We do not use any form
of augmentation in order to avoid biases towards transla-
tionally invariant features (the choice of a large dataset is
important in this sense to obtain good statistics, as shown
in Sec. 5.2). In an effort to keep a lightweight setup that
can be easily trained and analyzed, in most of this work
we consider a FCN having 3 hidden layers of equal size
n1 = ng = ng = 1024 (similar results for slightly larger
or deeper FCN architectures are presented in SM A.2, and
an 8 layer network is considered in SM B.6 to explicitly
obtain a more hierarchical structure). We apply batch nor-
malization (Ioffe & Szegedy, 2015) and we use rectified
linear unit (ReLU) nonlinearities for each layer. We denote
wé*fl the weights between node ¢ of layer [ and node j of
layer [ + 1. Weights are initialized from a normal distribu-
tion w't ~ N(0,2/(n; +n:41)) (Glorot & Bengio, 2010).
Each node also has a bias bli, initialized at 0. The size of the
output layer equals the number of categories (ny = 1000
in this first experiment, 10 in Section 5.3), which are con-
verted to probabilities to compute the cross-entropy loss.
The reported accuracy is the ratio of correct, most proba-
ble, labels. We train on mini-batches of 1000 images, and
minimize through stochastic gradient descent with learning
rate « = 0.1. Each training run corresponds to 10° steps
(around 78 epochs): while this is not sufficient to fit the
training set, it is effective in identifying a winning lottery
ticket (You et al., 2020). We checked that our results are
robust while changing the optimization procedure, see the
SM A.1.

Pruning We define the pruning of a weight as multiplying
it by a zero mask, effectively removing it from the network.
The main procedure considered in this work is layer-wise
IMP, i.e. the pruning of a certain percentage of the weights
of a layer, chosen as the smallest ones in absolute value at
the end of training. The procedure is iterated by rewinding
the weights to their initial values and retraining the now
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pruned network, using the new final magnitudes to select
a further percentage of weights to be pruned, as originally
described in Frankle & Carbin (2019). In most of this work,
we remove p = 30% of previously unpruned weights at
each iteration from all layers except for the output (prun-
ing the last, much smaller, layer at the same rate hinders
performance, we therefore opt not to prune it at all). When
analyzing the pruned networks, we denote v the ratio of
unpruned weights per layer: after n iterations v = (1 — p)™.
As suggested in Frankle et al. (2019), we rewind the weights
after each training not to the initial values, but to the ones
obtained after 1000 steps of optimization in the first run.
Instead of a winning lottery ticket the resulting network has
been called a matching ticket (Frankle et al., 2019) (we have
verified that the main result holds when rewinding to 0, see
SM A.3). We iterate the training and pruning until less than
20% of the nodes in any layer retain any connection to the
previous layer, i.e. until more than 80% of the nodes have
been completely pruned away. More experiments modify-
ing pruning parameters, including total training time and
the pruning ratio p, and performing global pruning, are pre-
sented in SM A.3. In Sec. 5.1 we compare IMP to a one-shot
pruning at high sparsity by performing a single pruning with
larger p.

We also compare our results to SNIP (Lee et al., 2019),
an algorithm for one-shot pruning at initialization. This
procedure defines the saliency criterion for a weight as the
absolute value of the derivative of the loss with respect to
its mask. The saliency is computed on a single batch at
initialization and the chosen percentage of weights with
smallest saliency (network wide) are pruned in one shot. In
this work we estimate saliency over a batch of 10* images
(we have verified that increasing the number of images does
not qualitatively modify the masks).

Lastly, we compare our results to SynFlow (Tanaka et al.,
2020), a data free pruning scheme. In this case, an alter-
native loss function is used to estimate information flow
through the network, constructed by multiplying the abso-
lute value of all the network weight matrices (at initializa-
tion) with ones in input and output. The derivative of this
with respect to the weights, multiplied by the weights them-
selves, represents the synaptic flow scores used to establish
which connections to prune. Like IMP, the desired sparsity
is reached iteratively by pruning a growing percentage of the
weights and re-evaluating the synaptic flow. In Sec. 5.1 we
reach the desired 90% sparsity in 100 iterations (following
the exponential schedule suggested by the authors to reach
compression ratio p = 10 (Tanaka et al., 2020), but we
verified that the structure of the masks is stable with respect
to these parameters).

Observables In order to analyze the structure of the sub-
network induced by pruning we focus on the following

observables:

* Masks: for each layer, we define masks by assigning O to
pruned weights, and 1 to all the others. We indicate with
ml ; the mask formed by the unpruned weights w! ;-

* Node connectivity: for each node j in layer [ we define
the input connectivity C}n’l = >, mi; as the number of

I+1

. out,l __
input unpruned nodes, and C7™" = >, m;

connectivity.

the output

* Local distances: in order to asses the locality of the masks,
we count the number of pixels in a given relative position,
d, that are connected to the same hidden node, as shown
schematically in Fig. 2a. More precisely: two inputs
i and ¢’ are connected through node j if m}jm%, ;=1L
For such inputs we define the displacement d;;: if in-
put index ¢ identifies a pixel of spatial position (z,y)
and ¢’ corresponds to position (2',y’), we define their
displacement d;;; = (¢/ — x,y" — y). The histogram
of connected pixels at a given displacement is denoted
S(d) =324, =a mj;mj ;. We consider both the
sum over pixels belonging to the same color channel (S°¢)
and over different color channels (S9°).

4. Pruning sifts out local features from the
noise and recovers CNN-like masks
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Figure 1. a: Highest validation accuracy at different percentage
of unpruned weights. Averages and standard deviations over 4
independent IMP runs. b: Histograms of the number of C'™! for
three configurations at different sparsities. The triangles represent
the average connections nou at each sparsity. ¢: Accuracy with
respect to the full network for networks with a varying number of
nodes removed, in increasing or decreasing order of C;-“‘l.

Fig. 1a shows the highest (early stop) validation accuracy
as a function of u throughout the IMP procedure. As ex-
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pected (Blalock et al., 2020), pruning allows to find sub-
networks of considerably smaller sizes that work as well as
the original ones. Actually, as shown in Fig. 1a, IMP leads
to a strong improvement in the accuracy which goes from
less than 9% to more than 12% when 99% of the weights
are pruned.

The pruning-induced masks are local To characterize
these pruned network, we concentrate on 3 sparsity values
close to the maximum accuracy reached by IMP: u = 4%,
1%, and 0.3%, as circled in Fig. 1a. We start by showing
the histograms of C'™, i.e. the input connectivity per node
of the first hidden layer. For a random pruning, this would
be binomially distributed around the value ngu, i.e. 123, 31,
and 10 respectively for the sparsities considered. Fig. 1b
shows that the distributions obtained after pruning instead
have long positive tails, representing a population of nodes
that preserve a large number of unpruned input weights.
Since IMP should preserve “important” connections, it is in-
teresting to check whether these nodes represent meaningful
features that have been sifted out by the procedure. To this
end, we consider the relative accuracy of the final network
when either the nodes with the largest or with the smallest
C'™! have been completely removed (i.e. we set m}, = 0
for those nodes k, without any further training). As shown
in Fig. l¢, the accuracy as a function of number of removed
nodes drops much more quickly when removing the highly
connected nodes, thus confirming their relevance.

A\ 1
Unpruned
wl, sdega) +

First hidden layer

Figure 2. a: Sketch of the displacement and connectivity consid-
ered when computing S(d). b: S*¢ (top) and S49¢ (bottom) for
each sparsity considered (columns). Relative positions are shown
with respect to the center of each image (d = 0) and the color
scale of each plot goes from 0 to its maximum. For S°¢, the single
point at d = 0 is removed as it is trivially always connected.

In order to investigate the emerging local structure of the
unpruned weights, we consider the number of connected

!'The overall accuracy is low compared to the state of the art.
This is due to the fact that we are focusing on a simple (hence
fully analyzable) setup and by choice we avoid improvements
that could lead to biases in the results. Yet, considering the low
resolution, lack of augmentation, and simplicity of the network for
a notoriously complex dataset, the improvement over the random
1072 is a clear signal of learning. The top-5 accuracy is around
26%.

pixels in a given relative position S(d). A 2D map for
any possible displacement d is shown in Fig. 2b, for the 3
sparsities considered and for either same color or different
color channels. Remarkably, we find that inputs connected
to the same node are locally close, i.e. their distance is
small, both within and between color channels. Note that
the same 2D maps for the unpruned layer or pruned layers
with random connections, are very different and non-local
as shown in the SM B.1. We also find that straight horizontal
and vertical relative displacements are slightly more likely.
As the pruning progresses, the localization becomes stronger
and the anisotropy more apparent. The same 2D maps are
shown by only selecting nodes with a given number of
connections in SM B.3. Our results show that the locality
of the masks holds for all nodes except the ones with the
smallest values of C'™!. For the larger masks the effect
is truly remarkable given their large number of unpruned
weights. The set of results discussed above unveils one key
feature of the matching (and winning) lottery ticket of FCNs:
they display local masks that emerge by pruning.

The local features are structured We now concentrate
on the nodes with the largest 0;11,1’ which have been found
to be most relevant, and focus on the spatial structure of
the associated masks. Fig. 3a shows the masks of the 30
most connected nodes for the best IMP iteration (u ~ 1%):
they all present well localized distributions, either in a sin-
gle location, symmetric with respect to the vertical axis, or
sometimes around the edges of the images. Several masks
also retain the same pixels through multiple color channels,
often with a well defined pattern (e.g. 2 channels out of
3). Moreover, many of the masks show a specific prefer-
ence for vertical and horizontal directions, in line with the
previously observed anisotropy, with some consisting of
parallel lines separated by one or two pixels (the effect is
even more pronounced for stronger pruning, see SM B.4,
where we also show a larger sample of masks). A video of
the evolution of first layer masks is provided as Supplemen-
tary Material. Masks with a lower number of connections
do not show such well defined structures. In Fig. 3b we
select a few nodes within the top 5% most connected ones
to highlight their specific structure: vertical lines, horizontal
lines, oblique lines and complementary patches of color. To
clarify the features selected by these nodes, we show not
only the masks, but also the final (masked) weights and
the 3 images in the validation with the highest activations
over these nodes. The weights highlight further structure in
the localized patches, with alternating positive and negative
weights perpendicular to the preferential direction for long
masks, or between different patches. These are very remi-
niscent of Gabor filters (MarCelja, 1980), and very similar
to CNN masks, which respond preferentially to local high
contrast details, e.g. edges in a specific direction or color
patches (Zeiler & Fergus, 2014). Moreover, very similar
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filters can be seen at different locations, showing the emer-
gence of partial translational invariance in the local features
even without data augmentation?. Lastly, the example im-
ages unveil the response of these nodes to local features, not
directly related to the final classification task. This directly
relates to the good transfer properties of the subnetworks
corresponding to the winning tickets (Morcos et al., 2019;
Sabatelli et al., 2020). Further experiments highlighting
the structure of the masks are presented in SM C.4, where
the images are rotated, in SM C.5, where higher resolution
images are used as input, and in SM C.6, where we restore
translational invariance by considering all possible image
translations.

Most connected masks

a

Figure 3. a: Masks of the 30 nodes with largest Cji.n’l for the
best IMP iteration. Binary masks are directly converted to RGB
intensities. b: For a hand-picked selection of the most connected
nodes (columns), the top row reports the mask and the second row
represent the masked weights w,;;m;; normalized from minimum
to maximum and converted to RGB. The last 3 rows represent the
images with highest activation for that specific node.

Towards a hierarchical structure To continue the par-
allel with CNNs, we now focus on the deeper layers. For
a second layer node j, we can define an effective mask as
pij = 0032, miymz; — 1/2) (8 being the step function),
which equals 1 only if pixel ¢ is connected to any first hidden
layer node connected to j, and O otherwise. Ideally the re-

2Note that images in the training set have a bias for structure in
the center and at the boundary, a characteristic that emerges also
from pruning: features tend to have more connections towards the
center and edges of the image, as shown in SM B.2.

ceptive field should still be localized and grow progressively
with each layer, but since the network is just 3 layers deep,
and the receptive fields are already fairly large in the first
layer, this effect is hard to visualize. However, even for this
very small network, we find the connectivity of the second
layer masks to be still fairly local, especially at high pruning.
These masks are presented in SM B.4, while in SM B.6 we
present some specific examples of second layer nodes high-
lighting how first layer masks similar in shape and position
are combined. In order to obtain a more clear hierarchical
structure, while keeping the network size contained, in SM
B.6 we consider a deeper network of 8 layers (all of size
1024) and prune them one at a time starting from the input,
to increase the probability of finding meaningful connec-
tions within a relatively narrow network. At high pruning,
this procedure indeed shows a progressive combination of
local masks with more slowly growing receptive fields.

5. Pruning, data and task

In order to clarify the relative contribution of different parts
of our training and pruning scheme, in this section we first
showcase the main effects of changing the pruning proce-
dure. We then focus on the role of the dataset the network
is trained on, or simply the nature of the classification task.
We will see that, while the masks clearly highlight some
structures extracted from the data by the training procedure,
it is only on a well defined task and through a progressive
pruning that we can obtain the results showcased in the pre-
vious sections. Failing any of these elements, the masks will
gradually lose their structure, until they become indistin-
guishable from random pruning. This reveals that pruning
acts as a denoising method to make local features emerge;
in order to do that it needs a large enough signal to noise
ratio (enough data, meaningful enough task).

5.1. Other pruning approaches

Fig. 4 shows the weights at the end of dense training (first
row) for a few selected nodes in the first layer, compared
to the masks at different levels of IMP. This comparison
clearly shows how the features are already suggested by
the first round of training and progressively refined through
the IMP. However, it is not clear whether they could be
more efficiently recovered. To investigate this possibility we
consider the same initial network, and perform a single “one-
shot” pruning operation (Frankle & Carbin, 2019) to the
desired sparsity. Not only, as expected from IMP theory, is
the iterative pruning more effective, but the masks obtained
in one shot are in general more noisy, less localized and less
structured. We can thus suggest that the effect of iterative
pruning is that of de-noising or stabilizing the masks, which
are only suggested by the first training round.

In order to compare to other one-shot pruning approaches,
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we also perform SNIP (Lee et al., 2019) pruning at initial-
ization on the same network. While the pruning is quite
effective in preserving the performances of the network, and
the masks still show a certain degree of locality, they do
not bear much resemblance to the final weights (unsurpris-
ingly, since they are obtained at initialization, before the
training dynamics has had the possibility to select them).
More graphs showing the locality and connectivity of the
first layer are presented in SM B.5.

Lastly, we perform SynFlow (Tanaka et al., 2020) data-free
pruning. We iteratively prune a percentage of nodes with
the smallest saliency as defined in (Tanaka et al., 2020),
reaching 90% sparsity. In this case, we can clearly do not
expect any correlation with the data, since they are not
employed in pruning. With no information on the data,
the masks cannot show any locality or structure, and to
maximize synaptic flow few highly-connected nodes are
selected (see SM B.5).

All in all, this analysis with different pruning procedures
confirms our previous findings and shows that IMP is very
effective.

‘Validation
accuracy

10,4%

10,1%

9,1%

9,0%

8,1%

Figure 4. Weights and masks for a selection of nodes under differ-
ent pruning. Each column represents a specific first layer node of
networks trained from the same initial conditions; the last column
reports the best validation accuracy achieved with each pruning
scheme at the specified sparsity. The first row represent the final
weights after dense training, the following rows show the masks at
different IMP steps of for one-shot magnitude pruning. The last
three rows represent the masks found at initialization for the same
nodes through SNIP and SynFlow.

5.2. The importance of data

We now study to what extent the effects found in the pre-
vious section depend on the properties of the dataset, in
particular the number of data used to train the network. We
repeat the training and the IMP with datasets of progres-
sively smaller size, down to 2% of the original. While this
may seem like an extreme reduction of the dataset, even
just 5% of the data is actually larger than commonly used
datasets such as CIFAR-10/100. As expected, the overall
accuracy of dense training decreases with dataset size. At
the same time, we find that the improvement due to IMP
also decreases, until pruned network can only maintains the
dense accuracy (see SM C.3). The connectivity and locality
of the subnetworks thus found is also drastically affected.
Considering a fixed sparsity ©v = 0.5%, Fig. 5b shows
that decreasing the dataset size the connectivity distribution
becomes essentially identical to the one corresponding to
pruning weights at random independently of their magni-
tude (dashed line). Concomitantly, masks become more and
more non-local (panel a) and less structured (panel ¢). More
graphs for other dataset sizes are shown in SM C.3.

Our results show that the dataset size clearly plays a major
role for pruning. Our interpretation is that by decreasing
the number of data one decreases the signal to noise ratio,
hence effectively increasing random idiosyncratic fluctua-
tions in the weights. When such fluctuations become of
the same order of magnitude as the ones of the good sub-
networks embedded in the original dense one, it becomes
impossible to unveil the matching lottery ticket by pruning.
In consequence, in this regime the subnetworks obtained by
IMP are random, featureless and do not display any local
feature. This interpretation is in line with the general idea
that less specialized architectures require more data, and
explains why we could not employ a smaller dataset in the
present work without resorting to very strong augmentation.
More results on the disruption of local features due to small
dataset sizes are shown in SM B.4.

5.3. The role of the task

To further understand the role played by the properties of
the problem—and verify this is not just an average property
of the data—we now keep the dataset fix and modify the
task instead. We cluster the original 1000 classes of the
training set and test set in 10 balanced macro-classes in
two different ways: the first one, called random, groups the
original categories in a non-meaningful way (on the basis
of their numerical label in the dataset modulo 10). This pro-
duces 10 classes which are all very similar. The second one,
called semantic, clusters together similar original classes,
into macro-categories such as “dog”, “device”, “transport
and furnishing”, etc. This produces 10 classes which charac-
terize the data in a meaningful way. A detailed description of
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the classes and an example of the difference between these
two ways of grouping is reported in SM C.1. After training
the accuracy obtained for the random task is at best 13%,
while it surpasses 36% for the semantic one. This difference
is expected since in the former case elements of different
classes are very difficult to be distinguished and training
mainly leads to memorization and not learning. More in-
terestingly, pruning is beneficial in the semantic case but
not in the random one, and the geometrical properties of the
subnetwork induced by pruning are very different in the two
cases. In Fig. 5 we show the histogram of the connectivities
C™1 and of the local displacements d;; for these cases,
too. These results reveal that the subnetwork obtained by
pruning displays local features and non-trivial connectivity
distribution for the semantic task only. In the other case, the
subnetwork is essentially featureless, non-local and like one
where weights have been pruned at random. More sample
masks for the two tasks are shown in SM B.

These results highlight the role of the task in shaping the
properties of the network obtained by pruning: only for
the task that the network can efficiently learn, and not just
memorize, local features emerge. This result is a direct
consequence of the gualitative difference in the network
solutions for the two tasks: features do not simply emerge
from the data in an unsupervised fashion, but they represent
structures useful for optimization with respect to a mean-
ingful loss. If the task is solved in an unstructured way, e.g.
through memorization, the features are simply not selected.
In SM C.2 we provide more evidence by focusing on other
tasks in between the semantic and the random ones.

+

50% 10% Semantic Random

i ATy e 14 4 i
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50%, C™* 10%, C™* Semantic, C"1 Random, C'"

Figure 5. a: S°°(d) for the four tasks at the iteration u ~ 0.5%.
Normalization and color map as shown in Fig. 2. b: Histogram
of C'™! for the four tasks at the iteration u ~ 0.5%. The dashed
line is the theoretical binomial distribution for random pruning. ¢:
Most connected first layer masks for the four tasks.

6. Discussion

Task-specific neural network architectures can great improve
accuracy with respect to generic models. One of the most
successful cases is that of CNNs, which have been essential
in the solution of multiple visual tasks. It is therefore natural
to wonder whether some of the characteristics of a CNN
architecture could be naturally obtained from the data or the
task alone. A recent work (Neyshabur, 2020) takes a first
important step in this direction, with a custom modification
of the LASSO technique (Tibshirani, 1996), and working
on a small but highly augmented dataset, it shows the emer-
gence in training of local and sparse nonzero weights. In
this work, we have followed a different perspective. With
the aim of characterizing the inductive bias induced by prun-
ing, we have limited ourselves to the original inputs, and
we have applied IMP. This approach has two benefits: it
naturally leads to masks, i.e. it irreversibly changes the ar-
chitecture of the original network, and it leads to a final
model that can be trained from scratch to the final accuracy
(i.e. from the original initialization values, although these
are still correlated with the masks). In combination with the
lack of augmentation, this makes features selected from this
procedure the natural structure emerging from the dataset
and task at hand.

Note that recovering a realistic CNN would be actually pro-
hibitively expensive, as the size of the natural embedding
in FCN space is extremely large *. Since the pruning proce-
dure is not perfectly efficient, the starting number of nodes
would likely be ever larger, easily resulting in a starting
network with a billion parameters. As this would prove
quite unwieldy for our work, we have opted instead to focus
our efforts on the simplest setup which allows a thorough
analysis. Pruning this simple network of three moderately
sized layers proves indeed sufficient to make several inter-
esting observations: the pruning procedure does not affect
all nodes equally, but a small number of them retains a
disproportionate amount of inputs. These nodes are partic-
ularly important for the performance of the network and
they correspond to input masks that are local in space and
color channels, with a preference for specific patterns, found
throughout the image (although for these images some fea-
tures are clearly more likely to appear at some specific
position than others). At visual inspection, these features
bear a strong resemblance to those found in CNNs (Zeiler &
Fergus, 2014), the visual cortex (Marcelja, 1980; Wolf et al.,
2005) and obtained with 3—LASSO (Neyshabur, 2020). At
high pruning, the features become more local and sparse,
and they are combined in the next layer with a preference
for similar patterns and close location. While other features

3Even for the very small input considered in this work (size
3072), we can roughly estimate with typical 3 x 3 masks, stride
1 and even the most conservative number of channels, we would
require tens of thousands of nodes in the first layers
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of CNNSs like weight sharing simply cannot be reproduced
in this model, the presence of similar masks at different
locations is a sign of translational invariance (an experi-
ment with complete translational invariance is presented in
SM C.6). In this sense, this procedure could suggest net-
work structures even better aligned with the data from a real
dataset, leading to more effective architectures. For instance
the sparse sampling, even at this low image resolution, is
reminiscent of dilated convolutions (Yu & Koltun, 2016).

As it could be expected, only training on a large enough
dataset leads to the emergence of these features. Interest-
ingly, the success of the IMP itself seems to be related to
their presence, hinting at the different structure of the solu-
tion, in line with recent findings about generalization and
prunability (Kuhn et al., 2021). Similarly, for other pruning
procedures the presence (or absence) of these features seems
to be linked to the ability to improve the performance of the
dense network. In the same direction, we have shown that
locality and defined features disappear when we replace the
task with a more vague one, where IMP is also ineffective.
Features are thus not a simple consequence of the dataset,
but depend on the structure imposed by the task. This de-
noising effect could also be related to more universal be-
haviors as suggested in (Redman et al., 2021). Interestingly,
similar-looking structures had been recovered in (Olshausen
& Field, 1996) by simply enforcing a sparse coding and
high information content: while no task is specified in that
setting, the preservation of image-related information seems
to play a similar role.

There are several directions which are worth exploring in fu-
ture works. More complex starting architectures and larger
or augmented training sets could be explored, to obtain even
closer approximations to CNNs or other more effective ar-
chitectures. The dependence of the architectural properties
induced by pruning on the optimization protocol is another
interesting aspect. For instance, we have found that just
training until the beginning of overfitting is sufficient to
obtain these features (You et al., 2020) (see SM A.3). We
have also noticed that precursors are already visible at the
early stages of pruning (see video link in SM D), suggesting
the possibility of their early identification and more refined
search strategies. In addition, it would be interesting to study
more pruning algorithms such as (Evci et al., 2020; Lin et al.,
2020; Wang et al., 2020; Aghasi et al., 2016; Verma & Pes-
quet, 2021), especially iterative or inherently sparse ones
that could explore structures corresponding to prohibitively
large networks, thus solving the problem of size when em-
bedding in fully connected space. Finally, repeating our
analysis for tasks different from visual ones, e.g. for au-
dio (van den Oord et al., 2016) and time series (Gamboa,
2017), and study the architectural bias induced by pruning
is certainly an interesting direction for future research. This
approach could also highlight useful architectures in fields

that are still using more standard FCNs such as material
modeling (Behler, 2016).

In conclusion, our work underlines the effectiveness of prun-
ing as a tool to uncover not only more efficient networks,
but also specific architectural properties associated to the
structure of the data and relevant for the training task. From
this point of view, pruning schemes could offer a way to
uncover effective new architectures for a wide category of
problems.
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A. Convergence tests

In this section we report the result of modifying different hyperparameters of the training or the pruning procedure, to show
the robustness of the results presented in the main text.

A.1. Minimization

Fig. 6 shows the best validation and training curves when modifying the optimization procedure either by changing the
learning rate or by employing a more advanced minimizer (Adam (Kingma & Ba, 2014)). While there are small differences
in the absolute accuracy, the main behavior is robust with respect to the minimization procedure. Although the value 0.5 for
the learning rate leads to slightly better accuracy, we have employed a more conservative 0.1 throughout all experiments in
the main text, as the final accuracy is not the main scope of this work.
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Figure 6. a: Best validation accuracy as a function of u for different minimizers: stochastic gradient descent with varying learning rate
(SGD in the legend, followed by the learning rate) and Adam with standard parameters and learning rate 0.01. b: Training error (left) and
validation error (right) for the initial dense iteration for all minimizers. ¢: Training error (left) and validation error (right) for the best
iteration of each minimizer (square in panel a). While training is much slower, all models are able to reach stationary validation within
105 steps, apart from learning rate 0.02 that barely reaches it.
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Figure 7. a: Best validation accuracy as a function of w for different architectures (see legend and text for notation). b: Training error
(left) and validation error (right) for the initial dense iteration for all architectures. c¢: Training error (left) and validation error (right) for
the best iteration of each architecture (square in panel a). d: S®¢ (see Fig. 2 for details) and histograms of C™! for the best iteration of
each architecture (square in panel a).
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A.2. Other architectures

In this section, we modify the network architecture from the original 3 hidden layers of size 1024 (31, 1k): we deepen the
network with 4 (41, 1k) or 5 (51, 1k) layers of the same size, or we change the width of each layer (uniformly) to wider 2048
(31, 2k) and 4096 (31, 4k), or smaller 512 (31, 512) and 256 (31, 256). All training parameters are kept the same in all these
experiments, although better results could be achieved with better minimization and at least the smallest (31, 256) network
could benefit from longer training.

Fig. 7a-c shows the best validation and training curves for each architecture. We see that, at least with these parameters,
deepening the network does not have a big effect. For the width: a moderately narrower network is as effective, but
larger ones are slightly worse. This might be due to the training procedure, but the difference in performance is already
present for the dense networks, and the first pruning steps are not as effective in this case, so these networks might be too
overparametrized, leading to a qualitatively different solution. Panel d shows the locality and connection histogram for
the first layer of each network at the best step, indicating that the features discussed in the main text (locality and excess
connections nodes) are present in all the cases.

A.3. IMP parameters

We now consider the parameters related to the IMP procedure. In particular, we act separately on 3 fronts: decreasing the
pruning ratio per step (p = 0.2), decreasing the rewind time for the weights (500, 100 or 0) and varying the total training
time per iteration, i.e. the time at which we consider the weights for updating the pruning mask (5 - 105, 10% and 5 - 10%). In
addition, we keep the original pruning parameters, but prune the weights globally instead of layer-wise (indicated as "Glob"),
initializing all weights from the same distribution and excluding only the last layer to output weights from the pruning.

Fig. 8a shows the best validation for each of these experiments (train time, rewind time, p in legend). We can see that
most curves lead to the same accuracy, apart from training times shorter than the validation minimum ~ 2 - 10%, which is
unsurprising. This justifies our practice of stopping training before complete training set overfitting, since the longer run
does not offer any benefit. The pruning ratio and rewind time are also clearly converged, we have decided to keep a nonzero
rewind time to be more conservative for the other experiments, which could be more brittle. Global pruning also leads to
very similar training curves as a function of the global surviving weights. Moreover, the pruning ratio is also quite uniform
through layers: e.g. for the best iteration the global value u = 0.67% corresponds to a layer sparsity of u = 0.55%, 0.87%
and 0.86% for first, second, and third layer, respectively.

The other panels of the same figure show dense and best iteration training curves and locality and connectivity plots. The
only cases showing a deviation from the main text results are once again the very short trains. Interestingly, some of the
feature seem to survive even for these cases where the network is not even allowed to reach the best validation in each run,
suggesting that some of the relevant features are already present in the early stages of training.
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Figure 8. a: Best validation accuracy as a function of u for different IMP parameters (train time, rewind time, p in legend). b: Training
error (left) and validation error (right) for the initial dense iteration for experiments of different total steps. ¢: Training error (left) and
validation error (right) for the best iteration of each experiments (square in panel a). d: S (see Fig. 2 for details) and histograms of C'™*
for the best iteration of each experiments (square in panel a).
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B. Further connectivity analysis

In this section we present more specific plots of S%¢(d) and masks for more experiments.

B.1. Random pruning

As areference, Fig. 9 presents the S°¢ plot for single nodes pruned at random at different sparsity levels. Even for a fully
connected node, the finite size of the image makes local connections more likely than farther connections, but with a
decay clearly slower than what shown for localized nodes. For higher sparsity, we see more and more delocalized patterns
appearing (of course this is true for single nodes, while the sum of many random sparse nodes would eventually approximate
the fully connected one).

100%(3072) 10%(307) 5% (153) 3%(92) 2% (61) 1%(30)

Figure 9. S°¢ for single nodes randomly pruned at a given u (number of surviving connection in parenthesis, see Fig. 2 for visualization
details).

B.2. Input connectivity

Another interesting quantity, shown in Fig. 10 for different networks, is the plot of C°"*:°, i.e. the amount of connections
surviving to each pixel. We can see that for well performing networks the connectivity is higher to the center of the image,
with some extra connections to the edges and corners, while less effective networks tend to have more uniform connectivity.

100% data 50% data 30% data Semantic Modulo

Figure 10. C°"*° for different experiments proposed in the main text, at u ~ 1%.

B.3. Locality per number of connections

in,1 .

Fig. 11 presents plots of S*¢ when we restrict the computation to first hidden layer nodes having values of C in a given
range. This can give us further insight on whether the locality of a network is due to many close pixels in the more pruned
nodes, or few localized clusters in the more connected ones. We present graphs for the standard network, one trained on
30% of the data and the two versions (semantic and random) of the experiments on 10 classes. All networks are at the same
level of pruning u ~ 1%.

For the initial network, we see most bins showing some form of locality, more apparent in the most connected bins (some of
the later bins contain only a few nodes, strongly affecting the shape of the distance plot). But for the smaller dataset, we
see that only some of the bins with more connections seem to show proper locality, with the less connected ones no better
than random. A similar behavior is seen in the network trained on 10 semantic classes. In both these cases features are still
partially visible, but we can see that the structure is not preserved in all nodes. Finally, the network trained on 10 random
classes does not show any locality at any scale.
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1000 classes, full data
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Figure 11. S°¢ of connections to nodes with different values of C'™'. From top to bottom: standard network, training on 30% data,
training on 10 semantic classes and training on 10 random classes. All networks are taken at u ~ 1% Each plot represents the sum of all

nodes in an interval of C'™' shown below the image, with the number of nodes falling in the bin in parenthesis. Intervals are of 10, 5, 5,
and 3 bins respectively, to cover the range of connectivity of each network. The last bin covers all remaining nodes.
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B.4. Highly connected masks

We show here a larger sample of masks of the most connected nodes. Fig. 12 covers the original network of Fig. 1: for the
best sparsity u ~ 1% we show the top 120 most connected layer 1 nodes, showing the variety of features sifted out, and the
top 30 effective masks f;; of layer 2, showing how they cover most of the image. For the higher sparsity u ~ 0.3% we
show the 60 most connected of the first layer, highlighting how features are preserved, although more local and with higher
sparsity. We also show the effective masks of layer 2, partially local, and of layer 3, covering most of the image.

1%, Layerl

1%, Layer2

0.3%, Layerl

Layer2

0.3%,

0.3%, Layer3

Figure 12. Masks of the most connected nodes for different layers and sparsity of the original network (same representation as Fig. 3).

Fig. 13 shows the 30 most connected masks in the first layer for other networks: trained on 50% of the data, 30% of the data,
10 semantic classes or 10 random classes. We can see more and more featureless masks among the most connected as we
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shrink the dataset. For the semantic classes, we still find local structures, although less clear than the original task, while the
random classes show no structure at all.

50% data

30% data

10 cl. random 10 cl. semantic

Figure 13. Masks of the most connected nodes for different experiments: original task on 50% and 30% of the data, and task modified to
10 super-classes either semantically or randomly grouped.

B.5. Connectivity for other pruning approaches

In Fig. 14, we show the locality through 5%¢(d) and histograms of connectivity of the first layer of networks pruned at
initialization through SNIP (target sparsity 90% and 99%), and SynFlow at sparsity (90%).

While SNIP, employing the data even just in one show, obtains relatively localized masks, the data free approach of SynFlow
leads to no local structure. Similarly, while SNIP connectivity shows the same long tails as IMP, SynFlow retains few highly
connected nodes, while completely pruning the others.

B.6. Masks hierarchy

For the original network, at IMP u ~ 0.3%, Fig. 15 shows a more in depth analysis of the masks p;; for the most connected
nodes of the second hidden layer. The masks are shown in the center of the image and below them are the 3 images of the
validation set that activate the nodes the most. For 3 sample nodes, the top of the image shows explicitly all the first hidden
layer nodes connected to them: they have rather uniform features and a specific local spatial distribution. Although not
as clean as in a real CNN, we can see how the first layer highlights local features, that are aggregated in a larger but still
localized fashion in the second layer, often aggregating similar features at different position, like convolutions preferring a
specific channel.

To obtain a more clear hierarchical structure, we then consider a deeper network of 8 layers (all of size 1024) and prune
them one at a time starting from the input, to increase the probability of finding meaningful connections within a relatively
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Figure 14. 5°°(d) (a) and histograms of C'™" (b) for masks obtained through different pruning algorithms: SNIP at two different
sparsities and SynFlow.

Layer 1

Layer 2

Input

Figure 15. Masks of the second layer from input p;; = 63, m}kmij — 1/2) with most nonzero element (center, marked “Layer 27),
images with the largest activation on them (below, marked “Input”) and for 3 of them masks in the first layer connected to them (top,
marked “Layer 17), showing the masked weights wilj m}j as detailed in Fig. 3.

narrow network.

Specifically, we prune each layer until the resulting network starts having performances lower than the initial dense network
then we move to the next layer freezing the last state of the previous ones. This results in the first 3 layers reaching
u = 0.08%, 0.33%, and 0.48% sparsity, respectively (see Fig. 16a). This procedure highlights more clearly the hierarchical
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structure of the network. As as example, in Fig. 16b we trace the connectivity of a single layer 3 node through the connected
masks of layers 2 and 1. Within the variability of a stochastic procedure, we can see that progressively larger receptive fields
are covered through the layers.

—e— Pruning 1
—e— Pruning 2
Pruning 3

0.14

/"—\_/\.\
0.12{ <7 et

Best val. accuracy @

100 30 10 3 1 0.3 0.1
Percentage of unpruned weights (u)

Layer 3

Figure 16. a: Best validation accuracy as a function of u for progressive IMP of each layer. For each layer, the last iteration with
better performance than the dense network (large white dots) is taken as a starting point for the next IMP (and for masks analysis). b:
Hierarchical structure leading to a specific third layer mask at high pruning: for each layer all masks retaining connections to the node in
the next layer are shown.
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Table 1. Proposed 10 aggregated ImageNet classes: for each class we give a rough definition of the class in terms of macro-categories,
the number of original ImageNet classes and single images in those classes that fall into this class (the symbol A\B indicates all classes
that fall in the macro class A but not in B).

# CLASS COMPOSITION (ROUGH) #CLASSES #ELEMENTS
0 DocG 118 147873
1  MAMMAL\DOG 100 129728
2 BIRD, REPTILE 95 122895
3 FISH, AMPHIBIAN, INVERTEBRATE 85 110034
4 DEVICE\MUSICAL INSTRUMENT 104 131965
5 COVERING, MUSICAL INSTRUMENT 111 142423
6 CONTAINER\VEHICLE, APPLIANCE, EQUIPMENT 99 126603
7  TRANSPORT, FURNISHING 95 122661
8 PLANT, FUNGUS, FOOD, VEGETABLE, FRUIT, IMPLEMENT 96 122701
9 CONSTRUCTION, MISCELLANEOUS 97 124282

TOTAL 1000 1281167

C. Modified tasks

We report here some experiments on modified datasets, that reinforce some of the statements of the main text
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Figure 17. a: 10 sample images for each of the 10 macro classes. Each column shows a different semantic cluster (rough label at the
bottom) where images can be seen to have similar content, while each row is a different random cluster, and no structure is visible. b:
Gain in best validation accuracy (difference from the value corresponding to the unpruned network) for the random and semantic tasks.
The lines are averages of 4 independent runs, with the shaded area representing one standard deviation. Each training was run for 500k
steps for the semantic and 300k steps for the random clustering to ensure convergence. The dashed line marks the iteration at v ~ 0.7%
used in panels ¢ and d. ¢: Histogram of C™™! for the two cases at the iteration u ~ 0.7%. The dashed line is the theoretical binomial
distribution for random pruning. d: S°°(d) for the two cases at the iteration v ~ 0.7%. Normalization and color map as shown in Fig. 2.
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C.1. Class clustering

We give here more details about the construction of 10 semantic super-classes. Our goal was to design 10 classes that would:
include all the original 1000, be similarly sized, and be easily identified in terms of larger WordNet categories.

The details of the final classes constructed are summarized in Table 1. The animals are divided into 4 categories (the large

amount of dogs naturally falls into a slightly larger category). Objects make up most of the remaining 6 classes roughly
based on sub-categories of “artifacts”: device, covering (mostly clothes), container (excluding vehicles), transport and
furnishing, implement and construction. Class 8 also contains all plant-derived categories and food. Class 9 also includes
all categories not included in one of the previous macro categories, listed as miscellaneous (including e.g. some natural
formations). A few classes (21) are included in more than 1 macro class by this division, and they were arbitrarily assigned

to a single one. The specific attribution of each of the original classes is available in the code repository specified in D.

10 examples from each semantic class (columns) and 10 from each random class (rows) are shown in Fig. 17a. The same
figure also shows the gain in accuracy through IMP, connectivity, and locality for the two tasks.
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Figure 18. a: Gain in best validation accuracy (difference from the value corresponding to the unpruned network) for tasks from semantic
to random. b: Best validation accuracy for the unpruned network (empty dots) and best IMP iteration (full dots) for the different tasks. ¢
55¢(d) for the four tasks at the iteration u ~ 0.5%. Normalization and color map as shown in Fig. 2. d: Histogram of C'™* for the four
tasks at the iteration u ~ 0.5%. The dashed line is the theoretical binomial distribution for random pruning. e: Most connected first layer

masks for the four tasks.
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C.2. More super-classes

We consider more ways of creating 10 macro classes from the original one. To create a task in between the “semantic” and
“random” ones, we consider 2 options: one we call ““5 semantic/5 random”, where the first 5 classes are the ones described in
Sec. C.2, while the other ones are random groupings of the remaining categories. The other we call “partial semantic”” where
each of our super-classes is composed of half (around 50) of the categories of the “semantic” classes and the other half
picked at random between the remaining categories.

To gauge the complexity of the task, Fig. 18b reports the unpruned and best accuracy for each of these experiments,
confirming that they are in between the two extremes, the one with 5 “fully meaningful” classes being simpler than the other.
The full best validation curves (minus the unpruned values) reported in panel a and the locality and connectivity plots in
panels ¢ and d support the idea of a gradual progression between a network characterized by local structures and one where
the task is performed in a different way. Lastly, the most connected first layer masks in panel e highlight the progressive
disappearance of features.

C.3. Smaller dataset

Fig. 19 shows the gain in accuracy through IMP, connectivity, and locality for trainings using different fractions of the
dataset.
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Figure 19. a: Gain in best validation accuracy (difference from the value corresponding to the unpruned network) as a function of u for
training on different percentages of the original dataset. The lines are averages of 4 independent runs, with the shaded area representing
one standard deviation. The dashed line marks the iteration at u ~ 0.5% used in panels ¢ and d. b: Largest gain in validation accuracy
during the IMP procedure for different dataset sizes (percentage of the whole dataset). ¢: Histogram of C™™* for different dataset sizes
(see label at the bottom) at the iteration u ~ 0.5%. The dashed lines represent the theoretical binomial distribution for random pruning. d:
S5%¢(d) for different dataset sizes at the iteration u ~ 0.5%. Normalization and color map as show in Fig. 2.

C.4. Rotated images

We rotate all images 20 degrees counterclockwise, and crop to obtain new 32 x 32 images (we mask out the pixels not
corresponding to any original pixels). This is done to verify that the vertical and horizontal directions have nothing to do
with the discretization of the images. The overall training is similar to the original one, with slightly lower accuracy. Fig. 20
shows S(d) and masks at the best iteration. As expected, the preferred directions are rotated and masks tend to follow the
new horizontal and vertical alignment.
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Figure 20. a: S and S9° for the best iteration of the experiment on rotated images. b: masks of the 48 most connected layer 1 nodes for
the same iteration.

C.5. ImageNet64

We train a network on the 64 x 64 pixels, higher resolution ImageNet downsampling from the same source: Ima-
geNet64 (Chrabaszcz et al., 2017). We use exactly the same parameters of our main experiment, and obtain only slightly
lower accuracy and a similar IMP curve as the lower resolution version, as shown in Fig. 21a. We analyze the best iteration
at u ~ 0.3: locality is still preserved as shown in panel b, with the main axes being preferred even more sharply. The 90
most connected layer 1 masks (panel ¢) show similar features to the ones found elsewhere, with even clearer preference for
sparse sampling and separated lines along the main orientations.

C.6. Translated images

For this experiment, we enforce complete translational invariance by translating each image vertically and horizontally by
a random amount (in [0, 31]) modified every time a mini-batch is created, and wrapping the image in both axes (periodic
boundary conditions). This clearly causes the appearance of unrealistic boundaries in the image, but achieves the goal of
this experiment or rendering each pixel is equivalent, on average. We validate this network on the original, untranslated
images, achieving lower accuracy then the original network, as might be expected since the training dataset is much larger
and not matching the validation dataset (we also do not re-optimize the training parameters, and just run long trainings of
500k steps). The IMP validation curve in Fig. 22a shows a peak at lower sparsity (u ~ 8%), consistent with the modified
dataset. Analyzing this best iteration, the S*¢ map in panel b indicates local connectivity, with a stronger bias towards
the horizontal and vertical directions. The large variety of maps in panel ¢ (and their weightd counterparts in panel d)
show surviving features in the shape of stripes and patches patterns with different orientations and periodicity. Despite the
synthetic nature of this dataset, it is interesting to observe these patterns emerge from a translationally invariant dataset.
Moreover, the combination of these features with the spatial focus of the original dataset (also visible in Fig. 10) helps
explain the emergence of Gabor-like filters.

D. Supplementary Material

A repository with all the code required to reproduce the results of this paper is available at https://github.com/
phiandark/SiftingFeatures. The main code is written in Python and based on tensorflow (1.xx). Input files are
provided to reproduce our experiments and a jupyter notebook is available to post-process the data and recreate the figures
of this work.

The same repository hosts a text file with the attribution of each ImageNet category to one of the 10 macro-class in our
semantic clustering experiment.


https://github.com/phiandark/SiftingFeatures
https://github.com/phiandark/SiftingFeatures

Neural Network Pruning Denoises the Features and Makes Local Connectivity Emerge in Visual Tasks

a b

Best val. accuracy

100 30 10 3 1 0.3 0.1
Percentage of unpruned weights (u)

Figure 21. a: Best validation accuracy as a function of u for ImageNet64 dataset. b: S5 and S9° (see Fig. 2 for details) for the best
iteration at u ~ 0.3% (square in panel a). ¢: 90 most connected layer 1 masks for the same iteration.

Videos are also available in the same location, showing the evolution of the most connected masks and their weighted
versions during IMP for the main task of this work.
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Figure 22. a: Best validation accuracy as a function of u for randomly translated dataset. b: S®¢ (see Fig. 2 for details) for the best
iteration at u ~ 8% (square in panel a). ¢: 200 most connected layer 1 masks for the same iteration. d: The same masks, multiplied by
the relative weights (see Fig. 3 for details).



