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Abstract

An intriguing phenomenon that arises from the
high-dimensional learning dynamics of neural net-
works is the phenomenon of “double descent”.
The more commonly studied aspect of this phe-
nomenon corresponds to model-wise double de-
scent where the test error exhibits a second de-
scent with increasing model complexity, beyond
the classical U-shaped error curve. In this work,
we investigate the origins of the less studied
epoch-wise double descent in which the test error
undergoes two non-monotonous transitions, or de-
scents as the training time increases. We study a
linear teacher-student setup exhibiting epoch-wise
double descent similar to that in deep neural net-
works. In this setting, we derive closed-form ana-
Iytical expressions describing the generalization
error in terms of low-dimensional scalar macro-
scopic variables. We find that double descent can
be attributed to distinct features being learned at
different scales: as fast-learning features overfit,
slower-learning features start to fit, resulting in
a second descent in test error. We validate our
findings through numerical simulations where our
theory accurately predicts empirical findings and
remains consistent with observations in deep neu-
ral networks.

1. Introduction

Classical wisdom in statistical learning theory predicts a
trade-off between the generalization ability of a machine
learning model and its complexity, with highly complex
models less likely to generalize well (Friedman et al.,
2001). If the number of parameters measures complex-
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ity, deep learning models sometimes go against this pre-
diction (Zhang et al., 2016): deep neural networks trained
by stochastic gradient descent exhibit a so-called double
descent behavior (Spigler et al., 2019; Belkin et al., 2019b)
with increasing model parameters. Specifically, with in-
creasing complexity, the generalization error first obeys the
classical U-shaped curve consistent with statistical learning
theory. However, a second regime emerges as the number
of parameters is further increased past a transition threshold
where generalization error drops again, hence the “double
descent” or more accurately model-wise double descent.

Nakkiran et al. (2019) showed that the phenomenon of dou-
ble descent is not limited to varying model size and is also
observed as a function of training time or epochs. In this
case as well, the so-called epoch-wise double descent is in
apparent contradiction with the classical understanding of
overfitting (Vapnik, 1998), where one expects that longer
training of a sufficiently large model beyond a certain thresh-
old should result in overfitting. This has important impli-
cations for practitioners and raises questions about one of
the most widely used regularization method in deep learn-
ing (Goodfellow et al., 2016): early stopping. Indeed, while
one might expect early stopping to prevent overfitting, it
might in fact prevent models from being trained at their
fullest potential.

While there has been significant interest, starting from
1990s, to understand the origins of the non-trivial gener-
alization behaviors of neural networks (Opper, 1995; Opper
& Kinzel, 1996; Ba et al., 2019; Mei & Montanari, 2019;
d’Ascoli et al., 2020; Gerace et al., 2020), the majority of
this previous work has been to understand the asymptotic or
end-of-training model performance. In recent years though,
there has been an interest in studying the non-asymptotic
(finite training) performance (e.g. Saxe et al., 2013; Advani
& Saxe, 2017; Kalimeris et al., 2019; Pezeshki et al., 2020;
Stephenson & Lee, 2021). Among the limited work study-
ing the particular epoch-wise double descent, Nakkiran et al.
(2019) introduces the notion of effective model complexity
and hypothesizes that it increases with training time and
hence unifies both model-wise and epoch-wise double de-
scent phenomena. Heckel & Yilmaz (2020) also study the
dynamics of evolution of single and two layer networks and
show that the superposition of two bias/variance trade-off
curves with different minima leads to a double descent.
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Figure 1. The generalization error as the training time proceeds.
(top): The case where only the fast-learning feature or slow-
learning feature are trained. (bottom): The case with both features.
Features that are learned on a faster time-scale are responsible
for the classical U-shaped generalization curve, while the second
descent can be attributed to the features that are learned at a slower
rate.

In this work, we build on Bos et al. (1993); Bos (1998); Ad-
vani & Saxe (2017); Mei & Montanari (2019) which analyze
model-wise double descent through the lens of linear mod-
els, to probe the origins of epoch-wise double descent. In
particular,

e We introduce a linear teacher-student model with fea-
tures of different strengths. Despite its simplicity, such
a model exhibits the epoch-wise double descent of
the generalization error under gradient-based training.
(Section 2.1)

o In the high-dimensional limit (of number of parameters
and sample size), we derive the dynamics of a pair
of low-dimensional macroscopic variables, R and @,
describing the generalization behavior of the model.
(Egs. 6,7)

e Consistent with recent findings, we provide an expla-
nation for the existence of epoch-wise double descent,
suggesting that epoch-wise double descent can be at-
tributed to different features being learned at different
time-scales. (Figure 1 and Eqs. 12-14)

e We perform simulation experiments to validate our
analytical predictions. Furthermore, we conduct ex-
periments with a ResNet-18 model, to demonstrate
qualitative similarity between the generalization behav-
ior of our teacher-student setup and that of the former.
(Figures 5, 6)

2. Analytical Framework

In this work, we focus on studying the generalization be-
havior of neural networks under the quintessential gradient-
based training scenario, namely (stochastic) gradient de-
scent (SGD/GD). SGD — the de facto optimization algo-
rithm for neural networks — exhibits complex dynamics
arising from a large number of parameters (Kunin et al.,
2020). While an exact analysis of such dynamics is in-
tractable due to the large number of microscopic parameters,
it is though possible to capture various aspects of this high-
dimensional dynamics in terms of certain low-dimensional
comprehensible macroscopic entities. This was first demon-
strated in a series of seminal papers by Gardner (Gardner,
1988; Gardner & Derrida, 1988; 1989), where the replica
method of statistical physics was adopted to derive expres-
sions describing the generalization behavior of linear mod-
els. In this paper, we employ Gardner’s analysis to build
upon an established line of work studying linear and gener-
alized linear models (Seung et al., 1992; Kabashima et al.,
2009; Krzakala et al., 2012). While most of previous work
study the asymptotic (f — 00) generalization behavior, we
adapt these methods to study transient learning dynamics of
generalization for finite training time. In the following, we
introduce a particular linear teacher-student model and study
its generalization performance as a function of training time
and regularization strength.

Notation. Scalar variables are denoted in lower case (y),
while vectorial entities are represented in boldface (x).
Lastly, matrices are shown capitalized (F).

2.1. A Teacher-Student Setup

Teacher. We study a supervised linear regression problem
in which the training labels y, are generated by a noisy linear
model (Figure 2),

x
Vd

where z € R? is the teacher’s input and y*, y € R are the
teacher’s noiseless and noisy outputs, respectively. w € R?
represents the (fixed) weights of the teacher and e € R
is the label noise. Here, both w; and ¢ are drawn i.i.d.
from Gaussian distributions with zero mean and variances
of 1 and o2, respectively. Additionally, we choose to set
[|lwl|| = 1, without loss of generality.

yi=y"+e vy i=zTw, z; ~ N(0, ), (1)

Student. A student model is correspondingly chosen
to be a similar shallow network with trainable weights
w € R?. The student model is trained on n training pairs
{(z#,y")}},—1, with the labels y* being generated by the
above teacher network and where student’s inputs x* corre-
spond to teacher inputs z# multiplied a predefined and fixed
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Figure 2. The teacher/student setup: The teacher is the data gener-
ating process that given the latent features in z, generates student’s
input, @ and its target, y. Student is trained on pairs of {@;, y; }ie;
where & := FTz follow an anisotropic Gaussian distribution
such that the directions with larger/smaller variance are learned
faster/slower. The condition number of F determines how much
faster some features are learned than the others. One can think of
z as the latent factors of variation on which the teacher operates,
while « can be thought as the pixels that the student learns from.

modulation matrix F € R*? that regulates input features’
strengths:

j =zl w, st. x:=Fz, ()
One can perceive z to be the latent factors of variation
on which the teacher operates, while « corresponds to the
pixels that the student learns from. (See Figure 2)

Learning paradigm. To train our student network, we
use stochastic gradient descent (SGD) on the regularized
mean-squared loss, evaluated on the n training examples as,

n

1 RTCTD W
Lr .:f;(y“—y“) +5lwl3 G

where A € [0, 00) is the regularization coefficient. Optimiz-
ing Eq. 3 with stochastic gradient descent (SGD) yields the
typical update rule,

Wy — W1 — NV Llr +E&, €]

in which ¢ denotes the training step and 7 is the learning rate.
Following the setup of Kuhn & Bos (1993), & ~ N(0, %)
approximates the stochasticity noise of the optimization
algorithm, with 8 corresponding to an inverse temperature
parameter. The shape of the noise is assumed to be Gaussian
by virtue of the central limit theorem. See Bottou et al.

(1991); Mandt et al. (2017); Wu et al. (2020) for more
details on modeling the stochasticity of SGD with Gaussian
noise.

Macroscopic variables. The quantity of interest in this
work is the average generalization error of the student de-
termined by averaging the student’s error over all possible
input-target pairs of a noiseless teacher, as

1
Lo = SE:[(y" - 9)]- )

As shown in Bos et al. (1993), if n, d — oo with a constant
ratio % < oo, Eq. 5 can be written as a function of two
macroscopic scalar variables R, @) € R,

1
Lo=5(1+Q~2R), (6)
where,
[ Lo operg .
R:= g'w Fw, Q= g'w F* Fw, @)

(See App. B.1 for Proof.)

Remark: Both R and () have clear interpretations; R is
the dot-product between the teacher’s weights w and the
student’s modulated weights Fw, hence can be interpreted
as the alignment between the teacher and the student.
Similarly, () can be interpreted as the student’s modulated
norm. The negative sign of R in Eq. 6 suggests that the
larger R is, the smaller the generalization error gets. At the
same time, () appears with a positive sign suggesting the
students with smaller (modulated) norm generalize better.

Note that both R and () are functions of w, which itself
is a function of training iteration ¢ and the regularization

coefficient \. Therefore, from hereon, we denote the above
quantities as L (¢, A), R(t, A), and Q(t, A).

2.2. Main Results

In this Section, we present our main analytical results, with
Section 2.3 containing a sketch of our derivations. For
brevity, here, we only present the results for 02 = \ = 0.
See App. B for the general case and the detailed proofs.

General matrix F. LetZ := [2/]_, € R"*?and X :=
[z#]7_, € R™*? denote the input matrices for the teacher
and student such that X := ZF. For a general modulation
matrix F, the input covariance matrix has the following

singular value decomposition (SVD),
XTX =FT'zT7ZF = VAVT, (8)

with A containing the singular values of the student’s input
covariance matrix. Solving the dynamics of exact gradi-
ent descent as in Eq. 4, we arrive at the following exact
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analytical expressions for R(t) and Q(t),

1

R(t) = gTr(D), where, D:=1-[I—7nA]", (9
1

Q(t) = ~Tr (ATA) , where, A := FVDV'F"!, (10)

in which Tr(.) is the trace operator. (See App. B.2 for
Proof.)

By plugging Eqgs. 9 and 10 into Eq. 6, one obtains an exact
expression for L (t). Unfortunately, Egs. 9 and 10 are not
straightforward to treat generally, and require the numerical
evaluation of the singular values in A. Nevertheless, with
some simple but informative assumptions on the modulation
matrix F’s structure, one can derive approximate solutions,
as we now demonstrate.

Bipartite matrix F. We now study a case where F obeys
the following Assumption.

Assumption 2.1. The modulation matrix, F, under a SVD,
F := UXV7 has two sets of singular values such that the
first p singular values are equal to o1 and the remaining
d — p singular values are equal to o5. We let the condition
number of F to be denoted by x := Z—; > 1.

By employing the replica method of statistical
physics (Gardner, 1988; Gardner & Derrida, 1988)
and approximation of gradient descent dynamics with ridge
regression, we derive closed-form expressions for R(¢) and
Q(t). To present the results, we first define the following
auxiliary variables,

n

api= o, api= : (11)
p d—p
- d 1 ~ d 1
A== — Ag 1= ——— —-, (12)
p noyt d—p nojt
~—— ——
time scaled by 0% time scaled by U%
and also let, for i € {1, 2},
2\
a; =1+ - = —.
(1—&1—)\Z)+\/(1—0[2—>\1)2+4)\1
(13)
The scalar expression for R(t) is then given by,
R(t) = R; + Ry, where,
n n (14)
Ry = —, d, Ry =—.
! ald an 2 a2d

Similarly, for Q(t), we have, Q(t) = Q1 + Q2, where

_ bibaca + b1y

. - blbgcl + b202
Ql = 1 _ b1b2 )

and, Qs := T
(15)

with (i € {1,2}),

i 2—aq
bi = o ,qzrd&—g L a6

2
a; — oy a;

Plugging Eqgs. 14 and 15 into Eq. 6, one obtains an (approx-
imate) expression for L (t) as a function of the training
time. (See App. B.3 for Proof.)

Remark: Eq. 12 indicates that the singular values of F,
are directly multiplied by ¢. That implies that the learning
speed of each feature is scaled by the magnitude of its
corresponding singular value.

2.3. Sketch of derivations

In this Section, we sketch the key steps in the derivation of
our main results. For the sake of simplicity, here again we
only treat the case where 0. = A = (. (See App. B for the
general case and detailed Proofs.)

General matrix F: Exact dynamics. Recall the gradient
descent update rule in Eq. 4. For the linear model defined in
Eqgs. 1-2, learning is governed by the following discrete-time
dynamics,

Wy = wi—1 — NV, L, (17)
= w1 —n [-XT(y = X-1)] . (18)

With the assumption that w;—¢ = 0, the dynamics admit
the following exact closed-form solution,

Wy = (I ~[r- nxTx]t) (XTX)"1XTy = w(t).
(19)

With a SVD on X7 X, Eqgs. 9-10 can then be obtained by sub-
stituting w; in Eq. 7. As a remark, note that one can recover
the results of Advani & Saxe (2017) by setting F = I. In that
case, the eigenvalues of X X follow a Marchenko—Pastur
distribution (Marchenko & Pastur, 1967).

Bipartite matrix F: Approximate dynamics. To em-
ploy the replica method, we first invoke the results in Eq. 9
of Solla (1995) and Kuhn & Bos (1993) which state that the
equilibrium distribution of weights w trained via SGD on a
loss L(w), follow the Gibbs-Boltzmann distribution, such
that,

P(w) = L peaw, (20)

Zs
in which Zg = [ dw exp(—BL(w)) is the partition func-
tion and S is called the inverse temperature and is inversely
proportional to the stochasticity of SGD (see Eq. 4). Such
distribution is a standard choice in statistical mechanics (see
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page 53 of Engel & Van den Broeck (2001)). Intuitively, for
small j3, the distribution of P(w) is almost uniform, while
as # — oo, P(w) becomes more concentrated around the
minimum of the loss £ ().

It is important to highlight that Eq. 20 describes the equi-
librium distribution of the student network’s weights, i.e.,
at the end of training (¢ — oo). However, we are interested
in studying the trajectory of student’s weights during the
course of training, i.e., for finite £. To this end, we em-
ploy the connection between (continuous-time) SGD and
Lo regularization, as first quantified in Ali et al. (2019;
2020). Specifically, it states that the MSE loss of a linear
regression model under stochastic gradient flow at time ¢
is bounded from above by the end-of-training loss in the
presence of ridge regression with an Lo regularization coef-
ficient A = 1/nt. We note that while there is no guarantee
that this bound is tight in general, we do observe that it
matches the behavior of a wide range of numerical experi-
ments extremely well (see Section 3).

Accordingly, we study the equilibrium distribution of the
modified loss £(w, t), such that,

P(a) = ie*mfv’t), and @21)
Zp.t
YRS 1 & o ~ L\ 2 1 1 A2
L(w,1) 2%2((@ ) +§()\+—)||w\|2
p=1
(22)

See App. B.4 for proof.

To determine the fypical generalization performance of stu-
dents distributed according to P(), one proceeds by com-
puting the free-energy of the system as,

1
f=—=Ey2 [ln Zﬁ,t] . (23)

Bd

Free-energy is a self-averaging property where its typi-
cal/most probable value coincides with its average over
proper probability distributions (Engel & Van den Broeck,
2001). Therefore, to determine the typical values of R and
@, we extremize the free-energy w.r.t. those variables.

Due to the logarithm inside the expectation, analytical com-
putation of Eq. 23 is intractable. However, the replica
method (Mézard et al., 1987) allows us to tackle this through
the following identity,

o Eu2Z;,] -1
By alln Zs,] = lim —2 200 L

(24)

Computation of the free-energy via replica method and its
subsequent extremization w.r.t R and @), we arrive at Eqs. 14
and 15. See App. B.3 for more details.
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Figure 3. Top: Analytical results of Eqs. 9, 10 compared to gra-
dient descent dynamics. The x-axis denotes the training time ¢.
Bottom: Analytical results of scalar Egs. 14, 15 compared to ridge
regression dynamics. The x-axis denotes the inverse ridge (L.2)
coefficient 1/X. Analytical results closely match with empirical
simulations. Consistent with Ali et al. (2019), ridge regression
appears to reasonably approximate gradient descent dynamics.
Analysis: With x = 1, all the features are learned at the same rate
(no double descent). k = 50 corresponds to the case where a sub-
set of features are learned 50 times faster than the rest and hence
epoch-wise double descent is observed. Finally, x = 100000 im-
plies that a subset of of features are extremely slow to learn that
practically do not get learned (typical overfitting).

To summarize, using the replica method, we are able to
cast the high-dimensional dynamics of SGD into simple
scalar equations governing R and () and, consequently, the
generalization error L. While our analysis is limited to the
specific teacher and student setup, this simple model already
exhibits dynamics qualitatively similar to those observed in
more complex networks, as we now illustrate.

3. Experimental Results

In this Section, we conduct numerical simulations to val-
idate our analytical results and provide clear insights on
the macroscopic dynamics of generalization. We also con-
duct experiments on real-world neural networks showing
a close qualitative match between the generalization be-
havior of neural networks and our teacher-student setup.
To ensure reproducibility, we include the complete source
code in a GitHub repository as well as a Colab
notebook.


https://github.com/mohammadpz/Epoch_wise_Double_Descent
https://colab.research.google.com/drive/1nz-hkWKRcLfCsrn7uBgpKtzDFHmfP52g?usp=sharing
https://colab.research.google.com/drive/1nz-hkWKRcLfCsrn7uBgpKtzDFHmfP52g?usp=sharing
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Figure 4. Left: Phase diagram of the generalization error as a function of R(¢) and Q(t) (Egs. 14 and 15). The generalization error for all
pairs of (R, Q) € [0.0,1.0] x [0.0,1.2] is contour-plotted in the background, with the best generalization performance being attained on
the lower right part of the plot. The trajectories describe the evolution of R(¢) and Q(t) as training proceeds. Each trajectory correspond
to a different x, the condition number of the modulation matrix F'in Eq. 2. k describes the ratio of the rates at which two sets of features
are learned. Right: The corresponding generalization curves. Analysis: The trajectory with x = 1e5 starts at the origin and advances
towards point A (a descent in generalization error). Then by over-training, it converges to point B (an ascent). For the other trajectories
with smaller «, a first descent occurs up to the point A, then an ascent happens, but they no longer converge to point B. Instead, by further
training, these trajectories converge to point C' implying a second descent.

3.1. Analytical results compared with simulations

Through numerical simulations, we validate our analytical
results presented in Section 2.2. Figure 3 depicts the com-
parisons for a teacher-student setup with d = 100, p = 50,
and n = 150. Several similar experiments for different
configurations are available in our provided notebook. It is
observed that with k = 1, the generalization error does not
follow a double descent curve. Recall that x = 1 implies
that all the features are learned at the same rate. However,
by increasing the value of x, double descent curves are ob-
served. Very large values of x imply that some features
are practically non-learnable and hence a typical overfitting
curve is observed.

3.2. The Phase diagram

To further investigate the transition between the two phases
of classical single descent and double descent, we explore
the phase diagram. Recall that with Eq. 6, one can fully
characterize the evolution of the generalization dynamics in
terms of two scalar variables instead of the d-dimensional pa-
rameter space. R and () presented in Eq. 7 are macroscopic
variables where R represents the alignment between the
teacher and the student and @ is the student’s (modu-
lated) norm. Hence, a better generalization performance is
achieved with larger R and smaller Q.

The quantities R and () are not free parameters and both
depend on the training dynamics through Eqs. 14 and 15.
Nevertheless, it is instructive to visualize the generalization
error for all pairs of (R, Q). In Figure 4, we visualize the
RQ-plane for (R, Q) € [0.0,1.0] x @ € [0.0,1.2]. At the

time of initialization, (R, Q) = (0,0) as the models are
initialized at the origin. As training time proceeds, values
of R and () follow the depicted trajectories. In Figure 4,
different trajectories correspond to different values of «, the
condition number of the modulation matrix F' in Eq. 2. It
is important to note that the closer a trajectory is to the
lower-right, the better the generalization error gets.

The yellow curve corresponds to the case with large k =
1eb, meaning that a subset of features are extremely slower
than the others that practically do not get learned. In that
case, generalization error exhibits traditional overfitting due
to over-training. On the phase diagram, the yellow trajec-
tory starts at (0,0) and moves towards Point A which has
the lowest generalization error of this curve. Then as the
training continues, () increases and as ¢ — oo the trajectory
lands at Point B which has the worse generalization error
(highly-overfitted). Other curves follow the case of x = 1leb
up to the vicinity of Point B, but then the trajectories slowly
incline towards another fixed point, Point C' signalling a
second descent in the generalization error.

The phase diagram along with the corresponding general-
ization curves in Figure 4 illustrate that features that are
learned on a faster time-scale are responsible for the initial
conventional U-shaped generalization curve, while the sec-
ond descent can be attributed to the features that are learned
at a slower time-scale.

3.3. Qualitative comparison with ResNet on Cifar-10

We train a ResNet-18 (He et al., 2016) with layer widths
[64,2 x 64,4 x 64,8 x 64]. We follow the training setup of
Nakkiran et al. (2019); label noise with a probability 0.15
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Figure 5. A qualitative comparison between a ResNet-18 and our analytical results. (a): Heat-map of empirical generalization error
(0-1 classification error) for the ResNet-18 trained on Cifar-10 with 15% label noise. X-axis denotes the inverse of weight-decay
regularization strength and Y-axis represents the training time. (¢): Heat-map of the analytical generalization error (mean squared error)
for the linear teacher-student setup with x = 100, the condition number of the modulation matrix. (b, d): Three slices of the heat-maps
for large, intermediate, and small amounts of regularization. Analysis: As predicted by Eqs. 14 and 15, x = 100 implies that a subset of
features are learned 100 times faster that the rest. Intuitively, large amounts of regularization () allow for the fast-learning features to be
learned but cause overfitting. Intermediate levels of regularization () result in a classical U-shaped generalization curve but prevent
learning of slow features. Small amounts of regularization (1) allow for both fast and slow features to be learned, leading to a double

descent curve.

randomly assign an incorrect label to training examples.
Noise is sampled only once before the training starts. We
train using Adam (Kingma & Ba, 2014) with learning rate
of 1e — 4 for 1K epochs. Experiments are averaged over 50
random seeds.

We conduct an experiment on the classification task of Cifar-
10 (Krizhevsky et al., 2009) with varying amount of weight
decay regularization strength A\. We monitor the generaliza-
tion error (0-1 test error) during the course of training and
visualize a heat-map of the generalization error for different
A’s in Figure 5 (a).

We also conduct a similar experiment with the teacher-
student setup presented in Section 2.1. We visualize a heat-
map of the generalization error which is the mean squared
error (MSE) over test distribution in Figure 5 (c). Particu-
larly, we plot Egs. 14 and 15 with a x = 100. It is observed
that in both experiments, a model with intermediate levels of
regularization displays a typical overfitting behavior where
the generalization error decreases first and then overfits.

This is consistent with Eq. 61 of the appendix: The amount
of regularization J, is inversely proportional to the training
time ¢ implying that larger amounts of regularization act as
early stopping.

3.4. Diminishing the temporary overfitting

The phase diagram in Figure 4 along with Eq. 6 suggest that
an inflation in the value @ is responsible for the temporary
overfitting observed in epoch-wise double descent. As an
illustrative experiment, if we could diminish this temporary
overfitting, we could expect to observe a single descent
rather than a double descent curve. To that end, a natural
solution is to penalize ) during training. To do that, we
introduce the following lemma.

Lemma 3.1. For a linear/linearized model, penalizing @)
amounts to adding the following regularizer to the loss,
Ly < Ly +ol[g], (25)

previously introduced in Pezeshki et al. (2020). (See App.
B.5 for Proof).
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Figure 6. The effect of regularizing the quantity ) on the gener-
alization curve. Two setups with (w/) and without (w/o) regular-
ization are compared. Both the linear teacher-student model and a
ResNet-18 on a binary Cifar-10 benefit from such regularization
as the temporary overfitting is diminished. In accordance with
Lemma 3.1, ) regularization is implemented by simply penalizing
the norm of the model’s output.

Figure 6 depicts the effect of this regularizer on the gen-
eralization curve. Both linear teacher-student model and
ResNet-18 show curves in which the overfitting cusps are
diminished. The ResNet experiment is on a binary classifi-
cation version of the Cifar dataset.

We note that, for any linear model § = Xw, the regu-
larization ||¢j||? translates to an L2 regularization on the
weights that is scaled by the input covariance matrix, as
[|7]]> = wT XT Xw. Therefore, such regularization slows
down the learning along the direction of faster features and
hence attempts to equalize the learning scale of different
features. We should highlight that mitigating double descent
is not the purpose of our work and this experiment is pre-
sented to support that the findings from a linear model can
still carry over to non-linear networks.

4. Related Work and Discussion

Although the term double descent has been introduced rather
recently (Belkin et al., 2019a), similar behaviors had al-
ready been observed and studied in several decades-old
works form a statistical physics perspective (Krogh & Hertz,
1992; Opper, 1995; Opper & Kinzel, 1996; Bos, 1998).
More recently, these behaviors have been investigated in

the context of modern machine learning, both from an em-
pirical (Amari et al., 2020; Yang et al., 2020) and theoreti-
cal perspectives (Geiger et al., 2019; d’Ascoli et al., 2021;
Geiger et al., 2020).

Hastie et al. (2019); Advani & Saxe (2017); Belkin et al.
(2020) use random matrix theory (RMT) tools to char-
acterize the asymptotic generalization behavior of over-
parameterized linear and random feature models. Mei &
Montanari (2019) extend the same analysis to a random fea-
ture model and theoretically derive the model-wise double
descent curve for a model with Tikhonov regularization. Ja-
cot et al. (2020) also study double descent in ridge estimators
and show an equivalence to kernel ridge regression.

While most of the related work study the non-monotonicity
of the generalization error as a function of the model size
or sample size, Nakkiran et al. (2019) introduced the epoch-
wise double descent, where the double descent occurs as
the training time increases. There has been limited work
on studying of epoch-wise double descent. Very recently,
Heckel & Yilmaz (2020) and Stephenson & Lee (2021) have
focused on finding the roots of this phenomenon.

Heckel & Yilmaz (2020) provides upper bounds on the
risk of single and two layer models in a regression setting
where the input data has distinct feature variances. Heckel
& Yilmaz (2020) demonstrate that a superposition of two
or more bias-variance tradeoff curves leads to epoch-wise
double descent. The authors also show that different layers
of the network are learned at different epochs. For that
reason, epoch-wise double descent can be eliminated by
appropriate selection of learning rates for individual weights.
Stephenson & Lee (2021) arrive at similar conclusions. A
data model is constructed so that the noise is explicitly
added only to the fast-learning features while slow-learning
features remain noise-free. Consequently, the noisy features
form a U-shaped generalization curve while noiseless but
slow features are responsible for the second descent.

Our findings and those of Heckel & Yilmaz (2020) and
Stephenson & Lee (2021) reinforce one another with a com-
mon central finding that the epoch-wise double descent re-
sults from different features/layers being learned at different
time-scales. However, we also highlight that both Heckel &
Yilmaz (2020) and Stephenson & Lee (2021) use tools from
random matrix theory to study distinct data models from
our teacher-student setup. We study a similar phenomenon
by leveraging the replica method from statistical physics to
characterize the generalization behavior using a set of infor-
mative macroscopic parameters. The key novel contribution
from our approach is the derivation of the macroscopic
quantities R and () (see Eq. 7) which track teacher-student
alignment, and the student’s modulated norm, respectively.
Crucially, these quantities can be used to study other general-
ization phenomena and/or to modify the learning dynamics
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via their explicit regularization as illustrated in Section 3.4.

We believe our framework sets the stage for further un-
derstanding of generalization dynamics beyond the double
descent. A future direction to study is a case in which the
first descent is strong enough to bring down the training
loss to zero such that learning slower features is practically
impossible (Pezeshki et al., 2020) or happens after a very
large number of epochs (Power et al., 2021). Grokking is an
instance of such behavior reported by Power et al. (2021) in
which the model abruptly learns to perfectly generalize but
long after the training loss has reached very small values.

Finally, we note that while our simple teacher-student setup
exhibits the epoch-wise double descent, its simplicity in-
troduces several limitations. Studying finer details of the
dynamics of neural networks requires more precise, non-
linear, and multi-layered models, which introduce novel
challenges that remain to be studied in future work.
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A. Further Related Work and Discussion

If we consider plots where the generalization error on the y-axis is plotted against other quantities on the z-axis, we find
earlier works that have identified double descent behavior for quantities such as the number of parameters, the dimensionality
of the data, the number of training samples, or the training time on the x-axis. In this paper, we studied epoch-wise double
descent, i.e. we plot the training time ¢, or the number of training epochs, on the x-axis. Literature displaying double descent
phenomena in generalization behavior w.r.t. other quantities do so in the limit of ¢ — oo.

From a random matrix theory perspective, Le Cun et al. (1991); Hastie et al. (2019); Advani & Saxe (2017), and Belkin
et al. (2020) are among works which have analytically studied the spectral density of the Hessian matrix. According to their
analyses, at intermediate levels of complexity, the presence of small but non-zero eigenvalues in the Hessian matrix results
in high generalization error as the inverse of the Hessian is calculated for the pseudo-inverse solution.

Neyshabur et al. (2014) demonstrated that over-parameterized networks does not necessarily overfit thus suggesting the need
of a new form of measure of model complexity other than network size. Subsequently, Neyshabur et al. (2018) suggest a
novel complexity measure based on unit-wise capacities which correlates better with the behavior of test error with increasing
network size. Chizat & Bach (2020) study the global convergence and superior generalization behavior of infinitely wide
two-layer neural networks with logistic loss. Goldt et al. (2020) make use of the Gaussian Equivalence Theorem to study
the generalization performance of two-layer neural networks and kernel models trained on data drawn from pre-trained
generative models. Bai & Lee (2020) investigated the gap between the empirical performance of over-parameterized
networks and their NTK counterparts, first proposed by Jacot et al. (2018).

From the perspective of bias/variance trade-off, Geman et al. (1992), and more recently, Neal et al. (2018) empirically
observe that while bias is monotonically decreasing, variance could be decreasing too or unimodal as the number of
parameters increases, thus manifesting a double descent generalization curve. Hastie et al. (2019) analytically study the
variance. More recently, Yang et al. (2020) provides a new bias/variance decomposition of bias exhibiting double descent
in which the variance follows a bell-shaped curve. However, the decrease in variance as the model size increases remains
unexplained. For high dimensional regression with random features, d’ Ascoli et al. (2020) provides an asymptotic expression
for the bias/variance decomposition and identifies three sources of variance with non-monotonous behavior as the model
size or dataset size varies. d’Ascoli et al. (2020) also employs the analysis of random feature models and identifies two
forms of overfitting which leads to the so-called sample-wise triple descent. More recently, Chen et al. (2020) show that as a
result of the interaction between the data and the model, one may design generalization curves with multiple descents.

From a statistical physics perspective, Opper (1995); Bos et al. (1993); Bos (1998); Opper & Kinzel (1996) are among
the first studies which theoretically observe sample-wise double-descent in a ridge regression setup where the solution is
obtained by the pseudo-inverse method. Most of these studies employ the “Gardner analysis” (Gardner, 1988; Gardner &
Derrida, 1988; 1989) for models where the number of parameters and the dimensionality of data are coupled and hence
the observed form of double descent is different from that observed in deep neural networks. A beautiful extended review
of this line of work is provided in Engel & Van den Broeck (2001). Among recent works, Gerace et al. (2020) also apply
the Gardner analysis but to a novel generalized data generating process called the hidden manifold model and derive the
model-wise double-descent equations analytically.

Finally, recall that towards providing an explanation for the epoch-wise double descent, we argue that the epoch-wise
double descent can be attributed to different features being learned at different time-scales, resulting in a non-monotonous
generalization curve. In relation to the aspect of different feature learning scales, Rahaman et al. (2019) had observed that
DNNss have a tendency towards learning simple target functions first that can allow for good generalization behavior of
various data samples. Pezeshki et al. (2020) also identify and provide explanation for a feature learning imbalance exhibited
by over-parameterized networks trained via gradient descent on cross-entropy loss, with the networks learning only a subset
of the full feature spectrum over training. More recently though, Zhang et al. (2020), show that certain DNNs models
prioritize learning high-frequency components first followed by the learning of slow but informative features, leading to the
second descent of the test error as observed in epoch-wise double descent.

On the difference between model-wise and epoch-wise double descent curves. In accordance with its name, model-
wise double descent (in the test error) occurs due to an increase in model-size (number of its parameters), i.e., as the model
transitions from an under-parameterized to an over-parameterized regime. A variety of works have tried to understand
this phenomenon from the lens of implicit regularization (Neyshabur et al., 2014) or defining novel complexity measures
(Neyshabur et al., 2017). On the other hand, epoch-wise double descent (in the test error) as treated in our work, is observed
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to occur for both over-parameterized (Nakkiran et al., 2019) and under-parameterized (Heckel & Yilmaz, 2020) setups. As
found in our work along with the latter reference, this phenomenon seems to be a result of different feature learning speeds
rather than the extent of model parameterization. The overlap of the test-error contributions from the different weights
with varying scales of learning henceforth leads to a non-monotonous evolution of the model test error as exemplified by
epoch-wise double descent.

We also note that the peak in model-wise double descent is associated with the model’s capacity to perfectly interpolate the
data, we do not think an analogous notion exists for the case of epoch-wise double descent. Our understanding of the peak
in the latter is that it corresponds to a training time configuration whereby a subclass of features are already learnt (due to
a larger associated signal-to-noise-ratio) and are being overfitted upon to fit the target. As training proceeds further, the
remaining set of features are eventually learnt thus allowing for a lowering of the test error.

On the link to complex networks. Generally, exact study of complex neural networks is often intractable. A common
practice is to study a simpler system that conserves key attributes and then validate the findings on the original complex
system. In this work, we build on the same established practices: we propose a simple linear model with two key advantages,
a) it can be solved analytically, b) exhibits double descent, the property of interest. Subsequently, our experiments support
the extension of our findings and intuitions to complex neural networks.

B. Technical Proofs

B.1. The generalization error as a function of R and ) (Eq. 6)
Recall that the teacher is the data generator and is defined as,

1

=y +¢, = 2TW, z; ~ N(0,
yi=y Yy (\/8

) (26)

where z € R is the teacher’s input and y*,y € R are the teacher’s noiseless and noisy outputs, respectively. W € R¢
represents the (fixed) weights of the teacher and € € R is the label noise.

While the student network is defined as,
§=x"W, st.  wx:=Fz, (27)

where the matrix F € R%*? is a predefined and fixed modulation matrix regulating the student’s access to the true input 2.

The average generalization error of the student, determined by averaging the student’s error over all possible input
configurations and label noise realizations is given by,

Lo =SBz [(y" —9+€)?], (28)

in which the variables (y*, §j) form a bi-variate Gaussian distribution with zero mean and a covariance of,

C<ytyt > <ytg>z| |1 R
=<y > <g,y>z]‘{R Q}’ e
Here,
~ 1 ~
R:=E.[y"j] = E.[WT22TFW] = EWTFW, and, (30)
~ ~ 1 - ~
Q:=E,[)79] =B [WTFT 22TFW| = EWTFTFW. (31)

Utilizing this, Eq. 28 can be expressed as,
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1
Lg:=3E. (v —9+¢?], (32)
1 ~
= 3B [ - (R + V@ R%) + 07 (33)
:%(14—6 +Q - 2R). (34)

Additionally, we note that expectation w.r.t. a Gaussian variable z is defined as,

Bl = [ +: e (—”;) f). (35)

B.2. The general case exact dynamics (Egs. 9-10)

Recall that to train our student network, we use gradient descent (GD) on the regularized mean-squared loss, evaluated on
the n training examples as,

1« A A
L= o=y (" =) + SIIWIE, (36)

2n
p=1

where A € [0, 00) is the regularization coefficient.

The minimum of the loss function, denoted by ng, is achieved at,

1 o A s
Vilr =0= Vi |3y - XWI + SIIWIE| ~0 @)
= —XT(y — Xng) + /\ng =0 (38)
= Wy = (XTX + A1) 1XTy,. (39)

Additionally, the exact dynamics under gradient-descent, correspond to,
Wt = Wtfl - nVWtil‘CTa
= W1 —n[— X" (y — XWi_1) + AW,
= (L= nN)Wir — X" XWiy + X"y,
(1 — NI = nXTX|W,_1 + nXTy,

= ] 40)
= (1 = = pXTXIW, 1 + n(XTX + )\I)(XTX + AN~ IX Ty,
= [(1 =) = pXTX|W;_y + n(XTX + AW, i
= [(1 =)= nXTXIWiet + (1XTX + AL W,
= [(1 = NI = gX"XIWio1 + (XX + (A = D)W + Wi,
which leads to,
Wi = Wea = [(1 = N1 =X X| Wiy — W), an
= [(1 = )= pXTX)" (Wo — Wy).
Assuming Wy = 0, we arrive at the following closed-form equation,
~ t s
W, = (1 — (1 = g1 = nXTX] ) W, 42)

where ng is defined in Eq 39.
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Now back to definition of R in Eq. 30 and by substitution of Eq. 42, we have,

1 -
R(t): = gWTFWt,

1 t

= ~WTF (1= [ = )1 = 1X"X]") Wi,

= %WTF (1= [ =01 =nXTX]") (XTX + AD) ' Xy,
(A + AT)

; )
)

:fWTFV(I—[(l—nAI—nAt
+
i)

d
TS [(I = [ =T =nA])

43
“IVITXTy, (XTX =VAVT) )

:fWTFV(I—[(l—nAI—nAt (A +AD)"HAVTE'W + Ade),

d

1
d

Similarly for Q, let D := (1 (=N — nA]t>, then we have,

Qt) : = éWTFTFW,

_ %WT (1= [ = 01 = nXTX] VETF (1= [(1 = )1 = nXTX]" ) W,

dW IVDVTFTFVDVI W,

W VDF FDVTWém (F:=FV,X = UAN/2VT &:.= UTe)
pi’fp-
A+ A A+ A

A ~ 1
DE'ED F A~1/2¢
A+l Aol W €,
T~ A
DF FD-——F
d A+ I A+ I W

~T ~
DF FD A1/2e
d ‘Al A+ €

~d

- E(WTF*TV + A2

THp-1 —1/2~
(VIFTW + A7 %€), (44)

4T
+ A2

2
=| ZTr [ATA] + 2o Tr [B7B]

where,

A -1 - A

B.3. Special case of approximate dynamics (Eqgs. 14 and 15)

Recall that the teacher and student are defined as,

y:=y" +e, v =2TW, gi=a'W, x:=Flz, (46)
where € ~ N (0, 02) is the label noise, F is the modulation matrix, and ||z||3 = ||W |3 = 1.
The training and generalization losses are defined as,

_7i A 2 i 7112 .fl 0 — 2
Lr = 2nZ(y W2+ SIWIE Lo= 5Bl - v)7) @7)
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According to Eq. 6, the generalization loss can be written in terms of two scalar variables R and @),

1
La= 5(1 +024+Q —2R), where, (48)
~ 1 N
R:=E.[y"j] = E.[WT22TFW]| = gWTFW, and, (49)
~ ~ 1 - ~
Q:=E.[j)] = B, [WTF 22TFW] = EWTFTFW. (50)

In the following, we next determine the most probable values of the above scalar entities, from statistical perspective.

Application of ¢ steps of GD on L results in the following distribution for the student’s weights:

~ 1 P
P(W,t) = ——e PerW0), (51)
Bt

in which ET(W, t) is a modified loss that dictates the distribution of student weights W upon t*" iterations of GD on the
original loss L7 (W), while 3 corresponds to an (inverse) temperature parameter of our student weight distribution.

In Eq. 51, Zg 4 is the partition function which is defined as,
1WTFTFW Qo )e —BLT (W 1)
f H’L 1 ( ) 0
JE ML AW s (SWIFTEW - Qo)

in which, ()¢ can be perceived to be a target norm the student weights W are being constrained to and d is the dimensionality
of the data.

Zgt = ; (52)

We are now interested in finding R and (@ of the typical (most probable) students. Therefore, it suffices to find the students
that dominate the partition function (or more precisely the free-energy). The free-energy is defined as,

1
f = _@EW,Z[IHZBJ:L (53)
where W and z are the teacher’s weight and input, respectively.

Due to the logarithm inside the expectation, analytical computation of Eq. 53 is intractable. However, the replica
method (Mézard et al., 1987) allows us to tackle this through the following identity,

Ew 225, -1

r

Ew,z[InZs,] = lim (54)

Case 1: F =1. As a first step, we first study a case where F = 1. In that case, as derived in Bos (1998), Eq. 53 can be
simplified to,

_1Q—R2 1 nB G—-—2HR+ Q
—ﬂf—§Q _Q+§1H(Q0—Q)—@1n[1+ﬁ(Q Q)]—ﬁm’ (55)
in which the scalar variables G and H are defined as,
H:=Ey[y'y] =Ep[y"(y" + )] =1, (56)
G:=Eyp fyy] =Ep-[(y" +)(y" +¢)] = 1+ 7. (57)

At this point, in order to find the most probable students, one can extremize the free-energy f(R, Q, Qo) in Eq. 55. The
solution to this extremisation is derived in Bos et al. (1993) and reads,

1
Vef=0 = R=12-, (58)
da
1 n2—a
Vaf=0 = @= d a2 —n/d (G da> ’ (59)
2X
Voo f=0 = a=1+ , (60)

L—n/d—A+/(1—n/d—})? +4}
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in which,

and, 5\::)\—1—77—. 61)

Case 2: F follows Assumption 2.1. The modulation matrix, F, under a SVD, F := UZVT has two sets of singular values
such that the first p singular values are equal to oy and the remaining d — p singular values are equal to 5. We let the
condition number of F to be denoted by ~ := Z—; > 1.

Without loss of generality, we hereby assume that U = V = I. Consequently, the (noiseless) teacher and the student can be
written as the composition of two sub-models as following,

Y=y s =21 Wy + 20 W, (teacher decomposition) (62)
Jy=191+192 =01 leW1 + angT Wg, (student decomposition) (63)

in which z; € RP and z, € R%~P.

Let §); denote the output of the i*" component of the student. Also let y and y; denote the noiseless and noisy targets,
respectively. Therefore, for the student components ¢ € 1,2, we have,

A T = ~ T ~
Y = 0121 Wl, Yo = 0229 W27
T T
Yy = 2y Wy, ys = 25 Wa,
% T TYx % T Txx
Y1 = Y] + 25 Wa — 0225 Wa +e, Yo = Ys + 21 W1 — 0127 W1 +e,
— —

Y3 —Ga2=ea(t) yi—g1=€1(t)

in which e is the explicit noise, added to the teacher’s output while €, (t) is an implicit variable noise which decreases as the
component j # 4 learns to match §; and y;.

Accordingly, the variables H; and G; for each component 7 are re-defined as,

Hy = Elyi] = By; i) = 2, 1, = Elyun] = Eyslivs) = 12,
G1 = Elyiyi], G2 = Ely; ya),
=E[(y; +y5 — 02) (i + 5 — )] + 02, =E[(ys + v —51)" (3 +y1 — 00)] + 02,
= Elyiyi] + Elyzys] + E[g292], = Elys5] + Elyiyi] + E[j191],
— 2E[y39s] + 07, — 2E[y 1] + 07,
:§+%+Q2_2R2+037 :%+§+Q1—2R1+a?,
=14+Q2— 2Ry + 07, =14+Q; — 2R, + o2,

in which R; and @); are defined as,

1
d

1

R; :=E.[yj9;] = =W/ o:W;, and, Q;:=ZE.[j:f]
where o; denotes the singular values of the matrix F as defined in Assumption 2.1.

Rewriting Eqgs. 58, 59, and 60 for each of the student’s components, we arrive at,
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n 1
R = —=—,
! da1
n2—a
Q1=2<1+Q2—21‘1’2+0’?— 1),
pai —n d a
2
ap =1+ — ! = —,
_n_ _n 3 )2
p )\1+\/(1 n A2 4
< d1 1
Mi=—-——=A+—),
AT

Ry= o,

Q2 = (d—p;La%—n <1+Q1—231+03—32;a2>7

=1t 2\ |
1—ﬁ—ﬂ+\/(1—d%p—X)2+4X

S‘QZdepolg()\—’—nlt)’

where Q1 depends on (> and vice versa. However, with simple calculations, we can arrive at the following standalone

equation. Let,

M=, ap= (64)
p d—p
and also let,
(67 n2— a; .
b; = a% — 041'7 ci=1—-2R; — E y for 1€ {172}7 (65)
with which the closed-from scalar expression for Q (¢, A) reads,
bib b b1b b
Q(t,\) = Q1 + Q2, where, Q= M’ and, Qy:= 910261 + 52y (66)
1-— b1b2 1-— b1b2
B.4. Derivation of £(W ) in Eq. 22.
The t'" iterate of gradient descent on L7 (W) matches the minimum of £7-(W , ¢) defined as,
ErW,0) = o 3 [ = o]+ LW (67)
T 2 nt z
Proof. The goal is to show,
W, = arg min ET(W,t), where, W, =W, , — nth,lﬂ(wtfl) (68)

w

For brevity of derivations, here we only consider the case where A\ = 02 = 0. Recall the closed-form derivation of W, in
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Eq. 19,
W, = (1 [1-nX"X]") (X" X)Xy, (69)
— argmin [XW _ X(I - nXTx}t) (XTX)’lXTy] : (70)
w
= arg min QL Z _y“ e (I — [I — nXTX}t) (XTx)"1xTy r, (71)
w " ) =W, assuming o2=0
. 2
— argmin % Sl -t (1= = nxTx] W] (72)
W L
a dynamic target (function of t)
= arg min S Z _Q” - x“TV(I - [I- nA}t) VTVV]2 XTX =VAVT) (73)
W 2n L ’
1 [ T 2
= argvf/mn o Z _y“ —xt V(I — exp (tlog[l — nA])) VTW} , (74)
1 . T 3712 s
~ argulfnln o Z _y” -zt V(I — exp ( — nAt))V W] , (log(1 + z) =~ z) (75)
1 M. T A 2
= argmmﬁz _y“ —at V(I—exp(— W))VTW} , (76)
1 " T A 2
~ arg‘;fmn o Z [yl —xt V(I — exp ( - 1og(m + I)))VTW} ,  (log(1+2) ~ x) )
B 1 . T 1 11 T 2
fargﬁr/mn%Z[y“—z” V(If [A nt[] o )V W} , (78)
_ . 1 T T - 1 T
= argVA[r/nln o Z [y“ xt ((A + I) A) Vv W} ; (719)
1 r T 1 2
_ e NN} T T n\—1yT
= argmin 5 Sl - (XX 4 DX XW} , (80)
o1 . T 1. 2
:argvénlnﬁz _y“—x“ (XTX—i—%I) 1XTy} , (1)
the normal equation
_ 1 [on Iz 2.1 W12 82
argmlnﬁz_y —y} +%|| I3, (82)

which concludes the proof.

O

This proof have a core dependence on the findings of Ali et al. (2019; 2020). These works first formalize the connection
between (continuous-time) GD or SGD-based training of an ordinary least squares (OLS) setup and that of ridge regression,
providing bounds on the test error under these algorithms over training time ¢, in terms of a ridge setup with ridge parameter
A = 1/t. We utilize these results in the sense that by evaluating the generalization error L of our student-teacher setup
with explicit ridge regularization, we invoke the connection between the ridge coefficient A and training time ¢ as described
in these works, to obtain the behavior of (ridgeless) L over training.

B.S. Proof of Lemma 3.1
For a linear/linearized model, penalizing  amounts to adding the following regularizer to the loss,

Lr + Lr+o|lg|,



Multi-scale Feature Learning Dynamics: Insights for Double Descent

previously introduced in Pezeshki et al. (2020).
Proof: Recall that the variable () is defined as,

1. o
Q= gWTFTFW.

Since Z is normally distributed with unit covariance, we can rewrite () as,

1. o1 .
Q= gWTFTZTZFW = 8WTXTXW.

We note that for a linear/linearized model of form y := X TV, the following identity holds,

Ngl|? =97y = WIXTXW = dQ.

B.6. Replica Trick

In the following, we detail the mathematical arguments leading to the replica trick expression (Edwards & Anderson, 1975).

For some r — 0, we can write for any scalar x:

z" =exp(rlnz) = lir%l +rlnz
r—

= limrlnz=limz" -1

r—0 r—0
oot —1
= Inz = lim
r—0 r

S E[lnz] = lim

r—0 r

B.7. Computation of the free-energy

E[z"] —

(83)

1
, [E : averaging

The self-averaged free energy (per unit weight) of our student network, is given by (Engel & Van den Broeck, 2001),

65 = 2 2

(84)

Here, 8 = 1/T is the inverse temperature parameter corresponding to our statistical ensemble, d the (teacher) student
network width, and Z the partition function of the system defined as (n: number of training examples).

Leveraging the replica trick, we next obtain,

v d
(z-w=1111 /d,u(Wa)dygd(y*)l‘e—ﬁNgT(ya,y*)

a=1p=1

(el e

r d

"))

(85)

BAGE do At
dyadgs dy™'dg™ _pNer(yaw) givt ot vl

21

:HE/@Wﬂ

< (e -

2

i P74 v vl AR IT) i PR ¥ 7al ABT)
— W — —gh W, x’)>>
\/E \/g z,W

where in the last line above, we have expressed the inserted ¢ functions using their integral representations. To make further

progress, we introduce the auxiliary variables,

> WiA;W* =dR,,

ija

> Wi, W = dQas

ij{(a,b)

(86)

87)
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via the respective § functions, to arrive at,

Ve = 1 /d (W) dyadyf; Ay G e o) i ik

2
w,a,b

/Panb/PdRa ZW AZJW*J PR ) Z W;F”Wg - PQab (88)

.5, ij{a,b)

x<<exp(_%oz - Z Q= 2 i _ZW)Q)»W

w.a Iz

Repeating the procedure of expressing the above ¢ functions using their integral representations, we then get (« = n/d),

n o dQO dQOa ananb dRaRa 1P ab Aab
(z >>$,m*,w—/gm e e (g ZQOQOQHP;Q 0

+ ZPZ RaRa> /H (11/1/;/;7;: exp ( - % Z QOaWéFijWg

©,7,a
-1 Z QabW;FijWg *iZRaAijWg)X (89)
i,7,a<b i,j,a
dytdgt dy* " 1
/H Ya 9Yaq y e BNET (Ya,y )exp<— 52@*#)2 +ZZZQQLZQ§
M H,a
—QZO—ﬁM ‘"*Zy (™ — R*R") —i >y )
a,p w,{a,b) w,a

If we now, perform a singular value decomposition of the covariance matrix I" as, I' = UlsuU = VTV, where S: matrix of
singular values of I", and we have expressed, V = st/ 2U, then one can proceed to write,

n _ 1 dQo dQoq dQupQupy AR, R, iP .
(Z")aw = det V] /H exp (TZQOQOa

Vor 4m 2w/d  27m/d
\/— exp < ZE: Q()a (WOZ

+1PZQGanb+’LPZRaRa /H

a<b
dy”dy“ Y™  sNEr(yaw®)
—i QuWWi —i) R, WJ / BNET(yary (90)
zaz<b ;1 H \/ﬂ
1
exp( 22(/‘1/” +Zzyaya_72( R2 ya _Zzy*ﬂ
I
1
— 5 Z g(/»;yll)t (Qab _ RaRb))
N)<a7b>

having expressed, W, = VIW,, and identifying A = S'/2U from our definitions. Now, since in the above, the W integrals
factorize in 4, and similarly the y#, ¢ and dy** factorize in x, one can proceed to write:

n _ 1 dQodQoa dQupQap dR4 R, i .
B e = det | V| /H Vodr  2njd  2mjd O (PBZQOQOG

ZQaanb+ZZRaRa+GS(QOa7Qab Ra)+OtGE(Qab Ra):|)

a<b

oD
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where,

(QOa»Qab Ra _hl/H \/—exp(—*ZQOanWZ—ZZQabW Wb_ZZR W)

a<b
Gr(Q™, R") =In /H dyadya j% e PNET(Way") oxp ( 24 Zyaya 92)
1 Z (1-R2) (3.)* — 5 Z Gais (Q = RUR”) — iy Y juR")
(a b) @

Now, in the limit d — oo, Eq. 91 can be approximated using the saddle-point approach (Bender & Orszag, 2013),

(Z")ew XI5 5 b Gab Ra, fra €XD ( [ Z QoQoa +1 Y Q™Q™
a<b 93)
+i >0 RURY + Gs(Qoa, Q7 BY) + aGR(Q, RY)) )

where, extr corresponds to extremization of ((Z™)), w over the respective order parameters. Performing this extremization
over Qoq, @ and R®, then generates an expression of the form,

1Q-R*> 1 o
QQon 71H(Q0—Q)_71n[1+6(Q0—Q>]

2
a 1-2R+Q
2 1+ B(Qo— Q)
where we have invoked replica symmetry in the form, Q%* = @) and R® = R, and that &7 = (y* — y)?/2. Plugging this
back into Eq. 84, then finally yields,

((Z™))p,w = extrg, o,r €Xp {nN(
94

1Q — R? 1 a
pf= _eXterQ:R{ 500 —q "M@ @) -5 n{l+5(Q - Q)
95)
~af 1-2R+Q
2 1+ 8(Q—Q)
The remaining pair of order parameters generate the following set of transcendental equations on extremization (Bos, 1998):
r=2
a
o 2—a
T a2-a 1= a & (96)
Qo=Q+

where, ¢ = max[1, a] for T — 0.

Now, the above determined values of R, () and Q¢ can be perceived as the maximally likely values of R, () and Q¢ of our
teacher-student setup, for an inverse temperature 3 parameterizing the system.



