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Abstract
In this work we introduce Constrained Offline
Policy Optimization (COPO), an offline policy
optimization algorithm for learning in MDPs with
cost constraints. COPO is built upon a novel of-
fline cost-projection method, which we formally
derive and analyze. Our method improves upon
the state-of-the-art in offline constrained policy
optimization by explicitly accounting for distribu-
tional shift and by offering non-asymptotic con-
fidence bounds on the cost of a policy. These
formal properties are superior to those of existing
techniques, which only guarantee convergence to
a point estimate. We formally analyze our method
and empirically demonstrate that it achieves state-
of-the-art performance on discrete and continu-
ous control problems, while offering the afore-
mentioned improved, stronger, and more robust
theoretical guarantees.

1. Introduction
This work addresses the problem of identifying safe poli-
cies in reinforcement learning based on existing static data
sets of previously-collected experiences. In particular, we
tackle the problem of providing robust guarantees of the
performance of policies optimized under the Constrained
Markov Decision Process (CMDP) (Altman, 1999) frame-
work, given a finite amount of offline data. We improve upon
the existing literature by designing the first algorithm that
offers non-asymptotic confidence bounds on the true cost of
a policy and that achieves state-of-the-art performance on a
variety of control problems. Our work combines ideas from
offline reinforcement learning (RL) and from constrained
Markov Decision Processes. Offline (or batch) RL (Levine
et al., 2020; Sascha Lange, 2012) is concerned with estimat-
ing the value of a policy, or directly learning a policy, from
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a static data set. This is relevant whenever one needs to
evaluate novel candidate policies without directly deploying
them, which might be costly or risky. Furthermore, many
real-world applications of RL require the eventual safe op-
eration of an agent. Safety is often modeled in the CMDP
framework, where constraint functions define behaviors an
agent should avoid.

Techniques that operate at the intersection of these areas,
i.e., that identify cost-safe policies given offline data, have
been studied. The Batch Policy Learning under Constraints
(BPLC) (Le et al., 2019) algorithm, for example, is cur-
rently considered the state-of-the-art in this field. It employs
ensemble policies and Fitted-Q methods to learn offline
constrained policies that are empirically shown to satisfy
a permissible cost budget once deployed. BPLC, however,
is limited in two ways: (i) it only provides high probabil-
ity guarantees that a point estimate of the policy cost will
converge to a point below a pre-specified budget; impor-
tantly, however, (ii) this estimate is based on a (possibly
small) single set of experiences, which may not be sufficient
to fully characterize the stochasticity of the MDP and the
true distribution underlying the data generating policy. As
a result, the safety guarantees provided by BPLC are not
necessarily robust to variability inherent to finite data.

In this work, we improve upon the state-of-the-art by devel-
oping a new constrained offline policy optimization (COPO)
algorithm capable of producing high probability confidence
bounds on the true cost value of the policy. These confi-
dence bounds provide a more robust way of estimating the
true cost of a policy in cases where the finite amount of
training data may not be sufficient to properly characterize
the process from which samples were generated. This type
of robust guarantee on the cost of a policy is paramount
in real-world scenarios where breaking a cost budget may
carry extreme consequences, such as in medical applications
of RL (Bastani, 2014; Saria, 2018).

In the next sections we (i) introduce the necessary math-
ematical background; (ii) formally derive our novel con-
strained projection technique; (iii) formally characterize
the high probability confidence intervals that can be guar-
anteed by it; (iv) provide a finite sample analysis of our
method; and (v) demonstrate empirically that it achieves
state-of-the-art performance on discrete and continuous con-



Constrained Offline Policy Optimization

trol problems, while for the first time offering high confi-
dence non-asymptotic confidence bounds on the true cost of
a policy, given offline data.

2. RL via Linear Programming
We start by reviewing important concepts related to policy
evaluation and optimization in RL via linear programming.
Our method, COPO, will be built upon these ideas. We
consider the problem of identifying an optimal policy for a
given Markov Decision Process (MDP). An MDP is defined
as the tuple (S,A, P : S × A → S, R : S × A → R, γ ∈
(0, 1], µ : S → [0, 1]) representing the state space, action
space, transition function, reward function, discount factor,
and initial state distribution, respectively. In offline RL, we
assume that we have been provided with a static data set
(collected via an arbitrary set of policies) with which we
aim to learn an optimal policy. The data set of N transi-
tion tuples, D = {(si, ai, ri, si+1)}Ni=0, is assumed to be
generated by the interaction of some unknown number of
unknown policies with an MDP. In this work we examine
the undiscounted cost setting. Throughout the rest of the
paper, then, γ = 1 is assumed unless stated otherwise.

In general, identifying an optimal policy often involves iter-
ative learning procedures that require estimating the value
of a policy. When operating in an undiscounted, infinite-
horizon setting, the value of a policy π, ρ(π), is defined as
the average per-step reward:

ρ(π) := lim
tstop→∞

E

[
1

tstop

tstop∑
t=0

R(st, at)
∣∣

s0 ∼ µ, and at ∼ π(st), st+1 ∼ P (st, at) ∀t

]
When estimating the above quantity using samples collected
from a policy different than π, the value estimation problem
is called the off-policy evaluation (OPE) problem. The
OPE problem can, alternatively, be modeled using a linear
programming (LP) representation. For the undiscounted
case, the primal form of the OPE problem, often referred
to as the Q-LP, and its associated dual, d-LP, are presented
below in the upper and lower equations, respectively:

min
λ∈R,

Q:S×A→R

λ

subject to: Q(s, a) ≥ R(s, a) + PπQ(s, a)− λ

max
d:S×A→R+

E(s,a)∼d [R(s, a)]

subject to: d(s, a) = Pπ
∗ d(s, a)∑

s∈S,a∈A
d(s, a) = 1

where λ is a normalizing variable, d(s, a) is the nor-
malized state-action visitation density, Pπ is the tran-
sition operator under policy π, and Pπ

∗ d(s, a) :=
π(a|s)

∑
s̃,ã P (s|s̃, ã)d(s̃, ã) is the adjoint transition op-

erator. The solution to the Q-LP is Qπ, the action-value
function for policy π. Analogously, the solution to the d-LP
is dπ, the normalized state-action visitation density under
policy π. The linear programs above exhibit strong duality
and thus share the same objective values at their optimums,
which can be shown to be equal to ρ(π), as previously de-
fined.

Note that in the constrained RL setting the environment is
represented using a CMDP, which augments the traditional
MDP formulation with a cost function C : S × A → R
and a cost budget β ∈ R. Accordingly, to characterize the
average per-step cost one needs only to replace the reward
function R with the cost function C in the linear programs
previously defined.

3. Constrained Offline Policy Optimization
Our method, COPO, is applicable to any constrained RL
problems in the offline setting. Before introducing the tech-
nical contributions underlying our technique, we describe
it at a high level. COPO starts by finding a reward-optimal
policy and subsequently projecting it onto the feasible set
of policies that satisfy the cost constraints. This latter step
is performed by a novel offline projection step that we in-
troduce here. Our new offline projection technique takes an
arbitrary policy as input, as well as an offline data set, and
identifies the nearest policy (with respect to a metric sup-
plied by a designer) that satisfies all cost budget constraints.
Our projection method is derived by first constructing a
policy objective comprised of a distance loss and a cost off-
policy evaluation (OPE) component, and then transforming
the objective via Fenchel duality (Boyd & Vandenberghe,
2004), thereby producing the final composed optimization
problem.

The novelty of our method may be split into three separate
contributions. The first contribution is a novel constrained
policy projection technique in which a state-action visita-
tion density is provided as input, and which returns a cost-
feasible policy with visitation nearest to the one provided.1

The second contribution is the capability of producing high-
confidence bounds on the cost-value of the returned policy.
The last contribution is a complete algorithm, COPO, which
(given a batch of offline data) identifies a constraint-feasible
policy that is optimized w.r.t. a given reward function.

1Distances are with respect to a metric or pseudo-metric se-
lected by a designer.
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3.1. Constrained Projection

In this section, we focus on the first challenge involved in
identifying optimal policies that satisfy cost constraints. In
particular, we focus on the problem of finding a constraint-
feasible policy whose visitation density is at minimal dis-
tance from a reference visitation density. Suppose we are
provided with reference state-action visitation density dR.
Our objective, then, is:

min
π

αD(dπ, dR)

subject to: ρC(π) ≤ β

where ρC(π) is the average per-step cost of policy π (de-
fined similarly to the average per-step reward, as introduced
in Section 2), α > 0 is a scaling parameter, dπ is the normal-
ized state-action visitation density under policy π, and D is
a metric or pseudo-metric chosen by a designer. Examples
of D include the family of f -divergences or the Wasserstein
metric. To solve the above problem, we begin by writing
the Lagrangian and expanding the OPE problem using the
d-LP, respectively:

min
π

max
λ≥0

αD(dπ, dR) + λρC(π)− λβ

min
π

max
λ≥0

αD(dπ, dR)

+ min
d

∑
(s,a)

d(s, a)(λC(s, a))− λβ

subject to: d(s, a) = Pπ
∗ d(s, a)∑

d(s, a) = 1

We note, here, that the solution to the OPE problem above,
d∗, is equal to the visitation density dπ of the policy π. We
proceed by moving the distance penalty component of the
objective, D, inside the OPE objective and then making a
change of variables. Note that this does not affect the outer
optimization problems nor their solutions. After performing
such a change of variables (from dπ to d) and moving the
sum-to-one equality constraint into the objective, we obtain:

min
π

max
λ≥0,ν

min
d

αD(d, dR)+ (1)∑
(s,a)

d(s, a)(λC(s, a) + ν)− (λβ + ν)

(2)

subject to: d(s, a) = Pπ
∗ d(s, a)

where ν is the Lagrange multiplier for the sum-to-one con-
straint. The above optimization model provides us with the
general form of the constraint projection problem. Once a
particular distance function D is provided, we can transform

the inner optimization problem by setting:

f(d) = αD(d, dR)+ (3)∑
(s,a)

d(s, a)(λC(s, a) + ν)− (λβ + ν) and (4)

g(Ad) = δ{0}(Ad), A = I − Pπ
∗

where δ0 is is the zero indicator function. Finally, we use
the following Fenchel-Rockafeller duality identity (Rock-
afellar, 1970) from Nachum and Dai (2020). The primal
optimization problem

min
x∈X

f(x) + g(Ax)

(for semi-continuous f, g : X → R and linear operator A)
yields the following dual problem:

max
y∈X∗

−f∗(A∗y)− g∗(y),

where A∗ is the adjoint of A. Using this identity to trans-
form f, g we obtain a final unconstrained saddle point prob-
lem. Below, we provide results associated with the inner
optimization transformation for commonly-used distance
functions over distributions such as the f -divergence and
Wasserstein distance. The distance functions below should
be substituted into Equation (4); the transformed objectives
are written below the distance functions. We note that, for
the policy optimization saddle-point objective, each of the
examples should be wrapped in a minπ operation.

f -divergence distance:

D(d, dR) = E(s,a)∼dR

[
f

(
d

dR

)]
f -divergence objective:

max
λ≥0,ν,

Qc:A×A→Z

− α E
(s,a)∼dR

[ f∗((P
πQc(s, a)−Qc(s, a)

− λC(s, a)− ν)/α) ]− λβ − ν

Wasserstein distance:

D(d, dR) = sup
∥g∥L≤1

E
(s,a)∼d

[g(s, a)]− E
(s,a)∼dR

[g(s, a)]

Wasserstein objective:

max
λ≥0,ν,

Qc:A×A→Z,∥g∥L≤1

− E
(s,a)∼dR

[g(s, a)]−λβ − ν

g(s, a) = PπQc(s, a)−Qc(s, a)− λC(s, a)− ν

Wasserstein Entropy distance:

D(d, dR) = sup
∥g∥L≤1

E
(s,a)∼d

[g(s, a) + log(d(s, a))]

− E
(s,a)∼dR

[g(s, a)]
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Wasserstein Entropy objective:

max
λ≥0,ν,

Qc:A×A→Z,∥g∥L≤1

−
∑
(s,a)

exp (x(s, a)− 1)

− E
(s,a)∼dR

[g(s, a)]−λβ − ν

x(s, a) := PπQc(s, a)−Qc(s, a)

− λC(s, a)− ν + g(s, a)

In the above Qc is the dual variable to d, g(s, a) originates
from the dual formulation of the Wasserstein distance, and
∥g∥L ≤ 1 is a 1-Lipschitz constraint. In this subsection,
we have shown how to express and solve the problem of
identifying a constraint-feasible policy whose visitation den-
sity is at minimal distance w.r.t. a reference density. This
results in a novel constrained projection step that we will
exploit to construct our constrained offline policy optimiza-
tion algorithm. In the next sections, we characterize the
confidence intervals on the cost-value of the learned policy
and present a finite-sample analysis. We then introduce our
complete algorithm and evaluate its empirical performance
on discrete and continuous control problems

3.2. Confidence Intervals

In real-world applications it is often important to have high
confidence bounds on the performance of an algorithm. In
this section we show that, because of our use of DICE
estimation, it becomes possible to derive high confidence
intervals on the true cost of the policy—bounds which hold
even under finite amount of data. We derive these bounds by
providing a proof that is structurally similar to the one intro-
duced by Dai et al. (2020), but adapted to our cost projection
problem. To achieve this goal, we update the derivation of
the COPO projection step (Equation (2)) by substituting the
OPE objective with the upper bound of a confidence set.
We show that the solution to the resulting problem is an
(1− α) upper confidence bound on the sum of the average
cost incurred by the projected policy and its distance from
the reward optimal policy. We now present the derivation
of confidence intervals when operating under one possi-
ble distance metric—the Wasserstein distance. We begin
by making a change of variables from the on-policy visi-
tation density, d(s, a), to the distribution correction ratios,
τ(s, a) = d(s,a)

dR(s,a)
. This allows us to rewrite the Lagrangian

with expanded OPE constraints:

min
π

max
λ≥0

max
∥g∥L≤1

min
τ≥0

αEdR [τg]− αEdR [g]

+ EdR [τ(λC(s, a))]− λβ

subject to: EdR [τ(s, a)− Pπ
∗ τ(s, a)] = 0

EdR [τ(s, a)] = 1.

Next we use the function space embedding technique from
Dai et al. (2020) to obtain generalized estimating equations

(Lam & Zhou, 2017) and further simplify the above model
as follows:

min
π

max
λ≥0

max
∥g∥L≤1

min
τ≥0

αEdR [τg − g + λτC]− λβ

subject to: EdR [ϕ(s′, a′)(τ(s′, a′)− τ(s, a))] = 0

EdR [τ(s, a)] = 1.

where ϕ : S × A → Ω ⊂ Rp, with p potentially infinite
but less than |S| × |A|, is a feature map. Applying the
generalized empirical likelihood method (Duchi et al., 2021)
to the above quantity, we obtain the following confidence
set:

Cf
n,ξ =

{
ρ̃(π) = min

τ
αEw [τg − g + λτC − λβ]

∣∣∣∣
w ∈ Kf ,Ew [∆(x; τ, ϕ)] = 0,Ew [τ − 1] = 0

}
where Kf =

{
w ∈ Pn−1(p̂n), Df (w||p̂n) ≤

ξ

n

}
,

and where ∆(x; τ, ϕ) = ϕ(s′, a′)(τ(s′, a′) − τ(s, a)), p̂n
is the empirical data distribution, n is the number of data
samples, ξ is the divergence tolerance, w are the uncertainty
weights, and Pn−1 is the simplex on the support of the
empirical data distribution. The upper confidence bound on
the sum of the cost of the policy and its distance from the
reference distribution can then be obtained by:

min
τ≥0

min
µ∈Rp,ν

max
∥g∥L≤1,w∈Kf

Ew [l(x; τ, µ, ν)] (5)

where l(x; τ, µ, ν) = τg−g+λτC−λβ+µT∆(x; τ, ϕ)+
ν − ντ . Thus l(x; τ, µ, ν) is the Lagrangian constructed
from the confidence set constraints and the Lagrange mul-
tiplier µ ∈ Rp takes the feature representation of the d-LP
constraints back to R. Setting ξ to be χ2,1−α

(1) in the con-
struction of the set Kf renders the above upper bound an
asymptotic (1−α) confidence interval for the COPO projec-
tion objective. Here, χ2,1−α

(1) is the (1− α) quantile for the
Chi-square distribution with 1 degree of freedom. Lastly, we
note that a lower bound may be derived in a similar manner
following the procedure introduced by Dai et al. (2020).

3.2.1. FINITE SAMPLE ANALYSIS

We now provide high probability finite-sample, non-
asymptotic guarantees that the true policy cost identified by
COPO will be lower than the computed upper bound. Pre-
vious offline constrained methods typically only guarantee
that a point estimate of the policy cost will converge to a
point below a pre-specified budget. Importantly, however,
these estimates are based on a single (potentially small) set
of experiences, which may not be sufficient to fully char-
acterize the stochasticity of the problem. Here, we provide
analysis that allows us to formally characterize how COPO
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performs under the more realistic finite-data setting.We first
state some of the necessary assumptions (most of which are
also assumed in Dai et al. (2020)) and show the bounded-
ness and Lipschitz continuity of the loss functional. We
then state a few Lemmas and present a corresponding proof
of the finite sample analysis in Dai et al. (2020). Here, we
assume the more general case of discounted settings.

Assumption 3.1. (Compactness of S and A) The state and
action spaces, S,A are compact.

Assumption 3.2. (Stationary ratio regularity (Dai et al.,
2020)) The target distribution correction ratio τ∗ is bounded
(i.e. ∥τ∗∥∞ ≤ Cτ < ∞) and τ∗ ∈ Fτ , where
Fτ is a convex, compact and bounded Reproducing Ker-
nel Hilbert Space (RKHS) with bounded kernel function
∥k((·, ·, (s, a))∥Fτ ≤ K.

Assumption 3.3. (Embedding feature regularity (Dai et al.,
2020)) There exist finite constants Cµ, Cϕ such that ∥µ∥2 ≤
Cµ, ∥ϕ∥2 ≤ Cϕ. Further, ϕ(s, a) is Lϕ Lipschitz continu-
ous.

The previous two assumptions yield the following impli-
cations: (i) ∥µTϕ∥∞ ≤ ∥µ∥2Cµ; (ii) ∥ϕ∥2 ≤ CµCϕ; and
(iii) µTϕ(s, a) is Lipschitz continuous. Additionally, let us
define Fµ = {µ | ∥µ∥2 ≤ Cµ} as the function class of µ.

Lemma 3.4. (Lipschitz continuity) Under Assump-
tions 3.1, 3.2, and 3.3, l is bounded (i.e. ∥l(x; τ, µ, g)∥∞ ≤
M ) and Lipschitz in (τ, µ, g) with constant Cl.

Proof. The compactness of the state and action spaces,
along with the boundedness of τ , imply the bounded-
ness of the Wasserstein component of the loss functional.
The boundedness of the cost value component follows
from Lemma 9 in Dai et al. (2020). We define M :=
(Cτ + 1)(1 − γ)CβCϕ + CτCmax + Cg, where Cmax is
the maximal cost from the data set and Cg is the Wasser-
stein bound. Lipschitz continuity follows from the proof of
Lipschitz continuity of the loss functional from Dai et al.
(2020) and the fact that the product of two Lipschitz func-
tions (τ and g) is locally Lipschitz and the sum of Lipschitz
functions is Lipschitz (τg, g, and the loss functional from
Dai et al. (2020)).

Under these assumptions, we can now derive non-
asymptotic high-probability statements similar to the ones
in Dai et al. (2020). Since the relevant arguments follow
the same structure and reasoning to those in the Appendix
E.2 of Dai et al. (2020), here we provide only the necessary
adjustments and final statement. In particular, the proba-
bilistic statements in our derivation of the finite sample con-
fidence bounds will be made with probability at least 1 −
6N∞(Fτ , ϵ, 2n)N∞(Fµ, ϵ, 2n)N∞(Fg, ϵ, 2n)e

− ξ
18 . This

is due to the addition of the function g in the loss func-
tional and the fact that we only care about the one sided cost

Algorithm 1 COPO Algorithm Sketch
Input Dataset D = {si, ai, ri, s′i}ni=0

Offline policy optimization algorithm, A
Offline DICE algorithm, P

1: if D is collected by a reward optimal policy then
2: πC ← COPO(D)
3: else
4: Approximate reward optimal policy πR by running

A(D)
5: Approximate reward optimal policy visitation density

dπR by running P(D, πR)
6: πC ← COPO(dπR )
7: end if
8: return πC

(upper) bound. Here, N∞(F , ϵ, 2n) is the l-∞ covering
number of the functional class F with ϵ-net and 2n samples.
The final finite sample statement is thus:

P (ρπ ≤ un + κ) ≥

1− 6 exp

(
c1 + 2(dFτ + dFµ + dFg − 1) log n− ξ

18

)
where dF = VC(F) denotes the VC-dimension of the func-
tion class F . In addition, we have c1 = 3c + log dFτ

+
log dFµ + log dFg + (dFτ + dFµ + dFg − 1) and κ =

11Mξ
6n + 2ClM

n

(
1 + 2

√
ξ
9n

)
. Lastly, un is the solution to

the optimization problem in Equation 5.

3.3. Algorithm

In Algorithm 1, we provide a sketch of the complete COPO
algorithm, based on the derivations presented in the previous
sections. This sketch reflects the main steps required so that
one may use the COPO algorithm in practice. As shown
in Algorithm 1, COPO can be deployed in conjunction
with any reward maximizing offline RL algorithms, denoted
there by A.

In our experiments (Section 4), we use the AlgaeDICE al-
gorithm (Nachum et al., 2019b) for algorithm A, but other
algorithms such as OptiDICE (Lee et al., 2021), CQL (Ku-
mar et al., 2020), or Fisher-BRC (Kostrikov et al., 2021) can
be used, alternatively. If the policy optimization algorithm
A does not produce the visitation density of the reward op-
timal policy, then this quantity can be estimated using a
distribution correction estimation (DICE) algorithm such as
DualDICE (Nachum et al., 2019a), denoted in Algorithm 1
as P . We note that deploying such an algorithm is not nec-
essary if the data distribution used by COPO corresponds to
the reward-optimal visitation density. Lastly, the COPO(·)
function in Algorithm 1 represents running the optimization
routine associated with the projection step in Equation (2).
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Figure 1. (Left) The Walk-Around-Grid Environment. States with costs are marked with a ”C”. (Right) The cost-constrained BipedalWalker
domain.

4. Experiments
We now empirically demonstrate that COPO achieves state-
of-the-art performance on discrete and continuous control
problems, while offering stronger and more robust theoreti-
cal guarantees2.

4.1. Walk-Around-Grid

To test the efficacy of our novel COPO algorithm, we de-
signed a simple simulated robotic navigation problem. This
domain, titled Walk-Around-Grid, is an infinite horizon,
5x5 grid world in which the agent, starting in the middle
state, receives a maximal reward of 1.0 at each step for
walking counterclockwise around the outermost edges of
the grid. The agent receives a cost of 1.0 upon transitioning
into a state in either the rightmost or leftmost columns. A
reward of 0.5 is given for walking counterclockwise along
states inside the outermost edges. Intuitively, a reward-
optimal policy for this domain would cause the agent to
to walk counter-clockwise around the outside edges of the
grid, while a reward-optimal policy that satisfies all cost
constraints would encode a behavior corresponding to the
agent walking counter-clockwise around the rectangle but
inside the columns with constraints. A depiction of the
Walk-Around-Grid is presented in the top of Figure 1.

We now compare the performance of our developed COPO
algorithm against BPLC—a state-of-the-art offline con-
strained policy optimization method (Le et al., 2019). The
offline data set on which all algorithms are trained consists
of 1000 trajectories (each cutoff after 250 steps) collected
from a uniform random policy.

Table 1 shows the performance of COPO and BPLC when
trained on uniformly sampled random data and for various

2All experiments were executed on a server with a single GPU
and 24 CPUs using different seeds for each independent run.

settings of the cost budget, β. We selected a range of budget
values for which feasible policies are likely to exist, so that
both algorithms have a space on which to search for solu-
tions that maximize return and that do not break constraints.
In our experiments, for each budget setting, both COPO and
BPLC were run for 100 trials. The first column of the table
indicates which methods satisfy the desired cost constraint
for different budgets. Notice that both COPO and BPLC are
capable of ensuring that the cost of the returned policy is
under the desired threshold. The second column of the table
presents the cost spread of each algorithm; defined as twice
the standard error of the per-step cost. It reflects how consis-
tently an algorithm achieves a particular desired cost level,
thus a lower value is preferred. The range of cost values
that are achieved by COPO are tighter than those achieved
by BPLC, indicating that COPO’s policies are more robust
with respect to the particular finite data set given to the
algorithm. This is particularly important in real-world appli-
cations where it is paramount that algorithms ensure safety
with high probability even when trained using (potentially
small) finite training sets. Finally, the third column of the
table indicates the mean per-step reward achieved by each
algorithm. COPO consistently outperforms BPLC across
different budget values.

4.2. BipedalWalker Environment

To show the applicability of our COPO algorithm to more
complex domains, we evaluate its performance in a modi-
fied version the BipedalWalker domain, adapted from Ope-
nAI (Brockman et al., 2016). A depiction of this environ-
ment is shown in the bottom of Figure 1. The modified
BipedalWalker environment models a robotic control task
where the goal is to control a two-legged robot so that it
walks as far as possible, but under costs that penalize it
for exceeding a particular maximum velocity. This is a
continuous control problem in which the 14-dimensional
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Cost constraint satisfied
Cost spread

(lower is better)

Mean per-step reward

(higher is better)

Budget COPO BPLC COPO BPLC COPO BPLC

0.4 Yes Yes 7.396e−3 3.714e−2 0.761 0.742

0.5 Yes Yes 8.253e−3 4.518e−2 0.840 0.779

0.6 Yes Yes 6.990e−2 4.001e−2 0.901 0.812

0.7 Yes Yes 9.921e−4 3.276e−2 0.992 0.866

0.8 Yes Yes 9.856e−4 3.230e−2 0.992 0.901

Average — — 1 .750e−2 3 .750e−2 0 .897 0 .821

Table 1. Performance of different offline policy optimization algorithms in the Walk-Around-Grid environment for various cost budgets.
Results are computed over 100 trials. The cost spread is defined as twice the standard error of the per-step cost and reflects how
consistently an algorithm achieves a particular desired cost level (lower is better).

state vector modeling the current pose and velocity of the
robot. The 4-dimensional actions of the robot control motor
torques. The reward signal is proportional to the distance the
agent has traveled from the initial state. To test the efficacy
of the COPO algorithm, we extend the original Bipedal-
Walker environment with a binary cost function reflecting
situations where the walker’s linear velocity exceeds a max-
imum allowed velocity threshold. A policy attaining zero
costs would, therefore, keep the walker below a given speed
limit while allowing it to move as far as possible.

To test the projection step of COPO, we first trained
an online AlgaeDICE agent to identify a purely reward-
optimal successful policy3. We constructed 10 statistically-
independent data sets by sampling from such a reward-
optimal policy and recording both the trajectories and the
corresponding incurred costs. We subsequently ran our
novel projection algorithm on each data set and evaluated
the projected policy (in terms of per-step cost and per-step
reward) over the course of the algorithm’s execution. The
results for this experiment are shown in Figure 2. Here, each
curve depicts the average performance of a given algorithm
(COPO or BPLC4) over 20 environment episodes. Each
point in these curves was computed over 10 trials, and error
curves represent one standard error.

As shown in Figure 2, both COPO and BPLC approach a
similar per-step reward after 7,000 timesteps. Importantly,
however, COPO is always capable of identifying lower-cost
policies than BPLC at the end of the training procedure.
This is consistent with the observation that, given a fixed-

3Success is defined as achieving average episode return (sum
of rewards) above 300.

4The original formulation of BPLC was constructed upon the
Fitted-Q Iteration algorithm and could only be applied to discrete-
action problems. To address this, we extended BPLC by substitut-
ing Fitted Q-Iteration with the AlgaeDICE algorithm. This also
allows BPLC to reap the benefits of DICE estimation.

sized data set—and a sufficient number of iterations; i.e.,
processing time—COPO is guaranteed to produce more
robust high probability confidence bounds on the true cost
of a policy, and these bounds hold even under finite data.
BPLC, by contrast, is not guaranteed to return policies that
are safe in the non-asymptotic case, and in fact identifies
policies whose cost is 10.4% higher than COPO’s. The
above results highlight COPO’s advancement of the state-
of-the-art in critical applications where processing time is
cheap but where the deployment of unsafe policies may be
catastrophic.

The experiments discussed in this section demonstrate the
efficacy of our method compared to competing state-of-the-
art algorithms on a representative set of problems. More
generally, we have observed that our method works partic-
ularly well in domains where the Wasserstein distance is a
natural metric according to which states can be compared
based on features that may affect the MDP’s cost function.

5. Connections to Related Work
Many techniques exist that tackle the offline RL problem
and the constrained RL setting. The Distribution Correc-
tion Estimation (DICE) family of RL algorithms (Lee et al.,
2021; Kostrikov et al., 2020; Nachum et al., 2019a;b; Zhang
et al., 2020a;b; Yang et al., 2020a; Dai et al., 2020) is a
gamut of offline policy optimization and evaluation algo-
rithms that rely upon explicitly estimating the distributional
shift between the target policy and the offline data distri-
bution. Our algorithm may be viewed as an application of
policy optimization DICE methods to problems formulated
as CMDPs (Altman, 1999).

Online policy optimization in the constrained setting has
been studied most notably in the Constrained Policy Op-
timization (CPO) framework (Achiam et al., 2017). This
is a trust region-based policy optimization algorithm that
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Figure 2. Performance of COPO and BPLC in the cost-constrained BipedalWalker environment with a budget of 0.35. Axes are the same
scale on both plots. Timesteps refers to the number of steps run for each optimization routine.

aims to satisfy constraints on accrued costs at each policy
iteration (Schulman et al., 2015). Additionally, projection-
based algorithms (Yang, Rosca, Narasimhan, and Ramadge,
2020b; Zhang, Vuong, and Ross, 2020c) for policy optimiza-
tion in CMDPs attempt to remedy approximation errors in
the CPO algorithm by employing a policy-space projection
step. Our work can be seen as an offline RL counterpart
to these methods which employs DICE estimation and con-
vex duality (Boyd & Vandenberghe, 2004). Batch Policy
Learning under Constraints (BPLC) (Le et al., 2019) is the
closest prior work to ours, and the baseline algorithm with
which we compare empirical performance. BPLC tackles
the problem of offline RL with constraints via an adversarial
game-theoretic approach. Our work differs from BPLC in
that our COPO algorithm explicitly accounts for distribu-
tional shift, while BPLC does not. This implies that the
safety guarantees provided by BPLC are not necessarily
robust to variability inherent to finite training sets. COPO,
by contrast, produces high probability confidence bounds
that allow for a more robust estimation of the true cost of a
policy given a finite amount of training data.

Offline RL algorithms such as Conservative Q-Learning
(CQL) do not consider scenarios with costs and constraints
(Kumar et al., 2020). They do, however, learn conservative
estimates of Q-functions based on measures of data uncer-
tainty. CQL and other related algorithms (Bharadhwaj et al.,
2021) may be viewed as offline RL algorithms with explicit
safety considerations and are loosely related to ours. Finally,
the objective of COPO’s projection step can be viewed as a
behavior regularized offline RL objective and is therefore re-
lated to behavior regularization techniques (Wu, Tucker, and
Nachum, 2019; Kostrikov, Tompson, Fergus, and Nachum,
2021).

6. Conclusion
We introduced a novel Constrained Offline Policy Opti-
mization algorithm (COPO) for efficiently learning cost-
constrained policies in a fully offline manner. COPO is
based on a novel constrained policy projection technique
for identifying cost-feasible policies. It improves upon the
state-of-the-art in offline constrained policy optimization by
explicitly accounting for distributional shift and by offering
non-asymptotic high confidence bounds on the true cost of
a policy. These formal properties are superior to those in
the existing literature, which only guarantee convergence
of a point estimate on a single sample of the data generat-
ing distribution. Our experiments demonstrate that COPO
improves upon the state-of-the-art by achieving lower-cost
policies and by producing policies with a tighter range of
cost values. This indicates that COPO’s policies are more
robust with respect to the particular finite data set given to
the algorithm, which is particularly important in real-world
applications where it is paramount that algorithms ensure
safety with high probability even when trained using poten-
tially small training sets. Future work will address some of
the theoretical limitations of COPO. We emphasize, first,
the importance of formally characterizing how different dis-
tance functions—used in the projection step—might affect
performance in different families of constrained MDPs. We
would also like to perform empirical analyses of COPO in
physical, non-simulated systems, in order to empirically
evaluate its performance when operating under severe limi-
tations on the amount of available training data.
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