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Abstract

If the trend of learned components eventually
outperforming their hand-crafted version contin-
ues, learned optimizers will eventually outper-
form hand-crafted optimizers like SGD or Adam.
Even if learned optimizers (L2Os) eventually out-
pace hand-crafted ones in practice however, they
are still not provably convergent and might fail out
of distribution. These are the questions addressed
here. Currently, learned optimizers frequently out-
perform generic hand-crafted optimizers (such as
gradient descent) at the beginning of learning but
they generally plateau after some time while the
generic algorithms continue to make progress and
often overtake the learned algorithm as Aesop’s
tortoise which overtakes the hare. L2Os also still
have a difficult time generalizing out of distribu-
tion. (Heaton et al., 2020) proposed Safeguarded
L2O (GL2O) which can take a learned optimizer
and safeguard it with a generic learning algorithm
so that by conditionally switching between the
two, the resulting algorithm is provably conver-
gent. We propose a new class of Safeguarded
L2O, called Loss-Guarded L2O (LGL2O), which
is both conceptually simpler and computationally
less expensive. The guarding mechanism decides
solely based on the expected future loss value of
both optimizers. Furthermore, we show theoreti-
cal proof of LGL2O’s convergence guarantee and
empirical results comparing to GL2O and other
baselines showing that it combines the best of
both L2O and SGD and that in practice converges
much better than GL2O.

*Equal contribution 1Good AI, Prague, Czechia.
Correspondence to: Isabeau Prémont-Schwarz
<premont-schwarz@goodai.com>, Jaroslav Vı́tků
<jaroslav.vitku@goodai.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Figure 1. Principle of the guarding mechanism for learned optimiz-
ers. A learned optimizer is used to change weights of an optimizee.
Guarded learned optimizers (GL2O and LGL2O) add a guard
which monitors situations where the optimizer does not perform
well and switches to an analytic method (such as SGD) in those
cases. This ensures asymptotic convergence of the resulting hybrid
optimizer.

1. Introduction
An unambiguous trend in machine learning is that different
parts of the pipeline are being automatized. Automatized
architecture search is now the state of the art for neural
networks (Tan & Le, 2021), learned dynamic learning rates
work better than learning rate schedules (Xu et al., 2019),
even reinforcement learning algorithms have been learned
(Co-Reyes et al., 2021; Alet* et al., 2020; Kirsch et al.,
2020). There has also been quite some work on learned
optimizers (L2O) (cf. section 2) though so far, due to com-
putational limits, they work only on small datasets and only
beat hand-crafted optimizers for the first thousand steps
or so (because that is the horizon they are trained on) and
do not generalize well. Some, like Richard Sutton(Sutton,
2019), argue that as compute becomes cheaper and more
accessible, ”learned things” will become much better than
”handcrafted things”. However, even if L2O can outperform
designed optimizers, they will still have two flaws: they will
not be provably convergent, and they might fail totally out
of distribution (different dataset, different type of objects
being optimized – what we call optimizees in this paper,
different learning horizons, etc.). A guard addresses those
shortcomings.
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Our main contribution is a guard which takes in as input
any blackbox L2O and a provably convergent optimizer and
blends them to get the best of both. We prove that our guard
keeps the convergence guarantee of the designed optimizer.
Then we show in practice that our guard has the desired
behaviour, that is, it uses the L2O when the L2O works best
(in distribution or in settings where the L2O generalizes
well) but correctly switches to the designed optimizer when
the L2O underperforms.

In our experiments, we use (Andrychowicz et al., 2016)’s
L2O that we train such that it beats other optimizers in the
first ∼1000 steps, but our contribution, the guard, is inde-
pendent of the L2O, it can take any L2O as input, and as
L2Os get better so will LGL2O. Thus the goal of the paper
is not to show that the combination is better than any other
existing optimizer, but rather to show that the guard makes
the right decisions and that it preserves the advantages of
both its input L2O and provably convergent designed opti-
mizer. We show this in our experiments by demonstrating
that LGL2O performs as well as L2O (or better) when L2O
outperforms SGD, and as well as SGD (or better) when SGD
outperforms L2O. All unguarded L2O approaches currently
work only for ∼1000 optimization steps in practice when
optimizing neural networks. In contrast we show successful
optimization up to millions of steps.

The main reasons we developed a new class of guards, while
an existing class of guards (Heaton et al., 2020) already exist
are:

• Our guard is conceptually simpler.
• Our guard requires fewer hyperparameters.
• Our guard requires fewer SGD calls, and those can be

done in parallel rather than sequentially.
• In practice our guard converges better for neural net-

works.

The first three points are detailed in section 3 while the last
point is detailed in section 4.

2. Related Work
Learning to Optimize (L2O), popularized by Andrychowicz
et al. (2016), focuses on learning optimization rules using
an LSTM network, where gradients, along with other infor-
mation, are provided on the input to the learned optimizer
and updates to the weights of a base network are provided as
outputs. Since then, many iterations of similar approaches
with various alterations have been proposed (Metz et al.,
2020; Lv et al., 2017; Chen et al., 2021), yet ultimately
with the same purpose, i.e. augmenting gradient descent
for some practical benefit, such as greater sample efficiency.
Historically, however, other works have proposed to use a
neural network to train another neural network (Prokhorov
et al., 2002; Hochreiter et al., 2001). For a recent overview

of this area, one can refer to Chen et al. (2021).

Recently, limitations of L2O approaches have increasingly
been analyzed (Metz et al., 2020; Wu et al., 2018; Metz et al.,
2021; Maheswaranathan et al., 2020), revealing a plethora
of limitations that hinder the use of L2O methods in prac-
tice. Most recently, Heaton et al. (2020) proposed a method
for safeguarding the behaviour of any learned optimizer by
combining it with stochastic gradient descent (SGD) to con-
fer the hybrid algorithm with convergence guarantees. Our
work provides a computationally and conceptually simpler
safeguarding mechanism to guarantee convergence.

Learning to optimize approaches belong, more broadly, to
the field of meta-learning and learning to learn in particular
(Hospedales et al., 2021). Approaches such as the Badger
framework (Rosa et al., 2019), VS-ML (Kirsch & Schmid-
huber, 2020) and BLUR (Sandler et al., 2021) focus on
generalizing learning algorithms and architectures and how
to discover and train them. The method proposed in this
work deals with challenges that must first be overcome to
build learning systems that could one day rival and more
importantly surpass existing hand engineered solutions, one
of the primary motivators for this work. The existing chal-
lenges encompass a wide variety of sub-problems. Amongst
others, these include a) the ability of the learned algorithm
to generalize outside of meta-training distribution and b) the
stable long-term (asymptotic) behaviour of the algorithm.
These two topics are the subject of this paper.

3. Loss Guarding
The principle of guarding is illustrated in Figure 1. In L2O,
the (neural network-based) learned optimizer receives one
gradient per parameter of the optimizee (in what follows we
call optimizee whatever gets optimized by the optimizer, in
our case it is typically a neural network) and independently
proposes a corresponding delta for each parameter that is
then applied. In case of guarding (GL2O and LGL2O), the
guard looks at parameters proposed by L2O and decides
whether to accept them or those suggested by traditional
convergence-guaranteed optimizer instead (the fallback up-
date). The guarding mechanism uses the guarding criteria
to choose whether to use updates proposed by L2O or the
updates proposed by the convergence-guaranteed optimizer
(eg. SGD). At every step if the L2O updates are chosen then
the L2O weight updates are applied to all the weights, and
if the convergence-guaranteed optimizer weight updates are
chosen, then those updates are applied to all the weights.

The difference between LGL2O and GL2O is the criterion to
decide whether to apply the L2O update or the convergence-
guaranteed optimizer update. In the case of GL2O, mo-
tivated by the convergence of Cauchy sequences to fixed
points in a complete space, the update proposed by L2O
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is tested by applying normal SGD to it. If the L2O update
makes the SGD step size generally smaller (smaller than a
Cauchy sequence which tracks the size of accepted steps),
then the L2O update is accepted, if not it is rejected and
an SGD update is used instead. In contrast, LGL2O, moti-
vated by the idea that convergence in the loss-space implies
convergence in the weight-space when the loss function
is continuous (and locally convex), simply compares the
loss of the L2O update versus the loss of a convergence-
guaranteed optimizer like SGD and simply implements the
update with the lowest loss. That is at optimization step
k, if yk is the point proposed by L2O and zk is the point
proposed by the convergence-guaranteed generic optimizer,
then the criterion to determine the update is

F(yk) < F(zk), (1)

where F is the loss function. If the criterion is passed, the
algorithm updates to yk otherwise zk.

This means that for every weight update of the optimizee,
GL2O needs to make one extra call of obtaining the gradi-
ents of the optimizee (on the proposal of L2O) and it must
be made sequentially, after making the initial one and run-
ning L2O. This significantly increases the time complexity
of GL2O compared to LGL2O. The logic of GL2O is also
thus more complicated.

Algorithm 1 Loss Guarded L2O with (deterministic) gradi-
ent descent

1: Given task loss function: F
2: Given L2O operator: LL2O

3: Given L2O weights {ζ} ◁ Take from Meta-Training
4: Given initial state x1 ∈ Rn ◁ Initialize iterate
5: for k = 1, 2, . . . do
6: yk ← LL2O(x

k; ζ) ◁ L2O Update
7: zk ← xk − λ∇F(xk) ◁ Fallback Update
8: if F(yk) < F(zk) then ◁ Safeguard Check
9: xk+1 ← yk ◁ L2O Update

10: else
11: xk+1 ← zk ◁ Fallback Optimizer Update
12: end if
13: end for

In algorithm 2, nt is number of sequential application of
L2O (and in parallel, on the same nt mini-batches, SGD)
before choosing whether to use L2O updates or the fallback
SGD updates using criterion 1. nc is the number of mini-
batches (drawn from the training data) used to approximate
the loss in criterion 1. In practice we want to choose nc ≃ nt

for algorithmic speed so that not too many loss function
evaluations are needed per optimization step. If we choose
nc = nt, then we need only two loss function evaluation per
optimization step while still being able to approximate the
total loss function in criterion 1 with an arbitrary number nc

Algorithm 2 Loss Guarded L2O with stochastic gradient
descent

1: Given mini-batch loss function: F
2: Given L2O operator: LL2O

3: Given L2O weights {ζk} ◁ Take from Meta-Training
4: Hyperparameters: nt, nc, L ∈ N3

5: Given initial state x1 ∈ Rn ◁ Initialize iterate
6: k ← 1
7: while k < L do
8: Sample nt train mini-batches Bt = [b1, . . . , bnt

]
9: Sample nc validation mini-batches Bv =

[v1, . . . , vnc
]

10: yk ← xk ◁ L2O Init.
11: zk ← xk ◁ SGD Init.
12: for i ∈ [0, . . . , nt − 1] do
13: yk+i+1 ← LL2O(y

k+i, bi+1; ζ) ◁ L2O Update
14: zk+i+1 ← zk+i − λk+i∇F(zk+i, bi+1) ◁

Fallback Update
15: end for
16: if 1

nc

∑nc

j=1 F(yk+nt , vj) <
1
nc

∑nc

j=1 F(zk+nt , vj)
then ◁ Safeguard Check

17: xk+nt ← yk+nt ◁ L2O Update
18: else
19: xk+nt ← zk+nt ◁ Fallback Optimizer Update
20: end if
21: k ← k + nt

22: end while

of mini-batches. In all our experiments, both nt and nc are
chosen to be 10. These are the only two hyperparameters
of the algorithm 2 (except for L, which is how long one
chooses to optimize for). This compare favourably with
GL2O which has the choice of 5 possible sequence types,
each choice then with typically 2 hyperparameters to tune.

Theorem 1. Let F be a continuous loss function
which is µ-strongly convexa and L-smooth and let
w∗ be it’s global minimum. Let wi∈N be a sequence
of points obtained from applying the Loss-Guarded
L2O algorithm with gradient descent or stochastic
gradient as the guarding algorithm. In the case of
stochastic gradient descent, we assume that in expec-
tation, the stochastic gradient ∇mbF(w) is equal to
the true gradient,

E(∇mbF(w)) = ∇F(w),

and that the variance of the stochastic gradient around
the true gradient is bounded. Then given a constant
learning rate 0 < λ < min( 2

L , 2µ) for gradient de-
scent or a decaying learning rate λi ∝ 1

i0+i for SGD,
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the sequence converges to the minimum, i.e.

lim
i→∞wi = w∗.

aWe remark that any convex function can be turned into
a strongly convex one simply by adding an L2 regulariza-
tion. In the non-convex case, we get convergence to a local
minimum instead of the global one.

Proof. This is simply a combination of Theorems 5 and 7
proven in Appendix.

Because the LGL2O criterion depends on comparing the
proposed points coming from the L2O and SGD on the
whole loss function, but in all our experiments the loss
function is the sum of the individual losses on many dataset
points which would take considerable compute to evaluate,
in practice we approximated the loss function in the criterion
with 10 mini-batches of data. There is a risk in making this
approximation: if the error on the loss from approximating
it with a limited number of mini-batches becomes similar
to the difference in the loss values of the SGD and L2O
update proposals, then there is a risk that the algorithm will
choose the incorrect update and convergence will not be
guaranteed. This is something which risks happening near
a local optimum, in which case one should increase the
number of mini-batches used in the evaluation of the loss
criterion to lower the approximation error.

4. Experiments
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Figure 2. Outer-loop convergence of the learned optimizer on the
MNIST dataset. The L2O method achieves reasonable perfor-
mance on the MNIST dataset. It generalizes to FashionMNIST &
Moons & Circles datasets, while the MLP seems too small to have
sufficient capacity to solve the Spirals & CIFAR-10. Mean and
min-max ranges are across 5 runs.

This chapter compares the proposed LGL2O with the origi-
nal GL2O, non-guarded L2O and baseline handcrafted algo-
rithms. We first compare them in distribution, that is when
L2O is used like it was meta-trained, on the same dataset,
and with the same optimizee. In all our experiments, we

use an L2O that was meta-trained on MNIST on a small
fully-connected MLP for roughly 10k meta-optimizer steps.
Then we follow with out of distribution experiments. First
with only the dataset being out of distribution (other than
MNIST), then with only the optimizee being out of distribu-
tion (ConvNets instead of MLPs), and finally both.

To show that the success of our guard is not dependent on
the above specific L2O, we also meta-trained another L2O
in a different context (Convnet on CIFAR-10) and show in
appendix D that our guard works just as well with this other
learned optimizer as with the MLP-MNIST-metatrained
L2O we used in this section.

The experiments were conducted on publicly available
datasets, namely MNIST (LeCun & Cortes, 2010), Fashion-
MNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky, 2009),
TinyImagenet1 - a subset of Imagenet dataset (Russakovsky
et al., 2015) and simple datasets from the Scikit-learn library
(Pedregosa et al., 2011).

The purpose of these experiments is to illustrate a common
property of meta-learned algorithms: that they tend to con-
verge faster than analytic algorithms and then they plateau.
It is expected that the guarding mechanism in GL2O will
eventually take over and switch to the SGD-based guard,
thus assuring the asymptotic convergence towards the opti-
mal solution.

The learned optimizer (and it’s weights) is identical in all
experiments and consists of an LSTM (Hochreiter & Jur-
gen Schmidhuber, 1997) with 2 hidden layers of 20 cells
each and a linear output layer which was meta-trained with
a rollout-length of 100 steps to optimize an MLP on the
MNIST dataset. Pre-processing of the input is used as de-
scribed in (Andrychowicz et al., 2016).

First, the optimizer was meta-trained to optimize the opti-
mizee on the MNIST dataset as shown in the Figure 2. The
optimizee used for meta-training is an MLP with 1 hidden
layer with 20 neurons. It uses sigmoid activations in hid-
den layer(s), softmax on the output layer and a negative
log-likelihood loss.

After the meta-learning phase, the meta-testing phase begins.
At that point, the learned optimizer works in an inference
regime. In all these experiments we explore the behaviour
of LGL2O (”LGL2O (ours)”) in the plots) is compared with
Guarded L2O from Heaton et al. (2020) (GL2O in the plots),
vanilla L2O (L2O in the plots) and SGD without momentum
(SGDnm) (which the fallback optimizer which we use inside
LGL2O). In addition, each figure plots ”LGL2O use l2o”
which tracks whether the L2O update (use l2o=1) or the
SGD update (use l2o=0.5) was chosen by the loss-guarding

1TinyImagenet dataset is publicly available from Kaggle com-
petition website at https://www.kaggle.com/c/tiny-
imagenet/data

https://www.kaggle.com/c/tiny-imagenet/data
https://www.kaggle.com/c/tiny-imagenet/data
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In Distribution? Experiment Type

Dataset Optimizee Dataset Optimizee
yes yes MNIST MLP
yes no MNIST Conv
no yes Spirals & Circles MLP
no no CIFAR-10 Conv
no no TinyImagenet50 Conv

Table 1. Overview of the experiments: after the meta-training
phase, the ability of the hybrid optimizer LGL2O is evaluated
on long rollouts, on in-distribution and out-of-distribution datasets
and optimizees.

criterion (1) on this optimization step.

The ability to generalize to longer rollouts and to out-of-
distribution dataset and network architectures is systemat-
ically evaluated on the following experiments, the experi-
ments are described in table 1. In all graphs, the data are
collected from 5 independent runs with different seeds. The
dark lines trace the mean of the 5 seeds and the shading the
minimum and maximum.

In practice (in all experiments shown here) the following
schedule for guarding in LGL2O is used:

• make 10 optimizer steps on 10 consecutive mini-
batches (for both L2O and guard),

• compute loss of the resulting optimizee as an average
of 10 unseen mini-batches (for both optimizees pro-
duced by L2O and guard).

This scheme has two motivations. First: a typical learned
optimizer behaves differently than SGD, it usually starts
with a form of triangulation of the loss landscape, during
which the loss increases considerably (see the initial steps
in Figure 5) and then the loss starts decreasing. We ob-
served that this stage is necessary for L2O to work. This
is the reason why each of the optimizers do 10 consecutive
steps first. The second part (evaluating loss over 10 ”test”
mini-batches) aims to inhibit influence of noise in the evalu-
ation. Without averaging, LGL2O exhibited very unstable
behaviour caused by switching from the guard back and
forth inappropriately.

4.1. In-distribution dataset and optimizee

This experiment uses the dataset and optimizee that was
used during the meta-training phase. Therefore it evaluates
the asymptotic behaviour of the learned L2O optimizer. It
illustrates the typical flaw of learned optimizers well, which
is to say that they perform extremely well at the beggining
of optimization but then start diverging.
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Figure 3. In-distribution dataset and optimizee. A typical be-
haviour of L2O (green) is shown here: at beginning, it converges
faster than other algorithms, however, after around 1000 steps it
starts diverging. Compared to this, the LGL2O algorithm detects
that L2O performs worse than the guard, so it starts using the
guard optimizer (the ‘use l2o‘ line goes towards value 0.5, which
corresponds to full use of the guard) and thus stays as good or
better than either components (L2O and SGDnm) at all times. As
a result, LGL2O combines benefits of both worlds: thanks to the
L2O optimizer, it converges quickly at the beginning, while it
preserves asymptotic convergence of the guarding algorithm (SGD
without momentum here). Note: on all graphs a moving window
averaging is used, which starts at Optimizer step (x-axis) 300. The
following is common for all the figures below: LGL2O: loss of
our LGL2O algorithm, GL2O: loss of the GL2O algorithm of
(Heaton et al., 2020), L2O: loss of vanilla L2O, SGDnm: loss
of SGD without momentum, LGL2O use l2o: indicator function
which indicates whether on this step LGL2O used the L2O update
(=1) or the SGD update (=0.5)

Figure 3 shows that L2O converges quickly at first, but
eventually the loss starts diverging. The LGL2O algorithm
solves this by detecting when the handcrafted optimizer
would be preferable and switching to it. It can be seen that
the switching is not definitive, once L2O performs better
than the guard, it can be used again instead of the guard. As
expected, the resulting hybrid algorithm steadily converges
towards the optimum.

The motivation of guarded learned optimizers is to combine
the best of both worlds: to achieve quick convergence at the
beginning and then be able to keep converging towards the
optimum. LGL2O shows this kind of behaviour in Figure 3.

We also observe that while GL2O prevents the divergence
of the L2O, it does at the cost of much of the performance
gains of L2O at the beginning of optimization (between
steps 0 and 100, where GL2O is better than SGDnm but
much worse than vanilla L2O).
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Figure 4. Out-of-distribution dataset, in-distribution optimizee.
Performance of LGL2O is comparable to L2O at the beginning,
where all the optimizers converge quickly. However, L2O starts
diverging later in the rollout, while LGL2O correctly switches to-
wards the guard. Again we see that GL2O prevents divergence but
at the cost of underperforming compared to L2O at the beginning.
We suspect that the reason LGL2O starts diverging after 20k steps
is because we evaluate the criterion on only 10 mini-batches, and
when the loss is already so low, the variance between different
groups of 10 mini-batches becomes larger than the difference be-
tween the losses of the SGD proposed update and L2O proposed
update, so our implementation of the algorithm starts incorrectly
using the divergent L2O too often.

4.2. Out-of distribution dataset, in-distribution
optimizee

This experiment evaluates performance of the L2O opti-
mizer on optimizing an MLP on out-of-distribution, simple
2D datasets: Circles & Spirals.

On the Circles dataset, LGL2O behaves as expected and
keeps converging in later stages of the rollout. Here, LGL2O
is more noisy in the later stages than GL2O. One hypoth-
esis is that this could be caused by noise in the optimizer
fitness evaluation and could be fixed by averaging loss val-
ues over more mini-batches2. In fact, this suggest a future
improvement we could make to the LGL2O algorithm 2, to
adaptively increase nt and nc (keeping the ratio nt : nc con-
stant not to increase the number of function evaluations per
step) when the mean plus or minus the standard deviation of{
F(yk+nt , vj)

}
k∈[1,nc]

and
{
F(zk+nt , vj)

}
k∈[1,nc]

start
to overlap in line 16 of algorithm 2.

The experiment on Spirals (see Figure 5) illustrates the
incredible synergy operated by LGL2O. By judiciously al-
ternating between its constituent parts (L2O and SGDnm),
LGL2O is able to significantly outperform both does con-
stituent parts after 50k optimization steps.

2Both optimizers do nt = 10 consecutive steps, then their loss
is computed as a mean over nc = 10 new mini-batches.
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Figure 5. Out-of-distribution dataset, in-distribution optimizee.
MLP optimizee optimized using the Spirals dataset. The dataset is
relatively challenging for MLP with 1 small hidden layer. It can
be seen that the SGD baseline without momentum gets stuck at a
suboptimal solution forever and Adam gets stuck there for a very
long time. While all L2O-based optimizers go past this optimum,
it is noticeable that the guarding mechanism in the original GL2O
algorithm slows down its convergence. Compared to that, LGL2O
converges as fast as L2O while maintaining reasonable asymptotic
stability. And more impressively, after 50k steps, LGL2O signifi-
cantly outperforms both it’s constituent parts (L2O and SGDnm)
showing that a judicious switching between the two provides syn-
ergistic gains.

4.3. In-distribution dataset, out-of-distribution
optimizee

This experiment illustrates performance of L2O and LGL2O
on MNIST and a convolution neural network (CNN) as
an optimizee. The optimizee is a 3-layer CNN with
number of channels = (8, 16, 32), kernel sizes =
(5, 3, 3) and strides = (2, 2, 2), with a fully connected
final layer.

Since the CNN optimizee is sufficiently different from the
MLP that L2O was meta-trained on, L2O diverges very
quickly, as seen in Figure 6. GL2O diverged as well3, while
LGL2O engages the guard soon enough and manages to
converge steadily tracking it’s fallback optimizer (SGDnm)
as one would hope in the case where the learned optimizer
is not helpful.

It is worth noting that while GL2O is guaranteed to converge
asymptotically, practical performance in this case very bad.
LGL2O however does the best one could expect in a bad
situation.

3This might be fixed by further tuning of the guarding algorithm
hyperparameters but our grid search did not find good hyperparam-
eters for GL2O in this case.
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Figure 6. In-distribution dataset, out-of-distribution optimizee.
L2O was meta-trained to optimize an MLP, therefore it does not
generalize to optimization of CNNs here. LGL2O detects bad
behaviour of the learned optimizer and switches to the fallback
optimizer, which then performs similarly to the baseline, as one
would hope.

4.4. Out-of-distribution dataset, out-of-distribution
optimizee

This setup evaluates L2O and LGL2O on an out-of-
distribution dataset (CIFAR-10) and an out-of-distribution
optimizee (ConvNet). Results can be seen in Figure 7.
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Figure 7. Out-of-distribution dataset and out-of-distribution
optimizee. L2O diverges very quickly (due to being out of distri-
bution for both the dataset and optimizee), while LGL2O converges
using the fallback optimizer from the beginning.

In this case, again, L2O and GL2O completely fail (diverge
very quickly to high loss values). While LGL2O uses its
fallback optimizer from the beginning and saves the stable
convergence.

4.5. Out-of-distribution dataset (Imagenet),
out-of-distribution optimizee

The last type of setup evaluates L2O, GL2O and our LGL2O
on an out-of-distribution dataset (TinyImagenet) and an
out-of-distribution optimizee (ConvNet). For the results,
a subset of the dataset, which contains randomly cho-
sen 50 (out of full 200) classes was used. Considering

the nature of the dataset, a deeper convolutional network
was used this time, namely: the optimizee is a 5-layer
CNN with number of channels = (8, 16, 32, 32, 64),
kernel sizes = (3, 3, 3, 3, 1) and strides = (2, 2, 2, 1, 1),
with a fully connected final layer. In order to achieve a
stable convergence of the baseline (and the fallback op-
timizer at the same time), a grid-search for algorithm
hyper-parameters was concluded (see the Fig.10 for ref-
erence). The resulting hyper-parameters used for the Tiny-
Imagenet experiment are: learning rate = 0.01 and
learning rate decay = 50000, these are used for SGDnm
baseline and fallback optimizers for LGL2O and GL2O
algorithms.

Results can be seen in Figure 8, the L2O diverges towards
very high loss values, the GL2O diverges immediately
to Not-a-Number loss values (therefore not shown in the
graph), while our LGL2O correctly detects the tendency to
L2O to diverge and switches to the fallback optimizer. As a
results, it behaves almost identically to the SGDnm baseline,
as desired.
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Figure 8. Out-of-distribution dataset and out-of-distribution
optimizee. Here, the optimizee (network) has different nature
(MLP vs ConvNet) but it has also different size than in the previous
experiment. The GL2O algorithm diverges quickly to NaN loss
values (ommitted in the graph), L2O diverges to high loss values,
while ours, LGL2O, discovers the divergent tendency of the learned
L2O and switches immediately to the fallback optimizer. Therefore
the L2L2O behaves almost identically to the SGDnm baseline.

4.6. Faster convergence - Adam as the fallback
optimizer of LGL2O

In many results shown above, the Adam baseline performed
better than LGL2O in the long run (though for sample-
efficiency in the beginning LGL2O outperformed Adam
in cases where L2O generalized). This is caused by the
fact that LGL2O was using SGD (without momentum) as
a fallback optimizer. This experiment shows that by using
the Adam optimizer as a fallback optimizer, it is possible to
achieve considerably better results than with SGD (without
momentum), see Figure 9. The graph shows convergence
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Figure 9. LGL2O with a variety of different fallback optimizer.
In this experiment with an out-of-distribution dataset and in-
distribution optimizee, we see that we can improve the practical
performance of LGL2O by using Adam as a fallback optimizer
instead of SGD. The legend designate which fallback optimizer
was used in LGL2O as well as its learning rate (lr). SGDnm: SGD
without moment. SGD: SGD with moment. Adam: Adam

of LGL2O optimizing an MLP optimizee on the Spirals
dataset.

This paper focused on using an SGD fallback optimizer,
the fallback optimizer needs to itself have a convergence
guarantee in order to transmit that property to the LGL2O.

5. Conclusion
Most types of learned optimizers have common problems,
they either fail to generalize outside of the training distri-
bution and/or do not have good asymptotic properties (e.g.
they are unable to overfit to a small dataset or get stuck on a
suboptimal solution).

It has been shown that these drawbacks can be addressed
using an explicit mechanism (i.e. guarding) that combines
the good initial behaviour of learned algorithms with the
desired asymptotic properties of analytic algorithms (like
SGD).

This work builds on top of GL2O, which hybridizes learned
and hand-crafted learning algorithms and combines best of
both worlds. The LGL2O algorithm proposed in this paper
is conceptually simpler (e.g. the guarding mechanism has
fewer hyperparameters), and computationally less expen-
sive, while maintaining convergence guarantees. We also
show that it performs better in practice.

It was shown that LGL2O behaves as ideally desired, it con-
verges quickly using the learned L2O initially and then con-
verges steadily in later stages by relying on the hand-crafted
guarding algorithm. At all times and in all cases, LGL2O
performed as well or better than it’s constituent parts (the
learned optimizer, and the fallback optimizer SGD with-
out momentum). And at times it was considerably better

than both. The same cannot be said of GL2O which while
also provably convergent asymptotically, suffered signifi-
cant performance loss compared to L2O at the beginning of
training in the cases where the L2O was in-distribution or
generalized.

In addition to having a simpler decision rule than the GL2O
algorithm, LGL2O seems to work more robustly, especially
in the ConvNet experiments.

Due to its simplicity, the algorithm did not need much ex-
plicit hyperparameter tuning.

The contributions of the paper are the following: We pro-
pose a new type of guard, LGL2O which is conceptually
simpler than the exist class of guards (GL2O), has smaller
time complexity, has fewer hyperparameters, and converges
better in practice. We prove convergence guarantees for
LGL2O. And finally we show that in practice it performs
better than GL2O and vanilla L2O. In particular, we show
LGL2O can allow the use of learned optimizers without
divergence for millions of optimization steps which up until
now could never exceed thousands of steps.

In general, the topic of hybridization of the learned algo-
rithm was shown on the case of simple L2O, but the mech-
anisms shown here are completely general and it should
be beneficial to apply them to other, more complex, meta-
learning architectures. Further investigation in these direc-
tions is left for future work.
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A. Appendix
This appendix contains the proofs of convergence guaran-
tees, the hyperparameters used and how they were obtained,
how randomness was used in the algorithms, and which
hardware and software were used as well as addition ex-
periments of the LGL2O Guard with a different learned
optimizer to show the generality of our guard.
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Figure 10. Since the ConvNet optimizee has different topology and
size than other methods, additional grid-search for the baseline
and the guard hyper-parameters (SGDnm) was made. Results are
concluded over 5 runs. The resulting hyperparameters used for
the TinyImagenet experiment are: learning rate = 0.01 and
learning rate decay = 50000.

C. Proof of Convergence Guarantee
Many of the proofs in this section have been strongly in-
spired by (Prazeres, 2020) and (Gower, 2019)

Proposition 2. Let f be a continuous loss function which is
L-smooth and let w∗ be its global minimum. Let E(w) :=
f(w)−f(w∗). Let wi+1 and wi be two subsequent points in
a sequence generated by the Loss-Guarded L2O algorithm
using (deterministic) gradient descent with a step size of
α/L for the guarding mechanism. Then:

E(wi+1)− E(wi) ≤ −
α

L
(1− α

2
)∥∇f(wi)∥22 (2)

and

E(wi) ≥
α

L
(1− α

2
)∥∇f(wi)∥22 (3)

Proof. If wi+1 is chosen via the guarding mechanism then
we have that wi+1 = wi− α

L∇f(wi). Furthermore by virtue
of f being L-smooth we have that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥22. (4)

Thus assuming that wi+1 is chosen via the guarding mecha-
nism we have that

E(wi+1)− E(wi) = (f(wi+1)− f(w∗))− (f(wi)− f(w∗))

= f(wi+1)− f(wi)

=†f
(
wi −

α

L
∇f(wi)

)
− f(wi)

≤‡
[
f(wi)−

α

L
⟨∇f(wi),∇f(wi)⟩ +

+
L

2

α2

L2
∥∇f(wi)∥22

]
− f(wi)

= − α

L
(1− α

2
)∥∇f(wi)∥22.

Where for † we use the fact wi+1 is obtained through the
guarding mechanism, and for ‡ we applied inequality (4)
with y = wi − α

L∇f(wi) and x = wi. This proves inequal-
ity (2) if wi+1 was chosen using the guarding.

If wi+1 was chosen using L2O, then we know by criterion
(1) that

f(wi+1) < f
(
wi −

α

L
∇f(wi)

)
and so the above derivation follows through except that at †
we have a (strict) inequality instead of an equality.

Inequality (3) is easily obtained from (2) by noticing that
∀w,E(w) ≥ 0 because w∗ is the global minimum of f , and
so −E(wi) ≤ E(wi+1)− E(wi).

Theorem 3. Let f be a continuous loss function which
is strictly convex and L-smooth and let w∗ be it’s
global minimum. Then E(w) := f(w)− f(w∗) is a
Lyapunov function for sequences of points generated
by the Loss-Guarded L2O algorithm using (determin-
istic) gradient descent for the guarding mechanism
with a step size of a

L with α ∈]0, 2[.

Proof. To show that E is a Lyapunov function we need to
show that:

1. E is continuous.

2. E(w) = 0 if and only if w = w∗.

3. E(w) > 0 if and only if w ̸= w∗.

4. E(wi+1) ≤ E(wi), ∀i ∈ N .
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1. is automatic by continuity of f . 2 and 3 and also imme-
diate by virtue of w∗ being the unique global minimum of
f . And finally 4 is give from inequality (2) of Proposition
2.

Lemma 4. Strong convexity implies the Polyak-Łojasiewicz
Condition (Zhou, 2018):

E(w) := f(w)− f(w∗) ≤ 1

2µ
∥∇f(w)∥22. (5)

Proof. From strong convexity we have that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥22.

Using Hölder’s inequality we have that

f(y) ≥ f(x)− ∥∇f(x)∥2∥y − x∥2 +
µ

2
∥y − x∥22.

Let yL be the value of y which minimizes the left hand side
of the inequality and yR be the value that minimizes the
right hand side of the inequality. Then we have

f(yL) ≥ f(x)− ∥∇f(x)∥22 ∥yL − x∥22 +
µ

2
∥yL − x∥22

≥ f(x)− ∥∇f(x)∥2 ∥yR − x∥2 +
µ

2
∥yR − x∥22.

(6)

Minimizing (6) with respect to yR we find that yR satisfies:

∥yR − x∥2 =
1

µ
∥∇f(x)∥2. (7)

Now using the fact that by definition yL = x∗, the minimum
of f , and plugging (7) in (6) we get

f(x∗) ≥ f(x)− 1

2µ
∥∇f(x)∥22,

which can be re-arranged to give the desired Polyak-
Łojasiewicz Condition.

Theorem 5. Let f be a continuous loss function which
is µ-strongly convex and L-smooth and let w∗ be it’s
global minimum. Then sequences of points generated
by the Loss-Guarded L2O algorithm using (determin-
istic) gradient descent for the guarding mechanism
with a step size of a

L with α ∈]0,min(2, 2µL)[ con-
verge to w∗, i.e.

lim
i→∞wi = w∗

.

Proof. Let E be the Lyapunov function of Theorem 3. By
µ-strong convexity of f , we have that f satisfies the Polyak-
Łojasiewicz Condition (5). Thus from Proposition 2, we
have that:

E(wi+1)− E(wi) ≤ −
α

L
(1− α

2
)∥∇f(wi)∥22

≤ − α

2µL
(1− α

2
)E(wi).

Where the second inequality follows from the Polyak-
Łojasiewicz condition. Thus:

E(wi+1) ≤
[
1− α

2µL
(1− α

2
)

]
E(wi). (8)

And thus for α ∈]0,min(2, 2µL)[, convergence to w∗ is
guaranteed because (8) implies that

E(wi) ≤
[
1− α

2µL
(1− α

2
)

]i
E(w0),

which means that lim
i→∞E(wi) = 0.

Definition 1. Given a loss function for f : Rk → R
composed of the sum of the loss for each sample x ∈
X:

f(w) :=
∑
x∈X

φ(w, x)µX(x),

where φ : Rk ×X → R is the sample-dependent loss
function and µX(x) is the probability density of sam-
ple x, we define the mini-batch stochastic gradient of
mini-batch size M of f at w,∇mbf(w), to be the ran-
dom variable ∇mbf(w) : X

M → Rk with probability
distribution

P

(
∇mbf(w) =

1∑M
i=1 µX(xi)

M∑
i=1

∇wφ(w, xi)µX(xi)

)
=

=

M∏
i=1

µX(xi).

Proposition 6. Let f be a continuous loss function which is
L-smooth and let w∗ be it’s global minimum. Let E(w) :=
f(w)−f(w∗). Let wi+1 and wi be two subsequent points in
a sequence generated by the Loss-Guarded L2O algorithm
using mini-batch stochastic gradient descent with a step size
of α/L for the guarding mechanism. If, in expectation, the
stochastic gradient ∇mbf(w) is equal to the true gradient,

E(∇mbf(w)) = ∇f(w),

and the variance of the stochastic gradient is bounded,

Var(∥∇mbf(w)∥22) ≤ σ2,

then:

E(wi+1)− E(wi) ≤−
α

L
(1− α

2
)(

∥∇f(wi)∥22 −
ασ2

2(1− α/2)

)
(9)
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and

E(wi) ≥
α

L
(1− α

2
)

(
∥∇f(wi)∥22 −

ασ2

2(1− α/2)

)
(10)

Proof. The proof follows as in Proposition 2, except

that we now do it in expectation (over the mini-batch)
and that if the guarding mechanism is used, then
wi+1 = wi− α

L∇mbf(wi), but as per criterion (1), whether
L2O is used or the guarding mechanism, we have that
f(wi+1) ≤ f(wi − α

L∇mbf(wi)). Thus assuming that
wi+1 is chosen via the guarding mechanism we have that

E [E(wi+1)− E(wi)|wi] =
(
E [f(wi+1)|wi]− f(w∗)

)
−
(
f(wi)− f(w∗)

)
= E [f(wi+1)|wi]− f(wi)

≤ E
[
f
(
wi −

α

L
∇mbf(wi)

)∣∣∣wi

]
− f(wi)

≤†
{
f(wi)−

α

L
⟨∇f(wi),E [∇mbf(wi)|wi]⟩+

L

2

α2

L2
E
[
∥∇mbf(wi)∥22

∣∣wi

]}
− f(wi)

≤‡
{
f(wi)−

α

L
⟨∇f(wi),∇f(wi)⟩+

L

2

α2

L2

(
∥∇f(wi)∥22 + σ2

)}
− f(wi)

= −α

L
(1− α

2
)

(
∥∇f(wi)∥22 −

ασ2

2(1− α/2)

)
,

where for † we applied inequality (4) with y = wi −
α
L∇mbf(wi) and x = wi, and for ‡ we use the fact
that E [∇mbf(wi+1)|wi] = ∇f(w) and that since the
variance of ∇mbf(w) is bounded by σ2 we have that
E
[
∥∇mbf(wi)∥22

∣∣wi

]
≤ ∥∇f(wi)∥22 + σ2.

Again inequality (10) follows trivially from (9) by noticing
that ∀w,E(w) ≥ 0 because w∗ be is the global minimum
of f , and so −E(wi) ≤ E(wi+1)− E(wi).

Theorem 7. Let f be a continuous loss function which
is µ-strongly convex and L-smooth and let w∗ be it’s
global minimum. If, in expectation, the stochastic
gradient ∇mbf(w) is equal to the true gradient,

E(∇mbf(w)) = ∇f(w),

and the variance of the stochastic gradient is bounded,
then sequences of points generated by the Loss-
Guarded L2O algorithm using stochastic gradient de-
scent for the guarding mechanism with a step size of
ai

L with αi ∝ 1
i0+i converge to w∗, i.e.

lim
i→∞wi = w∗.

Proof. From Proposition 6 and µ-strong convexity (which
gives us the Polyak-Łojasiewicz Condition (5)) we have
that

E [E(wi+1)− E(wi)|wi] ≤ − α

2µL
(1− α

2
)E(wi) +

α2σ2

2L
.

(11)

Which we can rewrite as

E [E(wi+1)|wi] ≤
(
1− α

2µL
(1− α

2
)

)
E(wi) +

α2σ2

2L

≤
(
1− α

4µL

)
E(wi) +

α2σ2

2L
, (12)

where the second inequality is valid if 0 < α < 1 because
then (1− α

2 ) >
1
2 .

We will now prove by recursion, using inequality (12) that
with the appropriate learning rate λi = αi

L we have the
follow inequality for all i:

E [E(wi+1)] ≤
C

i+ i0 + 1
, (13)

for positive constants C = 32µ2Lσ2 and i0. Which implies
that lim

i→∞E [E(wi+1)]→ 0 and thus that w converges to w∗

in expectation.

For i = 0:

E [E(w0)] ≤
C

i0
= E(w0)

is true if we set i0 = C/E(w0).

Now supposing inequality (13) is true up to i, let us show it
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for i+ 1 by using αi := min(1; 2µL; 8µL
i+i0

):

E [E(wi+1)] ≤
(
1− αi

4µL

)
E[E(wi)] +

α2
iσ

2

2L

≤
(
1− αi

4µL

)
C

i+ i0
+

α2
iσ

2

2L

≤
(
1− 2

i+ i0

)
C

i+ i0
+

(8µL)2σ2

2L(i+ i0)2

=

(
1− 2

i+ i0

)
C

i+ i0
+

C

(i+ i0)2

= C
i+ i0 − 1

(i+ i0)2

≤ C

i+ 1 + i0
,

where the last inequality uses k−1
k2 ≤ 1

k+1

D. Experiments with Different Learned
Optimizer

This paper tries to address a common problem of learned
optimizers: they are not easily predictable and their be-
haviour can depend on the meta-testing procedure (e.g. on
what optimizee and dataset they were meta-trained on). For
this reason we show the same experiments as in section 4,
but with a different learned optimizer (L2O) that was meta-
trained on a ConvNet optimizee and the Cifar10 dataset
instead of on an MLP with MNIST as in section 4. The
purpose of these experiments is to:

• show that our method (LGL2O) works independently
of which learned optimizer is used and that

• LGL2O acts appropriately in all situations and provides
the best of both the learned optimizers and the general
optimizer.

These experiments follows exactly the setup shown in the
Experiments section 4. First, the L2O optimizer was meta-
trained to optimize the ConvNet optimizee on the Cifar10
dataset. All the experiment parameters and hyperparame-
ters follow the original experiments exactly, except of the
learning rate of the meta-optimizer set to lr = 0.0001. No
fine-tuning was made in order to obtain these results. The
meta-training progress is shown in the Figure 11.

For clarity, the Table 2 shows the meta-testing experiment
settings.

D.1. Discussion

Here, the same meta-training procedure was used on a
different optimizee and dataset. At the beginning of the
meta-training (see Fig. 11), the L2O optimizer weights
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Meta training the L2O optimizer to optimize ConvNet optimizee on cifar10

Figure 11. Outer-loop convergence of the learned optimizer on the
Cifar10 dataset. The L2O method converges to sub-optimal, but
stable results on the train set. During meta-testing, it is apparent
that variance between test runs is high, but the optimizer performs
comparably well on the test-set and generalizes the behaviour to
other datasets. This meta-testing procedure shows only subset
of datasets where ConvNet optimizee can be used. Mean and
min-max ranges are across 5 runs are shown.

In Distribution? Experiment Type

Dataset Optimizee Dataset Optimizee
no no MNIST MLP
no yes MNIST Conv
no no Spirals & Circles MLP
yes yes CIFAR-10 Conv

Table 2. Overview of the experiments with updated in/out-
distribution settings: after the meta-training phase, the ability
of the hybrid optimizer LGL2O is evaluated on long rollouts, on
in-distribution and out-of-distribution datasets and optimizees.

were initialized randomly. Probably due to the fact that the
weights of ConvNet optimizee are shared, the implications
of the weight modifications proposed by random L2O on the
loss value are big and therefore the loss values explode in
just first few optimizer steps. Gradually, the meta-training
changes the optimizer to optimize the weights to a stable per-
formance. Despite the fact that absolute values of the loss
are rather far from optimal, it can be seen that the optimizer
generalizes similar results to the in-distribution meta-test
set and to other datasets.

Then, the learned L2O optimizer4 parameters were used for
meta-testing on long rollouts.

It can be seen that the learned optimizer generalizes from the
ConvNet optimizee to MLP optimizee very well. It does
not tend to diverge much in very long rollouts, despite that
it was trained only on rollouts that were 600 steps long. In
these cases, our method (LGL2O) performs better or at least

4One of the meta-training runs that achieved good results on
Cifar10 at the end.
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Figure 12. Out-of-distribution dataset, out-of-distribution opti-
mizee. MLP optimizee optimized by different optimizers on the
MNIST dataset. The L2O optimizer meta-trained on ConvNet
produces very stable behaviour which starts to diverge after around
105 steps. Our LGL2O optimizer is slightly slower, achieves bet-
ter performance and then starts slowly diverging as well. This is
probably caused by noise in the switching mechanism, since it can
be seen that the use l2o indicates that the guard is switching at
high frequency.

equally well compared to the L2O. It often outperforms the
GL2O and it always outperforms the baseline SGNnm. This
can be seen especially in the Fig. 14, where the SGDnm
gets stuck in local optimum, L2O starts to plateau after 105

steps, but our LGL2O switches to the fallback optimizer at
this point to continue reducing the loss. LGL2O switched at
the right time (i.e. after the local optimum was avoided) and
continues converging at a faster rate than L2O after that.

This is obvious in retrospect, but for LGL2O to work, the
fallback optimizer cannot diverge. Initially we had used
too large a learning-rate for the fallback optimizer which
caused LGL2O to explode when it decided to switch the the
fallback optimizer when the optimizee was a ConvNet 5.

Of particular note is the divergence of LGL2O in Fig. 13.
This is exactly the risk of which we foretold in the last the
paragraph of section 3 and which me mentioned again in
the paragraph on the Circles dataset in section 4.2. Close
to the minimum of the loss function, 10 mini-batches is not
enough anymore to reliably distinguish between the losses
given by the updates proposed by the learned optimizer and
the fallback optimizer. We can see that that is the problem
because of the high frequency switching between learned
optimizer and fallback optimizer after 105 steps (green line
in Fig. 13). As previously mentioned, at that point (past
105 updates in this case) one would need to increase the
hyperparameter nc. Doing so in adaptive manner as sug-
gested in section 4.2 would probably be best. But in all
experiments in this paper, we did not hyperparameter search
for the Guard hyperparameters and simply always used the

5For this reason, graphs in Figures 13 and 16 use SGD lr =
0.0001 instead of lr = 0.01 and 100x slower learning rate decay.
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Figure 13. Out-of-distribution dataset, in-of-distribution opti-
mizee. ConvNet optimizee optimized by different optimizers on
the MNIST dataset. Here, the L2O diverges significantly, the
GL2O counters the tendency of the learned optimizer to diverge.
The LGL2O diverges significantly because criterion 1 is not reli-
ably evaluated anymore as can be seen by high frequency switching
between learned optimizer and fallback optimizer after 105 steps
(green line). Close to the minimum of the loss function, 10 mini-
batches is not enough anymore to reliably distinguish between
the losses given by the updates proposed by the learned optimizer
and the fallback optimizer. Until then however, LGL2O improved
significantly on both it’s constituent parts.

same ones nt = nc = 10.

E. Hyperparameters
Hyperparameters for baseline learning algorithms (as well as
guards) were partially chosen from experience and partially
found by grid search. In all experiments, the guard has
hyperparameters identical to the corresponding baseline -
this is SGDnm in most cases. In all cases, our batch-size
was 128 samples per mini-batch.

Hyperparameters of Adam were found for each combination
of optimizee (MLP or ConvNet) and dataset found from the
set [0.0001, 0.001, 0.01, 0.1] over 300 optimization steps.
In case of SGD, the learning rate was set based on practical
experience to 3.0 and (the optional) momentum to 0.9.

In order to fulfill assumptions of convergence guarantee, the
following decaying learning rate schedule was used:

lr(t) =
lr0

( t
decay-time-scale + 1)1.5

,

where t is the optimization step number and where the power
of 1.5 was chosen because for convergence guarantees for
SGD the power must be strictly greater than 0 and strictly
less than 2, and 1.5 is a number in that range.

For SGDnm, grid search for each combination of opti-
mizee and dataset was performed to determine the value
of decay-time-scale from the following set [2000, 5000,
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Figure 14. Out-of-distribution dataset, out-of-distribution opti-
mizee. MLP optimizee optimized by different optimizers on the
Spirals dataset. The Spirals dataset has a strong local optimum if
used with a small MLP. In this case, the SGDnm and GL2O get
stuck, while the L2O and LGL2O avoid the local optimum and
converge well. In this case, our LGL2O outperforms L2O and
keeps converging steadily.
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Figure 15. Out-of-distribution dataset, out-of-distribution opti-
mizee. MLP optimizee optimized by different optimizers on the
Circles dataset. In this case, all the learned optimizers are faster
than the SGDnm baseline and they start to oscillate near optimal
loss values. The L2O and LGL2O are faster than GL2O.

10000, 20000, 50000], over 300 optimization steps, the
same value of decay-time-scale was used also for the SGD.
LGL2O, the decay-time-scale was set a constant value of
50’000 for all experiments without doing a grid search; that
value was arrived at simply because SGD tended to plateau
roughly at the 50′000th time step when running experiments
at constant learning rates.

The best hyperparameters found using grid-search and then
used as baselines (and optionally guards) were:

Adam lr SGDnm decay
MLP MNIST 0.001 50’000
Conv MNIST 0.01 20’000
MLP Circles 0.01 50’000
MLP Spirals 0.01 50’000

Conv CIFAR10 0.001 20’000
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Figure 16. In-distribution dataset, in-distribution optimizee.
ConvNet optimizee optimized by different optimizers on the Ci-
far10 dataset. Here, L2O optimizes well for many steps (as one
would hope, being in distribution), but then it gets unstable. The
GL2O deals with the instability and works as expected. The
LGL2O works even better by benefiting from the excellent perfor-
mance L2O and then slowly switching to it’s fallback optimizer
before L2O would start getting unstable. SGDnm, the fallback
optimizer, in contrast has very poor performance as a standalone
optimizer.

The gradients of the L2O LSTM were truncated every 20
steps. In LGL2O 10 steps of L20 were compared with
10 steps of SGD on 10 ”validation” mini-batches (pulled
from the training data but different from the mini-batches
on which the 20 steps were just made) and whichever did
better on those 10 validation mini-batches got to update
the optimizee. This helped avoiding effect of noise in the
fitness evaluation and increased the stability of the LGL2O
algorithm significantly.

For GL2O we used α = 0.99 θ = 0.9, m = 30, and used
the exponentially moving average series.

F. Randomness
Each experiment was run using 5 randomly chosen seeds.
All neural network were initialized using the default Py-
Torch initializations.

G. Hardware and Software
All experiments were code in Python 3.9 with PyTorch 1.8.1
on CUDA 11.0. Every run was run on a single NVIDIA
GPU with a memory of between 4Gb and 12 Gb. Running
one seed of all the optimization algorithms on one dataset
takes roughly 5 hours of wallclock time depending on the
specific GPU and usage level of the machine it is running on.
The SciKit learn datasets were loaded from SciKit-Learn
version 0.24.0.


