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Abstract
We study approximation of probability measures
supported on n-dimensional manifolds embed-
ded in Rm by injective flows—neural networks
composed of invertible flows and injective lay-
ers. We show that in general, injective flows be-
tween Rn and Rm universally approximate mea-
sures supported on images of extendable em-
beddings, which are a subset of standard em-
beddings: when the embedding dimension m
is small, topological obstructions may preclude
certain manifolds as admissible targets. When
the embedding dimension is sufficiently large,
m ≥ 3n + 1, we use an argument from alge-
braic topology known as the clean trick to prove
that the topological obstructions vanish and in-
jective flows universally approximate any differ-
entiable embedding. Along the way we show that
the studied injective flows admit efficient projec-
tions on the range, and that their optimality can
be established ”in reverse,” resolving a conjec-
ture made in (Brehmer & Cranmer, 2020)

1. Introduction
Invertible flow networks emerged as powerful deep learn-
ing models to learn maps between distributions (Durkan
et al., 2019a; Grathwohl et al., 2018; Huang et al., 2018;
Jaini et al., 2019; Kingma et al., 2016; Kingma & Dhari-
wal, 2018; Kobyzev et al., 2020; Kruse et al., 2019; Papa-
makarios et al., 2019). They generate high-quality samples
(Kingma & Dhariwal, 2018) and facilitate solving scien-
tific inference problems (Brehmer & Cranmer, 2020; Kruse
et al., 2021).
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By design, however, invertible flows are bijective and may
not be a natural choice when the target distribution has
low-dimensional support. This problem can be overcome
by combining bijective flows with expansive, injective lay-
ers, which map to higher dimensions (Brehmer & Cranmer,
2020; Cunningham et al., 2020; Kothari et al., 2021). De-
spite their empirical success, the theoretical aspects of such
globally injective architectures are not well understood.

In this work, we address approximation-theoretic proper-
ties of injective flows. We prove that under mild condi-
tions these networks universally approximate probability
measures supported on low-dimensional manifolds and de-
scribe how their design enables applications to inference
and inverse problems.

1.1. Prior Work

The idea to combine invertible (coupling) layers with ex-
pansive layers has been explored by (Brehmer & Cran-
mer, 2020) and (Kothari et al., 2021). Brehmer & Cranmer
(2020) combine two flow networks with a simple expansive
element (in the sense made precise in Section 2.1) and ob-
tain a network that parameterizes probability distributions
supported on manifolds.1

Kothari et al. (2021) propose expansive coupling layers
and build networks similar to that of Brehmer & Cran-
mer (2020) but with an arbitrary number of expressive and
expansive elements. They observe that the resulting net-
work trains very fast with a small memory footprint, while
producing high-quality samples on a variety of benchmark
datasets.

While (to the best of our knowledge) there are no
approximation-theoretic results for injective flows, there
exists a body of work on universality of invertible flows;
see Kobyzev et al. (2020) for an overview. Several works
show that certain bijective flow architectures are distri-
butionally universal. This was proved for autoregressive
flows with sigmoidal activations by Huang et al. (2018)
and for sum-of-squares polynomial flows (Jaini et al.,

1More precisely, distributions on manifolds are parameterized
by the pushforward (via their network) of a simple probability
measure in the latent space.
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2019). Teshima et al. (2020) show that several flow net-
works including those from Huang et al. (2018) and Jaini
et al. (2019) are also universal approximators of diffeomor-
phisms.

The injective flows considered here have key applications
in inference and inverse problems; for an overview of
deep learning approaches to inverse problems, see (Arridge
et al., 2019). Bora et al. (2017) proposed to regularize
compressed sensing problems by constraining the recov-
ery to the range of (pre-trained) generative models. Injec-
tive flows with efficient inverses as generative models give
an efficient algorithmic projection2 on the range, which fa-
cilitates implementation of reconstruction algorithms. An
alternative approach is Bayesian, where flows are used to
obtain tractable variational approximations of posterior dis-
tributions over parameters of interest, via supervised train-
ing on labeled input-output data pairs. Ardizzone et al.
(2018) encode the dimension-reducing forward process by
an invertible neural network (INN), with additional outputs
used to encode posterior variability. Invertibility guaran-
tees that a model of the inverse process is learned implicitly.
For a given measurement, the inverse pass of the INN ap-
proximates the posterior over parameters. Sun & Bouman
(2020) propose variational approximations of the posterior
using an untrained deep generative model. They train a nor-
malizing flow which produces samples from the posterior,
with the prior and the noise model given implicitly by the
regularized misfit functional. In Kothari et al. (2021) this
procedure is adapted to priors specified by injective flows
which yields significant improvements in computational ef-
ficiency.

1.2. Our Contribution

We derive new approximation results for neural networks
composed of bijective flows and injective expansive layers,
including those introduced by (Brehmer & Cranmer, 2020)
and (Kothari et al., 2021). We show that these networks
universally jointly approximate a large class of manifolds
and densities supported on them.

We build on the results of Teshima et al. (2020) and develop
a new theoretical device which we refer to as the embed-
ding gap. This gap is a measure of how nearly a mapping
from Ro → Rm embeds an n-dimensional manifold in Rm,
where n ≤ o. We find a natural relationship between the
embedding gap and the problem of approximating proba-
bility measures with low-dimensional support.

We then relate the embedding gap to a relaxation of univer-
sality we call the manifold embedding property. We show
that this property captures the essential geometric aspects
of universality and uncover important topological restric-
tions on the approximation power of these networks, to

2Idempotent but in general not orthogonal.

our knowledge, heretofore unknown in the literature. We
give an example of an absolutely continuous measure µ
and embedding f : R2 → R3 such that f#µ can not be
approximated with combinations of flow layers and linear
expansive layers. This may be surprising since it was previ-
ously conjectured that networks such as those of Brehmer
& Cranmer (2020) can approximate any “nice” density sup-
ported on a “nice” manifold. We establish universality for
manifolds with suitable topology, described in terms of ex-
tendable embeddings. We find that the set of extendable
embeddings is a proper subset of all embeddings, but when
m ≥ 3n + 1, via an application of the clean trick from al-
gebraic topology, we show that all diffeomorphisms are ex-
tendable and thus injective flows approximate distributions
on arbitrary manifolds. Our universality proof also implies
that optimality of the approximating network can be estab-
lished in reverse: optimality of a given layer can be estab-
lished without optimality of preceding layers. This settles a
(generalization of a) conjecture posed for a three-part net-
work (composed of two flow networks and zero padding) in
(Brehmer & Cranmer, 2020). Finally, we show that these
universal architectures are also practical and admit exact
layer-wise projections, as well as other properties discussed
in Section 3.5.

2. Architectures Considered
Let C(X,Y ) denote the space of continuous functions
X → Y . Our goal is to make statements about networks in
F ⊂ C(X,Y ) that are of the form:

F = T nL

L ◦ RnL−1,nL

L ◦ · · · ◦ T n1
1 ◦ Rn0,n1

1 ◦ T n0
0 (1)

where Rn`−1,n`

` ⊂ C(Rn`−1 ,Rn`), T n`

` ⊂ C(Rn` ,Rn`),
L ∈ N, n0 = n, nL = m, and n` ≥ n`−1 for ` = 1, . . . , L.
We introduce a well-tuned shorthand notation and writeH◦
G := {h ◦ g : h ∈ H, g ∈ G} throughout the paper.

We identifyR with the expansive layers and T with the bi-
jective flows. Loosely speaking, the purpose of the expan-
sive layers is to allow the network to parameterize high-
dimensional functions by low-dimensional coordinates in
an injective way. The flow networks give the network
the expressivity necessary for universal approximation of
manifold-supported distributions.

2.1. Expansive Layers

The expansive elements transform an n-dimensional man-
ifold M embedded in Rn`−1 , and embed it in a higher
dimensional space Rn` . To preserve the topology of the
manifold they are injective. We thus make the following
assumptions about the expansive elements:
Definition 2.1 (Expansive Element). A family of functions
R ⊂ C(Rn,Rm) is called an family of expansive elements
if m > n, and each R ∈ R is both injective and Lipschitz.



Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

Examples of expansive elements include

(R1) Zero padding: R(x) =
[
xT ,0(m−n)]T where 0(m−n)

is the zero vector (Brehmer & Cranmer, 2020).

(R2) Multiplication by an arbitrary full-rank matrix, or one-
by-one convolution:

R(x) = Wx, or R(x) = w ? x (2)

where W ∈ Rm×n and rank(W ) = n (Cunningham
et al., 2020), and w is a convolution kernel ? denotes
convolution (Kingma & Dhariwal, 2018).

(R3) Injective ReLU layers: R(x) = ReLU(Wx),
W =

[
BT ,−DBT ,MT

]T
, or R(x) =

ReLU
([
wT ,−wT

]
? x
)

for matrix B ∈ GLn(R),
positive diagonal matrix D ∈ Rn×n, and arbitrary
matrix M ∈ R(m−2n)×n (Puthawala et al., 2020).

(R4) Injective ReLU networks (Puthawala et al., 2020,
Theorem 5). These are functions R : Rn → Rm
of the form R(x) = WL+1 ReLU(. . .ReLU(W1x +
b1) . . . )+ bL where W` are n`+1×n` matrices and b`
are the bias vectors in Rn`+1 . The weight matricesWL

satisfy the Directed Spanning Set (DSS) condition for
` ≤ L (that make all layers injective) and WL+1 is a
generic matrix which makes the map R : Rn → Rm
injective wherem ≥ 2n+1. Note that the DSS condi-
tion requires that n` ≥ 2n`−1 for ` ≤ L and we have
n1 = n and nL+1 = m.

Continuous piecewise-differentiable functions with
bounded gradients are always Lipschitz. Thus, the
Lipschitzness assumption is automatically satisfied by
feed-forward networks with piecewise-differentiable
activation functions with bounded gradients. This includes
compositions of ReLU and sigmoid layers.

2.2. Bijective Flow Networks

The bulk of our theoretical analysis is devoted to the bijec-
tive flow networks, which bend the range of the expansive
elements into the correct shape. We make the following
assumptions about the expressive elements:

Definition 2.2 (Bijective Flow Network). Let T ⊂
C(Rn,Rn) for n ∈ N. We call T a family of bijective
flow networks if every T ∈ T is Lipschitz and bijective.

Examples of bijective flow networks include

(T1) Coupling flows, introduced by (Dinh et al., 2014) con-
sider R(x) = Hk ◦ · · · ◦H1(x) where

Hi(x) =

[
hi
(
[x]1:d , gi

(
[x]d+1:n

))
[x]d+1:n

]
. (3)

In Eqn. 3, hi : Rd × Re → Rd is invertible w.r.t. the
first argument given the second, and gi : Rn−d → Re
is arbitrary. Typically in practice the operation in Eqn.
3 is combined with additional invertible operations
such as permutations, masking or convolutions (Dinh
et al., 2014; 2016; Kingma & Dhariwal, 2018).

(T2) Autoregressive flows, introduced by Kingma et al.
(2016) are generalizations of triangular flows
A : Rn → Rn where for i = 1, . . . , n the i’th value of
A is given by of the form

[A]i (x) = hi
(
[x]i , gi

(
[x]1:i−1

))
(4)

In Eqn. 4, hi : R × Rm → R where again hi is
invertible w.r.t. the first argument given the second,
and gi : Ri−1 → Rm is arbitrary except for g1 = 0.
In Huang et al. (2018), the authors choose hi(x,y),
where y ∈ Rm, to be a multi-layer perceptron (MLP)
of the form

hi(x,y) = φ ◦Wp,y ◦ · · · ◦ φ ◦W1,y(x) (5)

where φ is a sigmoidal increasing non-linear activa-
tion function.

3. Main Results
3.1. Embedding Gap

We call a function f an embedding and denote it by f ∈
emb(X,Y ) if f : X → Y is continuous, injective, and
f−1 : f(X) → X is continuous3. Also we denote
by embk(Rn,Rm) the set of maps f ∈ emb(Rn,Rm) ∩
Ck(Rn,Rm) which differential df |x : Rn → Rm is in-
jective at all points x ∈ Rn. We now introduce the em-
bedding gap, a non-symmetric notion of distance between
f and g. This quantifies the degree to which a mapping
g ∈ emb(Ro,Rm) fails to embed a manifoldM = f(K)
for compact K ⊂ Rn where f ∈ emb(K,Rm). Later in
the paper, f will be the function to be approximated, and g
an approximating flow-network.

Definition 3.1 (Embedding Gap). Let n ≤ p ≤ o ≤ m,
K ⊂ Rn be compact and non-empty, W ⊂ Ro be compact
and contain the closure of set U which is open in the sub-
space topology of some vector subspace V of dimension
p, where f ∈ emb(K,Rm) and g ∈ emb(W,Rm). The
Embedding Gap between f and g on K and W is

BK,W (f, g) = inf
r∈emb(f(K),g(W ))

‖I − r‖L∞(f(K)) (6)

3Note that if X is a compact set, then continuity of the of
f−1 : f(X)→ X is automatic, and need not be assumed (Suther-
land, 2009, Cor. 13.27). Moreover, if f : Rn → Rm is a contin-
uous injective map that satisfies |f(x)| → ∞ as |x| → ∞, then
by (Mukherjee, 2015, Cor. 2.1.23) the map f−1 : f(Rn) → Rn

is continuous.
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where I : f(K) → f(K) is the identity function and
‖h‖L∞(X) = ess supx∈X ‖h(x)‖2 for h : X → Y , where
Y is some L∞ space. We refer to the embedding gap be-
tween f and g without specifyingK andW when it is clear
from context.

Remark 3.2. As W ⊂ Ro contains U , an open set in V ,
there is an affine map A : Rn → V such that A(K) ⊂ W .
Thus, the map r0 = g ◦ A ◦ f−1 : f(K) → g(W ) is an
injective continuous map from a compact set to its range
and hence r0 ∈ emb(f(K), g(W )). This proves that the
infimum in 6 is non-empty.

Before giving properties of BK,W (f, g), we briefly de-
scribe its interpretation and meaning. We denote by P(X)
the set of probability measures over X . If the embedding
gap between f and g is small, then g−1◦r embeds the range
of f for an r that is nearly the identity. Hence g−1 nearly
embeds the range of f into Ro. BK,W (f, g) also serves as
an upper bound

inf
µo∈P(W )

W2 (f#µn, g#µo) ≤ BK,W (f, g)

where µn ∈ P(K) is given, and W2 (ν1, ν2) denotes
the Wasserstein-2 distance with `2 ground metric (Villani,
2008). This is proven in Lemma C.1 part 9. The above re-
sult has a simple meaning in the context of machine learn-
ing. Suppose we want to learn a generative model g to
(approximately) sample from a probability measure ν with
low-dimensional support, by applying g to samples from
a base distribution µo. Suppose further that ν is a push-
forward of some (known or unknown) distribution µn via
f . The embedding gap BK,W (f, g) then upper bounds the
2-Wasserstein distance between ν and g#µ0 for the best
possible choice of µo.4

In the context of optimal transport, the embedding r can be
interpreted as a candidate transport map from any measure
pushed forward by f , that can be pulled back through g.
Loosely speaking, for µ′o = g−1 ◦ r ◦ f#µn, r transports
f#µn to g#µ′o with cost no more than ‖I − r‖L∞(f(K)).
See Fig. 1 for a visualization of the embedding gap be-
tween two toy functions. The embedding gap satisfies in-
equalities useful for studying networks of the form of Eqn.
1, see Lemma C.1.

In the remainder of this section we use the embedding gap
to prove universality of neural networks. The set f(K) will
be a target manifold to approximate, and g will be a neural
network of the form Eq. 1. The embedding gap requires
g to be a proper embedding and so, in particular, injective.
This is why we require injectivity of both the expansive and
bijective flow layers.

4The choice of p-Wasserstein distance is suitable for measures
with mismatched low-dimensional support; this has been widely
exploited in training generative models (Arjovsky et al., 2017).

Figure 1: A visualization of the embedding gap. In all
three figures we plot f(K) and gi(W ) for Left: i = 1,
Center: i = 2 and Right: i = 3. Visually, we see that
gi(W ) approaches f(W ) as i increases, and we compute
BK,W (f, g1) > BK,W (f, g2) > BK,W (f, g3) = 0.

3.2. Manifold Embedding Property

We now introduce a central concept, the manifold embed-
ding property (MEP). A family of networks has the MEP
if it can, as measured by the embedding gap, nearly embed
a large class of manifolds of certain dimension and reg-
ularity. The MEP is a property of a family of functions
E ⊂ emb(W,Rm) where W ⊂ Ro. In this manuscript,
E will always be formed by taking E := T ◦ R, where R
and T are the expansive layers and bijective flow networks
described in sections 2.1 and 2.2 respectively.

We note here that E having the MEP is closely related to
the question of whether or not a given n-dimensional man-
ifoldM = f(K) for f ∈ emb(K,Rm), K ⊂ Rn, can be
approximated by an E ∈ E . This choice of first applying
(possibly non-universal) expansive layers, and then univer-
sal layers puts some topological restrictions on the expres-
sivity, which we discuss in great detail in Section 3.3.

In anticipation of these topological difficulties, when we
refer to the MEP, we consider it with respect to a class of
functionsF ⊂ emb(Rn,Rm). The MEP can be interpreted
as a density statement, saying that our networks E are dense
in some set F ⊂ emb(Rn,Rm) in the topology induced
by the ‘BK,W distance.’ Two examples of F that we are
particularly interested in are the following. When F =
emb(Rn,Rm), and also when each f ∈ F can be written
as f = D ◦ L where L : Rm×n is a linear map of rank n
and D : Rm → Rm is a Ck diffeomorphism with k ≥ 1.

Definition 3.3 (Manifold Embedding Property). Let E ⊂
emb(Ro,Rm) and F ⊂ emb(Rn,Rm) be two families of
functions. We say that E has the m,n, o Manifold Embed-
ding Property (MEP) w.r.t. F if for every compact non-
empty set K ⊂ Rn, f ∈ F , and ε > 0, there is an E ∈ E
and a compact set W ⊂ Ro such that the restriction of f to
K and the restriction of E to W satisfies

BK,W (f,E) < ε. (7)

When it is clear from the context, we abbreviate them,n, o
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MEP w.r.t. F simply by the m,n, o MEP, or simply the
MEP.

We also present the following two lemmas which relate to
the algebra of the MEP.
Lemma 3.4. Let Ep,o1 ⊂ emb(Rp,Ro) have the o, n, p
MEP w.r.t. Fn,o1 ⊂ emb(Rn,Ro), and likewise let
Eo,m2 ⊂ emb(Ro,Rm) have them, o, oMEP w.r.t. Fo,m2 ⊂
emb(Ro,Rm). If each Eo,m2 ∈ Eo,m2 is locally Lipschitz,
then Eo,m2 ◦ Ep,o1 has the m,n, p MEP w.r.t. Fo,m ◦ Fn,o.

The proof of Lemma 3.4 is in Appendix C.2.1.

We note that when the elements of Eo,m2 are differentiable,
local Lipschitzness is automatic, and need not be assumed,
see e.g. (Tao, 2009, Ex. 10.2.6). We also record the fol-
lowing lemma, proved in C.2.2, which is a weak-converse
of Lemma 3.4. It states that if Eo,m2 ◦ Ep,o1 has the m,n, p
MEP, then Eo,m2 has the m,n, o MEP.
Lemma 3.5. Let Ep,o1 ⊂ emb(Rp,Ro) and Eo,m2 ⊂
emb(Ro,Rm) be such that Eo,m2 ◦Ep,o1 has them,n, pMEP
with respect to family F ⊂ emb(Rn,Rm). Then Eo,m2 has
the m,n, o MEP with respect to family F .
Definition 3.6 (Uniform Universal Approximator). For a
non-empty subset Fn,m ⊂ C(Rn,Rm), a family En,m ⊂
C(Rn,Rm) is said to be a uniform universal approximator
of Fn,m if for every f ∈ Fn,m, every non-empty compact
K ⊂ Rn, and each ε > 0, there is an E ∈ En,m satisfying:

sup
x∈K
‖f(x)− E(x)‖2 < ε. (8)

If E ⊂ emb(Ro,Rm) is a uniform universal approximator
of Fo,m = C0(Ro,Rm) on compact sets, then it has the
m,n, o MEP w.r.t C0(Rn,Rm) for any n ≤ o, see Lemma
3.9. As an example, when m ≥ 2o+ 1 injective ReLU net-
works E : Ro → Rm (i.e., mappings of the form (R4)) are
uniform universal approximator of C0(Ro,Rm) on com-
pact sets, see e.g. (Puthawala et al., 2020) and (Yarotsky,
2017; 2018). Thus, networks that are uniform universal
approximators automatically possess the MEP. Generaliza-
tions of this are considered in Lemma 3.9.

With the definition of the MEP and uniform universal ap-
proximator established, we now discuss in detail the nature
of the topological obstructions to approximating all one-
chart manifolds.

3.3. Topological Obstructions to Manifold Learning
with Neural Networks

We show that using non-universal expansive layers and
flow layers imposes some topological restrictions on what
can be approximated. Let n = 2, m = 3, and K = S1 ⊂
R2 be the circle, and let

E =
{
T ◦R ∈ C(R2,R3) : R ∈ R3×2, T ∈ hom(R3,R3)

}
.

Figure 2: An illustration of the case when n = 2, m = 3,
and K = S1 is the circle. Here f : S1 → R3 is an
embedding such that the curve M = f(S1) is a trefoil
knot. Due to knot theoretical reasons, there are no map
E = T ◦ R : R2 → R3 such that E(S1) = M, where
R : R2 → R3 is a full rank linear map and T : R3 → R3

is a homeomorphism. This shows that a combination of
linear maps and coupling flow maps can not represent all
embedded manifolds. For this reason, we define the class
I(Rn,Rm) of extendable embeddings f in Definition 3.7.
A similar 2-dimensional example can be obtained to a knot-
ted ribbon, see Sec. C.3.1.

That is, E is the set of maps that can be written as composi-
tions of linear maps from R2 to R3 and homeomorphisms
on all of R3. Let f ∈ emb(K,R3) be an embedding that
maps K to a trefoil knotM = f(S1), see Fig. 2. Such a
function f can not be written as a restriction of an E ∈ E
to S1. In Sec. C.3.1 we prove this fact and build a re-
lated example where a measure, µ ∈ P(R2), supported on
an annulus is pushed forward to a measure supported on a
knotted ribbon in R3 by an embedding g : R2 → R3. For
this measure, there are no E ∈ E such that g#µ = E#µ.
We note that the counterexample is still valid if E is re-
placed with Ê = T ◦ D where T = hom(R3,R3) and
D = hom(R3,R3) ◦ R3×2. See C.3.2 for a proof. The
point here is not that R is linear, but rather that it embeds
all of R2 into R3, rather than only S1 into R3.

With this difficulty in mind, we define the MEP property
with respect to a certain subclass of manifolds {f(K) :
f ∈ F}. Additionally, when considering flow networks
which are universal approximators of C2 diffeomorphisms,
we restrict the class of manifolds to be approximated even
further. This is necessary because manifolds that are home-
omorphic are not necessarily diffeomorphic5. Moreover,
it is known that C2-smooth diffeomorphisms can not ap-
proximate general homeomorphisms in the C0 topology,
see (Müller, 2014) for a precise statement. All C1-smooth
diffeomorphisms f : Rm → Rm, however, can be ap-
proximated in the strong topology of C1 by C2-smooth

5A classic example are the exotic spheres. These are topolog-
ical structures that are homeomorphic, but not diffeomorphic, to
the sphere (Milnor, 1956).
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diffeomorphism f̃ : Rm → Rm, ` ≥ k, see (Hirsch,
2012, Ch. 2, Theorem 2.7). Because of this, we have to
pay attention to the smoothness of the maps in the subset
F ⊂ emb(K,Rm).

Definition 3.7 (Extendable Embeddings). We define the
set of Extendable Embeddings as

I(Rn,Rm) := D ◦ L
D = Diff1(Rm,Rm)

L =
{
L ∈ Rm×n : rank(L) = n

}
,

where Diffk(Rm,Rm) is the set of Ck-smooth diffeo-
morphisms from Rm to itself. Note that I(Rn,Rm) ⊂
emb(Rn,Rm).

The word extendable in the name extendable embeddings
refers to the fact that the family D in Definition 3.7 is a
proper subset of emb(L(K),Rm) for some compact K ⊂
Rn and linear L ∈ Rm×n. Mappings in the set D are em-
beddingsD : L(K)→ Rm that extend to diffeomorphisms
from all of Rm to itself. Said differently, a D ∈ D is a
map in emb1(L(K),Rm) that can be extended to a map
D̃ ∈ Diff1(Rm,Rm) such that D̃

∣∣∣
L(K)

= D. This distinc-

tion is important, as there are maps in emb1(L(K),Rm)
that can not be extended to diffeomorphisms on all of Rm,
as can be seen from the counterexample developed at the
beginning of this section.

We also present here a theorem that states that when m
is more than three times larger than n, any differentiable
embedding from compact K ⊂ Rn to Rm is necessarily
extendable.
Theorem 3.8. When m ≥ 3n + 1 and k ≥ 1, for any Ck

embedding f ∈ embk(Rn,Rm) and compact set K ⊂ Rn,
there is a mapE ∈ Ik(Rn,Rm) (that is,E is in the closure
of the set of flow type neural networks) such that E(K) =
f(K). Moreover,

Ik(K,Rm) = embk(K,Rm) (9)

The proof of Theorem 3.8 in Appendix C.3.3. We also re-
mark here that the proof of the above theorem relies on the
so called ‘clean trick’ from differential topology. This trick
is related to fact that in R4, all knots can be reduced to the
simple knot continuously.

3.4. Universality

We now combine the notions of universality and extend-
able embeddings to produce a result stating that many com-
monly used networks of the form studied in Section 2 have
the MEP.
Lemma 3.9. (i) If R ⊂ emb(Rn,Rm) is a uniform uni-

versal approximator of C(Rn,Rm) and I ∈ T where

I is the identity map, then E := T ◦ R has the MEP
w.r.t. emb(Rn,Rm).

(ii) If R is such that there is an injective R ∈ R and
open set U ⊂ Ro such that R

∣∣
U

is linear, and
T is a sup universal approximator in the space of
Diff2(Rm,Rm), in the sense of (Teshima et al., 2020),
of the C2-smooth diffeomorphisms, then E := T ◦ R
has the MEP w.r.t. I(Rn,Rm).

For uniform universal approximators that satisfy the as-
sumptions of (i), see e.g. (Puthawala et al., 2020). The
proof of Lemma 3.9 is in Appendix C.4.1. It has the fol-
lowing implications for the architectures studied in Section
2.

Example 1. Let E := T ◦R and (T1), (T2), (R1), . . . , (R4)
be as described in Section 2. Then

(i) If T is either (T1) or (T2) and R is (R4), then E has
the m,n, o MEP w.r.t. emb(Rn,Rm).

(ii) If T is (T2) with sigmoidal activations (Huang et al.,
2018), then ifR is any of (R1), ..., (R4), then E has the
m,n, o MEP w.r.t. I(Rn,Rm).

The proof of Example 1 is in Appendix C.4.2.

We now present our universal approximation result for net-
works given in Eqn. 1 and a decoupling property. Below,
we say that a measure µ in Rn is absolutely continuous if
it is absolutely continuous w.r.t. the Lebesgue measure.

Theorem 3.10. Let n0 = n, nL = mK ⊂ Rn be compact,
µ ∈ P(K) be an absolutely continuous measure. Further
let, for each ` = 1, . . . , L, En`−1,n`

` := T n`

` ◦ Rn`−1,n`

`

where Rn`−1,n`

` is a family of injective expansive elements
that contains a linear map, and T n`

` is a family of bijective
family networks. Finally let T n0 be distributionally univer-
sal, i.e. for any absolutely continuous µ ∈ P(Rn) and
ν ∈ P(Rn), there is a {Ti}i=1,2,... such that Ti#µ→ ν in
distribution. Let one of the following two cases hold:

(i) f ∈ FnL−1,m
L ◦· · ·◦Fn,n1

1 and En`−1,n`

` have the the n`,
n`−1,n`−1 MEP for ` = 1, . . . , L with respect to Fn`−1,n`

` .

(ii) f ∈ emb1(Rn,Rm) be a C1-smooth embedding, for
` = 1, . . . , L n` ≥ 3n`−1 + 1 and the families T n`

` are
dense in Diff2(Rn`).

Then, there is a sequence of {Ei}i=1,2,... ⊂ E
nL−1,m
L ◦· · ·◦

En1,n
1 ◦ T n0 such that

lim
i→∞

W2 (f#µ,Ei#µ) = 0. (10)

The proof of Theorem 3.10 is in Appendix C.4.3. The re-
sults of Theorems 3.8 and 3.10 have a simple interpretation,
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omitting some technical details. Densities on ‘nice’ man-
ifolds embedded in high-dimensional spaces can always
be approximated by neural networks of the form Eq. 1.
Here, ‘nice’ manifolds are smooth and homeomorphic to
Rn. This proves that networks like Eqn. 1 are ‘up to task’
of solving generation problems.

As discussed in the above and in Figure 2, there are topo-
logical obstructions to obtaining the results of Theorem
3.10 with a general embedding f : Rn → Rm. When
n = 2, m = 3, L = 1, and µ is the uniform measure on
an annulus K ⊂ R2 target measure F#µ is the uniform
measure on a knotted ribbon M = f(K) ⊂ R3. There
are no injective linear maps R : R2 → R3 and diffeomor-
phisms T : R3 → R3 such that E = T ◦ R would satisfy
M = E(K) and E#µ = F#µ.

We note that our networks are designed expressly to ap-
proximate manifolds, and hence injectivity is key. This
separates our results from, e.g. (Lee et al., 2017, Theorem
3.1) or (Lu & Lu, 2020, Theorem 2.1), where universality
results of ReLU networks are also obtained.

The previous theorem states that the entire network is uni-
versal if it can be broken into pieces that have the MEP. The
following lemma, proved in Appendix C.4.4, shows that if
En,m = Ho,m ◦ Gn,o, then Ho,m must have the m,n, o
MEP if En,m is universal.

Lemma 3.11. Suppose that En,m = Ho,m ◦ Gn,o where
En,m ⊂ emb(Rn,Rm), Ho,m ⊂ emb(Ro,Rm), and
Gn,o ⊂ emb(Rn,Ro). If Ho,m does not have the m,n, o
MEP w.r.t. F , then there exists a f ∈ F , compact
K ⊂ Rn and ε > 0 such that for all E ∈ En,m, and
r ∈ emb(f(K), E(W ))

‖I − r‖L∞(K) ≥ ε. (11)

Lemma 3.11 has a simple takeaway: If a bijective neural
network is universal, then the last layer, last two layers,
etc., must have the MEP. In other words, a network is only
as universal as its last layer. Earlier layers, on the other
hand, need not satisfy the MEP. ‘Strong’ layers close to the
output can compensate for ‘weak’ layers closer to the input,
but not the other way around.

There is a gap between the negation of Theorem 3.10 and
Lemma 3.11. That is, it is possible for a family of functions
E to satisfy Lemma 3.11 but nevertheless satisfy the con-
clusion of Theorem 3.10; these functions approximate mea-
sures without matching manifolds. Theorem 3.10 consid-
ers approximating measures, whereas Lemma 3.11 refers to
matching manifolds exactly. As discussed in Section 3.3,
there are no extendable embeddings that map S1 to the tre-
foil knot in R3. Nevertheless, it is possible to construct a
sequence of functions (Ei)i=1,... so that W2 (ν,Ei#µ) =

0 where µ and ν are the uniform distributions on S1 and

(a) f and E1 (b) f and E2 (c) f and E3

(d) E1 ◦ E′1 (e) E2 ◦ E′2 (f) E3 ◦ E′3

Figure 3: A visualization of the construction described in
Corollary 3.12 applied to a toy example when m = 3, o =
2 and n = 1. In all figures, f(K) is the red curve, Ei(W )
are the orange surfaces, Ei ◦ E′i(W ′) are the black curves,
Ti and µ are not pictured. (a) - (c) The orange surfaces
approach the red curves. This means that the sequence of
E1, E2 and E3 send BK,W (f,Ei) to zero as i increases.
(d) - (f) The black curves, a subset of the orange surfaces,
approach the red curves. This means that given E1, E2

and E3 we can always find another sequence E′1, E′2 and
E′3 that sends BK,W (f,Ei ◦E′i) to zero as i increases too.
This as a consequence, sends W2 (f#µ,Ei ◦ E′i ◦ Ti#µ)
to zero as i increases too for some choice of T1, T2 and T3.

trefoil knot respectively. Such a construction is given in
C.4.6.

Although there are sequences of functions that approximate
measure without matching manifolds, these sequences are
never uniformly Lipschitz. This is proven in C.4.6. Under
an idealization of training, we may consider a network un-
dergoing training as successively better and better approx-
imators of a target mapping. If the target mapping does
not match the topology, then training necessarily leads to
gradient blowup.

The proof of Theorem 3.10 also implies the following re-
sult which, loosely speaking, says that optimality of later
layers can be determined without requiring optimality of
earlier layers, while still having a network that is end-to-
end optimal. The conditions and result of this is visualized
on a toy example in Figure 3.

Corollary 3.12. Let Fn,o ⊂ emb(Rn,Ro), Fo,m ⊂
emb(Ro,Rm), and let Eo,m ⊂ emb(Ro,Rm) have the
m,n, o MEP w.r.t. Fo,m ◦ Fn,o. Then for every f ∈
Fo,m ◦ Fn,o and compact sets K ⊂ Rn and W ⊂ Ro
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there is a sequence {Ei}i=1,2,... ⊂ Eo,m such that

lim
i→∞

BK,W (f,Ei) = 0. (12)

Further,if there is a compact W ′ ⊂ Rn and En,o ⊂
emb(W ′,Ro) has the o, n, n MEP w.r.t. Fn,o, and a T n
is a universal approximator for distributions, then for any
absolutely continuous µ ∈ P(K) where K ⊂ Rn is
compact, there is a sequence {E′i}i=1,2,... ⊂ En,o and
{Ti}i=1,2,..., ⊂ T n so that

lim
i→∞

W2 (f#µ,Ei ◦ E′i ◦ Ti#µ) = 0. (13)

The proof of Corollary 3.12 is in Appendix C.4.5. Approx-
imation results for neural networks are typically given in
terms of the network end-to-end. Corollary 3.12 shows
that the layers of approximating networks can in fact be
built one at a time. This is related to an observation made
in (Brehmer & Cranmer, 2020, Section B) about training
strategies, where the authors remark that they ‘expect faster
and more robust training of a network’ of the form in Eqn.
1 whenL = 1, that isF = T m1 ◦R

n,m
1 ◦T n0 . Corollary 3.12

shows that there exists a minimizing sequence in T m1 that
need only minimize Eqn. 12; the T n0 layers can be mini-
mized after. We can further combine Lemma 3.11 and Cor.
3.12 to prove that not only can the network from (Brehmer
& Cranmer, 2020) be trained layerwise, but that any univer-
sal network can necessarily be trained layerwise, provided
that it can be written as a composition of two smaller lay-
ers.

3.5. Layer-wise Inversion and Recovery of Weights

In this subsection, we describe how our network can be
augmented with more useful properties if the architecture
satisfies a few more assumptions without affecting univer-
sal approximation. We focus on a new layerwise projection
result, with a further discussion of black-box recovery of
our network’s weights in Appendix C.5.2.

Given a point y ∈ Rm that does not lie in the range of the
network, projecting y onto the range of the network is a
practical problem without an obvious answer. The crux of
the problem is inverting the injective (but non-invertible)
R layers when R contains only full-rank matrices as in
(R1) or (R2) then we can compute a least-squares solution.
If, however, R contains layers which are only piecewise
linear, as in (R3), then the problem of computing a least
squares solution is more difficult, see Fig. 4. Neverthe-
less, we find that if R is (R3) we can still compute a least-
squares solution.
Assumption 3.13. LetR be given by one of (R1) or (R2),
or else (R3) when m = 2n.

If R only contains linear operators, then the least-squares
problem can be computed by solving the normal equations

Figure 4: A schematic showing that, for a toy problem, the
least-squares projection to a piecewise affine range can be
discontinuous. Left: A partitioning of R2 into classes with
gray boundaries. Two points y, y′ are in the same class if
they are both closest to the same affine piece of R(R), the
range of R. The three points y1, y2 and y3 are each pro-
jected to the closest three points on R(R) yielding ỹ1, ỹ2
and ỹ3. Note that the projection operation is continuous
within each section, but discontinuous across gray bound-
aries between section.

(see (Golub, 1996, Section 5.3).) This includes cases (R1)
or (R2). For (R3) we have the following result when D =
In×n and M ∈ R0×n.

Definition 3.14. Let W =
[
Bt −DBt

]t ∈ R2n×n and
y ∈ R2n be given, and let R(x) = ReLU(Wx). Then
define c(y) ∈ R2n,∆y ∈ Rn×n,My ∈ Rn×2n where

c(y) := max

([
In×n −In×n
−In×n In×n

]
y, 0

)
(14)

[∆y]i,j :=


0 if i 6= j

0 if [c(y)]i+n = 0

1 if [c(y)]i+n > 0

(15)

My :=
[
(In×n −∆y) ∆y

]
(16)

where the max in Eqn. 14 is taken element-wise.

Theorem 3.15. Let y ∈ R2n. If for i = 1, . . . , n, [y]i 6=
[y]i+n then

R†(y) := (MyW )
−1
Myy = argmin

x∈Rn

‖y −R(x)‖2 .

(17)

Further, if there is a i ∈ {1, . . . , n} such that [y]i = [y]i+n,
then there are multiple minimizers of ‖y −R(x)‖2, one of
which is R†(y).

The proof of Theorem 3.15 is given in Appendix C.5.1.
Remark 3.16. We note that Theorem 3.15 is different from
many of the existing work on inverting expansive layers,
e.g. (Aberdam et al., 2020; Bora et al., 2017; Lei et al.,
2019), our result gives a direct inversion algorithm that is
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provably the least-squares minimizer. Further, if each ex-
pansive layer is any combination of (R1), (R2), or (R3) then
the entire network can be inverted end-to-end by using ei-
ther the above result or solving the normal equations di-
rectly.

4. Conclusion
Bijective flow networks are a powerful tool for learning
push-forward mappings in a space of fixed dimension. In-
creasingly, these flow networks have been used in combi-
nation with networks that increase dimension in order to
produce networks which are purportedly universal.

In this work, we have studied the theory underpinning
these flow and expansive networks by introducing two new
notions, the embedding gap and the manifold embedding
property. We show that these notions are both necessary
and sufficient for proving universality, but require impor-
tant topological and geometrical considerations which are,
heretofore, under-explored in the literature. We also find
that optimality of the studied networks can be established
‘in reverse,’ by minimizing the embedding gap, which we
expect opens the door to convergence of layer-wise training
schemes. Without compromising universality, we can also
use specific expansive layers with a new layerwise projec-
tion result.
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C. H. (eds.), Proceedings of Bridges 2011: Mathematics,
Music, Art, Architecture, Culture, pp. 121–130. Tessel-
lations Publishing, 2011. ISBN 978-0-9846042-6-5.

https://doi.org/10.1007/978-3-319-19045-7
https://doi.org/10.1007/978-3-319-19045-7
https://doi.org/10.1007/978-0-8176-4719-3
https://doi.org/10.1007/978-0-8176-4719-3


Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

Sun, H. and Bouman, K. L. Deep probabilistic imag-
ing: Uncertainty quantification and multi-modal solu-
tion characterization for computational imaging. arXiv
preprint arXiv:2010.14462, 2020.

Sutherland, W. A. Introduction to metric and
topological spaces. Oxford University Press, Ox-
ford, 2009. ISBN 978-0-19-956308-1. Sec-
ond edition [of MR0442869], Companion web site:
www.oup.com/uk/companion/metric.

Tao, T. Analysis, volume 185. Springer, 2009.

Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M.,
and Sugiyama, M. Coupling-based invertible neural
networks are universal diffeomorphism approximators.
arXiv preprint arXiv:2006.11469, 2020.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Yarotsky, D. Error bounds for approximations with deep
relu networks. Neural Networks, 94:103–114, 2017.

Yarotsky, D. Optimal approximation of continuous func-
tions by very deep relu networks. In Conference on
Learning Theory, pp. 639–649. PMLR, 2018.



Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

A. Summary of Notation
Throughout the paper we make heavy use of the following notation.

1. Unless otherwise stated, X and Y always refer to subsets of Euclidean space, and K and W always refer to compact
subsets of Euclidean space.

2. f ∈ C(X,Y ) means that f : X → Y is continuous.

3. For families of functions F and G where each F 3 f : X → Y and G 3 g : Y → Z, then we define G ◦ F =
{g ◦ f : X → Z : f ∈ F , g ∈ G}.

4. f ∈ emb(X,Y ) means that f ∈ C(X,Y ) is continuous and injective on the range of f , i.e. an embedding, and
furthermore that f−1 : f(X)→ X is continuous.

5. µ ∈ P(X) means that µ is a probability measure over X .

6. W2 (µ, ν) for µ, ν ∈ P(X) refers to the Wasserstein-2 distance, always with `2 ground metric.

7. ‖·‖Lp(X) refers to the Lp norm of functions, from X to R.

8. For vector-valued f : X → Y , ‖f‖L∞(X) = ess supx∈X ‖f‖2. Note that Y is always finite dimensional, and so all
discrete 1 ≤ q ≤ ∞ norms are equivalent.

9. Lip(g) refers to the Lipschitz constant of f .

10. For x ∈ Rn, [x]i ∈ R is the i’th component of x. Similarly, for matrix A ∈ Rm×n, [A]ij refers to the j’th element in
the i’th column.

B. Detailed Comparison to Prior work
B.1. Connection to Brehmer & Cranmer (2020)

In (Brehmer & Cranmer, 2020), the authors introduce manifold-learning flows as an invertible method for learning proba-
bility density supported on a low-dimensional manifold. Their model can be written as

F = T m1 ◦ Rn,m ◦ T n0 (18)

where T m1 ⊂ C(Rm,Rm), T m0 ⊂ C(Rn,Rn), and R =

{[
In×n

0(m−n)×n

]}
is a zero-padding (R1). They invert f ∈ F in

two different ways. For manifold-learning flows (M-flows) they restrict T m1 to be an invertible flow, and for manifold-
learning flows with separate encoder (Me-flows) they place no such restrictions on T m1 and instead train a separate neural
network e to invert elements of T m1 .

Our results apply out-of-the-box to the architectures used in Experiment A of (Brehmer & Cranmer, 2020). The architecture
described in Eqn. 18 is of the form of Eqn. 1 where L = 1. Further, although they are not studied here, our analysis can
also be applied to quadratic flows.

The network used in (Brehmer & Cranmer, 2020, Experiment 4.A) uses coupling networks, (T1), where T m1 and T n0 are
both 5 layers deep. For (Brehmer & Cranmer, 2020, Experiments 4.B and 4.C) the authors choose expressive elements T
that are rational quadratic flows (Durkan et al., 2019b) for both T m1 and T n0 . In Experiment 4.B they let T1 and T0 again
be 5 layers deep, and in 4.C they again let T1 by 20 layers deep and T0 15 layers. For the final experiment, 4.D, the choose
more complicated expressive elements that combine Glow (Kingma & Dhariwal, 2018) and Real NVP (Dinh et al., 2016)
architectures. These elements include the actnorm, 1 × 1 convolutions and rational-quadratic coupling transformations
along with a multi-scale transformation.

The authors mention universality of their network without our proof, but our universality results in Theorem 3.10 apply
to their networks from Experiment A wholesale. Further in their work the authors describe how training can be split into
a manifold phase and density phase, wherein the manifold phase T m1 is trained to learn the manifold, and in the density
phase T m1 if fixed and T n0 is trained to learn the density thereupon. This statement is made formal and proven by our Cor.
3.12.
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B.2. Connection to Kothari et al. (2021)

In (Kothari et al., 2021), the authors introduce the ‘Trumpet’ architecture, for its architecture, which has many alternating
flow networks & expansive layers with many flow-networks in the low-dimensional early stages of the network, which
gives the architecture a shape similar to the titular instrument.

The architecture studied in (Kothari et al., 2021) is precisely of the form of Eqn. 1, where the bijective flow networks are
revnets (Gomez et al., 2017; Jacobsen et al., 2018) architecture, and the expansive elements are 1 × 1 convolutions, as in
(R2). To out knowledge, there are no results that show that the revnets used are universal approximators, but if they revnets
are substituted with either (T1) or (T2), then the, we could apply Theorem 3.10 to the resulting architecture.

C. Proofs
C.1. Main Results

C.1.1. EMBEDDING GAP

To aid all of our subsequent proofs, we first present the following lemma which present inequalities and identities for the
embedding gap.

Lemma C.1. For all of the following results, f ∈ emb(K,Rm) and g ∈ emb(W,Rm) and n ≤ o ≤ m.

1.

BK,W (f, g) ≥ sup
xn∈K

inf
xo∈W

‖g(xo)− f(xn)‖2 . (19)

2. Let X,Y ⊂ W , let g be Lipschitz on W , and r ∈ emb(X,Y ). Then, there is a r′ ∈ emb(g(X), g(Y )) such that
g ◦ r = r′ ◦ g and ‖I − r′‖L∞(g(X)) ≤ ‖I − r‖L∞(X) Lip(g).

3.

‖I − r‖L∞(K) =
∥∥I − r−1∥∥

L∞(r(K))
(20)

4. Let K ⊂ Rn, X ⊂ Rp and W ⊂ Ro be compact sets. Also, let f ∈ emb(K,W ) and h ∈ emb(X,W ), and let
g ∈ emb(W,Rm) be a Lipschitz map. Then

BK,X(g ◦ f, g ◦ h) ≤ Lip(g)BK,X(f, h). (21)

5. BK,W (f, g) ≤ supx∈K ‖g ◦ h(x)− f(x)‖2 where h ∈ emb(K,Ro) is a map satisfying h(K) ⊂W .

6. For any X that is the closure of an open set , if h ∈ emb(X,W ) then

BK,W (f, g) ≤ BK,X(f, g ◦ h) (22)

7. For any r ∈ emb(f(K),Rm),

BK,W (f, g) ≤ ‖I − r‖L∞(f(K)) +BK,W (r ◦ f, g). (23)

8. For any r ∈ emb(f(K), g(W )) and h ∈ emb(X,W ) where X ⊂ Rp is the closure of a set U which is open in the
subspace topology of some vector space of dimension p, where n ≤ p ≤ o we have that

BK,X(f, g ◦ h) ≤ ‖I − r‖L∞(f(K)) + Lip(g)BK,X(g−1 ◦ r ◦ f, h) (24)

where Lip(g) denotes the Lipschitz constant of g.

9. For any µn ∈ P(K) there is a µo ∈ P(W ) such that

W2 (f#µn, g#µo) ≤ BK,W (f, g) (25)
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Proof. 1. Let r ∈ C(f(K), g(W )), then

‖I − r‖L∞(f(K)) = sup
xn∈K

‖(I − r)f(xn)‖2 = sup
xn∈K

‖f(xn)− r ◦ f(xn)‖2

= sup
xn∈K

‖f(xn)− g(xo)‖2 where xo = g−1 ◦ r ◦ f(xn)

≥ sup
xn∈K

inf
xo∈W

‖f(xn)− g(xo)‖2 .

2. g is injective on X , hence we can define r′ such that r′ = g ◦ r ◦ g−1 : g(X) → g(r(X)) ⊂ g(Y ) such that
r′ ∈ emb(g(X), g(Y )), and thus ∀x ∈ X ,

‖(I − r′) ◦ g(x)‖2 = ‖g(x)− g ◦ r(x)‖2 ≤ Lip(g) ‖I − r‖L∞(X) (26)

where we have used ‖r(x)− x‖2 ≤ ‖I − r‖L∞(X).

3. For every x ∈ r(K), we have a y ∈ K such that x = r(y), thus ∀x ∈ r(K),∥∥(I − r−1) (x)
∥∥
2

= ‖(r − I) (y)‖2 . (27)

But r is clearly surjective onto it’s range, hence taking the supremum over all x ∈ X yields∥∥I − r−1∥∥
L∞(r(K))

= ‖I − r‖L∞(K) (28)

4. As g ∈ emb(W,Rm), the map g : W → g(W ) is a homeomorphism and there is g−1 ∈ emb(g(W ),W ). For a map
r ∈ emb(g ◦ f(K), g ◦ h(X)), we see that r̂ = g−1 ◦ r ◦ g ∈ emb(f(K), h(X)). Also, the opposite is valid as if
r̂ ∈ emb(f(K), h(X)) then r = g ◦ r̂ ◦ g−1 ∈ emb(g ◦ f(K), g ◦ h(X)). Thus

BK,X(g ◦ f, g ◦ h) = inf
r∈emb(g◦f(K),g◦h(X))

‖I − r‖L∞(g◦f(K))

= inf
r=g◦r̂◦g−1∈emb(g◦f(K),g◦h(X))

‖I − g ◦ r̂ ◦ g−1‖L∞(g◦f(K))

= inf
r̂∈emb(f(K),h(X))

‖g ◦ (I − r̂) ◦ g−1‖L∞(g◦f(K))

≤ Lip(g) inf
r̂∈emb(f(K),h(X))

‖(I − r̂) ◦ g−1‖L∞(g◦f(K))

≤ Lip(g) inf
r̂∈emb(f(K),h(X))

‖I − r̂‖L∞(f(K))

≤ Lip(g)BK,X(f, h)

5. If we let r := g ◦ h ◦ f−1, then r ∈ emb(f(K), g(W )), and

BK,W (f, g) ≤ ‖‖(I − r) ◦ f(x)‖2‖L∞(K)
(29)

=
∥∥∥∥f(x)− g ◦ h ◦ f−1 ◦ f(x)

∥∥
2

∥∥
L∞(K)

≤ sup
x∈K
‖f(x)− g ◦ h(x)‖2 . (30)

6. Given that g ◦ h(X) ⊂ g(W ), we have that emb(f(K), g ◦ h(X)) ⊂ emb(f(K), g(W )), thus the infimum in Eqn. 6
is taken over a smaller set, thus BK,W (f, g) ≤ BK,X(f, g ◦ h).

7. Note that for any r′ ∈ emb(r ◦ f(K), g(W )), r′ ◦ r ∈ emb(f(K), g(W )), and so we have

BK,W (f, g) ≤ ‖I − r′ ◦ r‖L∞(f(K)) ≤ ‖I − r‖L∞(f(K)) + ‖r − r′ ◦ r‖L∞(f(K)) (31)

= ‖I − r‖L∞(f(K)) + ‖I − r′‖L∞(r◦f(K)) (32)

where we have used that r is injective for the final equality. This holds for all possible r′, hence we have the result.
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8. Recall that f ∈ emb(K,W ), g ∈ emb(W,Rm), h ∈ emb(X,W ) and r ∈ emb(f(K), g(W )). Then g−1 ∈
emb(g(W ),W ). As r ◦ f(K) ⊂ g(W ), we see that

r ◦ f = g ◦ g−1 ◦ r ◦ f.

Thus Lemma C.1 points 4 and 8 yield that

BK,X(f, g ◦ h) ≤ ‖I − r‖L∞(f(K)) +BK,X(r ◦ f, g ◦ h)

≤ ‖I − r‖L∞(f(K)) +BK,X(g ◦ g−1 ◦ r ◦ f, g ◦ h)

≤ ‖I − r‖L∞(f(K)) + Lip(g)BK,X(g−1 ◦ r ◦ f, h),

which proves the claim.

9. Let rε ∈ emb(f(K), g(W )) be such that ‖I − rε‖L∞(Range(f)) ≤ BK,W (f, g)+ε, then for every x ∈ K, there exists
y ∈ W such that g(y) = r ◦ f(x). From injectivity of g, we have that y = g−1 ◦ rε ◦ f(x). Note that g−1 ◦ rε ◦ f ∈
emb(K,W ), hence K ′ := g−1 ◦ rε ◦ f(K) ⊂ W is compact. Define µ′ε ∈ P(K ′) where µ′ε := (g−1 ◦ rε ◦ f)#µ.
Clearly g#µ′ε = rε ◦ f#µ, and thus

W2 (f#µ, g#µ
′
ε) = W2 (f#µ, rε ◦ f#µ) (33)

and so

W2 (f#µ, g#µ
′
ε) ≤

(∫
K

‖I − rε‖22 df#µ
)1/2

≤ BK,W (f, g) + ε. (34)

As the set W is compact, by Prokhoros’s theorem, see (Billingsley, 1999, Theorem 5.1), the set of probability mea-
sures P (W ) is a compact set in the topology of weak convergence. Thus there is a sequence εi → 0 such that the
measures µ′εi converge weakly to a probability measure µo. As g : W → K is a continuous function, the push-forward
operation µ→ g#µ is continuous g# : P (W )→ P (K) and thus g#µ′εi converge weakly to g#µo. Finally, as g#µ′εi
are supported in a compact set K, their second moments converge to those of g#µo as i → ∞. By (Ambrosio &
Gigli, 2013), Theorem 2.7, see also Remark 28, the weak convergence and the convergence of the second moments
imply the convergence in the Wasserstein-2 metric. Hence, g#µ′εi converge to g#µo in Wasserstein-2 metric and we
see that

W2 (f#µ, g#µo) ≤ BK,W (f, g). (35)

C.2. Manifold Embedding Property

C.2.1. THE PROOF OF LEMMA 3.4

The proof of Lemma 3.4. Let f = F2 ◦ F1 where F2 ∈ Fo,m and F1 ∈ Fn,o and ε > 0 be given, and let Eo,m. Clearly,
BK,W (f,E) ≤ BK,W (F2, E) and so by the m, o, o MEP of Eo,m with respect to Fo,m, we have the existence of an
rm ∈ emb(f(K), Eo,m) such that ‖I − r‖L∞(f(K)) < ε. Ko := (Eo,m)

−1 ◦ r ◦ f(K) is compact, hence Eo,m is
Lipschitz on Ko, so we can apply Lemma C.1 point 8, so

BK,W (f,Eo,m ◦ Ep,o) ≤ ‖I − r‖L∞(f(K)) + Lip(Eo,m)BK,W ((Eo,m)
−1 ◦ r ◦ f,Ep,o). (36)

But, because f ∈ Fo,m ◦Fn,o, we can choose aEp,o ∈ Ep,o1 so thatBK,W ((Eo,m)
−1 ◦r◦f,Ep,o) ≤ ε

2 Lip(Eo,m) which,
combined with Eqn. 36, proves the result.

C.2.2. THE PROOF OF LEMMA 3.5

The proof of Lemma 3.5. Recall that F ⊂ emb(Rn,Rm). Suppose that Eo,m2 does not have the m,n, o MEP with respect
to F , then there are some ε > 0 and f ∈ F so that

∀Eo,m ∈ Eo,m2 ∀W1 ⊂⊂ Ro, BK,W1
(f,Eo,m2 ) ≥ ε. (37)
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From Lemma C.1 point 6, we have that

ε ≤ BK,W1
(f,Eo,m2 ) ≤ BK,W (f,Eo,m2 ◦ Ep,o1 ) (38)

for all Ep,o1 ∈ Ep,o1 and for all compact sets W ⊂ Rp that satisfy Ep,o1 (W1) ⊂ W . We observe that if W ′ ⊂ Rp is a
compact set such that W ′ ⊂W , we have

BK,W (f,Eo,m2 ◦ Ep,o1 ) ≤ BK,W ′(f,Eo,m2 ◦ Ep,o1 )

Thus, inequality Eq. 38 holds for all Ep,o1 ∈ Ep,o1 and for all compact sets W ⊂ Rp. Summarising, we have seen that there
are f ∈ F and ε > 0 such that for all Ep,o1 ∈ Ep,o1 and for all compact sets W ⊂ Rp we have ε ≤ BK,W (f,Eo,m2 ◦ Ep,o1 ).
Hence Eo,m2 does not have the m,n, o MEP with respect to F , and we have obtained a contradiction, which proves the
result.

C.3. Topological Obstructions to Manifold Learning with Neural Networks

C.3.1. S1 CAN NOT BE MAPPED EXTENDABLY TO THE TREFOIL KNOT

We first show that there are no maps E := T ◦ R where R : R2 → R3 such that T is a homeomorphism and E(S1) is a
trefoil knot. We use the fact that the trivial knot S1 and the trefoil knotM = f(S1) are not equivalent, that is, there are
no homeomorphisms in R3 that map S1 toM. Indeed, by (Murasugi, 2008, Section 3.2), the trefoil knotM and its mirror
image are not equivalent, whereas the trivial knot S1 and its mirror image are equivalent. Hence,M and R(S1) are not
equivalent knots in R3. Thus by (Murasugi, 2008, Definition 1.3.1 and Theorem 1.3.1), we see that there is no orientation
preserving homeomorphism T : R3 → R3 such that T (R3 \ R(S1)) = R3 \ M. As the orientation of the map T can
be changed by composing T with the reflection J : R3 → R3 across the plane Range(R) that defines a homeomorphism
J : R3 \R(S1)→ R3 \R(S1), we see that there is no homeomorphism T : R3 → R3 such that T (R3 \R(S1)) = R3 \M.

This example shows that the composition E = T ◦ R of a linear map R and a coupling flow T cannot have the property
that E(S1) = f(S1) for this embedding f . Moreover, the complement R3 \E(S1) is never homeomorphic to R3 \ f(S1)
for any such map E.

We now construct another example, similar to Figure 2, where an annulus that is mapped to a knotted ribbon in R3. To
do this, replace the circle S1 by an annulus K = {x ∈ R2 : 1/2 ≤ |x| ≤ 3/2}, that in the polar coordinates is
{(r, θ) : 1/2 ≤ r ≤ 3/2} and define a map F : K → R3 by defining in the polar coordinates

F (r, θ) = f(θ) + a(r − 1)v(θ)

where f : S1 → Σ1 ⊂ R3 is an smooth embedding of S1 to a trefoil knot Σ1 and v(θ) ∈ R3 is a unit vector normal to
Σ1 at the point f(θ) such that v(θ) is a smooth function of θ, and a > 0 is a small number. In this case, M1 = F (K) is a
2-dimensional submanifold of R3 with boundary, which can visualizes M1 as a knotted ribbon.

We now show that there are no maps E = T ◦ R such that E(K) = F (K) where T : R3 → R3 is an embedding, and
R : R2 → R3 injective and linear. The key insight is that if such a T existed, then this implies that the trefoil knot is
equivalent to S1 in R3, which is known to be false.

Let Uρ(A) denote the ρ-neighborhood of the set A in R3. It is easy to see that R2 \ ({0} × [−1, 1]) is homeomorphic to
R2 \ BR2(0, 1), which is further homeomorphic to R2 \ {0}. Thus, using tubular coordinates near Σ1 and a sufficiently
small ρ > 0, we see that R3 \M1 is homeomorphic to R3 \ Uρ(Σ1), which is further homeomorphic to R3 \ Σ1. Also,
when R : R2 → R3 is an injective linear map, we see that M2 = R(K) is a un-knotted band in R3 and R3 \ M2 is
homeomorphic to R3 \ Σ2. If R3 \M1 and R3 \M2 would be homeomorphic, then also R3 \ Σ1 and R3 \ Σ2 would be
homeomorphic that is not possible by knot theory, see (Murasugi, 2008, Definition 1.3.1 and Theorem 1.3.1). This shows
that there are no injective linear maps R : R2 → R3 and homeomorphisms Φ : R3 → R3 such that (Φ ◦R)(K) = M1.

Similar examples can be obtained in a higher dimensional case by using a knotted torus (Séquin, 2011)6 and their Cartesian
products.

6On the knotted torus, see http://gallery.bridgesmathart.org/exhibitions/2011-bridges-conference/
sequin.

http://gallery.bridgesmathart.org/exhibitions/2011-bridges-conference/sequin
http://gallery.bridgesmathart.org/exhibitions/2011-bridges-conference/sequin


Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

C.3.2. LINEAR HOMEOMORPHISM COMPOSITION

In this subsection we prove that the topological obstructions to universality presented in Section 3.3 still apply when the
expansive elements are allowed to be hom(R3,R3) ◦ R3×2. This fact follows from the observation that hom(R3,R3) ◦
hom(R3,R3) = hom(R3,R3), which yields that Ê = E .

C.3.3. THE PROOF OF THEOREM 3.8

Given an f ∈ embk(K,Rm), for k ≥ 1, we first show that form ≥ 2n+1 there is always a diffeomorphism Ψ: Rm → Rm
so that Ψ◦f : Rn → {0}n×Rm−n. The existence of such a Ψ borrows ideas from Whitney’s embedding theorem (Hirsch,
2012, Theorems 3.4 & 3.5) and is constructed by iteratively constructing an injective projection.

Next if m− n ≥ 2n+ 1, then we can apply (Madsen et al., 1997, Lemma 7.6), a result analogous to the Tietze extension
theorem, to show that Ψ: M→ {0}n × Rm−n can be extended to a diffeomorphism on the entire space, h : Rm → Rm.
Hence f(x) = Ψ−1 ◦ h ◦ R(x) for diffeomorphism Ψ−1 ◦ h : Rm → Rm and zero-padding operator R : Rn → Rm, and
thus f ∈ Ik(K,Rm). This fact that for m sufficiently large compared to n such a diffeomorphism can always be extended
is related to the fact that in 4-dimensions, all knots can be opened. This can be contrasted with the case in Figure 2.

We now present our proof.

Proof. Let us next prove Eq. 9 when m ≥ 3n+ 1. Let

f ∈ embk(Rn,Rm) (39)

be a Ck map andM = f(Rn) be an embedded submanifold of Rm.

We have that m ≥ 3n+ 1 > 2n+ 1. Let Sm−1 be the unit sphere of Rm and let

SRm = {(x, v) ∈ Rm × Rm : ‖v‖ = 1}

be the sphere bundle of Rm that is a manifold of dimension 2m − 1. By the proof’s of Whitney’s embedding theorem,
by Hirsch, (Hirsch, 2012, Chapter 1, Theorems 3.4 and 3.5), there is a set of ‘problem points’ H1 ⊂ Sm−1 of Hausdorff
dimension 2n such that for all w ∈ Rm \H1 the orthogonal projection

Pw : Rm → {w}⊥ = {y ∈ Rm : y ⊥ w}

has a restriction Pw|M onM defines an injective map

Pw|M :M→ {w}⊥.

Moreover, let TxM be the tangent space of manifoldM at the point x and let us define another set of ‘problem points’ as

H2 = {v ∈ Sm−1 : ∃x ∈M, v ∈ TxM}.

For w ∈ Sm−1 \H2 the map
Pw|M :M→ {w}⊥ ⊂ Rm

is an immersion, that is, it has an injective differential. The sphere tangent bundle SM ofM has dimension 2n − 1, and
the set H2 has the Hausdorff dimension at most 2n−1. Thus H = H1∪H2 has Hausdorff dimension at most 2n < m−1
and hence the set Sm−1 \H is non-empty. For w ∈ Sm−1 \H the map Pw|M :M→ {w}⊥ is a Ck injective immersion
and thus

Ñ = Pw(M) ⊂ {w}⊥

is a Ck submanifold.

Let Z : Pw(M)→M be the Ck function defined by

Z(y) ∈M, Pw(Z(y)) = y,

that is it is the inverse of Pw|M :M→ Pw(M), where Pw(M) ⊂ {w}⊥. Let g : Ñ = Pw(M)→ R be the function

g(y) = (Z(y)− y) · w, y ∈ Pw(M).
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Then Ñ is a n-dimensional Ck submanifold of (m − 1)-dimensional Euclidean space H = {w}⊥ and g is a Ck function
defined on it. By definition of a Ck submanifold of H , any point x ∈ Ñ has a neighborhood U ⊂ H with local Ck

coordinates ψ : U → Rm such that ψ(Ñ ∩ U) = ({0}m−1−n × Rn) ∩ ψ(U). Using these coordinates, we see that g can
be extended to a Ck function in U . Using a suitable partition of unity, we see that there is a Ck map G : {w}⊥ → R that a
Ck extension of g that is, G|Ñ = g.

Then the map
Φ1 : Rm → Rm, Φ1(x) = x−G(Pw(x))w

is a Ck diffeomorphism of Rm that mapsM to m− 1 dimensional space {w}⊥, that is

Φ1(M) ⊂ {w}⊥.

In the case when m ≥ 3n + 1, we can repeat this construction n times. This is possible as m − n ≥ 2n + 1. Then we
obtain Ck diffeomorphisms Φj : Rm → Rm, j = 1, . . . , n such that their composition Φn ◦ · · · ◦ Φ1 : Rm → Rm is a
Ck-diffeomorphism such that which

M′ = Φn ◦ · · · ◦ Φ1(M) ⊂ Y ′,

where Y ′ ⊂ Rm is a m− n dimensional linear space. By letting Ψ = Q ◦ Φn ◦ · · · ◦ Φ1 for rotation matrix Q ∈ Rm×m,
we have that Y := Q(Y ′) = {0}n × Rm−n. Also, let X = Rn × {0}m−n, A = Q(M′) ⊂ X and φ : X → Rm be the
map

φ(x, 0) = Ψ(f(x)) ∈ Y,

where f is the function given in Eq. 39 and B = Ψ(f(A)) ⊂ Y . Then A is a Ck-submanifold X , B is a Ck-submanifold
Y and φ : A → B is a Ck-diffeomorphism. We observe that m− n ≥ 2n + 1 and so we can apply (Madsen et al., 1997,
Lemma 7.6) to extend φ to a Ck-diffeomorphism

h : Rm → Rm

such that h|A = φ. Note that (Madsen et al., 1997, Lemma 7.6) concerns an extension of a homeomorphism, but as
the extension h is given by an explicit formula which is locally a finite sum of Ck functions, the same proof gives a
Ck-diffeomorphic extension h to a diffeomorphism φ. Indeed, let A′ ⊂ Rn and B′ ⊂ Rm−n be such sets that A =
A′ × {0}m−n, and B = {0}n × B′. Moreover, let φ̃ : A′ → Rn−m and ψ̃ : B′ → Rn be such Ck-smooth maps that
φ(x, 0) = (0, φ̃(x)) for (x, 0) ∈ A and φ−1(0, y) = (ψ̃(y)) for (0, y) ∈ B. As A′ and B′ are Ck-submanifolds, the
map φ̃ has a Ck-smooth extension f1 : Rn → Rn−m and the map ψ̃ has a Ck-smooth extension f2 : Rn−m → Rn, that
is, f1|A′ = φ̃ and f2|B′ = ψ̃. Following (Madsen et al., 1997, Lemma 7.6), we define the maps h1 : Rn × Rm−n →
Rn × Rm−n,

h1(x, y) = (x, y + f1(x))

and h2 : Rn × Rm−n → Rn × Rm−n,
h2(x, y) = (x+ f2(y), y).

Observe that h2 has the inverse map h−12 (x, y) = (x− f2(y), y). Then the map

h = h−12 ◦ h1 : Rn × Rm−n → Rn × Rm−n

is a Ck-diffeomorphism that satisfies h|A = φ. This technique is called the ‘clean trick’.

Finally, to obtain the claim, we observe that when R : Rn → Rm, R(x) = (x, 0) ∈ {0}n × Rm−n is the zero padding
operator, we have

f(x) = Ψ−1(φ(R(x))), x ∈ Rn.

As h|X = φ and R(x) ∈ X , this yields

f(x) = Ψ−1(h(R(x))), x ∈ Rn,

that is,
f = E ◦R

where E = Ψ−1 ◦ h : Rm → Rm is a Ck diffeomorphism. Thus f ∈ Ik(Rn,Rm). This proves Eq. 9 when m ≥
3n+ 1.
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C.4. Universality

C.4.1. THE PROOF OF LEMMA 3.9

The proof of Lemma 3.9. (i) Let us consider ε > 0, a compact set K ⊂ Rn and f ∈ emb(Rn,Rm). Let W =
K × {0}o−n and F : Ro → Rm be the map given by F (x, y) = f(x), (x, y) ∈ Rn × Ro−n. Because
Ro,m ⊂ emb(Ro,Rm) is a uniform universal approximator of C(Rn,Rm), there is an R ∈ Ro,m such that
‖F −R‖L∞(W ) < ε. Then for the map E = I ◦ R we have that BK,W (f,E) < ε. This is true for every ε > 0, and
so Eo,m has the MEP property w.r.t. the family emb(Rn,Rm).

(ii) Recall that f := Φ0 ◦ R0 for Φ0 ∈ Diff1(Rm,Rm) and linear R0 : Rn → Rm, and that R ∈ R is such that R
∣∣
U

is
linear for openU . We present the proof in the case when n = o, and we make the assumption thatR

∣∣
K

is linear. In this
case, we have the existence of an affine map A : Rm → Rm so that R0 = A ◦ R so that K̃ := R0(K) = A(R(K)).
Let ε > 0 be given. By (Hirsch, 2012, Chapter 2, Theorem 2.7), the space Diff2(Rm,Rm) is dense in the space
Diff1(Rm,Rm), and so there is some Φ1 ∈ Diff2(Rm,Rm) such that

‖Φ1|K̃ − Φ0|K̃‖L∞(K̃;Rm) <
ε

2
.

Then, let T ∈ T m be such that ‖T − Φ1 ◦A‖L∞(R(K);Rm) <
ε
2 . Then we have that

‖T ◦R− f‖L∞(K) = ‖T ◦R− Φ0 ◦R0‖L∞(K)

≤ ‖T ◦R− Φ1 ◦A ◦R‖L∞(K) + ‖Φ1 ◦A ◦R− Φ0 ◦R0‖L∞(K)

≤ ‖T − Φ1 ◦A‖L∞(R(K)) + ‖Φ1 ◦A ◦R− Φ0 ◦A ◦R‖L∞(K)

<
ε

2
+
ε

2
= ε.

Hence, if we let r = T ◦R ◦ f−1 ∈ emb(f(K), T ◦R(K)) then we obtain that BK,K(f, T ◦R) < ε. This holds for
any ε, and hence we have that T ◦ R has the MEP for I(Rn,Rm).

The proof in the case that o ≥ n follows with minor modification, and applying Lemma C.1 point 5.

C.4.2. THE PROOF OF EXAMPLE 1

Proof. (i) From (Puthawala et al., 2020, Theorem 15) we have that Ro,m can approximate any continuous function
f ∈ emb(Rn,Rm). Further, clearly (T1) and (T2) both contain the identity map, thus Lemma 3.9 (i) applies.

(ii) Let T m be the family autoregressive flows with sigmoidal activations defined in (Huang et al., 2018). By (Teshima
et al., 2020, App. G, Theorem 1 and Proposition 7), T m are sup-universal approximators in the space Diff2(Rm,Rm)
of C2-smooth diffeomorphisms Φ : Rm → Rm. When Ro,m is one of (R1) or (R2) the network is always linear,
hence the conditions are satisfied. IfRo,m is (R4), thenRo,m contains linear mappings, and if (R3), then we can shift
the origin, so that R(x) is linear on K. In all cases, Lemma 3.9 part (ii) applies.

C.4.3. THE PROOF OF THEOREM 3.10

The proof of Theorem 3.10. First we prove the claim under the assumptions (i).

First we prove the claim under assumption (i).

Let W ⊂ Rn be an open relatively compact set. From Lemma 3.4 we have that

En,m := EnL−1,m
L ◦ · · · ◦ En,n1

1 (40)

has them,n, nMEP w.r.t. F := FnL−1,m
L ◦· · ·◦Fn,n1

1 . Thus for any ε1 > 0, we have an Ẽ ∈ En,m s.t. BK,W (f, Ẽ) < ε1.
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From Lemma C.1 point 9, we have the existence of a µ′ ∈ P(W ) so that W2

(
f#µ, Ẽ#µ

′
)
< ε1. By convolving µ′ with

a suitable mollifier φ, we can obtain a measure µ′′ = µ′ ∗ φ ∈ P(W ) that is absolutely continuous with respect to the
Lebesgue measure so that

W2 (µ′, µ′′) <
ε1

1 + Lip(Ẽ)
,

see (Ambrosio et al., 2008, Lemma 7.1.10.), and so W2

(
Ẽ#µ

′, Ẽ#µ
′′
)
< ε1. Hence,

W2

(
f#µ, Ẽ#µ

′′
)
< 2ε1. (41)

Next, from universality of T n0 for any ε2 > 0, we have the existence of a T0 ∈ T n0 so that W2 (µ′′, T0#µ) < ε2. From
Lemma C.1 points 7 and 8 we have that

W2

(
f#µ, Ẽ ◦ T0#µ

)
≤ 2ε1 + ε2 Lip(Ẽ). (42)

For a given ε > 0, choosing ε1 < ε
4 and ε2 < ε

2(1+Lip(Ẽ))
yields that the map E = Ẽ ◦ T0 ∈ E is such that

W2 (f#µ,E#µ) < ε. This yields the result.

Next we prove the claim under the assumptions (ii). By our assumptions, in the weak topology of the space C2(Rnj ,Rnj ),
the closure of the set T nj ⊂ C2(Rnj ,Rnj ) contains the space of Diff2(Rnj ,Rnj ). Moreover, by our assumptionsRnj−1,nj

contains a linear map R. We observe that as Rnj−1,nj is a space of expansive elements, the map R is injective. and hence
by Lemma 3.9, the family

Enj−1,nj

j = T nj ◦ Rnj−1,nj

has the MEP w.r.t. F = I1(Rn,Rm). By Theorem 3.8, we have that I1(Rn,Rm) coincides with the space emb1(Rn,Rm).
Finally, by the assumption that T n0

0 is dense in the space of C2-diffeomorphism Diff2(Rn`) implies that T n0
0 is a Lp-

universal approximator for the set of C∞-smooth triangular maps for all p < ∞. Hence by Lemma 3 in Appendix A of
(Teshima et al., 2020), T n0

0 is a distributionally universal. From these the claim in the case (ii) follows in the same way as
the case (i) using the family F = emb1(Rn,Rm).

C.4.4. THE PROOF OF LEMMA 3.11

The proof of Lemma 3.11. The proof follows from taking the logical negation of the MEP forF . If the MEP is not satisfied,
then there is some f ∈ F so that BK,W (f,E) is never smaller than ε > 0 for all E ∈ E . Applying the definition of
BK,W (f,E) from Eqn. 6 yields the result.

C.4.5. THE PROOF OF COR. 3.12

The proof of Cor. 3.12. The proof of Eqn 12 follows from the definition of the MEP.

From Eqn. 12 for i = 1, . . . we have the existence of a εi := BK,W (f,Ei), where limi→∞ εi = 0, and a
ri ∈ emb(f(K), Ei(W )) such that ‖I − ri‖L∞(f(K)) ≤ 2εi. Applying Lemma C.1 point 8, we have that for any
E′ ∈ En,o(X,W )

BK,X(f,Ei ◦ E′) ≤ 2εi + Lip(Ei)BK,X(E−1i ◦ ri ◦ f,E
′). (43)

Because En,o(X,W ) has the o, n, n MEP, for each i = 1, . . . , we can find a E′i ∈ En,o(X,W ) such that BK,X(E−1i ◦ ri ◦
f,E′i) ≤ 1

1+Lip(Ei)
εi, and so BK,X(f,Ei ◦E′i) ≤ 3εi. For this choice of E′i, we have that limi→∞BK,X(f,Ei ◦E′i) = 0.

From Lemma C.1 point 9, we have that for any absolutely continuous µ ∈ P(K), there is a absolutely continuous µ′ ∈
P(X) such that W2 (f#µ,Ei ◦ E′i#µ′) ≤ 3ε. By the universality of T n, continuity of Ei ◦E′i, and absolute continuity of
µ and µ′, we have the existence of Ti ∈ T n so that

W2 (f#µ,Ei ◦ E′i ◦ Ti#µ) ≤ 4εi (44)

for each i = 1, . . . . This proves the claim.
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(a) The unknot (b) The trefoil knot

Figure 5: An example showing how the unknot (left) can be deformed to approximate the trefoil knot (right). The black
part of both knots are identical, and the red section can be made arbitrarily skinny by bringing the black points together.
This can be done while sending the measure of the red sections to zero, if the starting measure have no atoms. In this way,
we can construct a sequence of diffeomorphisms (Ei)i=1,... so that W2 (Ei#µ, ν)→ 0 where µ is the uniform measure on
S1, and ν the uniform measure on the trefoil knot. We would like to thank Reviewer 4 for suggesting this discussion and
providing the figure (in tikz code!).

C.4.6. FURTHER DISCUSSION ON MATCHING TOPOLOGY EXACTLY VS APPROXIMATELY

In this section we discuss a theoretical gap between the positive approximation results of Theorem 3.10 and the negative
exact mapping results of Lemma 3.11. We show two main results.

First we construct sequences of maps of the form E = T ◦R that map the uniform measure on S1 to the uniform measure on
the trefoil knot. As discussed in Section 3.3, there are no mappings of this form which map S1 to the trefoil knot exactly, but
there are approximate mappings. This shows that there is some overlap between the two results, and extendable mappings
may be approximated by non-extendable mappings.

Second we prove that sequences of functions that approximate non-extendable embeddings with extendable ones neces-
sarily have unbounded gradients. This result shows that, when restricted to approximation by sequences with bounded
gradients, either Theorem 3.10 or Lemma 3.11 can apply, but never both.

Example 2. There is a sequence of extendable embeddings (Ei)i=1,... that map the uniform measure on S1, denoted µ, to
the uniform measure on the trefoil knot, denoted ν, so that

lim
i→∞

W2 (Ei#µ, ν) = 0.

Proof. The key idea of the construction is shown in Figure 5. In that figure the unknot is bent so that it overlaps the trefoil
knot, outside of an exceptional set (shown in red in Figure 5) which can be made as small as desired. The result follows by
constructing a sequence of functions which ‘squeeze’ this red section as small as possible.

Let µ be the uniform probability measure on S1 ⊂ R2, and ν the uniform probability measure on the trefoil knot,M. Let
R : R2 → R3 be a fixed linear map of the form R(x) = (x, 0).

We define a sequence (Xi)i=1,... of unknots in the following way. For any choice of two points on the top of the trefoil knot
as shown in black in Figure 5a, we can replace the straight-line red section with a U-shaped section as shown in Figure 5a
so that the resulting knot is the unknot. We obtain X1 by letting the black points be a distance 1 apart, X2 by letting them
be a distance 1

2 apart and so on, so that for Xi the two points are a distance 1
i apart. Further, for each Xi, we define Ai and

Bi where Ai is the U-shaped piece of Xi (in red), and Bi = Xi \Ai. Observe that Bi ⊂M.

Let (T ′i )i=1,... be a family of diffeomorphisms so that Ei : R3 → R3 maps S1×{0} to Xi. Further, let (T ′′i )i=1,... be such
that T ′′i : Xi → Xi so that χBi (T ′′i ◦ T ′i ◦R)# µ = χBiν when χBi is the characteristic function of the set Bi.

Then we define Ei := T ′′i ◦ T ′i ◦R and compute

W2 (Ei#µ, ν) ≤W2

(
χAi

Ei#µ, χM\Bi
ν
)

+ W2 (χBi
Ei#µ, χBi

ν)

= W2

(
χAi

Ei#µ, χM\Bi
ν
)
.
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As i increases, the length ofM\Bi goes to zero, thus ν(M\Bi) = µ(Ai) converges to zero. Hence taking limits yields

lim
i→∞

W2 (Ei#µ, ν) ≤ lim
i→∞

W2

(
χAi

Ei#µ, χM\Bi
ν
)

= 0.

Finally, Ei is certainly an extendable embedding, as R is linear, and T ′′i ◦ T ′i are diffeomorphisms.

The above proof also applies when ν or µ have finitely many atoms. The same construction works if Ai is chosen so that
it contains no atoms for sufficiently large i.

Next, we show that all function sequence for which implication of Theorem 3.10 and conditions of Lemma 3.11 apply are
not uniformly Lipschitz. This implies that if they are differentiable they have unbounded gradients.
Lemma C.2. Let f be continuous and Ei be a sequence of continuous functions that are uniformly Lipschitz with constant
L. Let Ei be such that for all compact K and W subsets of Rn, there is an ε > 0, so ∀i and r ∈ emb(f(K), E(W )),
‖I − r‖L∞(K) ≥ ε. If µ is the indicator function of d, then limi→∞W2 (f#µ,Ei#µ) > 0.

Proof. Let Ei be uniformly Lipschitz with constant L. Consider a ε
2 tubular neighborhood of f(K). From the fact that

‖I − r‖L∞(K) ≥ ε, we have that there is a point x ∈ E(W ) so that x lies outside of this neighborhood. From uniform
Lipschitzness ofEi, for each i there is a ballB of radius ε

4L around x so that all points inEi∩B are more than ε
4 away from

f(K). We also have that µ(Ei ∩ B) > c where c is the volume of the n dimensional ball. Thus, W2 (f#µ,Ei#µ) > cε
4L

for each i, and so limi→∞W2 (f#µ,Ei#µ) > 0.

C.5. Layerwise Inversion and Recovery of Weights

C.5.1. LAYER-WISE PROJECTION

Here we provide the details of our closed-form layerwise projection algorithm The flow layers are injective, and are often
implemented to be numerically easy to invert. Thus, the crux of the algorithm comes from inverting the injective expansive
layers, R. The range of the ReLU layer is piece-wise affine, hence the inversion follows a two-step program. First,
identify which affine piece (described algebraically, onto which sign pattern) to project. Second, project to this point using
a standard least-squares solver.

The second step is always straight-forward to analyze, but the first is more complicated.

The key step in our algorithm is the fact that for the specific choice of weight matrix W =

[
B
−DB

]
, given any y ∈ R2n,

we can always solve the least-squares inversion problem exactly.

We prove this result in several parts given below.

1. For any y ∈ R2n, MyW ∈ Rn×n is full-rank.

2. If [y]i 6= [y]i+n for each i = 1, . . . , n, then the argmin in Eqn. 17 is well defined, i.e. that there is a unique minimizer.
Otherwise there are 2I minimizers, where I is the number of distinct i such that [y]i = [y]i+n.

3. If M̃y =
[
∆y (In×n −∆y)

]
, then

min
x∈Rn

‖y −R(x)‖22 = min
x∈Rn

‖My (y −Wx)‖22 +
∥∥∥M̃yy

∥∥∥2
2
. (45)

4. We verify Eqn. 17.

The proof of Theorem 3.15. 1. Using the definition of My , we have,

My

[
B
−DB

]
=
(
In×n −∆y

)
B −∆yDB =

(
In×n −∆y −∆yD

)
B. (46)

But, (In×n −∆y −∆yD) is a full-rank diagonal matrix (with entries either 1 or [D]i,i), and B is full rank by

assumption, hence My

[
B
−DB

]
is too.
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2. Because B is square and full rank there exists a basis7
{
b̂i

}
i=1,...,n

of Rn such that

〈
b̂j , bi

〉
=

{
1 if i = j

0 if i 6= j
. (47)

For an x ∈ Rn, let αi = 〈x, bi〉 for i = 1, . . . , n be the expansion of x in the b̂i basis.

min
x∈Rn

‖y −R(x)‖22 = min
x∈Rn

2n∑
i=1

[y −R(x)]
2
i (48)

=

n∑
i=1

min
xi∈R

([y]i −max(〈x, bi〉 , 0))
2

+
(
[y]i+n −max(〈x,− [D]ii bi〉 , 0)

)2
(49)

We now consider minizing Eqn. 49 by minimizing the basis expansion in terms of αi,
n∑
i=1

min
αi∈R

([y]i −max(αi, 0))
2

+
(
[y]i+n −max(− [D]ii αi, 0)

)2
(50)

Eqn. 50 is clearly minimized by minizing each term in the sum, hence we search for a minimizer of the i’th term

min
αi∈R

([y]i −max(αi, 0))
2

+
(
[y]i+n −max(− [D]ii αi, 0)

)2
(51)

Noting f(αi) as the quantity inside the minimum of Eqn. 51, we consider the positive, negative and zero αi cases of
Eqn. 51 separately and we get

min
αi∈R+

f(αi) = min
αi∈R+

([y]i − αi)
2

+ [y]
2
i+n = [y]

2
i+n (52)

min
αi∈R−

f(αi) = min
αi∈R+

[y]
2
i +

(
[y]i+n + [D]ii αi

)2
= [y]

2
i (53)

f(0) = [y]
2
i + [y]

2
i+n . (54)

If [y]i+n > [y]i, then the minimizer of Eqn. 51 is αi = − [y]2i+n

[D]ii
< 0. Conversely if [y]i+n < [y]i then the minimizer

of Eqn. 51 is αi = [y]i > 0. This argument applies all i = 1, . . . , n, and hence if [y]i 6= [y]i+1 for all i = 1, . . . , n
then the minimizing x is unique.

If [y]i = [y]i+1 then there are exactly two minimizers of f(αi), − [y]2i+n

[D]ii
and [y]i, for both of which f(αi) = [y]

2
i =

[y]
2
i+n.

3. If we suppose that [y]i+n − [y]i > 0, then [c(y)]i = 0 and [c(y)]i+n > 0, thus [∆y]ii = 1, hence if we let xmin be the
minimizing x from part 1, then

([y]i −max(〈xmin, bi〉 , 0))
2

+
(
[y]i+n −max(〈xmin,− [D]ii bi〉 , 0)

)2
(55)

= [y]
2
i +

(
[y]i+n −max(〈xmin,− [D]ii bi〉 , 0)

)2
(56)

=
[
M̃yy

]2
i

+ [My (y −Wxmin)]
2
i (57)

If [y]i+n − [y]i ≤ 0 then we have

([y]i −max(〈xmin, bi〉 , 0))
2

+
(
[y]i+n −max(〈xmin,− [D]ii bi〉 , 0)

)2
(58)

= ([y]i −max(〈xmin, bi〉 , 0))
2

+ [y]
2
i+n (59)

= [My (y −Wxmin)]
2
i +

[
M̃yy

]2
i
. (60)

Thus combining Eqn.s 48, 49, 57 and 60 for each i = 1, . . . , n, we have that

min
x∈Rn

‖y −R(x)‖22 = min
x∈Rn

‖My (y −Wx)‖22 + ‖Myy‖22 . (61)

7Namely the columns of the matrix B−1
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4. For the final point, combining all of the above points we have

min
x∈Rn

‖y −R(x)‖22 = min
x∈Rn

‖My (y −Wx)‖22 . (62)

Further we have from Point 1 that MyW is full rank, hence (MyW )
−1
Myy = R†(y) is a minimizer of Eqn. 62. If

[y]i 6= [y]i+n for all i = 1, . . . , n then Part 2 applies, and R†(y) is the unique minimizer of ‖y −R(x)‖22. In either
case, we have that R†(y) is a minimizer.

C.5.2. BLACK-BOX RECOVERY

We now discuss assumptions that enable black-box recovery of the weights of our entire network post-training.

Assumption C.3. For each ` = 1, . . . , L,R` is an affine ReLU layer. Each T` and T0 is constructed from a finite number
of affine ReLU layers.

Remark C.4. If a network F of the form of Eqn. 1 satisfies Assumption C.3, then given the range of the network, the range
of the network can be recovered exactly.

Further, if the linear region assumption from (Rolnick & Körding, 2020) is satisfied, then the exact weights are recovered,
subject to two natural isometries discussed below.
Remark C.5. The ReLU part of Assumption C.3 is for all examples in Sec. 2.1. Further it is also satisfied by both flows
considered in Sec. 2.2, provided that the various gi are given by layers of affine ReLU’s.

In (Rolnick & Körding, 2020), the authors show that, although ReLU networks depend on the value of their weight matrix
in non-linear ways, it is still possible to recover the exact weights of a given ReLU network in a black-box way, subject to
natural isometrics. The authors show that this is possible not only in theory, but in numerical applications as well.

The works of (Rolnick & Körding, 2020; Bui Thi Mai & Lampert, 2020) imply that provided the activation functions of
the expressive elements are ReLU then the entire network can be recovered in a black-box way. Further, provided that
either the ‘linear region assumption’ from (Rolnick & Körding, 2020) or the generality assumption from (Bui Thi Mai &
Lampert, 2020) is satisfied, then the entire network can be recovered uniquely modulo the natural isometries of rescaling
and permutation of weight matrices.

First we describe the two natural isometries of scaling and permutation. Consider the following function

f(x) = W2φ(W1x) (63)

where φ is coordinate-wise homogeneous degree 1 (such as ReLU) and W1 ∈ Rn1×n2 and W2 ∈ Rn2×n3 . If we let
P ∈ Rn2×n2 be any permutation matrix, and D+ be a diagonal matrix with strictly positive elements, then we can write

f(x) = W2P
′D−1+ φ(D+PW1x) (64)

as well. Thus ReLU networks can only ever be uniquely given subject to these two isometries. When describe unique
recovery in the rest of this section, we mean modulo these two isometries.

In (Rolnick & Körding, 2020), the authors describe how all parameters of a ReLU network can be recovered uniquely
(called reverse engineered in (Rolnick & Körding, 2020)), subject to the so called ‘linear8 region assumption’, LRA.

The input space Rn can be partitioned into a finite number of open {Si}ni

i=1, where for each k, f(x) = Wki+ bi, i.e. the
network corresponds to an affine polyhedron in the output space. The algorithms (Rolnick & Körding, 2020, Alg.s 1 & 2)
are roughly described below.

First, identify at least one point within each affine polyhedra {Hj}nj

j=1. Then identify the boundaries between polyhedra.
The boundaries between sections are always one affine ‘piece’ of piecewise hyperplanes {Hj}nj

j=1. These {Hj}nj

j=1 are the
central objects which indicate the (de)activation of an element of a ReLU somewhere in the network. If the Hj are full
hyperplanes, then the ReLU that is (de)activates occurs in the first layer of the network. IfHj is not a full hyperplane, then

8The use of ‘linear’ in this context is somewhat non-standard, and instead means affine. In this section we use the term ‘linear region
assumption’, but use ‘affine’ where (Rolnick & Körding, 2020) would use ‘linear’ to preserve mathematical meaning.
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it necessarily has a bend where it intersects another hyperplane Hj′ . Further, except for a Lebesgue measure 0 set, when
Hj intersects Hj′ the latter does not have a bend. If this is the case, then Hj′ corresponds to a ReLU (de)activation in an
earlier layer thanHj . In this way the activation functions of every layer can be deduced. Once this is done, the normals of
the hyperplanes can be used to infer the row-vectors of the various weight matrices, letting one recover the entire network.

The above algorithm recovers all of the weights exactly provided that the LRA is satisfied. The LRA is satisfied if for every
distinct Si and Si′ , either Wi 6= Wi′ or bi 6= bi′ . That is, different sign patterns produce different affine sections in the
output space. This is a natural assumption, as the algorithm as described above reconstruction works by first detecting the
boundaries between adjacent affine polyhedra, which is only possible if the LRA holds.

Given the weights of a network there is currently no simple way to detect if the LRA is satisfied, to our knowledge. Nev-
ertheless the authors of (Rolnick & Körding, 2020) show that if it is satisfied, then unique recovery follows. Nevertheless
recovery of the range of the entire network is possible, but this recovery may not be unique.

In (Bui Thi Mai & Lampert, 2020) the authors also consider the problem of recovering weights of a ReLU neural network,
however the authors therein study the question of when there exist isometries beyond the two natural ones described above.
In particular the main result (Bui Thi Mai & Lampert, 2020, Theorem 1) shows the following. Let En0,nL be a ReLU
network that is L layers deep and non-increasing. Suppose that E1, E2 ∈ En0,nL , E1 and E2 are general9 and for all
x ∈ Rn0 E1(x) = E2(x), then E1 is parametrically identical to E2 subject to the two natural isometries.

This work provides the stronger result, however does not apply to the networks that we consider out of the box. It does
apply to our expressive elements (provided that they use ReLU activation functions, and are non-increasing), but not
necessarily apply to the network on the whole.

9A set is general in the topological sense if its complement is closed and nowhere dense
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