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Abstract
Teaching dimension (TD) is a fundamental theo-
retical property for understanding machine teach-
ing algorithms. It measures the sample complex-
ity of teaching a target hypothesis to a learner. The
TD of linear learners has been studied extensively,
whereas the results of teaching non-linear learners
are rare. A recent result investigates the TD of
polynomial and Gaussian kernel learners. Unfor-
tunately, the theoretical bounds therein show that
the TD is high when teaching those non-linear
learners. Inspired by the fact that regularization
can reduce the learning complexity in machine
learning, a natural question is whether the similar
fact happens in machine teaching. To answer this
essential question, this paper proposes a unified
theoretical framework termed STARKE to analyze
the TD of regularized kernel learners. On the basis
of STARKE, we derive a generic result of any type
of kernels. Furthermore, we disclose that the TD
of regularized linear and regularized polynomial
kernel learners can be strictly reduced. For regu-
larized Gaussian kernel learners, we reveal that,
although their TD is infinite, their ϵ-approximate
TD can be exponentially reduced compared with
that of the unregularized learners. The extensive
experimental results of teaching the optimization-
based learners verify the theoretical findings.

1. Introduction
Machine teaching (Zhu et al., 2018) is aimed at designing
an optimal training set (aka teaching set) to steer a learner
(aka student) towards a target hypothesis. It can be re-

*Equal contribution 1School of Computer Science and Technol-
ogy, East China Normal University, Shanghai, China. 2Shanghai
Key Laboratory of Multidimensional Information Processing.
3School of Artificial Intelligence, Nanjing University, Nanjing,
China. 4National Key Laboratory for Novel Software Technology.
5Shanghai Institute of AI for Education.. Correspondence to: Hong
Qian <hqian@cs.ecnu.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

garded as an inverse problem of machine learning. Machine
teaching has various applications, such as reinforcement
learning (Kamalaruban et al., 2019), trustworthy AI (Zhang
et al., 2018), education (Patil et al., 2014) and cognitive psy-
chology (Shafto et al., 2014). In those scenarios, although a
teacher knows the target hypothesis, she cannot telepathize
it into the learner’s mind. For instance, a botanist intends to
teach the students to categorize the flowers into peony, rose,
and azalea. The botanist has the correct decision boundary
in mind, but she could only teach via picking the represen-
tative and informative flower examples and showing them
to the students. The choice of training set can be optimized
if the teacher has a good understanding of how the students
learn from the examples.

Related Work. Teaching dimension (TD) (Goldman &
Kearns, 1991; Shinohara, 1991) is a fundamental theoretical
property for understanding machine teaching algorithms. It
measures the sample complexity of teaching, and is defined
as the minimal number of training examples required in the
worst case to teach a target hypothesis to a learner. Along the
theoretical research direction of TD, one of the most consid-
ered settings is teaching a version space learner (Goldman
& Kearns, 1991; Anthony et al., 1995; Chen et al., 2018;
Kirkpatrick et al., 2019). A version space learner maintains
a set of hypotheses, keeps removing those which are not
consistent with the receiving training examples, and outputs
a qualified hypothesis in the end. To reduce the teaching
dimension, i.e., the teaching complexity, a series of teaching
models are proposed, such as recursive teaching (Zilles et al.,
2011), preference-based teaching (Gao et al., 2017; Man-
souri et al., 2019) and non-clashing teaching (Kirkpatrick
et al., 2019). However, the power of version space learners
is limited (Goldman & Mathias, 1996), and it can hardly
model the behavior of a wide range of modern learners.

To tackle the above issue, the notation of TD is extended to
the optimization-based learners, i.e, the empirical risk min-
imization (ERM) learners. The scenario of teaching ERM
learners is more realistic, and the version space learners are a
special case of it provided that we optimize the 0-1 loss. Liu
et al. (2016) extensively investigate the TD of ERM learners
under the linear hypothesis space. Since the linear ERM
learners may be restricted, recently, Kumar et al. (2021)
generalize the hypothesis space to the non-linear ones by
considering the kernel perceptrons in ERM. They disclose
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Figure 1. Teaching a 1-D threshold classifier. The positive training
examples are marked as red diamonds and the negative ones are
marked as blue rectangles. The black point represents the target
hypothesis θ∗. (a) A hinge loss learner without regularization
and the output hypotheses marked by greed line under the given
training set. (b) A hinge loss learner with L2 regularization and
the teaching set {(θ∗,−1)}.

that the TD is Θ(d) for teaching linear kernel perceptrons in
Rd , and Θ(dp) for polynomial kernel perceptrons with de-
gree p. For Gaussian kernel perceptrons, they reveal that the
exact teaching is impossible with a finite teaching set, and
thus propose the ϵ-approximate TD (ϵ-TD). It is the minimal
number of training examples required in the worst case to
teach a target hypothesis to a learner that has no more than
ϵ excess risk. Under the approximate teaching scenario, the
ϵ-TD of Gaussian kernel perceptrons is dO(log2 (1/ϵ)).

Problem & Motivation. The theoretical bounds derived in
Kumar et al. (2021) indicate that the exact or ϵ-approximate
TD is high when teaching linear, polynomial, and Gaussian
kernel learners. The high sample complexity of teaching
could lead to the low efficiency of machine teaching algo-
rithms thus blocking their further applications. Inspired by
the fact that regularization can reduce the learning complex-
ity in machine learning (Bousquet & Elisseeff, 2002; Mohri
et al., 2012), a natural and fundamental question is whether
the similar fact happens in machine teaching. Furthermore,
Kumar et al. (2021) only consider the linear, polynomial,
and Gaussian kernel learners. Other types of widely-used
kernels, e.g., exponential kernels (Feragen et al., 2015) and
Laplacian kernels (Fadel et al., 2016; Drewnik & Pasternak-
Winiarski, 2017), are omitted therein. Therefore, a generic
theoretical analysis framework that is able to derive the TD
of any type of (non-linear) kernel learners is quite appealing.

Our Contribution. In this paper, we focus on answering the
above essential question: Can regularization help reduce
the teaching complexity of kernel learners? Fortunately,
our answer is YES. Intuitively, consider a 1-dimensional
threshold classifier hθ∗(x) = 2(I(x > θ∗) − 0.5), i.e.,
hθ∗(x) returns −1 if x ≤ θ∗ and +1 if x > θ∗. As il-
lustrated in Figure 1, the hinge loss is used. For a learner
without regularization, the hypotheses in the interval be-
tween the closest and oppositely labeled two examples in
the training set have the equal hinge loss. Thus, it is impos-
sible for the learner to pick out the unique target hypothesis
θ∗ with a finite teaching set. In contrast, for a learner with
L2 regularization whose regularization coefficient is less

Table 1. The teaching dimension (TD) of ERM linear, polyno-
mial and Gaussian kernel learners with and without regularization
(line 2-4). The ϵ-approximate teaching dimension (ϵ-TD) of ERM
Gaussian kernel learners with and without regularization (line 5).

Kernel Type
(TD Type)

With
Regularization
(This Paper)

Without
Regularization

(Kumar et al., 2021)

Linear (TD) 1 Θ(d)

Polynomial (TD) G∗(d, p) TD ≥
(
d+p−1

p

)
Gaussian (TD) ∞ ∞

Gaussian (ϵ-TD) O(1/ϵ2) dO(log2 (1/ϵ))

than 1, one teaching example (θ∗,−1) is enough due to its
preference to θ∗ with less L2 norm. The contribution of this
paper is three folds:

• As a cornerstone of analyzing TD, we at first propose a
unified theoretical framework termed STARKE. Based
on the subset analysis and the extension technique,
STARKE is able to analyze the exact or ϵ-TD of the
regularized ERM linear and non-linear kernel learners.
With the help of STARKE, a generic result of TD or
ϵ-TD is derived for any type of kernels.

• Via specifying the kernel type in STARKE, we disclose
the TD of the regularized ERM homogeneous linear
and polynomial kernel learners. Their TD is strictly
reduced compared with that of the unregularized learn-
ers. As shown in Table 1, the TD is reduced from Θ(d)
to 1 for the linear kernel learners. For the polynomial
kernel learners, we reveal that G∗(d, p) ≤

(
d+p−1

p

)
,

and their TD is strictly smaller than
(
d+p−1

p

)
for some

target hypotheses.

• For regularized ERM Gaussian kernel learners, we
reveal that, although their TD is infinite, their ϵ-TD can
be exponentially reduced compared with that of the
unregularized learners, as shown in Table 1. Besides,
the experiment results verify the theoretical findings.

To the best of our knowledge, the above results are the first
known bounds on (approximately) teaching the regularized
ERM non-linear kernel learners.

The consequent sections introduce the preliminaries, de-
scribe the proposed STARKE framework, present the case
study on five types of kernels, show the experiment results,
and finally give the discussion and conclusion.
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2. Preliminaries
This section introduces the necessary notations, definitions,
concepts, and the existing results, so as to pave the way for
the consequent sections.

Basic Definitions. We denote X ⊆ Rd as the input space
and Y as the output space. A hypothesis is a mapping
h : X → Y . This paper assumes that the hypothesis hθ
can be identified by its parameter θ. The hypothesis space
H consists of a set of hypotheses. A training example is
denoted as a pair (x, y) ∈ X×Y . A training set is a multiset
D = {(x1, y1), · · · , (xn, yn)}, where the repeated pairs are
acceptable. Let D denote the set of all training sets with all
sizes. An algorithm A : D → 2H learns from a training set
D ∈ D and outputs a subset of the hypothesis space H.

Let θ∗ ∈ H be the target hypothesis. The exact teaching is
successful if a helpful teacher identifies a training setD ∈ D
such that A(D) = {θ∗}. Such a D is called the teaching
set (TS) of θ∗ with respect to H. The teaching dimension
of θ∗ is the minimum size of the teaching set, i.e.,

TD(θ∗) =

{
minD∈D |D| , D is a teaching set of θ∗;

∞ , if no teaching set exists.

Furthermore, the teaching dimension of the whole hypoth-
esis space H is defined as the teaching dimension of the
hardest hypothesis, i.e., TD(H) = maxθ∈H TD(θ).

Regularized Empirical Risk Minimization. Consider a
training set D = {(xi, yi)}ni=1, where xi ∈ Rd. The opti-
mization problem identified by the regularized ERM can be
formulated as

A(D) = argmin
θ∈H

n∑
i=1

ℓ(fθ(xi), yi) + Ω(||θ||2) , (1)

where ℓ is the loss function and || · || is the L2 norm. This pa-
per assumes that the regularization function Ω(x2) is strictly
increasing, differentiable and convex. This assumption is
not strong in the field of teaching theory, since analyzing
TD of the non-linear learners is still in its infancy. It can be
easily satisfied by the widely-used Ω(x2) = 1

2µx
2 regular-

ization function. The regularized ERM learner outputs a set
of hypotheses A(D).

Approximate Teaching. When a finite teaching set does
not exist, exact teaching is impossible and the teaching
dimension is meaningless. Therefore, Kumar et al. (2021)
propose to consider the ϵ-approximate teaching set and the ϵ-
approximate teaching dimension instead. Let {θ̂} = A(D),
and θ∗ is the target hypothesis. If θ̂ satisfies∣∣∣F (θ̂)− F (θ∗)

∣∣∣ ≤ ϵ ,

where F (θ) = E[ℓ(fθ(x), y)] + Ω(||θ||2) and the expecta-
tion is over (x, y) ∼ P , then we callD as the ϵ-approximate

teaching set for the regularized ERM learners. In a similar
way, the ϵ-approximate teaching dimension (ϵ-TD) of them
can also be defined.

Reproducing kernel Hilbert space (RKHS). An RKHS H
is uniquely determined by a reproducing kernel, which is
a kernel operator k : X × X → R adheres to the Mercer’s
positive definite conditions (Vapnik, 1998). Let Hpre =
{
∑n

i=1 αik(xi, ·) : n ∈ N, αi ∈ R,xi ∈ X}, then H is the
closure of Hpre. An RKHS with k can be decomposed
as k(x1,x2) = ⟨Φ(x1),Φ(x2)⟩ (Steinwart & Christmann,
2008) for any x1,x2 ∈ X , where Φ(·) is the feature map.
Specifically, the equation holds for Φ(x) = k(x, ·), and this
type of feature map is called the canonical feature map.

We can generalize the problem identified by Equation (1) to
the non-linear setting by the kernel method, namely, rewrit-
ing fθ(x) as the inner product ⟨θ,Φ(x)⟩. If the canonical
feature map is used, the optimization problem becomes

A(D) = argmin
θ∈H

n∑
i=1

ℓ(⟨θ, k(xi, ·)⟩ , yi)+Ω(||θ||2H), (2)

where ∥·∥H is the RKHS norm. In this way, the hypothesis
space becomes the RKHS, i.e., H = H , and we are able to
express the hypothesis as θ =

∑∞
i=1 αik(xi, ·) (Steinwart

& Christmann, 2008).

3. STARKE: A Unified Theoretical Framework
In this section, we introduce the proposed subset analysis
framework for deriving teaching dimension of regularized
kernel learners (STARKE). The STARKE theoretical frame-
work consists of two essential parts. First, analyzing the
teaching dimension of a considered subset of RKHS. Sec-
ond, extending the teaching to the whole RKHS via the
strong representation ability of the considered subset. The
two parts of STARKE and the relationship among the main
theoretical results therein are illustrated in Figure 2. We
elaborate them respectively.

S: Subset Hm H: RKHS H L: Lemma T: Theorem

Representer 
Theorem
(L-1)

Lower bound
of TD(S)
(L-2)

Squ
are
loss

Hinge loss

Teaching set
of S (L-3) TD(S) (T-1)

Teaching set
of S (L-4)

Upper bound
of TD(S) (L-5)

TD(S)
(T-2)

Subset Hm

RKHS H

Extension

Finite dim H Upper Bound of TD(H) (T-3)

Infinite dim H𝜖-TD

TD TD(H) can be infinite (T-4)
Upper bound of approximate
teaching excess risk (L-6)

Upper bound of
𝜖-TD(H) (T-5)

Figure 2. The STARKE framework and the relationship among the
main theoretical results therein.
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3.1. Subset Analysis

This paper considers the subset of RKHS defined as Hm =
{
∑m

i=1 αik(xi, ·) : αi ∈ R,xi ∈ X}. Notably, Hm is dif-
ferent from the aforementionedHpre becausem is fixed here.
In the following analysis, we assume that Hm−Hm−1 ̸= ∅.
The assumption means that we only consider the smallest
m such that Hm stays unchanged. In fact, if the assump-
tion does not hold, i.e., Hm − Hm−1 = ∅, it implies that
Hm = Hm−1 and thus Hm can be replaced by Hm−1. This
process can be done recursively until we find an m0 such
that the assumption holds for Hm0

. Furthermore, the Rep-
resenter Theorem is a canonical result in kernel methods.
It is necessary in our proof process, and we state it in the
following lemma for the purpose of self-contained.

Lemma 1 (Representer Theorem). Given a training set
{xi, yi}ni=1, if the regularization function Ω in Equation (2)
is monotonically increasing, then the solution has the fol-
lowing form

θ∗ =

n∑
i=1

αik(xi, ·) , αi ∈ R . (3)

The proof of the above lemma can be found in (Schölkopf
& Smola, 2002). Note that the regularization function Ω
meets the condition of Lemma 1, and thus the solution of
Equation (2) has the form of Equation (3). Next, we study
the teaching dimension of Hm with square loss function
and hinge loss function. It is easy to see that if the target
hypothesis θ∗ = 0, we do not need any training data to
uniquely obtain the target hypothesis from Equation (2).
Thus, we only consider the non-trivial case when θ∗ ̸= 0.
At first, the lower bound of the teaching dimension of subset
Hm is derived, and its proof can be found in Appendix A.1.

Lemma 2 (Lower Bound of TD(Hm)). The lower bound of
the teaching dimension of subset Hm is m.

To determine the teaching dimension, it suffices to derive the
upper bound if it matches the lower bound. The upper bound
of TD(Hm) can be established by providing a teaching set
(TS), the cardinality of which is its upper bound. We now
construct the teaching sets for Hm, and the square loss func-
tion and the hinge loss function are analyzed respectively.
The analysis is applied to both regression and classification
tasks, since the classification tasks can be accomplished by
simply set a threshold for the predicted value. The square
loss function is ℓ(x, y) = (x − y)2. The teaching set is
provided in the following lemma, and its proof can be found
in Appendix A.2.

Lemma 3 (TS(Hm)-Square Loss). Given any θ∗ ∈ Hm −
Hm−1, where θ∗ =

∑m
i=1 α

∗
i k(x

∗
i , ·), then a teaching set

of θ∗ with the square loss function is

X = X∗, Y = K∗α∗ −α∗Ω′((α∗)TK∗α∗) ,

whereX∗ = (x∗
1, · · · ,x∗

m)T , α∗ = (α∗
1, · · · , α∗

m)T , Ω′(x)
is the derivative of the regularization function Ω(x) and K∗

is the Gram matrix such that K∗
ij = α∗

iα
∗
jk(x

∗
i ,x

∗
j ).

Lemma 3 gives a teaching set for θ∗ ∈ Hm−Hm−1. Notic-
ing that Hm = H0 ∪ (H1 − H0) ∪ · · · ∪ (Hm − Hm−1),
we can derive the teaching set for all hypotheses in Hm

by substituting different m. Since the teaching set has m
elements, the upper bound of the teaching dimension of Hm

is m. Combined it with Lemma 2 results in Theorem 1.

Theorem 1 (TD(Hm)-Square Loss). The teaching dimen-
sion of subset Hm with the square loss function is m.

Theorem 1 indicates that whatever the kernel function we
use, exact teaching can be performed in the subset Hm. We
now turn to the hinge loss function defined as ℓ(x, y) =
max(1 − xy, 0). We denote ⟨k(x, ·),θ∗⟩ as g(x,θ∗) and
denote {1, 2, . . . , n} as [n]. The teaching set is constructed
in Lemma 4, and its proof is in Appendix A.3.

Lemma 4 (TS(Hm)-Hinge Loss). If θ∗ ∈ Hm, then a
teaching set of θ∗ with the hinge loss function is

xij = x∗
i , yij = αiΩ∗/ni, i ∈ [m], j ∈ [ni],

where ni = ⌈max(1, αig(x
∗
i ,θ

∗)Ω∗)⌉ and Ω∗ is defined as
2Ω′(∥θ∗∥2H).

Lemma 5 (Upper Bound of TD(Hm)-Hinge Loss). If θ∗ ∈
Hm, then the upper bound of TD(Hm) with the hinge loss
function is

∑m
i=1⌈max(1, αig(x

∗
i ,θ

∗)Ω∗)⌉, where θ∗ =∑m
i=1 α

∗
i k(x

∗
i , ·), Ω∗ = 2Ω′(∥θ∗∥2H).

The corresponding upper bound of TD(Hm) is shown in
Lemma 5, and it indicates that TD(Hm) = m is non-trivial.
It also implies the difference of TD between the square loss
and the hinge loss function. That is to say, TD(Hm) = m
does not hold for all loss functions and regularization func-
tions. Based on Lemma 5, the upper bound of TD(Hm) can
be improved with properly selected regularization functions.
The improved upper bound matches the lower bound so that
we obtain TD(Hm) for the hinge loss function. Its proof is
in Appendix A.4.

Theorem 2 (TD(Hm)-Hinge Loss). If the regularization
function Ω satisfies Ω′(x) ≤ mini∈I∗ 1/β, where I∗ =
{i : α∗

i g(x
∗
i ,θ

∗) > 0} and β = 2α∗
i

√
k(x∗

i ,x
∗
i ) ∥θ∗∥H ,

then TD(Hm) with the hinge loss function is m.

Remark. We would like to point out that, for the widely-
used regularization function Ω(x) = 1

2µx, the condition of
Ω′(x) ≤ mini∈I∗ 1/β implies µ ≤ mini∈I∗ 1/β, thus the
condition can be satisfied by choosing small enough µ.

In a nutshell, the teaching dimension of subset Hm for both
square loss and hinge loss functions are m under the mild
assumptions we have assumed.
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3.2. Representation Ability of Subset Hm w.r.t. RKHS

In this section, we analyze the representation ability of
subset Hm with respect to (w.r.t.) the RKHS H . Then the
TD or ϵ-TD of any type of regularized ERM kernel learners
can be disclosed consequently.

3.2.1. TEACHING DIMENSION FOR FINITE DIMENSIONAL
RKHS

For any finite dimensional RKHS H , H can be represented
by Hm with large enough m.

Theorem 3 (Upper Bound of TD(H)-Finite Dimension). If
the dimension of the RKHS dim(H) = dH , then we have
that Hm = H with m ≤ dH .

The proof can be found in Appendix B.1. From the theo-
rems and the conclusion of the above section, the teaching
dimension of the regularized kernel learners with finite di-
mensional RKHSs is O(dH) if dim(H) = dH .

3.2.2. TEACHING DIMENSION FOR INFINITE
DIMENSIONAL RKHS

Kumar et al. (2021) prove that exact teaching requires the
infinite teaching set for Gaussian kernel which induces an
infinite dimensional RKHS. However, for the regularized
learners, since the regularization function can be arbitrarily
chosen, the result is not so obvious. In this section, we prove
that even if using regularization, for some specific kernels,
such as Gaussian, exponential and Laplacian kernels, we
cannot find a finite teaching set for some target hypotheses.
The pessimistic result is shown in Theorem 4, and its proof
is in Appendix B.1.

Theorem 4 (TD(H)-Pessimistic Infinity). Assume the
RKHS H of the considered kernel is infinite dimensional.
For all regularization functions, the TD of the regularized
learner is ∞ if there exists no m0 <∞ s.t. Hm0

= H .

Remark 1. Theorem 4 does not require the assumption of
Ω. In other words, this theorem can be applied to all types
of regularization functions. Furthermore, this theorem can
also be applied to all types of loss functions.

Remark 2. The RKHSs induced by Gaussian, exponential
and Laplacian kernels are infinite dimensional and can not
be represented by Hm if m <∞. The proof can be found
in the Appendix B.3.

3.2.3. APPROXIMATE TEACHING FROM Hm TO H

Although the whole RKHS cannot be exactly taught for
some kernels, the result on Hm implies that we can realize
exact teaching on the subset of H . In this way, the subset
Hm can be seen as an approximation to H , and performing
teaching in Hm is performing approximate teaching in H .

It has been clarified that there exists an RKHS that cannot
be expressed asHm with a finitem. In this case, we attempt
to explore how well Hm can approximate H . Let θ∗ be the
optimal solution to

min
θ∈H

F (θ) = min
θ∈H

E[ℓ(⟨k(x, ·),θ⟩ , y)] + Ω(||θ||2H) , (4)

where the expectation is taken over the joint distribution
P(x, y). Following Koltchinskii (2011), we define the ex-
cess risk of any hypothesis θ as

Λ(θ) = F (θ)− F (θ∗) . (5)

Let θ∗
m be the optimal solution to minθ∈Hm F (θ), then the

approximation error of Hm is Λ(θ∗
m).

Similar to Yang et al. (2012), we assume maxy∈Y ℓ(0, y) ≤
1 and ℓ(z, y) has a bounded partial derivative |∇zℓ(z, y)| ≤
C1. Consider {(xi, yi)

N
i=1}, which is i.i.d. and sampled

from the joint distribution P(x, y). Let K be the Gram
matrix of {xi}Ni=1, and supx k(x,x) ≤ C(k) where C(k)
is a constant corresponding to kernel k, and {λi}Ni=1 be
the eigenvalues of K with λ1 ≥ · · · ≥ λN , Ω−1 be the
inverse function of Ω, the existence of which is guaranteed
by the monotonicity of Ω, we can upper bound the excess
risk of approximate teaching as Lemma 6. Its proof is in
Appendix B.4.

Lemma 6 (Upper Bound of Approximate Teaching Excess
Risk). If M1 = Ω−1(Ω(0) + 1) ≤ e2N/4γ2, where γ ≤ 1,
sup∥θ∥H≤M1

2 ∥θ∥H Ω′(∥θ∥2H) is bounded, and λm+1 ∈
O(N/

√
m) for all N , then we have that

Λ (θ∗
m) ∈ O

(
C(k) + 1√

m

)
.

Lemma 6 indicates that the excess risk raised by teaching in
a subset rather than the whole RKHS is upper bounded by
O ((C(k) + 1)/

√
m). Since the definition of ϵ-TD is that

the excess risk between the taught hypothesis and the target
hypothesis is no more than ϵ, we can derive the ϵ-TD based
on Lemma 6 as shown in Theorem 5.

Theorem 5 (Upper Bound of ϵ-TD(H)). Under the con-
ditions as Lemma 6, for the regularized ERM learner, the
ϵ-TD of the RKHS H is upper bounded by

ϵ-TD(H) ∈ O

((
C(k) + 1

ϵ

)2
)
.

4. Theoretical Case Study
We take the linear, polynomial, Gaussian, exponential and
Laplacian kernels as the case study to show how to apply the
generic STARKE framework to determine the TD or ϵ-TD
of the regularized kernel learners. The RKHSs of the linear
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and polynomial kernels are finite dimensional. Based on
Theorem 3, exact teaching is achievable under such kernels.
However, the situation differs for Gaussian, exponential and
Laplacian kernels, and Theorem 5 can be helpful.

4.1. Linear Kernel

The linear kernel is defined as k(x1,x2) = ⟨x1,x2⟩+c. For
simplicity, this paper considers the homogeneous scenario,
i.e., c = 0. The result when c ̸= 0 can be derived similarly.
The canonical feature map of linear kernel is Φ(x) = ⟨x, ·⟩.
We denote the dimension of input space dim(X ) = d. Based
on the linearity of inner product, we have Lemma 7.

Lemma 7 (H Identification). Let H be the RKHS defined
by the linear kernel, and dim(X ) = d, then H = H1.

We leave the proof of Lemma 7 in Appendix C.1. According
to Lemma 7 and the theoretical result of subset, we derive
the following corollary.

Corollary 1 (TD under Linear Kernel). Under the condi-
tions in Theorem 2, for the regularized ERM linear kernel
learners with the considered two loss functions, the TD of
the RKHS H is TD(H) = 1.

Remark. For the linear kernel learner without regulariza-
tion, Kumar et al. (2021) derive the teaching dimension,
which is Θ(d). When the regularization term is equipped,
the TD is drastically reduced to 1. This implies that regular-
ization is helpful to reduce the teaching complexity.

4.2. Polynomial Kernel

The polynomial kernel of degree p ∈ N is defined as
k(x1,x2) = (⟨x1,x2⟩+ c)

p, where c ≥ 0 is a constant.
We consider the homogeneous scenario for simplicity, i.e.,
c = 0. The result when c > 0 can be derived similarly.

For the input space X ⊆ Rd, the dimension of RKHS
induced by polynomial kernel with degree p is ϕ =

(
d+p−1

p

)
.

By Theorem 3, we have that θ∗ =
∑ϕ

i=1 αik(xi, ·). Note
that αik(xi, ·) = k( p

√
αixi, ·). Without loss of generality,

we assume αi = 1. Let z = (z1, · · · , zd), we have

⟨θ∗, z⟩ = C1z
p
1 +

p!

(p− 1)!1!
C2z

p−1
1 z2

+
p!

(p− 1)!1!
C3z

p−1
1 z3 + · · ·+ Cpz

p
d .

Consider the following system of polynomial equations
yp11 + yp21 + · · ·+ ypm1 = C1

yp−1
11 · y12 + · · ·+ yp−1

m1 · ym2 = C2

· · ·
yp1d + · · ·+ ypmd = Cϕ ,

(6)

where yij are variables. If the solution for the polyno-
mial system exists, let yi = (yi1, · · · , yid), then θ∗ =∑m

i=1 k(yi, ·). Namely, θ∗ can be expressed with no more
than m components. For simplicity, let the polynomials
be f1, f2, . . . , fϕ. Define the degree lexicographic order as
y11 ≻ y12 ≻ · · · ≻ y21 ≻ · · · ≻ ymd, and the derived
Gröbner basis (Hartshorne, 1977) for fi as G(θ∗, d, p,m).
We have the following lemma.

Lemma 8 (H Identification). Let H be the RKHS defined
by the homogeneous polynomial kernel with degree p, then
H = HG∗(d,p), where

G∗(d, p) = max
θ∈H

G̃(θ, d, p)

= max
θ∈H

{
argmin

m
{m : G(θ, d, p,m) ̸= {1}}

}
.

Its proof is in Appendix C.2. With Lemma 8 and the results
of Theorem 1 and 2, the following corollary is derived.

Corollary 2 (TD under Polynomial Kernel). Under the
conditions in Theorem 2, for the regularized ERM polyno-
mial kernel learners with the considered two loss functions,
the teaching dimension of θ∗ is TD(θ∗) = G̃(θ∗, d, p) if
θ∗ ̸= 0 (TD(0) = 0) , and the teaching dimension of the
RKHS H is TD(H) = G∗(d, p).

Remark 1. G∗(d, p) ≤
(
d+p−1

p

)
. This can be seen by let-

ting m =
(
d+p−1

p

)
, then the polynomial system (6) has

at least one solution yij = xij . By the Hilbert’s Nullstel-
lensatz (Hartshorne, 1977), G(θ∗, d, p,m) ̸= {1}, and this
holds for all θ∗ ∈ H .

Remark 2. G̃(θ∗, d, p) can be strictly smaller than
(
d+p−1

p

)
for some θ∗. We can easily find out an example to satisfy it
(cf. Appendix C.3 for more details of the example).

Remark 3. For the polynomial kernel learner without reg-
ularization, Kumar et al. (2021) derive the lower bound of
the TD, which is

(
d+p−1

p

)
. As mentioned before, the TD

for regularized learner meets G∗(d, p) ≤
(
d+p−1

p

)
, and is

strictly smaller than
(
d+p−1

p

)
for some θ∗. Besides, the

lower bound of ERM learner without regularization needs
the assumptions on θ∗, which are stated in Appendix D.
This indicates that regularization not only reduces the sam-
ple complexity of teaching, but also relaxes the conditions
on exact teaching for polynomial kernel.

4.3. Gaussian Kernel

The Gaussian kernel with parameter σ > 0 is defined as
k(x1,x2) = exp(− ||x1−x2||2

2σ2 ). The TD of Gaussian kernel
learners is infinity, and ϵ-TD is suitable for it. Corollary 3
shows the result of ϵ-TD for the regularized ERM Gaussian
kernel learners, and we leave its proof in Appendix C.4.
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Corollary 3 (ϵ-TD under Gaussian Kernel). Under the con-
ditions in Theorem 2 and 5, for the regularized ERM Gaus-
sian kernel learners with the considered two loss functions,
the ϵ-approximate teaching dimension of the RKHS H is
ϵ-TD(H) ∈ O(1/ϵ2).

Remark. For the ERM Gaussian kernel learners without
regularization, Kumar et al. (2021) derive that the ϵ-TD is
upper bounded by dO(log2(1/ϵ)). It can be seen that the ϵ-TD
is exponentially reduced with regularization. Besides, the
assumptions they made is not necessary in the regularization
scenario (cf. Appendix D for more discussions).

4.4. Exponential and Laplacian Kernels

In addition to linear, polynomial and Gaussian kernels, our
generic STARKE framework can also be applied to other
types of kernels. We take exponential and Laplacian kernels
as examples, and analyze TD and ϵ-TD of them. Notably,
Kumar et al. (2021) do not involve those types of kernels.

As shown in Appendix B.3, the RKHSs of both exponential
and Laplacian kernels cannot be expressed by Hm. Thus,
the TD of exponential and Laplacian kernels is infinite. On
the other hand, approximate teaching fromHm toH enables
us to obtain the ϵ-TD of the two kernels as Corollary 4. Its
proof can be found in Appendix C.4.

Corollary 4 (ϵ-TD under Exponential and Laplacian Ker-
nels). Under the conditions in Theorem 2 and 5, for the
regularized ERM exponential and Laplacian kernel learners
with the considered two loss functions, the ϵ-approximate
teaching dimension of the RKHS H is ϵ-TD(H) ∈ O(1/ϵ2).

5. Experiments
In this section, we perform the empirical study to verify the
theoretical results. The code is available at https://github.
com/liuxhym/STARKE.git.

For exact teaching, we provide numerical results of linear
and polynomial kernel learners respectively. For the reg-
ularized linear learners, with the target hypothesis in R3,
the teaching sets have only one element for both square
loss and hinge loss. However, teaching the unregularized
learners needs three elements for square loss and five ele-
ments for hinge loss. For the regularized polynomial learner,
given a certain target hypothesis, the teaching sets have two
elements for both square loss and hinge loss. While the
unregularized learners need four elements for square loss
and cannot be taught for hinge loss since the violation of
assumption (cf. Appendix F for more details).

We next show the empirical results for approximate teaching
with Gaussian kernel. Since STARKE can be applied to any
type of kernels, we also conduct experiments on exponential
and Laplacian kernels (cf. Appendix G for more details

due to page limitation). For Gaussian kernel, we set σ =
0.9 and adopt square loss for regression while hinge loss
for classification. For regression, we choose two synthetic
datasets: the make-regression (MR) dataset from sklearn as
well as the Sin dataset, and two real-world datasets: MPG
from UCI (Blake et al., 1998) and Eunite. The regularization
function Ω(x2) = x2 is applied. For classification, we
choose two synthetic datasets: the two-moon (Moon) dataset
as well as the two-circles (Circle) dataset from sklearn, and
two UCI binary classification datasets: Adult and Sonar.
The classification threshold is set as zero in experiments.
The regularization function Ω(x2) = 1

200x
2 is applied.

According to the theoretical result, the performance of the
teaching is measured by excess risk. However, this mea-
surement varies dramatically among different datasets. In
order to avoid the influence of datasets on the excess risk,
we introduce the excess risk ratio Λ̄ as the measurement,
which is the value of the current excess risk Λ divided by a
reference excess risk. For each dataset, the reference risk is
the average of Λ calculated by θ∗ with 5% random samples
for 100 times except for Adult. Considering the larger sam-
ple size of Adult compared with the others, if we set under
5% random samples as before, the teaching set will be very
large even if the excess risk ratio is 100%, resulting in the
relationship between teaching set size and excess risk ratio
being expressed inappropriately. Thus, for Adult, the refer-
ence risk is calculated under 1% random samples for 100
times and then averaged. We use Nyström method (Williams
& Seeger, 2000) to approximate θ∗

m ∈ Hm, which is an ap-
proximation of θ∗ ∈ H . For approximate teaching, θ∗

m is
treated as the target hypothesis, and the approximate teach-
ing set is constructed via Lemma 3 for square loss and
Lemma 4 for hinge loss based on θ∗

m.

Visualization of the Teaching Set. For intuitive understand-
ing, we visualize the teaching set for the regularized ERM
learners with Gaussian kernel on the synthetic datasets. The
cardinality of teaching sets is determined by whether it is
enough to obtain a low risk learned hypothesis, and we
choose the smallest possible one. Figure 3 shows the results
for regression on Sin dataset, while Figure 4 shows the re-
sults for classification on Moon and Circle datasets. The left
sub-figure of Figure 3 shows the data points in the dataset
and the target hypothesis. The teaching set and the learned
hypothesis is shown in the right sub-figure. The top sub-
figures in Figure 4 are the results on the Circle dataset, and
the bottom sub-figures are the results on the Moon dataset.
The interface between the blue and red areas is the deci-
sion boundary of teacher in the sub-figure (a), and learner
in the sub-figure (b). The positive and negative points in
dataset are marked by red and blue dots respectively in the
sub-figure (a). The constructed teaching set (TS) is shown
by dark-red stars in the sub-figure (b). The results show
that with much less data points than that of the dataset, the

https://github.com/liuxhym/STARKE.git
https://github.com/liuxhym/STARKE.git
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Training Data Data Points in TS
Target Hypothesis
Learned Hypothesis from TS

Figure 3. Approximate teaching on the Sin dataset. The left sub-
figure: the target hypothesis θ∗ is marked as the red solid line and
the data points is marked as the black dots. The right sub-figure:
the learned hypothesis is marked as the dashed red line and the
teaching set is marked as the dark-red stars.
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(b) Learned hypothesis

Figure 4. Approximate teaching on the Moon and Circle datasets.
The binary dataset is marked by red and blue dots. The interface
between the blue and red regions is the decision boundary of the
learned hypothesis. (a) The target hypothesis θ∗. (b) The learned
hypothesis with the teaching set being marked as the dark-red stars.

learner can obtain nearly the same hypothesis as the target
hypothesis generated by the dataset.

On Approximate Ability of Hm. In the approximate teach-
ing setting, we treat Hm as an approximation to H . From
theoretical perspective, the approximation error of Hm de-
creases as O((C(k) + 1)/

√
m), implying Hm is a good

approximation of H . We study the approximate ability of
Hm empirically. To show the approximate ability of Hm,
we perform Nyström method (Williams & Seeger, 2000)
with m components to fit the kernel SVM and kernel ridge
regression. The whole process is repeated for 100 times
and the excess risk of Hm is represented by the best learned
hypothesis to match the machine teaching setting.

The result is shown in Table 2. The value inside the table is
the smallest m such that Hm achieves an excess risk ratio
no more than that in the first line of the table. For the Sin
dataset, the excess risk of H8 can even achieve zero. All the

Table 2. The relation between excess risk ratio Λ̄ and m of Hm.

Dataset Λ̄ = 100% 80% 60% 40% 20% 0%

Sin 1 1 1 1 1 8
MR 1 1 2 5 7 >60
MPG 2 3 3 5 10 >60
Eunite 3 4 5 6 7 >60
Circle 1 2 3 3 4 >60
Moon 1 3 3 4 5 >60
Adult 9 139 396 >400 >400 >400
Sonar 4 28 62 103 149 > 200

regression datasets achieve less than 20% excess risk ratio
within 10 samples. For classification, Hm achieves small
excess risk in synthetic datasets with small m. Adult and
Sonar are more difficult and need higher m to achieve small
excess risk ratio. However, if we focus on the accuracy of
classification rather than the excess risk, the hypothesis in
Hm with small m also performs well, which is shown in
Appendix H. Therefore, the approximate ability of Hm is
good enough for approximate teaching. We can also observe
that the number from left to right in the table increases
quadratically as exposed by Corollary 3.

Regularization vs. Without Regularization. Before teach-
ing, the target hypothesis θ∗ ∈ H should be obtained first.
For regression, θ∗ is obtained by performing the Gaussian
kernel ridge regression on the whole dataset, while the Gaus-
sian kernel SVM is performed for classification. For approx-
imate teaching, the estimated θ∗, which belongs to Hm,
is obtained by performing Nyström method (Williams &
Seeger, 2000) with m components on the dataset. In or-
der to reduce the error caused by randomness, the Nyström
method is repeated for 15 times and we choose the one with
the lowest excess risk.

The comparison between the regularized learners and the un-
regularized ones is shown Table 3. The first line of Table 3 is
as same as Table 2. The value/symbol inside the table shows
the difference between the ϵ-TD of the regularized learners
and that of the unregularized ones. “◦” means the unregu-
larized learner cannot reach such excess risk ratio within 60
samples, and “×” means both regularized and unregularized
learners cannot reach such excess risk ratio within 60 sam-
ples. The result shows that the regularized learner surpasses
the unregularized one in approximate teaching, because the
differences are all positive. The scalability of teaching for
regularized learner is also better than unregularized one, as
teaching fails for unregularized learner on hard datasets or
under small excess risk ratio, as indicated by the “◦”. This
is because as ϵ decreases, the ϵ-TD of unregularized learner
increases exponentially while regularized learner increases
quadratically. It matches our theoretical findings.

By comparing the difference of ϵ-TD on Sin, MR, MPG,
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Table 3. The difference between ϵ-TD of the regularized learners
and that of the unregularized learners under the excess risk ratio Λ̄.
“◦” means that only unregularized learner cannot reach such ratio
within 60 samples, and “×” means that both learners cannot reach
such ratio within 60 samples.

Dataset Λ̄ = 100% 80% 60% 40% 20% 0%

Sin ◦ ◦ ◦ ◦ ◦ ◦
MR 4 5 4 9 8 ×
MPG 23 25 27 29 ◦ ×
Eunite ◦ ◦ ◦ ◦ ◦ ×
Circle ◦ ◦ ◦ ◦ ◦ ◦
Moon 25 26 ◦ ◦ ◦ ◦
Adult ◦ ◦ ◦ × × ×
Sonar ◦ ◦ ◦ ◦ × ×

Eunite, Circle, Moon, Adult and Sonar under a unified crite-
rion, e.g., 40% excess risk ratio, it reveals that Sin, Eunite,
Circle, Moon and Sonar are hard for teaching without regu-
larization, while MR and MPG are easy (MR is easier than
MPG). Adult is hard for both teaching with and without
regularization. The excess risk ratio Λ̄ enables us to explic-
itly observe the advantages of regularization on different
datasets in a unified way.

6. Discussion and Conclusion
This paper gives an affirmative answer to the essential ques-
tion of whether regularization can help reduce the teaching
complexity in machine teaching. We propose a unified
theoretical framework STARKE that is able to analyze any
type of kernels. With the help of STARKE, we intensively
analyze the popular regularized ERM (non-linear) kernel
learners, e.g., kernel SVM and kernel ridge regression. Our
theoretical findings reveal that, when equipped with regu-
larization, the TD or ϵ-TD of them is substantially reduced
compared with that of the unregularized ones. The results
obtained may be beneficial for the researchers to have a
deeper understanding of teaching the complex concepts.

We would like to point out that Kumar et al. (2021) inspire
this work. They analyze the perceptron loss instead of the
square loss and the hinge loss, whereas we do not include
the perceptron loss in our framework. On the one hand,
the square loss and the hinge loss function may be more
popular. On the other hand, the power of perceptron loss
may be weaker and the optimal solution of the optimization
problem is dominated by the regularization function, so
that it cannot learn some hypotheses. The possible future
work could be generalizing the proposed framework to other
loss functions (e.g., exponential loss and logistic loss), and
imposing some realistic conditions on the teaching set under
the real-world scenarios instead of arbitrary selection.
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A. Proofs in Section 3.1
A.1. Proof of Lemma 2

Proof of Lemma 2. BecauseHm−Hm−1 ̸= ∅, there exists
θ ∈ Hm such that θ cannot be expressed with less than
m terms. However, by Lemma 1, the number of terms
contained by the learned hypothesis is no more than the
cardinality of the training set. Therefore, the cardinality of
the teaching set is no less thanm examples, and we conclude
the proof.

A.2. Proof of Lemma 3

We first introduce Lemma 9, which is necessary to prove
Lemma 3 in the paper.

Lemma 9. For {xi}mi=1, denote θ =
∑m

i=1 αik(xi, ·), if
θ ∈ Hm − Hm−1, then the Gram matrix K with Kij =
⟨k(xi, ·), k(xj , ·)⟩ is invertible.

Proof. Let F = span{k(x1, ·), · · · , k(xm, ·)}, then
F has finite dimension and we can find a stan-
dard orthogonal basis of F via Schmidt orthogonaliza-
tion. We denote the basis as e1, e2, e3, · · · , em, then
(k(x1, ·), k(x2, ·), · · · , k(xm, ·)) = (e1, e2, · · · , em)P ,
where P is invertible. We have that

⟨αik(xi, ·), αjk(xj , ·)⟩ =

〈
m∑

k=1

pkiek,

m∑
r=1

prjer

〉

=

m∑
k=1

m∑
r=1

pkiprj ⟨ek, er⟩

=

m∑
k=1

pkipkj ⟨ek, ek⟩

=

m∑
k=1

pkipkj .

Thus, K = PTP and P is invertible ⇒K is invertible.

Proof of Lemma 3. Provided X = X∗, the estimated θ̂
can be expressed as

∑m
i=1 αik(x

∗
i , ·) according to Lemma 1

in the main paper. Therefore, we can rewrite the optimiza-
tion problem as

A(D) = argmin
α

m∑
i=1

ℓ(βi, yi) + Ω(αTKα), (7)

where βi is the i-th element of Kα. Furthermore, the KKT
(Karush–Kuhn–Tucker) condition states that

2KαΩ′(αTKα) ∈
m∑
i=1

(K)i∇βi
ℓ(βi, yi), (8)

where ∇βi
ℓ(βi, yi) =

∂ℓ(βi,yi)
∂βi

and Ki is the i-th column
of K. By substituting ℓ(x, y) = (x− y)2 into Formula (10),
we have that

2KαΩ′(αTKα) ∈ 2K(Kα− Y ). (9)

By Lemma 9, we have that

2αΩ′(αTKα) ∈ 2K(Kα− Y ). (10)

By substituting ℓ(x, y) = (x − y)2 into Formula (10), we
have that

2αΩ′(αTKα) ∈ 2(Kα− Y ). (11)

Obviously, α = α∗ satisfies Equation (11). By the assump-
tion of Ω made in the paper and the strong convexity of
square loss function as well as the Hilbert norm, we have
that the optimization problem (2) in the paper is strongly
convex. Therefore, α∗ is the only solution to this problem,
which proves the lemma.

A.3. Proof of Lemma 4

We denote the sub-gradient ∇u max(1 − u, 0) = −I(u),
where

I(u) =


1, if u < 1;

[0, 1], if u = 1;

0, otherwise.

Proof of Lemma 4. The KKT (Karush–Kuhn–Tucker) con-
dition of Equation (2) is

2θ∗Ω′(∥θ∗∥2) ∈
n∗∑
i=1

k(xi, ·)yiI(yif(xi,θ
∗)) . (12)

Remember that Ω∗ = 2Ω′(∥θ∗∥2), the teaching dimension
is the minimum of n∗ such that

θ∗ =

n∗∑
i=1

yi
Ω∗

I(yig(xi,θ
∗))k(xi, ·) . (13)

Remember θ∗ can be expressed as

θ∗ =

m∑
i=1

αik(x
∗
i , ·) ,

we can construct the teaching set using {xi}mi=1.

If αiΩ∗g(xi,θ
∗) ≤ 1, let yi = αiΩ∗ and xi = x∗

i , we have

yi
Ω∗

I(yig(xi,θ
∗))k(xi, ·) = αik(x

∗
i , ·) .
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If αiΩ∗g(xi,θ
∗) > 1, then the construction of teaching set

can be expressed as the following optimization problem

minni

s.t.
n∑

i=1

yi = αiΩ∗

yig(xi,θ
∗) ≤ 1 ∀i ∈ [ni] .

The solution to the above optimization problem is ni =
⌈max(1, αig(x

∗
i ,θ

∗)Ω∗)⌉ and the corresponding teaching
items can be xij = x∗

i , yij = αiΩ∗/n, for j ∈ [ni].

According to the assumption of Ω made in the main paper
and the convexity of hinge loss and strong convexity of
Hilbert norm, the uniqueness of θ∗ is guaranteed.

Then we have that

xij = x∗
i , yij = αiΩ∗/ni, i ∈ [m], j ∈ [ni] ,

is the teaching set.

A.4. Proof of Theorem 2

Proof of Theorem 2. Note that

α∗
i g(x

∗
i ,θ

∗) = α∗
i

√
k(x∗

i ,x
∗
i )

〈
k(x∗

i , ·)√
k(x∗

i ,x
∗
i )
,θ∗

〉

≤ α∗
i

√
k(xi,xi)

〈
θ∗

∥θ∗∥H
,θ∗
〉

= α∗
i

√
k(x∗

i ,x
∗
i ) ∥θ

∗∥H ,

then Ω′(x) ≤ mini∈I∗ 1/(2α∗
i

√
k(x∗

i ,x
∗
i ) ∥θ∗∥H) implies

Ω′(x) ≤ 1/(2α∗
i g(x

∗
i ,θ

∗)). Combine the conclusion of
Lemma 5, we have that the teaching dimension is m.

B. Proofs in Section 3.2
B.1. Proof of Theorem 3

Proof of Theorem 3. Suppose ∃θ ∈ HdH+r−HdH
, where

r ∈ Z+, then we have that

θ =

dH+r∑
i=1

αik(xi, ·),

where at least dH +1 elements in {k(xi, ·)}dH+r
i=1 are linear

independent, or θ can be expressed with no more than dH
components, which implies θ ∈ HdH

, a contradiction.

However, the linear independence of dH + 1 elements is
contradict to dim(H) = dH . Then HdH+r − HdH

= ∅.
Because the conclusion holds for all r ∈ Z+, and H is the
closure of Hpre, we have that HdH

= H . Thus, Hm = H
with m ≤ dH .

B.2. Proof of Theorem 4

Proof of Theorem 4. We prove the result by contradiction.
Assume that D∗ = {(x1, y1), · · · , (xn, yn)} is a finite
teaching set for a target hypothesis θ∗. Let

Hn =

{
n∑

i=1

αik(xi, ·) : αi ∈ R

}
.

Denote H⊥
n the orthogonal subspace of Hn, we have Hn ⊕

H⊥
n = H , where ⊕ denotes direct sum. By the definition

of Hn, we obtain dim(Hn) ≤ n. Since dim(H) = ∞ >
dim(Hn), we have H⊥

n ̸= ∅. Then, there exists d ∈ H⊥
n ,

such that d ̸= 0 and d ⊥ Hn. For all λ ∈ R, since
k(xi, ·) ∈ Hn, we have that

n∑
i=1

ℓ(⟨θ∗, k(xi, ·)⟩ , yi)

=

n∑
i=1

ℓ(⟨θ∗ + λd, k(xi, ·)⟩ , yi).
(14)

By the definition of norm and inner product, we have that

||θ∗ + λd||2H = ||θ∗||2H + λ2||d||2H + 2λ ⟨θ∗,d⟩ .

The problem can be divided into two cases.

Case 1: ⟨θ∗,d⟩ ̸= 0. In this case, let λ = − 2⟨θ∗,d⟩
||d||2H

̸= 0,

then ||θ∗||2H = ||θ∗+λd||2H , but θ∗ ̸= θ∗+λd. Combined
this result with Equation (14), we have that θ∗ + λd is also
a solution to Equation (2) in the paper, thus a contradiction.

Case 2: ⟨θ∗,d⟩ = 0. Because of the uniqueness of θ∗, we
have that

Ω(||θ∗||2H) < Ω(||θ∗ + λd||2H)

holds for all λ ∈ R. This is equivalent to

Ω(x) < Ω(x′),

for x = ||θ∗||2H and all x′ > x. Since θ∗ can be arbitrary
chosen in H , x ranges from 0 to infinity. Therefore, Ω is
a monotonically increasing for x ≥ 0. By Lemma 1 in the
paper, the hypothesis has the following form

θ∗ =

n∑
i=1

αik(xi, ·).

Let r(θ) be the infimum number of data points such that
θ ∈ H can be expressed as the linear combination of the
functions mapped from the data points by the canonical
feature map. The assumption that the teaching dimension is
finite implies that supθ∈H r(θ) = N <∞. Let

HN =

{
N∑
i=1

αik(xi, ·) : αi ∈ R,xi ∈ X

}
,

then HN = H , hence a contradiction to the non-existence
of finite m0.
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B.3. Proof of Remark of Theorem 4

We at first recall the expression of Gaussian, exponential
and Laplacian kernels,

Gaussian kernel: e−
||x1−x2||2

2σ2 ,

exponential kernel: e−
||x1−x2||

2σ2 ,

Laplacian kernel: e−
||x1−x2||

σ .

Proposition 1. The RKHS induced by Gaussian kernel,
exponential kernel and Laplacian kernel cannot be repre-
sented by Hm with m ≤ ∞.

Proof of Proposition 1. Let H , H ′ and H ′′ be the RKHS
induced by Gaussian kernel, exponential kernel and Lapla-
cian kernel, respectively. It suffices for us to show for the
case d = 1, i.e., dim(X ) = 1. Without loss of generality,
we assume the parameters for Gaussian kernel, exponential
kernel and Laplacian kernel are

√
2
2 ,

√
2
2 and 1.

The following function belongs to H by its definition,

f(x) =

+∞∑
n=−∞

e−∥x−n∥2

, n ∈ Z ,

then f(p) = f(q) > 0, if p and q ∈ Z. It implies that
limx→∞ f(x) ̸= 0.

If H = Hm for some finite m, we have

f(x) =

m∑
i=1

αie
−∥x−xi∥2

.

However,

lim
x→∞

m∑
i=1

αie
−∥x−xi∥2

= 0,

a contradiction.

For exponential kernel and Laplacian kernel, consider the
following function,

g(x) =

+∞∑
n=−∞

e−∥x−n∥, n ∈ Z .

It is easy to see that g(x) ∈ H ′ and g(x) ∈ H ′′. And then
the proof is same as the case for Gaussian kernel.

B.4. Proof of Lemma 6

In order to calculate Λ(θ∗
m), we introduce θN ∈ H , such

that θN is the optimal solution to

L(θ) = min
θ∈H

1

N

N∑
i=1

ℓ(⟨k(xi, ·),θ⟩ , yi)+Ω(∥θ∥2H), (15)

where {(xi, yi)
N
i=1} is i.i.d. and sampled from the joint

distribution P(x, y). We next bound the generalization per-
formance of θm via the generalization performance of θN .

Following the work of (Yang et al., 2012), we now ex-
ploit the local Rademacher complexity. We define ψ(δ) =
( 2
N

∑N
i=1 min(δ2, λi))

1/2. Let ε̃ denote the solution to
δ2 = ψ(δ), where the existence and uniqueness of ε̃
are determined by the sub-root property of ψ(δ). De-
note γ = max (ε̃,

√
6 lnN/N). According to (Koltchin-

skii, 2011), we have that γ2 ∈ O(N−1/2), and when the
eigenvalues of kernel function follow the p-power law, it
can be improved to γ2 ∈ O(N−p/(p+1)). The following
Lemma 10 bounds Λ(θ∗

m) by Λ(θ∗
N ).

Lemma 10. For M1 = Ω−1(Ω(0) + 1) ≤ e2N/4γ2

with γ ≤ 1, sup∥θ∥H≤M1
2 ∥θ∥H Ω′(∥θ∥2H) ≤ M2, and

λm+1 ∈ O(N/
√
m), if Ω(x2) is µ-strongly convex, then

with a probability 1− 2N−3,

Λ (θ∗
m) ≤ Λ (θ∗

N ) +O

(
γ +

C(k) + 1√
m

+ e−N

)
.

Note that in our setting N can be arbitrarily chosen, we can
let N → ∞. In this way, we have Λ(θ∗

N ) → 0, γ → 0 and
e−N → 0, and complete the proof of Lemma 6.

We denote 1
N

∑N
i=1 ℓ(⟨k(xi, ·),θ⟩ , yi)+Ω(∥θ∥2H) as L̃(θ).

Let K be the Gram matrix of {xi}Ni=1 under kernel k,
i.e., K = [k(xi,xj)]N×N . Then we sample m construct
a low rank matrix with the teaching set {x∗

i , y
∗
i }mi=1 as

K̂m = KbK
†
mK

T
b , where Kb = [k(x∗

i ,xj)]N×m, Km =
[k(x∗

i ,x
∗
j )]m×m, and K†

m is the pseudo inverse of K†
m. We

first introduce Lemma 11, 12, 13, and 14, which are neces-
sary to prove Lemma 10.

We now give a recap of the concept of Fenchel conjugate.
Let f(x) be a function of x, its Fenchel conjugate f∗(α) is
defined as

f∗(α) = sup
z
(αz − f(z)) .

Suppose f is convex and differentiable over Rn. Any maxi-
mizer z∗ of αz − f(z) satisfies α = ∇zf(z

∗). It implies α
falls in the range of the mapping ∇zf(z) : R → R.
Lemma 11. If f is closed and strong convex with param-
eter µ, then f∗ has a Lipschitz continuous gradient with
parameter 1

µ .

Proof. By implication of strong convexity, we have

∥sx − sy∥ ≥ µ ∥x− y∥ ∀sx ∈ ∂f(x), sy ∈ ∂f(y) ,

which implies

∥sx − sy∥ ≥ µ ∥∇f∗(sx)−∇f∗(sy)∥ .

Hence, f∗ has a Lipschitz continuous gradient with constant
value 1

µ .
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Lemma 12. Under the assumption of Ω made in the paper,
we have that

0 ≤ L̃(θ∗
m)− L̃(θ∗

N ) ≤ C1C2µ

N

∥∥∥K − K̂m

∥∥∥
2
,

where C1 is the upper bound of ∇xℓ(x, y), and C2 is the
upper bound of |y| with y ∈ Y . ∥·∥2 stands for the spectral
norm of a matrix. θ∗

N is the solution that minimizes L̃(θ).

Proof. Let ℓ∗(α) and Ω∗ denote the Fenchel conjugate of
ℓ(z, y) and Ω(z2) in terms of z, respectively, i.e.,

ℓ∗(α) = sup
z
(αz − ℓ(z, y)),

Ω∗(α) = sup
z
(αz − Ω(z2)).

By the property of conjugate function, the derivative of Ω∗

at 0 is argminx Ω(x
2) = 0.

According to Lemma 11, (Ω∗)′ has a Lipschitz constant 1
µ ,

thus
(Ω∗)′(x) ≤ (Ω∗)′(0) +

1

µ
x =

x

µ
. (16)

Using the conjugates, we are able to rewrite L̃(θ∗
N ) as an

equivalent form

L̃(θ∗
N ) = max

α
− 1

N

N∑
i=1

ℓ∗(αi)

− Ω∗

(√
1

N2
(α ◦ y)TK(α ◦ y)

)
,

where α = (α1, · · · , αN )T and ◦ denotes the element-wise
dot product. Similarly, we can rewrite L̃(θ∗

m) as

L̃(θ∗
m) = max

α
− 1

N

N∑
i=1

ℓ∗(αi)

− Ω∗

(√
1

N2
(α ◦ y)T K̂m(α ◦ y)

)
.

Then, we have that

L̃(θ∗
m) = max

α
− 1

N

N∑
i=1

ℓ∗(αi)

− Ω∗

(√
1

N2
(α ◦ y)TK(α ◦ y)

)

+Ω∗

(√
1

N2
(α ◦ y)TK(α ◦ y)

)

− Ω∗

(√
1

N2
(α ◦ y)T K̂m(α ◦ y)

)
,

and then

L̃(θ∗
m) ≤ max

α

(
− 1

N

N∑
i=1

ℓ∗(αi)

− Ω∗

(√
1

N2
(α ◦ y)TK(α ◦ y)

)

+max
α

(
Ω∗

(√
1

N2
(α ◦ y)TK(α ◦ y)

))

− Ω∗

(√
1

N2
(α ◦ y)T K̂m(α ◦ y)

))
(a)
= L̃(θ∗

N )

+ max
α

(Ω∗)′(
√
x0)

2N2
√
x0

(α ◦ y)T (K − K̂m)(α ◦ y)

(b)

≤ L̃(θ∗
N )

+ max
α

1

2µN2
(α ◦ y)T (K − K̂m)(α ◦ y)

≤ L̃(θ∗
N ) + max

α

C2

2µN2
∥α∥2

∥∥∥K − K̂m

∥∥∥
2

(c)

≤ L̃(θ∗
N ) +

C1C2

2µN

∥∥∥K − K̂m

∥∥∥
2
,

where (a) uses Lagrange’s mean value theorem, (b) is de-
rived from Equation (16), and (c) follows |αi| ≤ C1 duo to
∇xℓ(x, y) ≤ C1.

Lemma 13. For M1 = Ω−1(Ω(0) + 1) ≤ e2N/(4γ2) with
γ ≤ 1 and sup∥θ∥2

H≤M1
2 ∥θ∥H Ω′(∥θ∥2H) ≤ M2 , with a

probability 1− 2N−3, we have that

Λ (θ∗
m) ≤ Λ (θ∗

N ) + C3

γ +

∥∥∥K − K̂m

∥∥∥
2

N
+ e−N

 ,

where C3 is a constant.

Proof. Define the loss function

ℓ̄(⟨θ, k(x, ·⟩ , y) = ℓ(⟨θ, k(x, ·⟩ , y) + Ω(∥θ∥2H).

To simplify our notations, we define PN and P as

PN (ℓ̄ ◦ θ) = 1

N

N∑
i=1

ℓ̄ (⟨θ, k(x, ·⟩ , yi) = L̃(θ),

P (ℓ̄ ◦ θ) = E[ℓ̄(⟨θ, k(x, ·⟩ , y)] = F (θ).
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Using those notations, we have that

Λ (θ∗
m)− Λ (θ∗

N )

= P
(
ℓ̄ ◦ θ∗

m − ℓ̄ ◦ θ∗
N

)
= PN

(
ℓ̄ ◦ θ∗

m − ℓ̄ ◦ θ∗
N

)
+ (P − PN )

(
ℓ̄ ◦ θ∗

m − ℓ̄ ◦ θ∗
N

)
≤ PN

(
ℓ̄ ◦ θ∗

m − ℓ̄ ◦ θ∗
N

)
+ max

(θ,θ′)∈G
(P − PN )

(
ℓ̄ ◦ θ − ℓ̄ ◦ θ′) .

In the above formula, G is defined as

G =
{
(θ,θ′) : ∥θ − θ′∥ℓ2 ≤ r, ∥θ − θ′∥H ≤ R

}
,

where ∥θ∥ℓ2 =
√
E[θ2] ≤ ∥θ∥H , and r as well as R

are given by r = R = ∥θ∗
m − θ∗

N∥H ≤ 2M
1/2
1 . Using

Lemma 9 from (Koltchinskii & Yuan, 2010), we have that,
with probability 1− 2N−3, for any γr ≤ eN , γ2R ≤ eN ,

sup
(θ,θ′)∈G

(P − PN )
(
ℓ̄ ◦ θ′ − ℓ̄ ◦ θ′)

≤ C4L
(
rγ +Rγ2 + e−N

)
≤ C5L

(
rγ + e−N

)
,

where C4, C5 are constants, and L is the upper bound of
the gradient of ℓ̄ for functions in G and is given by L ≤
sup∥θ∥2

H≤M
1/2
1

2||θ||HΩ′(∥θ∥2H) +C1 ≤M2 +C1. Since

max(∥θ∗
N∥H , ∥θ∗

m∥H) ≤ M1 and M1 ≤ e2N/(4γ2), we
have the condition γr ≤ eN satisfied. Therefore, with a
probability 1− 2N−3, we have that

P
(
ℓ̄ ◦ θ∗

m − ℓ̄ ◦ θ∗
N

)
≤ PN

(
ℓ̄ ◦ θ∗

m − ℓ̄ ◦ θ∗
N

)
+ C5(M2 + C1)

(
rγ + e−N

)
≤
C
∥∥∥K − K̂m

∥∥∥
2

2µN
+ C5(M2 + C1)

(
rγ + e−N

)
,

where we use the result in Lemma 12. By the fact of Λ(θ) =
P (ℓ̄ ◦ θ − ℓ̄ ◦ θ∗), we have that

Λ (θ∗
m) ≤ Λ (θ∗

N ) +
C
∥∥∥K − K̂m

∥∥∥
2

2µN

+ C5(M2 + C1)
(
2M

1/2
1 γ + e−N

)
.

We complete the proof by absorbing the constant terms into
a constant C3.

Now we only need to bound ∥K − K̂m∥2. To this end, we
apply the conclusion from (Drineas & Mahoney, 2005), and
we state it in the following lemma.

Lemma 14. Suppose G is an N × N symmetric positive
semi-definite (SPSD) matrix, let Ĝm be constructed by sam-
pling m columns of G with a given probability. In addi-
tion, let Gm be the best rank-m approximation to G. With

η = 1 +
√

8 log(1/δ), we have that, with probability at
least 1− δ,

∥∥∥G− Ĝm

∥∥∥
2
≤ ∥G−Gm∥2 +

2η√
m

N∑
i=1

G2
ii,

where ∥ · ∥2 is the spectral norm of matrix.

With the property that Gram matrixK is symmetric and pos-
itive semi-definite, we can apply Lemma 14 to K and K̂m.
Notably, in machine teaching setting, K̂m is constructed op-
timally, while in the setting of Lemma 14, Ĝm is constructed
by sampling. Therefore, we can achieve this inequality if
δ > 0. Then, we have that

∥∥∥K − K̂m

∥∥∥
2
≤
∥∥K − K̄m

∥∥
2
+

2√
m

N∑
i=1

K2
ii (17)

for our setting, where K̄m is the best rank-m approximation
to K. Using the property of spectral norm of a matrix, we
have ∥K −Km∥2 = λm+1. By substituting Inequality (17)
into the result of Lemma 13, and letting 2 supx k

2(x,x) =
C(k), we complete the proof of Lemma 10.

C. Proofs in Section 4
C.1. Proof of Lemma 7

Proof of Lemma 7. For dim(X ) = d, the dimension of the
induced RKHS H is dim(H) = d. By Theorem 3 in the
paper, θ∗ =

∑d
i=1 αik(xi, ·). Then we have that

θ∗ =

d∑
i=1

αi ⟨xi, ·⟩
(a)
=

〈
d∑

i=1

αixi, ·

〉
(b)
= ⟨x, ·⟩ ,

where (a) holds because of the linearity of inner product, and
(b) holds because X is a linear space and there exists x ∈ X
such that x =

∑d
i=1 αixi. Therefore, all hypotheses in H

can be expressed by one term, which ends the proof.

C.2. Proof of Lemma 8

Proof of Lemma 8. According to the definition of G∗(d, p),
we have that G(θ, d, p,G∗(d, p)) ̸= {1}. By the Hilbert’s
Nullstellensatz (Hartshorne, 1977), the solution to the poly-
nomial system exists when Gröbner basis is not {1}.

C.3. An example for Remark 2 of Lemma 8

Let θ∗ =
∑4

i=1 k(xi, ·), where x1 = (1, 2), x2 = (3, 4),
x3 = (5, 6), x4 = (7, 8), i.e., d = 2. Let p = 3, then(
d+p−1

p

)
= 4. Instantiate (6) with this example and let
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m = 2, (6) becomes
y311 + y321 = 496

y211 · y12 + y221 · y22 = 580

y11 · y212 + y21 · y222 = 680

y312 + y322 = 800.

(18)

Then the Gröbner basis is G(θ∗, 2, 3, 2) = {y12 · y321− y11 ·
y22 · y221, y12 · y221 · y22 − y11 · y21 · y222, y12 · y21 · y222 −
y11 · y322, y311 + y321, y12 · y211 + y22 · y221, y11 · y212 + y21 ·
y222, y

3
12 + y322} ̸= {1}. Similarly, we have G(θ∗, 2, 3, 1) =

{1}. According to the definition of G(θ∗, 2, 3), we have
G(θ∗, 2, 3) = 2 < 4.

C.4. Proof of Corollary 3 and 4

Proof of Corollary 3 and 4. According to Theorem 5 in
the paper, the ϵ-approximate teaching dimension is
O((C(k) + 1)2/ϵ2). For the Gaussian kernel, exponential
kernel and Laplacian kernel, C(k) = 2 supx k

2(x,x) = 2.
Then, the ϵ-TD can be simplified as O(1/ϵ2).

D. For the Unregularized Learners
We derive the teaching set for unregularized learners with
square loss and hinge loss in this section. We also mention
the assumptions needed by perceptron loss.

D.1. Square Loss

We start by providing teaching set for linear kernel.
Proposition 2. For the target hypothesis θ∗,
{xi, (θ

∗)Txi}di=1 is a teaching set, where {xi}di=1

are linearly independent.

Proof. For

L(θ) =
d∑

i=1

(θTxi − yi)
2,

it is easy to see that L(θ∗) = 0. Therefore, θ∗ is in the
solution set.

If L(θ∗ + δ) = 0, then

L(θ) =
d∑

i=1

(
(θ∗ + δ)Txi − yi

)2
=

d∑
i=1

(δTxi)
2 = 0 .

Since {xi}di=1 are linearly independent and dim(δ) = d, we
have δ = 0. This guarantees θ∗ is the unique solution.

According to (Kumar et al., 2021), the RKHS of polynomial
kernel is isomorphic to that of a higher dimensional linear
kernel. Therefore, if the following assumption is satisfied,
the teaching set for polynomial kernel can be derived the
same as linear kernel.

Assumption 1. For the target hypothesis θ∗ ∈ H , we as-
sume that there exist r = dim(H) linearly independent poly-
nomials of the form {Φ(zi)}ri=1, where ∀i, zi ∈ X and Φ
is the feature map of polynomial kernel.

For Gaussian kernel, (Kumar et al., 2021) uses

k̃(x1,x2) = e−
∥x1∥2H

2σ2 e−
∥x2∥2H

2σ2

s∑
t=0

1

t!

(
⟨x1,x2⟩
σ2

)t

as an approximation of Gaussian kernel. The approximation
error is small when the following assumption holds.

Assumption 2 (Assumption 3.4.2 in Kumar et al. (2021)).
For the target hypothesis θ∗ =

∑l
i=1 αik(xi, ·), the learner

optimizes to a solution θ̂ with bounded coefficients. Alterna-
tively, the sums

∑r
i=1 |αi| and |β|+

∑r
j=2 |γj | are bounded

where θ̂ ∈ H has the form θ̂ = βk(x1, ·)+
∑r

j=2 γjk(xj , ·)
and r = dim(H).

We denote H̃ as the RKHS induced by k̃, Pθ∗ as the pro-
jection of θ∗ in H̃ . Similar to Assumption 1, we need an
assumption for the approximate kernel.

Assumption 3. For the target hypothesis θ∗ ∈ H , we as-
sume that there exist r = dim(H̃) linearly independent ele-
ments in H̃ of the form {Φ(zi)}ri=1, where ∀i, zi ∈ X and
Φ is the feature map of the approximate Gaussian kernel.

With the assumption, we can provide teaching set for the
approximate kernel as the linear kernel, and the teaching set
is also the approximate teaching set for Gaussian kernel.

D.2. Hinge Loss

Similar to the square loss, we start by providing teaching
set for linear kernel.

Proposition 3. For the target hypothesis θ∗, the following
is a teaching set

xi = vi +
θ∗

∥θ∗∥2
, yi = 1 ∀i ∈ {1, · · · , d− 1};

xi = −vi +
θ∗

∥θ∗∥2
, yi = 1 ∀i ∈ {d, · · · , 2d− 2};

x2d−1 = − θ∗

∥θ∗∥2
, y2d−1 = 1 ,

where {vi}di=1 is an orthogonal basis for Rd which extends
with vd = θ∗.

Proof. For

L(θ) =
2d−1∑
i=1

max(1− yiθ
Txi, 0),

we can calculate L(θ∗) = 2.
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Suppose θ0 = θ∗ + δ is the optimal solution for minL(θ),
where δ can be represented as

∑d−1
i=1 tivi + tdθ

∗.

Note that max(1−y2d−1θ
T
0 x2d−1) = 2+td, the optimality

of θ0 implies td ≤ 0. However,

2d−2∑
i=1

max(1− yiθ
T
0 xi, 0) ≥ −(2d− 2)td ,

so td = 0.

Based on the fact td = 0, we have

2d−2∑
i=1

max(1− yiθ
T
0 xi, 0) ≥

2d−2∑
i=1

∥tivi∥2 ,

this implies ti = 0.

Then we get δ = 0, and θ∗ is the unique solution to
minL(θ).

The derivation of polynomial kernel and Gaussian kernel
is similar to that of the square loss except for some modi-
fications of Assumption 1 and 3. The modification comes
from the appearance of θ∗ in the teaching set. We states the
modified assumptions as follows.

Assumption 4. For the target hypothesis θ∗ ∈ H , let Φ be
the feature map of polynomial kernel, we assume that

1. There exist (r − 1) linearly independent polynomials
on the orthogonal subspace of θ∗ in H of the form
{Φ(zi)}r−1

i=1 , where ∀i, zi ∈ X and r = dim(H).

2. There exists polynomial such that θ∗ = Φ(z), where
z ∈ X .

Assumption 5. For the target hypothesis θ∗ ∈ H , let Φ be
the feature map of approximate Gaussian kernel, we assume
that

1. There exist (r − 1) linearly independent elements
on the orthogonal subspace of θ∗ in H of the form
{Φ(zi)}r−1

i=1 , where ∀i, zi ∈ X and r = dim(H̃).

2. There exists polynomial such that θ∗ = Φ(z), where
z ∈ X .

D.3. Perceptron Loss

Because we only focus on square loss and hinge loss in this
paper, the teaching set for perceptron loss is omitted and
can be found in (Kumar et al., 2021). In this section, we
provide the assumptions needed by perceptron loss for the
purpose of self-contained. For polynomial kernel, we need
one assumption.

Assumption 6 (Assumption 3.2.1 in (Kumar et al., 2021)).
For the target hypothesis θ∗ ∈ H , let Φ be the feature map of
polynomial kernel, we assume that there exist (r−1) linearly
independent polynomials on the orthogonal subspace of
θ∗ in H of the form {Φ(zi)}r−1

i=1 , where ∀i, zi ∈ X and
r = dim(H).

For Gaussian kernel, Assumption 2 and the following as-
sumption are needed.

Assumption 7 (Assumption 3.4.1 in (Kumar et al., 2021)).
For the target hypothesis θ∗ ∈ H , let Φ be the feature
map of approximate Gaussian kernel, we assume that there
exists (r−1) linearly independent elements such that on the
orthogonal subspace of Pθ∗ in H̃ of the form {Φ(zi)}r−1

i=1 ,
where ∀i, zi ∈ X and r = dim(H̃).

E. Experiment Details
This section introduces the selected datasets. Sin: It is gen-
erated by sin operator with (µ = 0, σ = 0.15) Gaussian
noise in [0, 5]. It has 150 samples and the dimension of
input space is 1. Make-regression: An optionally-sparse
random linear combination of random features with noise.
It has 250 samples and the dimension of input space is 2.
MPG: A dataset taken from the StatLib library maintained
at Carnegie Mellon University, concerns city-cycle fuel con-
sumption, is to be predicted in terms of both multivalued
discrete and continuous attributes. It has 392 samples and
the dimension of input space is 7. Eunite1: The Eunite 2001
competition dataset. Given load and some other information
in previous years, the task is to predict daily maximum load
in the next January. It has 336 samples and the dimension of
input space is 16. Two-moon: Two interleaving half circles.
It has 250 samples and the dimension of input space is 2.
Two-circle: A large circle containing a smaller circle in 2D.
It has 250 samples and the dimension of input space is 2.
Adult: High dimensional binary classification problem with
both continuous and discrete features. It has 1605 samples
and the dimension of input space is 123. Sonar: Discrim-
inate between sonar signals bounced off a metal cylinder
and those bounced off a roughly cylindrical rock, the data is
derived from 111 patterns, each pattern consists of 60 num-
bers representing the energy within a particular frequency
band. It has 208 samples and the dimension of input space
is 60.

F. Numerical Results for Exact Teaching
To illustrate exact teaching, we provide numerical examples
for teaching the linear kernel learner and the polynomial
kernel learner.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
regression.html#eunite2001

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#eunite2001
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#eunite2001
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Linear Kernel. For the target hypothesis θ∗ = (−1, 1, 0) ∈
R3, we consider the regularization function Ω(x2) = 1

2x
2.

According to Lemma 3 and 4, the teaching set for square
loss is {(−1, 1, 0), 3/2}, for hinge loss is {(−1, 1, 0), 1}.

However, for unregularized learner, the teaching set can
be {{(1, 0, 0),−1}, {(0, 1, 0), 1}, {(0, 0, 1), 0}} for square
loss. For hinge loss, we first obtain an orthogonal basis
{(1/2, 1/2, 0), (0, 0, 1)} for the subspace orthogonal to θ∗,
and the teaching set is

{(1 +
√
2

2
,
1−

√
2

2
, 0), 1}, {(

√
2

2
,

√
2

2
, 1), 1},

{(−1 +
√
2

2
,
−1−

√
2

2
, 0), 1}, {(

√
2

2
,

√
2

2
,−1), 1},

{(−
√
2

2
,−

√
2

2
, 0), 1}.

Polynomial Kernel. For the target hypothesis
θ∗ =

∑4
i=1 k(xi, ·), where x1 = (1, 2), x2 = (3, 4),

x3 = (5, 6), x4 = (7, 8). Let the degree of the polyno-
mial be 3, i.e., p = 3. We consider the regularization
function Ω(x2) = 1

107x
2. By solving the polyno-

mial system (6), we have θ∗ = k((2.22, 3.48), ·) +
k((7.86, 9.12), ·). Then we obtain the teaching set
{{(2.22, 3.18), 123946.37}, {(7.86, 9.12), 3164724.12}}
for square loss. Note that for classification problem,
tθ∗ is equivalent to θ∗ if t is a positive constant.
We can construct the teaching set for hinge loss as
{{(2.22, 3.18), 1}, {(7.86, 9.12), 1}}.

For the unregularized learner, we first consider the teach-
ing set for square loss. Note that (1, 0), (0, 1), (1, 2),
(2, 1) ∈ X , and the functions induced by mapping the four
elements to RKHS with canonical feature map are linearly
independent, we can construct the teaching set as

{(1, 0), 496}, {(0, 1), 800},
{(1, 2), 18536}, {(2, 1), 15808}.

For hinge loss, the teaching set can not be constructed be-
cause Assumption 4 is not satisfied.

G. Experiments on Laplacian and Exponential
and Kernels

In this section, we perform experiments on Laplacian kernel
and exponential kernel. The parameter σ of Laplacian kernel
is set to be d, and the σ of exponential kernel is set to be
0.9, where d is the dimension of input space.

Figure 5 and Figure 6 visualize the teaching sets for Lapla-
cian kernel learner and exponential kernel learner with hinge
loss function respectively. Similar to Gaussian kernel, the
top sub-figures are the results on the Circle dataset and the
bottom sub-figures are the results on the Moon dataset. The
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Figure 5. Approximate teaching with Laplacian kernel learner on
Moon and Circle datasets. The binary dataset is marked by red
and blue dots. The interface between the blue and red areas is
the decision boundary of the learned hypothesis. (a) The target
hypothesis θ∗. (b) The learned hypothesis with the teaching set
being marked as the dark-red stars.

interface between the blue and red areas is the decision
boundary of teacher in the sub-figure (a), and learner in the
sub-figure (b). The positive and negative points in dataset
are marked by red and blue dots respectively in the sub-
figure (a). The constructed teaching set (TS) is shown by
dark-red stars in the sub-figure (b).

The results show that with much less data points than that of
the dataset, both Laplacian kernel learners and exponential
kernel learners can obtain nearly the same hypothesis as the
target hypothesis generated by the dataset.

Table 4 and Table 5 indicate the relationship between the
excess risk ratio Λ̄ and ϵ-TD for Laplacian kernel learner
and exponential kernel learner respectively. Each line of the
table represents a dataset and each column indicates a ratio
of reference risk. The number inside table shows the TD of
our method.

Table 4. ϵ-TD of the regularized Laplacian kernel learner under the
excess risk ratio Λ̄.

Dataset Λ̄ = 100% 80% 60% 40% 20% 0%

Sin 2 2 2 2 4 >60
MR 2 2 3 5 10 >60
MPG 1 1 1 1 2 >60
Eunite 1 1 1 1 1 >60
Circle 2 3 4 5 6 17
Moon 2 2 3 5 6 18
Adult 1 3 8 15 37 >60
Sonar 1 3 5 11 36 >60
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Figure 6. Approximate teaching with exponential kernel learner
on Moon and Circle datasets. The binary dataset is marked by
red and blue dots. The interface between the blue and red areas
is the decision boundary of the learned hypothesis. (a) The target
hypothesis θ∗. (b) The learned hypothesis with the teaching set
being marked as the dark-red stars.

Table 5. ϵ-TD of the regularized exponential kernel learner under
the excess risk ratio Λ̄.

Dataset Λ̄ = 100% 80% 60% 40% 20% 0%

Sin 2 2 2 2 3 >60
MR 2 2 3 5 9 >60
MPG 1 1 1 2 4 >60
Eunite 1 1 2 3 5 >60
Circle 2 2 3 4 5 26
Moon 2 2 2 3 5 16
Adult 1 1 1 36 >60 >60
Sonar 1 4 8 16 42 >60

H. Extra Experiments on Gaussian Kernel
with Hinge Loss

To better illustrate the ability of Hm when it comes to hinge
loss, we also provide empirical results on the relationship
between error rate (ER) and the m of Hm, where ER is
defined as 1− accuracy. The results are shown in Table 6.

Each line in the table stands for a binary classification
dataset and each column indicates an error rate. The value

Table 6. The relationship between ER and m of Hm.

Dataset ER = 0.5 0.4 0.3 0.2 0.1 0

Circle 1 1 2 3 3 4
Moon 1 1 1 1 3 7
Adult 1 1 1 8 >400 >400
Sonar 1 1 3 17 52 182

inside the table is the smallest m such that Hm achieves ER
no more than that in the first line of the table.


