
Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Dan Qiao 1 Ming Yin 1 2 Ming Min 2 Yu-Xiang Wang 1

Abstract

We study the problem of reinforcement learn-
ing (RL) with low (policy) switching cost — a
problem well-motivated by real-life RL applica-
tions in which deployments of new policies are
costly and the number of policy updates must
be low. In this paper, we propose a new algo-
rithm based on stage-wise exploration and adap-
tive policy elimination that achieves a regret of
Õ(
√
H4S2AT) while requiring a switching cost

of O(HSA log log T). This is an exponential im-
provement over the best-known switching cost
O(H2SA log T) among existing methods with
Õ(poly(H,S,A)

√
T) regret. In the above, S,A

denotes the number of states and actions in an H-
horizon episodic Markov Decision Process model
with unknown transitions, and T is the number of
steps. As a byproduct of our new techniques, we
also derive a reward-free exploration algorithm
with a switching cost of O(HSA). Furthermore,
we prove a pair of information-theoretical lower
bounds which say that (1) Any no-regret algo-
rithm must have a switching cost of Ω(HSA); (2)
Any Õ(

√
T) regret algorithm must incur a switch-

ing cost of Ω(HSA log log T). Both our algo-
rithms are thus optimal in their switching costs.

1. Introduction
In many real-world reinforcement learning (RL) tasks, it
is costly to run fully adaptive algorithms that update the
exploration policy frequently. Instead, collecting data in
large batches using the current policy deployment is usually
cheaper. For instance, in recommendation systems (Afsar
et al., 2021), the system is able to collect millions of new
data points in minutes, while the deployment of a new policy

1Department of Computer Science, UC Santa Barbara
2Department of Statistics and Applied Probability, UC Santa Bar-
bara. Correspondence to: Dan Qiao <danqiao@ucsb.edu>, Yu-
Xiang Wang <yuxiangw@cs.ucsb.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

often takes weeks, as it involves significant extra cost and
human effort. It is thus infeasible to change the policy after
collecting every new data point as a typical RL algorithm
would demand. A practical alternative is to schedule a large
batch of experiments in parallel and only decide whether to
change the policy after the whole batch is complete. Similar
constraints arise in other RL applications such as those in
healthcare (Yu et al., 2021), database optimization (Krishnan
et al., 2018), computer networking (Xu et al., 2018) and new
material design (Raccuglia et al., 2016).

In those scenarios, the agent needs to minimize the number
of policy switching while maintaining (nearly) the same re-
gret bounds as its fully-adaptive counterparts. On the empir-
ical side, Matsushima et al. (2020) cast this problem via the
notion deployment efficiency and designed algorithms with
high deployment efficiency for both online and offline tasks.
On the theoretical side, Bai et al. (2019) first brought up
the definition of switching cost that measures the number of
policy updates. They designed Q learning-based algorithm
with regret of Õ∗(

√
T) and switching cost of O∗(log T)1.

Later, Zhang et al. (2020c) improved both the regret bound
and switching cost bound. However, the switching cost re-
mains order O∗(log T). In addition, both algorithms need
to monitor the data stream to decide whether the policy
should be switched at each episode. In contrast, for an
A-armed bandit problem, Cesa-Bianchi et al. (2013) cre-
ated arm elimination algorithm that achieves the optimal
Õ(
√
AT) regret and a near constant switching cost bound

of O(A log log T). Meanwhile, the arm elimination algo-
rithm predefined when to change policy before the algorithm
starts, which could render parallel implementation. To adapt
this feature from multi-armed bandit to RL problem, one
straightforward way is to consider each deterministic pol-
icy (ASH policies in total) as an arm. Applying the same
algorithm for the RL setting, one ends up with the switch-
ing cost to be O(ASH log log T) and the regret bound of
order O(

√
ASHT). Clearly, such an adaptation is far from

satisfactory as the exponential dependence on H,S makes
the algorithm inefficient. This motivates us to consider the
following question:
Question 1.1. Is it possible to design an algorithm for on-
line RL problem with O∗(log log T) switching cost and

1Here O∗(·) and Õ∗ omit a poly(H,S,A) terms, this will be
a notation we use throughout.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Algorithms for regret minimization Regret Switching cost
UCB2-Bernstein (Bai et al., 2019) Õ(

√
H3SAT) Local: O(H3SA log T)

UCB-Advantage (Zhang et al., 2020c) Õ(
√
H2SAT) Local: O(H2SA log T)

Algorithm 1 in (Gao et al., 2021) ∗ Õ(
√
d3H3T) Global: O(dH log T)

APEVE (Our Algorithm 1) Õ(
√
H4S2AT) Global: O(HSA log log T)

Explore-First w. LARFE (Our Algorithm 4) Õ(T 2/3H4/3S2/3A1/3) Global: O(HSA)

Lower bound (Our Theorem 4.2) if Õ(
√
T) (“Optimal regret”) Global: Ω(HSA log log T)

Lower bound (Our Theorem 4.3) if o(T) (“No regret”) Global: Ω(HSA)

Algorithms for reward-free exploration Sample (episode) complexity Switching cost
Algorithm 2&3 in (Jin et al., 2020a) Õ(H

5S2A
ϵ2) Global: Õ(H

7S4A
ϵ)‡

RF-UCRL (Kaufmann et al., 2021) Õ(H
4S2A
ϵ2) Global: Õ(H

4S2A
ϵ2)

RF-Express (Ménard et al., 2021) Õ(H
3S2A
ϵ2) Global: Õ(H

3S2A
ϵ2)

SSTP (Zhang et al., 2020b) Õ(S
2A
ϵ2)⋆ Global: Õ(SA log(S

2A
ϵ2))†

Algorithm 3&4 in (Huang et al., 2022) Õ(dH(d
3cKH6cK+1

ϵ2cK
)

1
cK−1) Global: cKdH + 1

LARFE (Our Algorithm 4) Õ(H
5S2A
ϵ2) Global: O(HSA)

Table 1. Comparison of our results (in blue) to existing work regarding problem type, regret/sample complexity, and switching cost. Note
that some of the works are under linear MDP, where d is the dimension of feature map. When the feature map is the canonical basis
(Jin et al., 2020b), linear MDP recovers tabular MDP and d = SA. ∗:This result is generalized by Wang et al. (2021), whose algorithm
has a same switching cost bound under this regret bound. ‡: In (Jin et al., 2020a), there are Õ(H

7S4A
ϵ

) episodes of data collected using
EULER, which can lead to the same number of switching cost in the worst case. ⋆: This result is derived under stationary MDP with total
reward bounded by 1. †:We translate the use of trigger set in Algorithm 3 (Zhang et al., 2020b) to a worst case switching cost bound.

Õ(poly(H,S,A)
√
T) regret bound while it can decide

when to change policy before the process starts?

Our contributions. In this paper, we answer the above
question affirmatively by contributing the new low switch-
ing algorithm APEVE (Algorithm 1). Furthermore, the
framework of APEVE naturally adapts to the more chal-
lenging low switching reward-free setting and we end up
with LARFE (Algorithm 4) as a byproduct. Our concrete
contributions are summarized as follows. To the best of our
knowledge, all of the results are the first of its kinds.

• A new policy elimination algorithm APEVE (Algo-
rithm 1) that achieves O(HSA log log T) switching
costs (Theorem 4.1). This provides an exponential im-
provement over the existing algorithms that require an
O∗(log T) switching cost to achieve Õ∗(

√
T) regret.2

• A matching global switching cost lower bound of
Ω(HSA log log T) for any algorithm with Õ∗(

√
T)

regret bound (Theorem 4.2). This certifies the pol-
icy switching of APEVE is near-optimal for sample-
efficient RL. As a byproduct, we provide a global

2To be rigorous, we point out there are different notions for
switching cost, e.g. local switching cost (Zhang et al., 2020c) and
global switching cost (ours). However, we are the first to achieve
log log T switching cost with

√
T regret, regardless of its type.

switching cost lower bound of Ω(HSA) for any no-
regret algorithm (Theorem 4.3).

• We also propose a new low-adaptive algorithm LARFE
for reward-free exploration (Algorithm 4). It comes
with an optimal global switching cost of O(HSA) for
deterministic policies (Theorem 5.1) and allows the
identification of an ϵ-optimal policy simultaneously for
all (unknown, possibly data-dependent) reward design.

Why log log T switching cost matters? The improve-
ment from log T to log log T could make a big difference
in practical applications. Take T = 1e5 as an example,
log T ≈ 11.5 and log log T ≈ 2.4. This represents a nearly
5x improvement in a reasonably-sized exploration dataset
one can collect. 80% savings in the required resources could
distinguish between what is practical and what is not, and
will certainly allow for more iterations. On the other hand,
the total number of atoms in the observable universe≈ 1082

and log log 1082 ≈ 5.24. This reveals log log T could be
cast as constant quantity in practice, since it is impossible
to run T > 1082 steps for any experiment in real-world
applications.

Related work. There is a large and growing body of lit-
erature on the statistical theory of reinforcement learning
that we will not attempt to thoroughly review. Detailed
comparisons with existing work on RL with low-switching

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

cost (Bai et al., 2019; Zhang et al., 2020c; Gao et al., 2021;
Wang et al., 2021) and reward-free exploration (Jin et al.,
2020a; Kaufmann et al., 2021; Ménard et al., 2021; Zhang
et al., 2020b; Huang et al., 2022) are given in Table 1. For a
slightly more general context of this work, please refer to
Appendix A and the references therein. Notably, all existing
algorithms with a Õ∗(

√
T) regret incurs a switching cost of

O∗(log T). In terms of lower bounds, our Ω(HSA) lower
bound is stronger than that of Bai et al. (2019) as it operates
on the global switching cost rather than the local switching
cost.

The only existing algorithm with o(log T) switching cost
comes from the concurrent work of Huang et al. (2022) who
studied the problem of deployment-efficient reinforcement
learning under the linear MDP model, where they require
a constant switching cost. Huang et al. (2022) obtained
only sample complexity bounds for pure exploration, which
makes their result incompatible to our regret bounds. When
compared with our results in the reward-free RL setting in
the tabular setting (taking d = SA) their algorithm has a
comparable O(HSA) switching cost, but incurs a larger
sample complexity in H,S,A and ϵ.

Lastly, the low-switching cost setting is often confused
with its cousin — the low adaptivity setting (Perchet et al.,
2016; Gao et al., 2019) (also known as batched RL3). Low-
adaptivity requires decisions about policy changes to be
made at only a few (often predefined) checkpoints but
does not constrain the number of policy changes. Low-
adaptive algorithms often do have low-switching cost, but
lower bounds on rounds of adaptivity do not imply lower
bounds for our problem. We note that our algorithms are
low-adaptive, because they schedule the batch sizes of each
policy ahead of time and require no adaptivity during the
batches. This feature makes our algorithm more practical
relative to (Bai et al., 2019; Zhang et al., 2020c; Gao et al.,
2021; Wang et al., 2021) which uses adaptive switching (see,
e.g., Huang et al., 2022, for a more elaborate discussion).
In Section 4 we will revisit this problem and highlight the
optimality of our algorithm in this alternative setting, as a
byproduct.

A remark on technical novelty. The design of our algo-
rithms involves substantial technical innovation over Bai
et al. (2019); Zhang et al. (2020c); Gao et al. (2021); Wang
et al. (2021). The common idea behind these O(log T)
switching cost algorithms is the doubling schedule of
batches in updating the policies, which originates from
the UCB2 algorithm (Auer et al., 2002) for bandits. The
change from UCB to UCB2 is mild enough such that exist-
ing “optimism”-based algorithms for strategic exploration
designed without switching cost constraints can be adapted.

3Note that this is different from Batch RL, which is synony-
mous to Offline RL.

In contrast, algorithms with O(log log T) switching cost
deviates from “optimism” even in bandits problem (Cesa-
Bianchi et al., 2013), thus require fresh new ideas in solving
exploration when extended to RL.

The generalization of the arm elimination schedule for ban-
dits (Cesa-Bianchi et al., 2013) to RL is nontrivial because
there is an exponentially large set of deterministic policies
but we need a sample efficient algorithm with polynomial
dependence on H,S,A (also see the discussion before Ques-
tion 1.1). Part of our solution is inspired by the reward-free
exploration approach (Jin et al., 2020a), which learns to visit
each (h, s, a) as much as possible by designing special re-
wards. However, this approach itself requires an exploration
oracle, and no existing RL algorithms has o(log T) switch-
ing cost (otherwise our problem is solved). We address this
problem by breaking up the exploration into stages and itera-
tively update a carefully constructed “absorbing MDP” that
can be estimated with multiplicative error bounds. Finally,
our lower bound construction is new and simple, as it essen-
tially shows that tabular MDPs are as hard as multi-armed
bandits with Ω(HSA) arms in terms of the switching cost.
These techniques might be of independent interests beyond
the context of this paper.

2. Problem Setup
Episodic reinforcement learning. We consider finite-
horizon episodic Markov Decision Processes (MDP) with
non-stationary transitions. The model is defined by a tuple
M = ⟨S,A, P, r,H, d1⟩ (Sutton & Barto, 1998), where
S ×A is the discrete state-action space and S := |S|, A :=
|A| are finite. A non-stationary transition kernel has the
form P : S × A × S × [H] 7→ [0, 1] with Ph(s

′|s, a)
representing the probability of transition from state s, ac-
tion a to next state s′ at time step h. In addition, r is a
known4 expected (immediate) reward function which sat-
isfies rh(s, a) ∈ [0, 1]. H is the length of the horizon and
d1 is the initial state distribution. In this work, we assume
there is a fixed initial state s1.5 A policy can be seen as a
series of mapping π = (π1, ..., πH), where each πh maps
each state s ∈ S to a probability distribution over actions,
i.e. πh : S → ∆(A) ,where ∆(A) is the set of probabil-
ity distributions over the actions, ∀h ∈ [H]. A random
trajectory (s1, a1, r1, . . . , sH , aH , rH , sH+1) is generated
by the following rule: s1 is fixed, ah ∼ πh(·|sh), rh =
r(sh, ah), sh+1 ∼ P (·|sh, ah),∀h ∈ [H].

Q-values, Bellman (optimality) equations. Given a policy
π and any h ∈ [H], the value function V π

h (·) ∈ RS and
Q-value function Qπ

h(·, ·) ∈ RS×A are defined as: V π
h (s) =

4This is due to the fact that the uncertainty of reward function
is dominated by that of transition kernel in RL.

5The generalized case where d1 is an arbitrary distribution can
be recovered from this setting by adding one layer to the MDP.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Eπ[
∑H

t=h rt|sh = s], Qπ
h(s, a) = Eπ[

∑H
t=h rt|sh, ah =

s, a], ∀s, a ∈ S,A. Then Bellman (optimality) equation
follows ∀h ∈ [H]:

Qπ
h(s, a) = rh(s, a) + Ph(·|s, a)V π

h+1, V π
h = Ea∼πh

[Qπ
h]

Q⋆
h(s, a) = rh(s, a) + Ph(·|s, a)V ⋆

h+1, V
⋆
h = max

a
Q⋆

h(·, a)

In this work, we will consider different MDPs with respec-
tive transition kernels and reward functions. We define the
value function for policy π under MDP (r̃, P̃) as below

V π(r̃, P̃) = Eπ[

H∑
h=1

r̃h|P̃].

Also, the notation Pπ[·|P̃] means the conditional probability
under policy π and MDP P̃ , the notation Eπ[·|P̃] means the
conditional expectation under policy π and MDP P̃ .

Regret. We measure the performance of online reinforce-
ment learning algorithms by the regret. The regret of an
algorithm is defined as

Regret(K) :=

K∑
k=1

[V ⋆
1 (s1)− V πk

1 (s1)],

where πk is the policy it employs at episode k. Let K be
the number of episodes that the agent plan to play and total
number of steps is T := KH .

Switching cost. We adopt the global switching cost (Bai
et al., 2019), which simply measures how many times the
algorithm changes its policy:

Nswitch :=

K−1∑
k=1

1{πk ̸= πk+1}.

Global switching costs are more natural than local switching
costs 6 as they measure the number of times a deployed
policy (which could then run asynchronously in a distributed
fashion for an extended period of time) can be changed.
Bai et al. (2019)’s bound on local switching cost is thus
viewed by them as a conservative surrogate of the global
counterpart. Similar to Bai et al. (2019), our algorithm also
uses deterministic policies only.

3. Algorithms and Explanation
Our algorithm generalizes the arm-elimination algorithm of
Cesa-Bianchi et al. (2013) for bandits to a policy-elimination
algorithm for RL. The high-level idea of our policy elimi-
nation algorithm is the following. We maintain a version
space ϕ of remaining policies and iteratively refine the esti-
mated values of all policies in ϕ while using these values to

6N local
switch =

∑K−1
k=1 |{(h, s) ∈ [H]×S : πh

k (s) ̸= πh
k+1(s)}|

Algorithm 1 Adaptive Policy Elimination by Value Estima-
tion (APEVE)

1: Require: Number of episodes for exploration K, r is
the known deterministic reward. Universal constant C.
Failure probability δ.

2: Initialize: T (k) = K1− 1

2k , k ≤ K0 = O(log logK),
ϕ1 := {the set of all the deterministic policies}, ι =
log(2HAK/δ).

3: for k = 1, 2, · · · ,K0 do
4: ⋄ Number of episodes in k-th stage:
5: if 2(

∑k
i=1 T

(i)) ≥ K then
6: T (k) =

K−2(
∑k−1

i=1 T (i))

2 . (o.w. T (k) = K1− 1

2k)
7: end if
8: ⋄ Crude exploration using Algorithm 2:
9: Fk,P int,k = Crude Exploration(ϕk, T (k)).

10: ⋄ Estimating P̂ k using Algorithm 3:
11: P̂ k = Fine Exploration(Fk, P int,k, T (k), ϕk).
12: ⋄ Adaptive policy elimination from ϕk:
13: Uk = ∅
14: for π ∈ ϕk do
15: if V π(r, P̂ k) ≤ supπ̂∈ϕkV π̂(r, P̂ k) −

2C(
√

H5S2Aι
T (k) + S3A2H5ι

T (k)) then
16: Update Uk ← Uk ∪ {π}.
17: end if
18: end for
19: ϕk+1 ← ϕk\Uk.
20: end for

eliminate those policies that are certifiably suboptimal. The
hope is that towards the end of the algorithms, all policies
that are not eliminated are already nearly optimal.

As we explained earlier, the challenge is to estimate the
value function of all AHS policies using poly(H,S,A) sam-
ples. This uniform convergence problem typically involves
estimating the transition kernels, but it requires solving an
exploration problem to even visit a particular state-action
pair once. In addition, some states cannot be visited fre-
quently by any policy. To address these issues, we need to
construct a surrogate MDP (known as an “absorbing MDP”)
with an absorbing state. This absorbing MDP replaces these
troublesome states with an absorbing state s†, such that all
remaining states can be visited sufficiently frequently by
some policy in ϕ. Moreover, its value function uniformly
approximates the original MDP for all policies of interest.
This reduces the problem to estimating the transition kernel
of the absorbing MDP.

Adaptive policy elimination. The overall workflow of
our algorithm — Adaptive Policy Elimination by Value
Estimation (APEVE) — is given in Algorithm 1 and illus-
trated graphically in Figure 1. It first divides a budget of K
episodes into a sequence of stages with increasing length

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

……

Stage 1 Stage kStage 2

𝑇(") ≔ 𝐾$%
!
""𝑇($) = 𝐾$%

!
"

⏀" ⏀& ⏀'($

……CE+FE CE+FE CE+FE

𝑇(') ≔ 𝐾$%
!
"#

Stage 𝐾)

End

⏀'

Policy Elimination
⏀$: all policies

Figure 1. A visualization to explicate the procedures of APEVE (Algorithm 1). In particular, the policy elimination procedures are
conducted stage by stage, with increasing size 2T (k) = 2K

1− 1
2k at each stage. The Crude Exploration (CE) and Fine Exploration (FE)

procedures within the stage apply Algorithm 2 and Algorithm 3. APEVE (Algorithm 1) is conducted to maintain a decreasing policy set
ϕk. The number of episodes satisfies 2

∑K0
k=1 T

(k) = K.

2T (k) := 2K1−1/(2k) for k = 1, 2, 3, By Lemma G.1,
the total number of stages K0 = O(log logK).

Each stage involves three steps.

Step 1. Crude exploration Explore each h, s, a layer-by-
layer from scratch based on the current version-space
ϕ. Construct an absorbing MDP P̃ and a crude inter-
mediate estimate (P int) of P̃ .

Step 2. Fine exploration Explore each h, s, a with the
crude estimate of the absorbing MDP. Construct a more
refined estimate (P̂) of the absorbing MDP’s P̃ .

Step 3. Policy elimination Evaluate all policies in ϕ using
P̂ . Update the version-space ϕ by eliminating all poli-
cies whose value upper confidence bound (UCB) is
smaller than the mode (max over π ∈ ϕ) of the lower
confidence bound (LCB).

As the algorithm proceeds, under the high probability event
that our confidence bounds are valid, the optimal policy
will not be eliminated. After each stage, the performance
of all policies that remain will be better than the LCB of
the optimal policy, which itself will get closer to the actual
valuation function as we collect more data.

Next, we break down the key components in “Crude Ex-
ploration” and “Fine Exploration” and explain how they
work.

Layerwise “Exploration” in Algorithm 2. Our goal is to
learn an accurate enough7 estimate of Ph(s

′|s, a) for any
tuple (h, s, a, s′) and it suffices to visit this tuple O(H2ι)
times.8 Therefore, we try to visit each tuple as much as
possible using policies from the input policy set ϕ. However,
it is possible that some (h, s, a, s′) tuples are hard to visit
by any policy in the remaining policy set. To address this
problem, we use a set F to store all the tuples that have not

7 1
H

-multiplicatively accurate, details in Definition E.4
8Detailed proof in Lemma E.3

been visited enough times such that for the tuples not in F ,
we can get an accurate enough estimate, while for the tuples
in F , we will prove that they have little influence on the
value function.

In the algorithm, we apply the trick of layerwise exploration.
During the exploration of the h-th layer, we use the interme-
diate MDP P int to construct πh,s,a that can visit (h, s, a)
with the largest probability under P int. Then we run each
πh,s,a for the same number of episodes. Using the data set
D we collect, the h-th layer of P int (i.e. P int

h) is updated
using Algorithm 5.

Given infrequent tuples F , the absorbing MDP is con-
structed as in Definition 3.1. In the construction, we first let
P̃ = P , then for (h, s, a, s′) ∈ F , we move the probability
of P̃h(s

′|s, a) to P̃h(s
†|s, a).

Definition 3.1 (The absorbing MDP P̃). Given F and P ,
∀(h, s, a, s′) /∈ F , let P̃h(s

′|s, a) = Ph(s
′|s, a). For any

(h, s, a, s′) ∈ F , P̃h(s
′|s, a) = 0. For any (h, s, a) ∈ [H]×

S ×A, define P̃h(s
†|s†, a) = 1 and

P̃h(s
†|s, a) = 1−

∑
s′∈S:(h,s,a,s′)/∈F

P̃h(s
′|s, a).

According to the construction in Algorithm 5, P int is the
empirical estimate of P̃ . We will show that with high
probability, for (h, s, a, s′) ∈ [H] × S × A × S, either
(1− 1

H)P int
h (s′|s, a) ≤ P̃h(s

′|s, a) ≤ (1+ 1
H)P int

h (s′|s, a)
or P int

h (s′|s, a) = P̃h(s
′|s, a) = 0. Based on this property,

we can prove that πh,s,a’s are efficient in exploration. Algo-
rithm 5 and detailed explanation are deferred to Appendix B.

In Algorithm 2, the reward function 1h,s,a is defined under
the original MDP while P int is a transition kernel of the
absorbing MDP. In addition, πh,s,a is a policy under the
absorbing MDP and we need to run it under the original
MDP. The transition between the original MDP and the
absorbing MDP is deferred to Appendix C.

Fine exploration by Algorithm 3. The idea behind Al-

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Algorithm 2 Crude Exploration (for constructing infrequent
tuples F and a reference transition P int)

1: Input: Policy set ϕ. Number of episodes T .
2: Initialize: T0 = T

HSA , C1 = 6, F = ∅, D = ∅,
ι = log(2HAK/δ). 1h,s,a is a reward function r′

where r′h′(s′, a′) = 1[(h′, s′, a′) = (h, s, a)]. s† is
an additional absorbing state. P int is a transition ker-
nel over the extended space S ∪ {s†} × A, initialized
arbitrarily.

3: Output: Infrequent tuples F . Intermediate transition
kernel P int.

4: for h = 1, 2, · · · , H do
5: ⋄ Construct and run policies to visit each state-action:
6: for (s, a) ∈ S ×A do
7: πh,s,a = argmaxπ∈ϕV

π(1h,s,a, P
int).

8: Run πh,s,a for T0 episodes, and add the trajectories
into data set D.

9: end for
10: for (s, a, s′) ∈ S ×A× S do
11: Nh(s, a, s

′) = count of (h, s, a, s′) in D.
12: end for
13: ⋄ Use F to store the infrequent tuples:
14: F = F ∪ {(h, s, a, s′)|Nh(s, a, s

′) ≤ C1H
2ι}.

15: ⋄ Update the intermediate transition kernel using
Algorithm 5:

16: P int = EstimateTransition(D,F , s†, h, P int)
17: ⋄ Clear the data set:
18: Reset data set D = ∅.
19: end for
20: Return: {F , P int}.

gorithm 3 is that with high probability, we can use P int

to construct policies to visit each tuple (h, s, a) with the

guarantee that supa∈A,π∈ϕ
V π(1h,s,a,P̃)

µh(s,a)
≤ 12HSA, where

µ is the distribution of our data. This inequality is similar to
the result of Theorem 3.3 in (Jin et al., 2020a), which means
that we can get a similar result to Lemma 3.6 in (Jin et al.,
2020a) that V π(r′, P̂) is an accurate estimate of V π(r′, P̃)
simultaneously for all π ∈ ϕ and any reward function r′.

For each (h, s, a), the algorithm finds the policy πh,s,a from
ϕ that visits (h, s, a) with the largest probability under P int.
Then each πh,s,a is run for the same number of episodes
over all (h, s, a). At last, P̂ is calculated as an empirical
estimate of P̃ by using Algorithm 5 and the data set D.

4. Main Results of APEVE
In this section, we will state our main results, which for-
malizes the algorithmic ideas we explained in the previous
section.

Theorem 4.1 (Regret and switching cost of Algorithm 1).

Algorithm 3 Fine Exploration (further exploration for accu-
rate transition estimation)

1: Input: Infrequent tuples F . Intermediate transition
kernel P int. Number of episodes T . Policy set ϕ.

2: Initialize: T0 = T
HSA , D = ∅. 1h,s,a is a reward func-

tion r′ where r′h′(s′, a′) = 1[(h′, s′, a′) = (h, s, a)].
P̂ = P int.

3: Output: Empirical estimate P̂ .
4: ⋄ Construct and run policies to visit each state-action:
5: for (h, s, a) ∈ [H]× S ×A do
6: πh,s,a = argmaxπ∈ϕV

π(1h,s,a, P
int).

7: Run πh,s,a for T0 episodes, and add the trajectories
into data set D.

8: end for
9: ⋄ Construct an empirical estimate for P̃ using Algo-

rithm 5:
10: for h ∈ [H] do
11: P̂ = EstimateTransition(D,F , s†, h, P̂).
12: end for
13: Return P̂ .

With probability 1 − δ, Algorithm 1 will have regret

bounded by O(
√

H5S2AK · log(2δHAK) · log logK +

S3A2H5K
1
4 · log(2δHAK)) = Õ(

√
H4S2AT). Fur-

thermore, the global switching cost of Algorithm 1 is
O(HSA log log T) while the timestep for policy switching
can be decided before the algorithm starts.

Recall that the number of episodes K = T/H where T is
the number of steps. This theorem says that Algorithm 1
obtains a regret bound that is optimal in T while changing
(deterministic) policies for only O(HSA log log T) times.

The proof of Theorem 4.1 is sketched in Section 6 with
pointers to more detailed arguments to the full proof in the
appendix. Now we discuss a few interesting aspects of the
result.

Near optimal switching cost. Our algorithm achieves a
switching cost that improves over existing work with

√
T

regret. We also prove the following information-theoretic
limit which says that the global switching cost of APEVE
(Algorithm 1) is optimal up to constant.

Theorem 4.2 (Lower bound for global switching cost under
optimal regret bound). If S ≤ A

H
2 , for any algorithm with

near-optimal Õ∗(
√
T) regret bound, the global switching

cost is at least Ω(HSA log log T).

As a byproduct, our proof technique naturally leads to the
following lower bound for global switching cost for any
algorithm with no regret.

Theorem 4.3 (Lower bound for global switching cost under
sub-linear regret bound). If S ≤ A

H
2 , for any algorithm

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

with sub-linear regret bound, the global switching cost is at
least Ω(HSA).

Both proofs are deferred to Appendix H. Theorem 4.3 is a
stronger conclusion than the existing Ω(HSA) lower bound
for local switching cost (Bai et al., 2019) because global
switching cost is smaller than local switching cost. An
Ω(HSA) lower bound on local switching cost can only
imply an Ω(A) lower bound on global switching cost.

Near-optimal adaptivity. Interestingly, our algorithm also
enjoys low-adaptivity besides low-switching cost in the
batched RL setting (Perchet et al., 2016; Gao et al., 2019),
because the length of each batch can be determined ahead
of time and we do not require monitoring within each
batch. APEVE (Algorithm 1) runs with O(H log log T)
batches. In Appendix J, we present APEVE+ (Algo-
rithm 6), which further improves the batch complexity
to O(H + log log T) while maintaining the same regret
Õ(
√
H4S2AT). These results nearly matches the existing

lower bound Ω(H
log T + log log T) due to Theorem B.3 in

(Huang et al., 2022) (for the H
log T term) and Corollary 2 in

(Gao et al., 2019) (for the log log T term).

Dependence on H,S,A in the regret. As we explained ear-
lier our regret bound is optimal in T . However, there is a gap
of
√
H2S when compared to the information-theoretic limit

of Ω(
√
H2SAT) that covers all algorithms (including those

without switching cost constraints). We believe our analysis
is tight and further improvements on H,S will require new
algorithmic ideas. It is an intriguing open problem whether
any algorithm with log log T switching cost need to have
Ω(S2) dependence.

Computational efficiency. One weakness of our APEVE
(Algorithm 1) is that it is not computationally efficient.
APEVE needs to explicitly go over each element of the
version spaces — the sets of remaining policies — to im-
plement policy elimination. It remains an interesting open
problem to design a polynomial-time algorithm for RL with
optimal switching cost. A promising direction to achieve
computational efficiency is to avoid explicitly representing
the version spaces, or to reduce to “optimization oracles”.
We leave a full exploration of these ideas to a future work.

5. Low Adaptive Reward-Free Exploration
In this section, we further consider the new setting of low
adaptive reward-free exploration. Specifically, due to its
nature that Crude Exploration (Algorithm 2) and Fine Explo-
ration (Algorithm 3) do not use any information about the
reward function r, these two algorithms can be leveraged in
reward-free setting. LARFE (Algorithm 4) is an algorithm
that tackles reward-free exploration while maintaining the
low switching cost at the same time.

Algorithm 4 Low Adaptive Reward-Free Exploration
(LARFE)

1: Input: Episodes for crude exploration N0, episodes for
fine exploration N . Failure probability δ.

2: Initialize: ϕ1 = {the set of all deterministic policies},
ι = log(2HA(N0 +N)/δ).

3: Output: π̂r for any reward function r.
4: ⋄ Crude exploration using Algorithm 2:
5: F ,P int = Crude Exploration(ϕ1, N0).
6: ⋄ Estimate P̂ using Algorithm 3:
7: P̂ = Fine Exploration(F , P int, N, ϕ1).
8: ⋄ For any reward function, output the optimal policy

under empirical MDP by value iteration:
9: π̂r = argmaxπ∈ϕ1V π(r, P̂) for any r.

10: Return {π̂r}.

In LARFE, we use Crude Exploration (Algorithm 2) to con-
struct the infrequent tuples F and the intermediate MDP
P int. Then the algorithm uses Fine Exploration (Algo-
rithm 3) to get an empirical estimate P̂ of the absorbing
MDP P̃ . At last, for any reward function r, the algorithm
outputs the optimal policy under the empirical MDP, which
can be done efficiently by value iteration.

Theorem 5.1 provides the switching cost and sample com-
plexity of Algorithm 4 (whose proof is deferred to Ap-
pendix I).
Theorem 5.1. The global switching cost of Algorithm 4 is
bounded by 2HSA. There exists a constant c > 0 such that,
for any ϵ > 0 and any δ > 0, if the number of total episodes
K satisfies that

K > c · (H
5S2A · ι′

ϵ2
+

S3AH5 · ι′

ϵ
),

where ι′ = log(HSA
ϵδ), then there exists a choice of N0 and

N such that N0 +N = K and with probability 1− δ, for
any reward function r, Algorithm 4 will output a policy π̂r

that is ϵ-optimal.

Take-away of Theorem 5.1. First of all, one key feature of
LARFE is that the global switching cost is always bounded
by O(HSA) and this holds true for any K (i.e. independent
of the PAC guarantee). Second, as a comparison to Jin et al.
(2020a) regarding reward-free exploration, their episodes
needed is O(H

5S2Aι′

ϵ2 + S4AH7(ι′)3

ϵ). Our result matches
this in the main term and does better in the lower order term.
In addition, our algorithm achieves near optimal switching
cost while the use of EULER in Jin et al. (2020a) can have
switching cost equal to the number of episodes N0. This
means that Crude Exploration (Algorithm 2) is efficient in
the sense of sample complexity and switching cost when
doing exploration.

Explore-First with LARFE. Given the number of episodes

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

K and the corresponding number of steps T = KH , we
can apply LARFE (Algorithm 4) for the first K0 episodes,
then run the greedy policy π̂r returned by LARFE (with r
to be the real reward) for the remaining episodes. Then the

regret is bounded by HK0 + Õ(K ·
√

H5S2A
K0

) with high

probability. By selecting K0 = K
2
3HS

2
3A

1
3 , the regret

can be bounded by Õ(K
2
3H2S

2
3A

1
3) = Õ(T

2
3H

4
3S

2
3A

1
3),

as shown in Table 1. We highlight that Explore-First w.
LARFE matches the lower bound given by Theorem 4.3.

Optimal switching cost in Pure Exploration. Since any
best policy identification (i.e., Pure Exploration) algorithm
with polynomial sample complexity can be used to construct
a no-regret learning algorithm with an Explore-First strat-
egy, Theorem 4.3 implies that Ω(HSA) is a switching cost
lower bound for the pure exploration problem too, thus also
covering the task-agnostic / reward-free extensions. LARFE
implies that one can achieve nearly optimal sample complex-
ity (Õ∗(1/ϵ2)) while achieving the best possible switching
cost of O(HSA).

Separation of Regret Minimization and Pure Explo-
ration in RL. Note that achieving a near-optimal Õ∗(

√
T)

regret requires an additional factor of log log T in the switch-
ing cost (Theorem 4.2). This provides an interesting separa-
tion of the hardness between low-adaptive regret minimiza-
tion and low-adaptive pure exploration in RL.

6. Proof Overview
Due to the space constraint, we could only sketch the proof
of Theorem 4.1 as the log log T switching cost is our major
contribution. The analysis involves two main parts: the
switching cost bound and the regret bound. The switching
cost bound directly results from the schedule of Algorithm 1.

Upper bound for switching cost. First of all, we have the
conclusion that the global switching cost of Algorithm 1 is
bounded by O(HSA log log T). This is because the global
switching cost of both Algorithm 2 and Algorithm 3 are
bounded by HSA and the fact that the number of stages
satisfy K0 = O(log log T).

However, such an elimination schedule requires the algo-
rithm to run the same deterministic policy for a long period
of time before being able to switch to another policy, which
is the main technical challenge to the regret analysis.

Regret analysis. At the heart of the regret analysis is to con-
struct a uniform off-policy evaluation bound that covers all
remaining deterministic policies. The remaining policy set
at the beginning of stage k is ϕk. Assume we can estimate
all V π(r, P) (π ∈ ϕk) to ϵk accuracy with high probability,
then we can eliminate all policies that are at least 2ϵk sub-
optimal in the sense of estimated value function. Therefore,
the optimal policy will not be eliminated and all the policies

remaining will be at most 4ϵk sub-optimal with high prob-
ability. Summing up the regret of all stages, we have with
high probability, the total regret is bounded by

Regret(K) ≤ 2HT (1) +

K0∑
k=2

2T (k) × 4ϵk−1. (1)

The following lemma gives an bound of ϵk−1 using the
model-based plug-in estimator with our estimate P̂ of the
absorbing MDP.
Lemma 6.1. There exists a constant C, such that with
probability 1− δ, it holds that for any k and π ∈ ϕk,

|V π(r, P̂ k)− V π(r, P)| ≤ C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
).

The proof of Lemma 6.1 involves controlling both the “bias”
and “variance” part of the estimate. The “bias” refers to the
difference between the true MDP and the absorbing MDP,
and the “variance” refers to the statistical error in estimating
the surrogate value functions of the absorbing MDP using
our estimate P̂ k.

From the proof of (Jin et al., 2020a), we know that if we
can visit each (h, s, a) frequently enough, which means the
visitation probability is maximal up to a constant factor,
then the empirical transition kernel is enough for a uniform
approximation to V π(r, P). The absorbing MDP P̃ is the
key to guarantee the condition of frequent visitation.

For the ease of illustration, in the following discussion, we
omit the stage number k and the discussion holds true for
all k. Besides, in all of the following lemmas in this section,
“with high probability” means with probability at least 1− δ
and ι = log(2HAK/δ).

6.1. The “bias”: difference between P and P̃

To analyze the difference between the true MDP P and the
absorbing MDP P̃ , we first sketch some properties of the
intermediate transition kernel P int.

Accuracy of P int. It holds that if the visitation number of
a tuple (h, s, a, s′) is larger than O(H2ι), with high proba-
bility9,

(1− 1

H
)P int

h (s′|s, a) ≤ P̃h(s
′|s, a) ≤ (1 +

1

H
)P int

h (s′|s, a).
(2)

According to the definition of F in Algorithm 2 and the
construction of P̃ , P int, we have Equation (2) is true for
any (h, s, a, s′) ∈ [H] × S × A × S. Then we have10 for
any (h, s, a) ∈ [H]× S ×A, π ∈ ϕ,

1

4
V π(1h,s,a, P

int) ≤ V π(1h,s,a, P̃) ≤ 3V π(1h,s,a, P
int).

9Proof using empirical Bernstein’s inequality in Lemma E.3
10Proof using multiplicative bound in Lemma E.5

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Because πh,s,a = argmaxπ∈ϕV
π(1h,s,a, P

int),

V πh,s,a(1h,s,a, P̃) ≥ 1

12
sup
π∈ϕ

V π(1h,s,a, P̃), (3)

which shows that πh,s,a is efficient in visiting the tuple
(h, s, a).

Uniform bound on |V π(r′, P)− V π(r′, P̃)|. Now we are
ready to bound supπ∈ϕ supr′ |V π(r′, P) − V π(r′, P̃)| by
bounding supπ∈ϕ Pπ[B], where the bad event B is defined
as11 the event where a trajectory visits some tuple in F .
Then we have the key lemma showing that the infrequent
tuples are hard to visit by any policy in ϕ.

Lemma 6.2. With high probability, supπ∈ϕ Pπ[B] ≤
O(S

3A2H4ι
T).

With Lemma 6.2, we are able to bound the difference be-
tween P and P̃ in the sense of value function.

Lemma 6.3. With high probability, it holds that

0 ≤ V π(r′, P)− V π(r′, P̃) ≤ O(
S3A2H5ι

T
),

for any policy π ∈ ϕ and reward function r′.

Therefore, the “bias” term supπ∈ϕ |V π(r, P)− V π(r, P̃)|
can be bounded by the right hand side of Lemma 6.3 as a
special case.

6.2. The “variance”: difference between P̃ and P̂

Because of the fact that with high probability, Equation (3)
holds, we have the following key lemma.

Lemma 6.4. With high probability, for any policy π ∈ ϕ
and any reward function r′,

|V π(r′, P̂)− V π(r′, P̃)| = O(

√
H5S2Aι

T
).

Therefore, the “variance” term supπ∈ϕ |V π(r, P̂) −
V π(r, P̃)| can be bounded by the right hand side of
Lemma 6.4 as a special case.

6.3. Put everything together

Combining the bounds of the “bias” term and the “variance”
term, because of triangular inequality, we have the conclu-
sion in Lemma 6.1 holds. Then the proof of regret bound is

completed by plugging in ϵk = O(
√

H5S2Aι
T (k) + S3A2H5ι

T (k))

in equation (1).

11The detailed definition can be found in Definition E.7

7. Conclusion and Future Works
This work studies the well-motivated low switching online
reinforcement learning problem. Under the non-stationary
tabular RL setting, we design the algorithm Adaptive Policy
Elimination by Value Estimation (APEVE) which achieves
Õ(
√
H4S2AT) regret while switching its policy for at most

O(HSA log log T) times. Under the reward-free explo-
ration setting, we design the Low Adaptive Reward-Free
Exploration (LARFE), which achieves Õ(H

5S2Aι
ϵ2) sample

complexity with switching cost at most 2HSA. We also
prove lower bounds showing that these switching costs are
information-theoretically optimal among algorithms that
achieve nearly optimal regret or sample complexity. These
results nicely settled the open problem on the optimal low-
switching RL raised by Bai et al. (2019) (and revisited by
Zhang et al. (2020c); Gao et al. (2021)) for the tabular set-
ting.

It remains open to address computational efficiency, char-
acterize the optimal dependence on H,S,A in the regret
bound, study RL with function approximation, as well as to
make the the algorithm practical. We leave those as future
works and invite the broader RL research community to join
us in the quest. Ideas and techniques developed in this paper
could be of independent interest in other problems.

Acknowledgments
The research is partially supported by NSF Awards
#2007117 and #2003257. The authors would like to thank
Yichen Feng and Mengye Liu for helpful discussion at an
early stage of this project, as well as Tianchen Yu and Chi
Jin for clarifying the proof of Lemma C.2 in Jin et al. (2020a)
(Lemma F.4 in this paper). DQ would like to thank Fuheng
Zhao for some helpful suggestions on writing.

References
Afsar, M. M., Crump, T., and Far, B. Reinforcement

learning based recommender systems: A survey. arXiv
preprint arXiv:2101.06286, 2021.

Agrawal, S. and Jia, R. Posterior sampling for reinforce-
ment learning: worst-case regret bounds. In Advances in
Neural Information Processing Systems, pp. 1184–1194,
2017.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 263–272. JMLR. org, 2017.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. Provably ef-
ficient q-learning with low switching cost. Advances in
Neural Information Processing Systems, 32, 2019.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

Cesa-Bianchi, N., Dekel, O., and Shamir, O. Online learning
with switching costs and other adaptive adversaries. In
Advances in Neural Information Processing Systems, pp.
1160–1168, 2013.

Dann, C., Lattimore, T., and Brunskill, E. Unifying pac and
regret: Uniform pac bounds for episodic reinforcement
learning. In Advances in Neural Information Processing
Systems, pp. 5713–5723, 2017.

Dann, C., Li, L., Wei, W., and Brunskill, E. Policy cer-
tificates: Towards accountable reinforcement learning.
In International Conference on Machine Learning, pp.
1507–1516. PMLR, 2019.

Esfandiari, H., Karbasi, A., Mehrabian, A., and Mirrokni, V.
Regret bounds for batched bandits. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 7340–7348, 2021.

Gao, M., Xie, T., Du, S. S., and Yang, L. F. A provably effi-
cient algorithm for linear markov decision process with
low switching cost. arXiv preprint arXiv:2101.00494,
2021.

Gao, Z., Han, Y., Ren, Z., and Zhou, Z. Batched multi-
armed bandits problem. Advances in Neural Information
Processing Systems, 32, 2019.

Huang, J., Chen, J., Zhao, L., Qin, T., Jiang, N., and Liu, T.-
Y. Towards deployment-efficient reinforcement learning:
Lower bound and optimality. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=ccWaPGl9Hq.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(4), 2010.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? In Advances in Neural
Information Processing Systems, pp. 4863–4873, 2018.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
Reward-free exploration for reinforcement learning. In
International Conference on Machine Learning, pp. 4870–
4879. PMLR, 2020a.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020b.

Kaufmann, E., Ménard, P., Domingues, O. D., Jonsson,
A., Leurent, E., and Valko, M. Adaptive reward-free
exploration. In Algorithmic Learning Theory, pp. 865–
891. PMLR, 2021.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49(2-3):209–
232, 2002.

Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J., and
Stoica, I. Learning to optimize join queries with deep
reinforcement learning. arXiv preprint arXiv:1808.03196,
2018.

Matsushima, T., Furuta, H., Matsuo, Y., Nachum, O., and
Gu, S. Deployment-efficient reinforcement learning via
model-based offline optimization. In International Con-
ference on Learning Representations, 2020.

Maurer, A. and Pontil, M. Empirical bernstein bounds
and sample variance penalization. arXiv preprint
arXiv:0907.3740, 2009.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann,
E., Leurent, E., and Valko, M. Fast active learning for
pure exploration in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 7599–7608.
PMLR, 2021.

Osband, I., Russo, D., and Van Roy, B. (more) efficient
reinforcement learning via posterior sampling. Advances
in Neural Information Processing Systems, 26, 2013.

Perchet, V., Rigollet, P., Chassang, S., and Snowberg, E.
Batched bandit problems. The Annals of Statistics, 44(2):
660–681, 2016.

Raccuglia, P., Elbert, K. C., Adler, P. D., Falk, C., Wenny,
M. B., Mollo, A., Zeller, M., Friedler, S. A., Schrier, J.,
and Norquist, A. J. Machine-learning-assisted materials
discovery using failed experiments. Nature, 533(7601):
73–76, 2016.

Simchi-Levi, D. and Xu, Y. Phase transitions and cyclic phe-
nomena in bandits with switching constraints. Advances
in Neural Information Processing Systems, 32, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

Wang, R., Du, S. S., Yang, L., and Salakhutdinov, R. R. On
reward-free reinforcement learning with linear function
approximation. Advances in neural information process-
ing systems, 33:17816–17826, 2020.

https://openreview.net/forum?id=ccWaPGl9Hq
https://openreview.net/forum?id=ccWaPGl9Hq

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Wang, T., Zhou, D., and Gu, Q. Provably efficient reinforce-
ment learning with linear function approximation under
adaptivity constraints. Advances in Neural Information
Processing Systems, 34, 2021.

Xu, Z., Tang, J., Meng, J., Zhang, W., Wang, Y., Liu, C. H.,
and Yang, D. Experience-driven networking: A deep rein-
forcement learning based approach. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications,
pp. 1871–1879. IEEE, 2018.

Yu, C., Liu, J., Nemati, S., and Yin, G. Reinforcement learn-
ing in healthcare: A survey. ACM Computing Surveys
(CSUR), 55(1):1–36, 2021.

Zanette, A. and Brunskill, E. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In Interna-
tional Conference on Machine Learning, pp. 7304–7312.
PMLR, 2019.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill,
E. Provably efficient reward-agnostic navigation with
linear value iteration. Advances in Neural Information
Processing Systems, 33:11756–11766, 2020.

Zhang, X., Singla, A., et al. Task-agnostic exploration in
reinforcement learning. Advances in Neural Information
Processing Systems, 2020a.

Zhang, Z., Du, S. S., and Ji, X. Nearly minimax opti-
mal reward-free reinforcement learning. arXiv preprint
arXiv:2010.05901, 2020b.

Zhang, Z., Zhou, Y., and Ji, X. Almost optimal model-free
reinforcement learningvia reference-advantage decom-
position. Advances in Neural Information Processing
Systems, 33:15198–15207, 2020c.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

A. Extended related work
Low regret reinforcement learning algorithms There has been a long line of works (Brafman & Tennenholtz, 2002;
Kearns & Singh, 2002; Jaksch et al., 2010; Osband et al., 2013; Agrawal & Jia, 2017; Jin et al., 2018) focusing on regret
minimization for online reinforcement learning. Azar et al. (2017) used model-based algorithm (UCB-Q-values) to achieve
the optimal regret bound Õ(

√
HSAT) for stationary tabular MDP. Dann et al. (2019) used algorithm ORLC to match the

lower bound of regret and give policy certificates at the same time. Zhang et al. (2020c) used Q-learning type algorithm
(UCB-advantage) to achieve the optimal Õ(

√
H2SAT) regret for non-stationary tabular MDP. Zanette & Brunskill (2019)

designed the algorithm EULER to get a problem dependent regret bound, which also matches the lower bound.

Reward-free exploration Jin et al. (2020a) first studied the problem of reward-free exploration, they used a regret
minimization algorithm EULER (Zanette & Brunskill, 2019) to visit each state as much as possible. The sample complexity
for their algorithm is Õ(H5S2A/ϵ2) episodes. Kaufmann et al. (2021) designed an algorithm RF-UCRL by building
upper confidence bound for any reward function and any policy, their algorithm needs of order Õ((S2AH4/ϵ2) episodes
to output a near-optimal policy for any reward function with high probability. Ménard et al. (2021) constructed a novel
exploration bonus of order 1

n and their algorithm achieved sample complexity of Õ((S2AH3/ϵ2). Zhang et al. (2020b)
considered a more general setting with stationary transition kernel and uniformly bounded reward. They designed a novel
condition to achieve the optimal sample complexity Õ((S2A/ϵ2) under their setting. Also, their result can be used to
achieve Õ((S2AH2/ϵ2) sample complexity under traditional setting where rh ∈ [0, 1], this result matches the lower bound.
Wang et al. (2020) and Zanette et al. (2020) analyzed reward-free exploration under the setting of linear MDP. There is a
similar setting named task-agnostic exploration. Zhang et al. (2020a) designed an algorithm: UCB-Zero that finds ϵ-optimal
policies for N arbitrary tasks after at most Õ(H5SA logN/ϵ2) exploration episodes. A concurrent work (Huang et al.,
2022) analyzed low adaptive reward-free exploration under linear MDP. In our work, we consider low adaptive reward-free
exploration under tabular MDP, our switching cost is of the same order as (Huang et al., 2022) and our sample complexity is
much smaller than theirs if directly plugging in d = SA in their bounds.

Bandit algorithms with limited adaptivity There has been a long history of works about multi-armed bandit algorithms
with low adaptivity (Cesa-Bianchi et al., 2013; Perchet et al., 2016; Gao et al., 2019; Esfandiari et al., 2021). Cesa-Bianchi
et al. (2013) designed an algorithm with Õ(

√
KT) regret using O(log log T) batches. Perchet et al. (2016) proved a regret

lower bound of Ω(T
1

1−21−M) for algorithms within M batches under 2-armed bandit setting, which means Ω(log log T)
batches are necessary for a regret bound of Õ(

√
T). The result is generalized to K-armed bandit by Gao et al. (2019). We

will show the connection and difference between this setting and the low switching setting. In batched bandit problems,
the agent decides a sequence of arms and observes the reward of each arm after all arms in that sequence are pulled. More
formally, at the beginning of each batch, the agent decides a list of arms to be pulled. Afterwards, a list of (arm,reward)
pairs is given to the agent. Then the agent decides about the next batch. The batch sizes could be chosen non-adaptively or
adaptively. In a non-adaptive algorithm, the batch sizes should be decided before the algorithm starts, while in an adaptive
algorithm, the batch sizes may depend on the previous observations. (Esfandiari et al., 2021). Under the switching cost
setting, the algorithm can monitor the data stream and decide to change policy at any time, which means an algorithm
with low switching cost can have Ω(T) batches. In addition, algorithms with limited batches can have large switching cost
because in one batch, the algorithm can use different policies. Under batched bandit problem, algorithms with at most
M batches can have a MK upper bound for switching cost. However, if we generalize batched bandit to batched RL,
algorithms with at most M batches can have ASHM switching cost in the worst case. We conclude that an upper bound of
batches and an upper bound of switching cost can not imply each other in the worst case.

B. Missing algorithm: EstimateTransition (Algorithm 5) and some explanation
Algorithm 5 receives a data set D, a set F of infrequent tuples, a transition kernel P and a target layer h which we want to
update. The goal is to update the h-th layer of the input transition kernel P while the remaining layers stay unchanged. The
construction of Ph is for such tuples in F , the transition kernel Ph(s

′|s, a) is 0. For the states not in F , Ph(s
′|s, a) is the

empirical estimate. At last, Ph(s
†|s, a) = 1−

∑
s′∈S:(h,s,a,s′)/∈F Ph(s

′|s, a) holds so that Ph is a valid transition kernel.

For a better understanding, the construction is similar to the construction of P̃ . We first let P be the empirical estimate
based on D, then for (h, s, a, s′) ∈ F , we move the probability of Ph(s

′|s, a) to Ph(s
†|s, a).

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Algorithm 5 Compute Transition Kernel (EstimateTransition)
1: Require: Data set D, infrequent tuples F , absorbing state s†, the target layer h, transition kernel P .
2: Output: Estimated transition kernel P from data set D.
3: ⋄ Count the visitation number of each state-action pairs from the target layer h:
4: for (s, a, s′) ∈ S ×A× S do
5: Nh(s, a, s

′) = count of (h, s, a, s′) in D.
6: Nh(s, a) = count of (h, s, a) in D.
7: end for
8: ⋄ Update the h-th layer of the transition kernel:
9: for (s, a, s′) ∈ S ×A× S s.t. (h, s, a, s′) ∈ F do

10: Ph(s
′|s, a) = 0.

11: end for
12: for (s, a, s′) ∈ S ×A× S s.t. (h, s, a, s′) /∈ F do
13: Ph(s

′|s, a) = Nh(s,a,s
′)

Nh(s,a)
.

14: end for
15: for (s, a) ∈ S ×A do
16: Ph(s

†|s, a) = 1−
∑

s′∈S:(h,s,a,s′)/∈F Ph(s
′|s, a).

17: end for
18: for a ∈ A do
19: Ph(s

†|s†, a) = 1.
20: end for
21: Return P .

C. Transition between original MDP and absorbing MDP
For any reward function r defined on the original MDP P , we abuse the notation and use it on the absorbing version. We
extend the definition as:

r(s, a) =

{
r(s, a), s ∈ S,
0, s = s†.

For any policy π defined on the original MDP P , we abuse the notation and use it on the absorbing version. We extend the
definition as:

π(·|s) =

{
π(·|s), s ∈ S,
arbitrary distribution, s = s†.

Under this definition of r and π, the expected reward under the absorbing MDP is fixed because once we enter the absorbing
state s†, we will not get any more reward, so the policy at s† has no influence on the value function. For any policy π defined
under the absorbing MDP, we can directly apply it under the true MDP and analyze its value function because πh(·|s) has
definition for any s ∈ S.

In this paper, P is the real MDP, which is under original MDP. In each stage, P̃ is an absorbing MDP constructed based
on infrequent tuples F and the real MDP P . When we run the algorithm, we don’t know the exact P̃ , but we know the
intermediate transition kernel P int, which is also an absorbing MDP. In Algorithm 3, the P̂ we construct is the empirical
estimate of P̃ , which is also an absorbing MDP. In the proof of this paper, a large part of discussion is under the framework
of absorbing MDP. When we specify that the discussion is under absorbing MDP with absorbing state s†, any transition
kernel P ′ satisfies P ′

h(s
†|s†, a) = 1 for any (a, h) ∈ A× [H]. For the reward functions in this paper, they are all defined

under original MDP, when applied under absorbing MDP, the transition rule follows what we just discussed.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

D. Technical lemmas
Lemma D.1 (Bernstein’s inequality). Let x1, · · · , xn be independent bounded random variables such that E[xi] = 0 and
|xi| ≤ A with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then with probability 1− δ we have

| 1
n

n∑
i=1

xi| ≤
√

2σ2 log(2/δ)

n
+

2A

3n
log(2/δ).

Lemma D.2 (Empirical Bernstein’s inequality (Maurer & Pontil, 2009)). Let x1, · · · , xn be i.i.d random variables such
that |xi| ≤ A with probability 1. Let x = 1

n

∑n
i=1 xi,and V̂n = 1

n

∑n
i=1(xi − x)2, then with probability 1− δ we have

| 1
n

n∑
i=1

xi − E[x]| ≤

√
2V̂n log(2/δ)

n
+

7A

3n
log(2/δ).

Lemma D.3 (Lemma F.4 in (Dann et al., 2017)). Let Fi for i = 1 · · · be a filtration and X1, · · · , Xn be a sequence of
Bernoulli random variables with P(Xi = 1|Fi−1) = Pi with Pi being Fi−1-measurable and Xi being Fi measurable. It
holds that

P[∃n :

n∑
t=1

Xt <

n∑
t=1

Pt/2−W] ≤ e−W .

Lemma D.4. Let Fi for i = 1 · · · be a filtration and X1, · · · , Xn be a sequence of Bernoulli random variables with
P(Xi = 1|Fi−1) = Pi with Pi being Fi−1-measurable and Xi being Fi measurable. It holds that

P[∃n :

n∑
t=1

Xt <

n∑
t=1

Pt/2− ι] ≤ δ

HAK
,

where ι = log(2HAK/δ).

Proof of Lemma D.4. Directly plug in W = ι in lemma D.3.

E. Proof of lemmas regarding Crude Exploration (Algorithm 2)
First, we want to highlight that in this paper, under the absorbing MDP, S only denotes the original states, the absorbing
state s† /∈ S.

An upper bound for global switching cost is straightforward.

Lemma E.1. The global switching cost of Algorithm 2 is bounded by HSA.

Proof of Lemma E.1. There are at most HSA different πh,s,a’s, Algorithm 2 will just run each policy for several episodes.

We can bound the difference between P̃ and P int by empirical Bernstein’s inequality (Lemma D.2).

Lemma E.2. Define the eventW as: ∀ (h, s, a, s′) ∈ [H]× S ×A× S such that (h, s, a, s′) /∈ F ,

|P int
h (s′|s, a)− P̃h(s

′|s, a)| ≤

√
2P int

h (s′|s, a)ι
Nh(s, a)

+
7ι

3Nh(s, a)
.

Then with probability 1− S2δ
K , the eventW holds. In addition, we have that ∀ (h, s, a, s′) ∈ F ,

P̃h(s
′|s, a) = P int

h (s′|s, a) = 0.

Proof of Lemma E.2. The first part is because of Lemma D.2 and a union bound on all (h, s, a, s′) ∈ [H] × S × A × S.
The second part is because of Definition 3.1 and the definition of P int in Algorithm 2.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Lemma E.3. Conditioned on the eventW in Lemma E.2, ∀ (h, s, a, s′) ∈ [H]× S ×A× S such that (h, s, a, s′) /∈ F , it
holds that

(1− 1

H
)P int

h (s′|s, a) ≤ P̃h(s
′|s, a) ≤ (1 +

1

H
)P int

h (s′|s, a).

Proof of Lemma E.3. Because the eventW is true, we have ∀ (h, s, a, s′) ∈ [H]× S ×A× S such that (h, s, a, s′) /∈ F ,

|P int
h (s′|s, a)− P̃h(s

′|s, a)| ≤

√
2P int

h (s′|s, a)ι
Nh(s, a)

+
7ι

3Nh(s, a)
.

By the definition of F that F = {(h, s, a, s′)|Nh(s, a, s
′) ≤ C1H

2ι}, ∀ (h, s, a, s′) ∈ [H] × S × A × S such that
(h, s, a, s′) /∈ F , Nh(s, a, s

′) ≥ C1H
2ι.

Recall that for such (h, s, a, s′) /∈ F , P int
h (s′|s, a) = Nh(s,a,s

′)
Nh(s,a)

, we have

|P int
h (s′|s, a)− P̃h(s

′|s, a)| ≤

√
2ι

Nh(s, a, s′)
P int
h (s′|s, a) + 7P int

h (s′|s, a)ι
3Nh(s, a, s′)

≤ (

√
2

C1
+

7

3C1H
) · 1

H
P int
h (s′|s, a)

≤ 1

H
P int
h (s′|s, a).

The first inequality is because of the definition of P int. The second inequality is because of the definition of F . The last
inequality is because of the choice of C1 = 6.
Then the proof is completed by arranging |P int

h (s′|s, a)− P̃h(s
′|s, a)| ≤ 1

HP int
h (s′|s, a).

From Lemma E.3, we can see that for those tuples (h, s, a, s′) not in F , the estimate of the transition kernel satisfies
(1− 1

H)P int
h (s′|s, a) ≤ P̃h(s

′|s, a) ≤ (1+ 1
H)P int

h (s′|s, a) with high probability. In addition, for those states (h, s, a, s′) ∈
F , P int

h (s′|s, a) = P̃h(s
′|s, a) = 0, which means this inequality holds for all (h, s, a, s′) ∈ [H]×S×A×S . For simplicity,

we use a new definition θ-multiplicatively accurate to describe the relationship between P int and P̃ .

Definition E.4 (θ-multiplicatively accurate for transition kernels (under absorbing MDP)). Under the absorbing MDP with
absorbing state s†, a transition kernel P ′ is θ-multiplicatively accurate to another transition kernel P ′′ if

(1− θ)P ′
h(s

′|s, a) ≤ P ′′
h (s

′|s, a) ≤ (1 + θ)P ′
h(s

′|s, a)

for all (h, s, a, s′) ∈ [H]× S ×A× S and there is no requirement for the case when s′ = s†.

Because of Lemma E.2 and Lemma E.3, we have that with probability 1− S2δ
K , P int is 1

H -multiplicatively accurate to P̃ .
Next, we will compare the visitation probability of each state (h, s, a) under two transition kernels that are close to each
other.

Lemma E.5. Define 1h,s,a to be the reward function r′ such that r′h′(s′, a′) = 1[(h′, s′, a′) = (h, s, a)]. Similarly, define
1h,s to be the reward function r′ such that r′h′(s′, a′) = 1[(h′, s′) = (h, s)]. Then V π(1h,s,a, P

′) and V π(1h,s, P
′) denote

the visitation probability of (h, s, a) and (h, s), respectively, under π and P ′. Under the absorbing MDP with absorbing
state s†, if P ′ is 1

H -multiplicatively accurate to P ′′, for any policy π and any (h, s, a) ∈ [H]× S ×A, it holds that

1

4
V π(1h,s,a, P

′) ≤ V π(1h,s,a, P
′′) ≤ 3V π(1h,s,a, P

′).

Proof of Lemma E.5. Under the absorbing MDP, for any trajectory τ = {s1, a1, · · · , sh, ah} (truncated at time step h) such
that (sh, ah) = (s, a) and s ∈ S, we have sh′ ̸= s† for any h′ ≤ h− 1. Note that we only need to consider the trajectory
truncated at time step h because the visitation to (h, s, a) only depends on this part of trajectory. We have for any truncated
trajectory τ = {s1, a1, · · · , sh, ah} such that (sh, ah) = (s, a), it holds that

Pπ[τ |P ′′] =

h∏
i=1

πi(ai|si)×
h−1∏
i=1

P ′′
i (si+1|si, ai)

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

≤ (1 +
1

H
)H

h∏
i=1

πi(ai|si)×
h−1∏
i=1

P ′
i (si+1|si, ai)

≤ 3Pπ[τ |P ′].

The first inequality is because when si+1 ̸= s†, (1− 1
H)P ′

i (si+1|si, ai) ≤ P ′′
i (si+1|si, ai) ≤ (1 + 1

H)P ′
i (si+1|si, ai).

Let τh,s,a be the set of truncated trajectories such that (sh, ah) = (s, a). Then

V π(1h,s,a, P
′′) =

∑
τ∈τh,s,a

Pπ[τ |P ′′] ≤ 3
∑

τ∈τh,s,a

Pπ[τ |P ′] = 3V π(1h,s,a, P
′).

The left side of the inequality can be proven in a similar way, with (1− 1
H)H ≥ 1

4 when H ≥ 2.

Under the absorbing MDP with absorbing state s†, we have shown (in Lemma E.3) that with high probability, for any
(h, s, a, s′) ∈ [H]×S ×A×S , it holds that (1− 1

H)P int
h (s′|s, a) ≤ P̃h(s

′|s, a) ≤ (1 + 1
H)P int

h (s′|s, a). Combined with
Lemma E.5, we have with high probability, for any policy π and any (h, s, a) ∈ [H]× S ×A,

1

4
V π(1h,s,a, P

int) ≤ V π(1h,s,a, P̃) ≤ 3V π(1h,s,a, P
int).

Careful readers may find that for the visitation probability to the absorbing state s†, this inequality may not be true. However,
this is not a problem for our propose, because we do not need to explore the absorbing state or consider the visitation
probability of s†.

The structure of the absorbing MDP also gives rise to the following lemma about the relationship between P̃ and P .

Lemma E.6. For any policy π and any (h, s, a) ∈ [H]× S ×A,

V π(1h,s,a, P) ≥ V π(1h,s,a, P̃).

Proof of Lemma E.6. For any truncated trajectory τ that arrives at (h, s, a) under P̃ , Pπ[τ |P] = Pπ[τ |P̃].

Next, we will define the following bad event and explain the decomposition of its probability.

Definition E.7 (Bad event B and Bh under original MDP). For a trajectory {s1, a1, · · · , sH , aH , sH+1} under original
MDP and some policy, define B to be the event where there exists h such that (h, sh, ah, sh+1) ∈ F . Define Bh, for
h = 1, 2, · · · , H to be the event that (h, sh, ah, sh+1) ∈ F and ∀h′ ≤ h− 1, (h′, sh′ , ah′ , sh′+1) /∈ F .

We have that under the original MDP, B is the event that the trajectory finally enters F and Bh is the event that the trajectory
first enters F at time step h+ 1.

Definition E.8 (Bad event B and Bh under absorbing MDP). For a trajectory {s1, a1, · · · , sH , aH , sH+1} under absorbing
MDP and some policy, define B to be the event where there exists h such that sh = s†. Define Bh, for h = 1, 2, · · · , H to
be the event that sh+1 = s† and ∀h′ ≤ h, sh′ ̸= s†.

We have that under the absorbing MDP, B is the event that the trajectory finally enters s† and Bh is the event that the
trajectory first enters s† at time step h+ 1. Note that under either the original MDP or the absorbing MDP, B is a disjoint
union of Bh and P(B) =

∑H
h=1 P(Bh).

Now we are ready to prove the key lemma about the difference between P̃ and P . We will prove Lemma 6.2 and state an
improved version under the special case where ϕ = ϕ1.

Lemma E.9 (Restate Lemma 6.2). Conditioned onW in Lemma E.2, with probability 1− δ
AK , supπ∈ϕ Pπ[B] ≤ 168S3A2H4ι

T .

Proof of Lemma E.9. We will prove that ∀h ∈ [H], with probability 1− δ
HAK , supπ∈ϕ Pπ[Bh] ≤ 168S3A2H3ι

T .
First, recall that the event Bh means (h, sh, ah, sh+1) ∈ F and ∀h′ ≤ h− 1, (h′, sh′ , ah′ , sh′+1) /∈ F under the original

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

MDP. Also, Bh means that sh+1 = s† and ∀h′ ≤ h, sh′ ̸= s† under the absorbing MDP. We have

Pπ[Bh|P] =
∑
τ∈Bh

Pπ[τ |P]

=
∑

τ:h+1∈Bh

Pπ[(s1, a1, · · · , sh, ah)|P]Ph(sh+1|sh, ah)

=
∑

τ:h+1∈Bh

Pπ[(s1, a1, · · · , sh, ah)|P̃]Ph(sh+1|sh, ah)

=
∑
s∈S,a

V π(1h,s,a, P̃)
∑

s′∈S:(h,s,a,s′)∈F

Ph(s
′|s, a)

=
∑
s∈S,a

V π(1h,s,a, P̃)P̃h(s
†|s, a)

= Pπ[Bh|P̃],

(4)

where τ:h+1 in line 2 and line 3 means the trajectory τ truncated at sh+1. Note that we only need to consider the trajectory
truncated at sh+1 because the event Bh only depends on this part of trajectory. The Bh in the first three lines are defined under
original MDP, while the Bh in the last line is defined under absorbing MDP. The third equation is because for (h, s, a, s′) /∈ F ,
P = P̃ . The forth equation is because there is a bijection between trajectories that arrive at (h, s, a) ∈ [H]× S ×A under
absorbing MDP and trajectories in Bh that arrive at the same (h, s, a) under the original MDP. The fifth equation is because
of the definition of P̃ . The last equation is because of the definition of Bh under the absorbing MDP P̃ .
Recall that in Algorithm 2, πh,s,a = argmaxπ∈ϕV

π(1h,s,a, P
int), then because of Lemma E.5 and the fact that when

constructing πh,s,a, the first h− 1 layers of P int is already same to the final output P int, we have

V πh,s,a(1h,s,a, P̃) ≥ 1

4
V πh,s,a(1h,s,a, P

int)

=
1

4
sup
π∈ϕ

V π(1h,s,a, P
int)

≥ 1

12
sup
π∈ϕ

V π(1h,s,a, P̃),

(5)

where the two inequalities are because of Lemma E.5.
Define πh to be a policy that chooses each πh,s,a with probability 1

SA for any (s, a) ∈ S ×A. Then we have

V πh(1h,s,a, P̃) ≥ 1

SA
V πh,s,a(1h,s,a, P̃)

≥ 1

12SA
sup
π∈ϕ

V π(1h,s,a, P̃).
(6)

Note that in our Algorithm 2, each policy πh,s,a will be run for T
HSA episodes. Then for any event E , we have that∑

s,a

T

HSA
× Pπh,s,a

[E|P̃] =
T

H
× Pπh

[E|P̃].

We will assume that running each πh,s,a for T
HSA episodes is equivalent to running πh for T

H episodes because with
Lemma D.4, we can derive the same lower bound for the total number of event E . In the remaining part of the proof, we will
analyze assuming we run πh for T

H episodes.
With the definition of πh, we have

Pπh
[Bh|P] = Pπh

[Bh|P̃]

=
∑
s∈S,a

V πh(1h,s,a, P̃)P̃h(s
†|s, a)

≥ 1

12SA

∑
s∈S,a

sup
π∈ϕ

V π(1h,s,a, P̃)P̃h(s
†|s, a)

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

≥ 1

12SA
sup
π∈ϕ

∑
s∈S,a

V π(1h,s,a, P̃)P̃h(s
†|s, a)

=
1

12SA
sup
π∈ϕ

Pπ[Bh|P̃]

=
1

12SA
sup
π∈ϕ

Pπ[Bh|P],

where Bh|P is defined under original MDP while Bh|P̃ is defined under absorbing MDP. The first and the last equation is
because of (4). The first inequality is because of (6). The second inequality is because the summation of maximum is larger
than the maximum of summation.
Suppose supπ∈ϕ Pπ[Bh|P] ≥ 168S3A2H3ι

T , then we have

Pπh
[Bh|P] ≥ 1

12SA
sup
π∈ϕ

Pπ[Bh|P] ≥ 14S2AH3ι

T
.

Therefore, by Lemma D.4, with probability 1 − δ
HAK , Bh occurs for at least T

H ×
14S2AH3ι

2T − ι > 6S2AH2ι times
during the exploration of the h-th layer. However, by the definition of F , at each time step h, for each (s, a, s′), the event
Bh ∩ {(sh, ah, sh+1) = (s, a, s′)} occurs for at most 6H2ι times, so the event Bh =

⋃
(s,a,s′)(Bh ∩ {(sh, ah, sh+1) =

(s, a, s′)}) occurs for at most 6S2AH2ι times in total, which leads to contradiction.
As a result, we have ∀h ∈ [H], with probability 1 − δ

HAK , supπ∈ϕ Pπ[Bh] ≤ 168S3A2H3ι
T . Combining these H results,

because Pπ[B] =
∑H

h=1 Pπ[Bh], we have with probability 1− δ
AK ,

sup
π∈ϕ

Pπ[B] ≤
168S3A2H4ι

T
.

The following Lemma E.10 is an improved version of the previous Lemma E.9 under the special case where ϕ = ϕ1. When
the policy set contains all the deterministic policies, we can have a bound with tighter dependence on S.

Lemma E.10. Conditioned on W in Lemma E.2, if ϕ = ϕ1 = {the set of all deterministic policies}, with probability
1− 2Sδ

K , supπ∈ϕ1 Pπ[B] ≤ 672S3AH4ι
T .

Proof of Lemma E.10. We will prove that ∀h ∈ [H], with probability 1− 2Sδ
HK , supπ∈ϕ1 Pπ[Bh] ≤ 672S3AH3ι

T .
First, same to (4) and (5) we have

Pπ[Bh|P] = Pπ[Bh|P̃],

V πh,s,a(1h,s,a, P̃) ≥ 1

12
sup
π∈ϕ1

V π(1h,s,a, P̃).

Same to the proof of Lemma E.9, we define πh to be a policy that chooses each πh,s,a with probability 1
SA for any

(s, a) ∈ S ×A. Then we have

V πh(1h,s,a, P̃) ≥ 1

12SA
sup
π∈ϕ1

V π(1h,s,a, P̃) =
1

12SA
sup
π∈ϕ1

V π(1h,s, P̃).

The last equation is because ϕ1 consists of all the deterministic policies, for the optimal policy π to visit (h, s), we can just
let πh(s) = a to construct a policy that can visit (h, s, a) with the same probability. Similar to the proof of Lemma E.9, we
can assume that running each πh,s,a for T

HSA episodes is equivalent to running πh for T
H episodes.

Because of Lemma E.6, we have V πh(1h,s,a, P) ≥ V πh(1h,s,a, P̃). Also, there are T
H episodes used to explore the h-th

layer of the MDP, by Lemma D.4 and a union bound, we have with probability 1− Sδ
HK , for any (s, a) ∈ S ×A,

Nh(s, a) ≥
T

H
× V πh(1h,s,a, P)

2
− ι ≥ T

H
× V πh(1h,s,a, P̃)

2
− ι ≥

T · supπ∈ϕ1 V π(1h,s, P̃)

24HSA
− ι.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

For fixed (s, a) ∈ S ×A, if
T ·supπ∈ϕ1 V π(1h,s,P̃)

24HSA ≤ 2ι, we have that

sup
π∈ϕ1

V π(1h,s, P̃) ≤ 48HSAι

T
.

Otherwise, Nh(s, a) ≥
T ·supπ∈ϕ1 V π(1h,s,P̃)

48HSA .
By Lemma D.4 and a union bound, we have with probability 1− Sδ

HK , for any (s, a) ∈ S ×A,

6SH2ι ≥ Nh(s, a)P[F|(h, s, a)]
2

− ι,

where P[F|(h, s, a)] is the conditional probability of entering F at time step h, given the state-action pair at time step h is
(s, a). This is because similar to the proof of Lemma E.9, the event of entering F from (h, s, a) happens for at most 6SH2ι
times.
Then we have with probability 1− 2Sδ

HK , supπ∈ϕ1 V π(1h,s, P̃) ≤ 48HSAι
T or P[F|(h, s, a)] ≤ 672H3S2Aι

T ·supπ∈ϕ1 V π(1h,s,P̃)
holds

for any (s, a) ∈ S ×A. Therefore, it holds that

sup
π∈ϕ1

Pπ[Bh|P] = sup
π∈ϕ1

Pπ[Bh|P̃]

= sup
π∈ϕ1

∑
s∈S

V π(1h,s, P̃)max
a∈A

P̃h(s
†|s, a)

= sup
π∈ϕ1

∑
s∈S

V π(1h,s, P̃)max
a∈A

P[F|(h, s, a)]

≤ sup
π∈ϕ1

∑
s∈S

max{48HSAι

T
,
672H3S2Aι

T
}

=
672H3S3Aι

T
.

The inequality is because if
T ·supπ∈ϕ1 V π(1h,s,P̃)

24HSA ≤ 2ι,

V π(1h,s, P̃)max
a∈A

P[F|(h, s, a)] ≤ V π(1h,s, P̃) ≤ sup
π∈ϕ1

V π(1h,s, P̃) ≤ 48HSAι

T
.

Otherwise we have that

V π(1h,s, P̃)max
a∈A

P[F|(h, s, a)] ≤ V π(1h,s, P̃)
672H3S2Aι

T · supπ∈ϕ1 V π(1h,s, P̃)
≤ 672H3S2Aι

T
.

As a result, we have ∀h ∈ [H], with probability 1 − 2Sδ
HK , supπ∈ϕ1 Pπ[Bh] ≤ 672S3AH3ι

T . Combining these H results,
because Pπ[B] =

∑H
h=1 Pπ[Bh], we have with probability 1− 2Sδ

K ,

sup
π∈ϕ1

Pπ[B] ≤
672S3AH4ι

T
.

Remark E.11. We can see that with the same algorithm, the analysis is different for the general case and the special
case that ϕ contains all the deterministic policies. The main technical reason is when ϕ = ϕ1, supπ∈ϕ1 V π(1h,s,a, P̃) =

supπ∈ϕ1 V π(1h,s, P̃) while this does not hold for general policy set ϕ. We will show that the part of the regret due to the
construction of P̃ is a lower order term. We prove a better bound for the case ϕ = ϕ1 mainly for a better sample complexity
in reward-free setting.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Lemma E.12 (Restate Lemma 6.3). Conditioned onW , under the high-probability event in Lemma E.9 and Lemma E.10,
we have for any policy π ∈ ϕ and reward function r′,

0 ≤ V π(r′, P)− V π(r′, P̃) ≤ 168S3A2H5ι

T
.

In addition, if ϕ = ϕ1 = {the set of all deterministic policies}, we have that for any policy π ∈ ϕ1 and reward function r′,

0 ≤ V π(r′, P)− V π(r′, P̃) ≤ 672S3AH5ι

T
.

Proof of Lemma E.12. We will only prove the first part, the second part is almost the same. Because P̃ is the absorbing
version of P , the left hand side is obvious. For the right hand side, we have that if π ∈ ϕ,

V π(r′, P) =
∑
τ∈Bc

r′(τ)Pπ(τ) +
∑
τ∈B

r′(τ)Pπ(τ)

=
∑
τ∈Bc

r′(τ)P̃π(τ) +
∑
τ∈B

r′(τ)Pπ(τ)

≤ V π(r′, P̃) +
∑
τ∈B

r′(τ)Pπ(τ)

≤ V π(r′, P̃) +
∑
τ∈B

HPπ(τ)

≤ V π(r′, P̃) +HPπ(B)

≤ V π(r′, P̃) +
168S3A2H5ι

T
.

Note that all the B here are defined under original MDP. The second equation is because P̃ = P when τ ∈ Bc. The first
inequality is due to non-negative reward in B under P̃ . The last inequality follows from Lemma E.9.

F. Proof of lemmas regarding Fine Exploration (Algorithm 3)
We first state a conclusion about the global switching cost of Algorithm 3.

Lemma F.1. The global switching cost of Algorithm 3 is bounded by HSA.

Proof of Lemma F.1. There are at most HSA different πh,s,a’s, Algorithm 3 will just run each policy for several times.

Lemma F.2 (Simulation lemma (Dann et al., 2017)). For any two MDPs M ′ and M ′′ with rewards r′ and r′′ and transition
probabilities P ′ and P ′′, the difference in values V ′, V ′′ with respect to the same policy π can be written as

V ′
h(s)− V ′′

h (s) = EM ′′,π[

H∑
i=h

[r′i(si, ai)− r′′i (si, ai) + (P′
i − P′′

i)V
′
i+1(si, ai)]|sh = s].

Now we can prove that value functions under P̃ and P̂ are close to each other.

Lemma F.3 (Restate Lemma 6.4). Conditioned on the fact that P int is 1
H -multiplicatively accurate to P̃ (the case in

Lemma E.3), with probability 1− Tδ
2K , for any policy π ∈ ϕ and reward function r′,

|V π(r′, P̂)− V π(r′, P̃)| = O(

√
H5S2Aι

T
).

Proof of Lemma F.3. In this part of proof, note that the reward function r′ is defined under the original MDP. When we
transfer r′ to be a reward function under the absorbing MDP, r′h(s

†, a) = 0 for any (h, a) ∈ [H] × A. Therefore, if V̂

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

denotes the value function of some policy π under the MDP with reward function r′ and transition kernel P̂ , we have
V̂h(s

†) = 0, for any h ∈ [H]. Because of simulation lemma (Lemma F.2), we have that ∀π ∈ ϕ,

|V π(r′, P̂)− V π(r′, P̃)| ≤ Eπ
P̃

H∑
h=1

|(P̂h − P̃h) · V̂ π
h+1|, (7)

where V̂ π
h is the value function of policy π under P̂ and r′ at time h. The proof holds simultaneously for all reward function

r′, so we will omit r′ for simplicity.
Then we have

Eπ
P̃
|(P̂h − P̃h) · V̂ π

h+1| =
∑
a,s∈S

|(P̂h − P̃h)V̂
π
h+1(s, a)|V π(1h,s,a, P̃)

≤
√ ∑

a,s∈S
|(P̂h − P̃h)V̂ π

h+1(s, a)|2V π(1h,s,a, P̃)

=

√ ∑
a,s∈S

|(P̂h − P̃h)V̂ π
h+1(s, a)|2V π(1h,s,a, P̃)1{a = πh(s)}.

The first equation is because if the trajectory arrives at the absorbing state s† at time step h, then P̂h(s
′|s†, a) = P̃h(s

′|s†, a)
for any a, s′. The first inequality is because of Cauchy-Schwarz inequality. The last equation is because for any π ∈ ϕ, π is
deterministic.
Define πrandom to be a policy that chooses each πh,s,a with probability 1

HSA for any (h, s, a) ∈ [H] × S × A. Define
µh(s, a) to be µh(s, a) = V πrandom(1h,s,a, P̃). Then similar to (5) and (6), we have for any (h, s, a) ∈ [H]× S ×A,

sup
π∈ϕ

V π(1h,s,a, P̃)

µh(s, a)
≤ 12HSA. (8)

Plugging in this result into the previous inequality, we have

Eπ
P̃
|(P̂h − P̃h) · V̂ π

h+1| ≤
√ ∑

a,s∈S
|(P̂h − P̃h)V̂ π

h+1(s, a)|2V π(1h,s,a, P̃)1{a = πh(s)}

≤
√ ∑

a,s∈S
|(P̂h − P̃h)V̂ π

h+1(s, a)|2 · 12HSAµh(s, a) · 1{a = πh(s)}

≤
√

12HSA · sup
ν:S→A

∑
a,s∈S

|(P̂h − P̃h)V̂ π
h+1(s, a)|2µh(s, a) · 1{a = ν(s)}

≤
√
12HSA · sup

ν:S→A

∑
a,s∈S

|(P̂h − P̃h)V̂ π
h+1(s, a)|2µ′

h(s, a) · 1{a = ν(s)}

=

√
12HSA · sup

ν:S→A
Eµ′

h
|(P̂h − P̃h)V̂ π

h+1(s, a)|2 · 1{a = ν(s)}

≤
√
12HSA · sup

G:S∪s†→[0,H]

sup
ν:S∪s†→A

Eµ′
h
|(P̂h − P̃h)G(s, a)|2 · 1{a = ν(s)},

where µ′
h(s, a) = V πrandom(1h,s,a, P) is the distribution of the data. The fourth inequality is because µ′

h(s, a) ≥ µh(s, a)
for any (h, s, a) ∈ [H] × S × A (because of Lemma E.6). In the equation, we extend the definition of µ′ by letting
µ′(s†, a) = 0 so that µ′ is a distribution on S ∪ s† ×A. The last inequality is because V̂ π

h+1 is a function from S ∪ s† to
[0, H].
Note that our data follows the distribution µ′. In addition, from the definition of P̃ and P̂ , we have that P̂ is the empirical
estimate of P̃ . By Lemma F.4 (which we state right after) we have with probability 1− Tδ

2K , for any h ∈ [H], policy π ∈ ϕ
and reward function r′,

Eπ
P̃
|(P̂h − P̃h) · V̂ π

h+1| = O(

√
H3S2Aι

T
).

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

By (7), we have with probability 1− Tδ
2K , for any policy π ∈ ϕ and reward function r′,

|V π(r′, P̂)− V π(r′, P̃)| = O(

√
H5S2Aι

T
).

Lemma F.4 (Lemma C.2 in (Jin et al., 2020a)). Suppose P̂ is the empirical transition matrix formed by sampling according
to µ distribution for N samples, G can be any function from S to [0, H], ν can be any function from S to A, then with
probability at least 1− δ, we have for any h ∈ [H]:

max
G:S→[0,H]

max
ν:S→A

Eµh
|(P̂h − Ph)G(s, a)|21{a = ν(s)} ≤ O(

H2S log(HAN/δ)

N
).

This is a critical lemma that requires delicate arguments to prove. For self-containedness, we include a full proof with more
technical details.

Proof of Lemma F.4. Define random variables

X = (P̂hG(s, a)−G(s′))2 − (PhG(s, a)−G(s′))2,

X = (f(s, a)−G′(s′))2 − (g(s, a)−G′(s′))2,

Y = X1{a = ν(s)}, Y = X1{a = ν′(s)},

where (s, a, s′) ∼ µh × Ph(·|s, a). Here, ν′ can be any function from S to A (in equation (9)) and will be the same as ν in
equation (10), (11), (12). Also, f , g and G′ can be any function (in equation (9)) from the ϵ-cover defined later and will be
the closest function from the ϵ-cover to P̂G(s, a)1{a = ν(s)}, PG(s, a)1{a = ν(s)} and G in equation (10), (11), (12).
Also, we define

Xi = (P̂hG(si, ai)−G(s′i))
2 − (PhG(si, ai)−G(s′i))

2,

Xi = (f(si, ai)−G′(s′i))
2 − (g(si, ai)−G′(s′i))

2,

Yi = Xi1{ai = ν(si)}, Y i = Xi1{ai = ν′(si)},

where (si, ai, s
′
i) is the i-th sample in time step h we collect. Notice that for every tuple (v′, f, g,G′) and Y , Y i related to

this tuple, we have that Y i’s are i.i.d samples from the distribution of Y .
Same to the proof in (Jin et al., 2020a), we have these three properties of Y and Yi.

(1)EY = Eµh
|(P̂h − Ph)G(s, a)|21{a = ν(s)}.

(2)

N∑
i=1

Yi ≤ 0.

(3)Var{Y } ≤ 4H2E(Y).

Since we are taking maximum over ν and G(s), and P̂ is random, we need to cover all the possible ν and all the possible
values of P̂G(s, a)1{a = ν(s)}, PG(s, a)1{a = ν(s)} and G to ϵ accuracy to use Bernstein’s inequality for the functions in
the cover. For ν, there are AS deterministic policies in total. Given a fixed ν, P̂G(s, a)1{a = ν(s)}, PG(s, a)1{a = ν(s)}
and G can be covered by (H/ϵ)3S values because the first two functions can be covered by (H/ϵ)2S values (for a ̸= ν(s)
the first two will be 0) and G itself can be covered by (H/ϵ)S values.
By Bernstein’s inequality (Lemma D.1) and a union bound, we have with probability 1 − δ, for any (ν′, f, g,G′) in the
ϵ-cover, it holds that

E(Y)− 1

N

N∑
i=1

Y i ≤

√
2Var{Y } log((Hϵ)3S ·AS · Hδ)

N
+

H2 log((Hϵ)
3S ·AS · Hδ)

3N
. (9)

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Under this high probability case, for any G, ν and P̂, choose ν′ = ν and (f, g,G′) to be the closest function from the ϵ-cover
to P̂G(s, a)1{a = ν(s)}, PG(s, a)1{a = ν(s)} and G. Let Y be defined according to this (ν, f, g,G′). Then we have

|Y − Y | ≤ 4Hϵ, (10)

for any possible (s, a, s′) (hence this inequality is also true when adding expectation to both terms) and

|Var{Y } −Var{Y }| ≤ |E(Y 2
)− E(Y 2)|+ |(EY)2 − (EY)2|

≤ 2H2 · 4Hϵ+ 2H2 · 4Hϵ

= 16H3ϵ.

(11)

As a result, we have

Eµh
|(P̂h − Ph)G(s, a)|21{a = ν(s)} = EY

≤ EY − 1

N

N∑
i=1

Yi

≤ EY − 1

N

N∑
i=1

Y i + 8Hϵ

≤

√
2Var{Y } log((Hϵ)3S ·AS · Hδ)

N
+

H2 log((Hϵ)
3S ·AS · Hδ)

3N
+ 8Hϵ

≤

√
2Var{Y } log((Hϵ)3S ·AS · Hδ)

N
+

H2 log((Hϵ)
3S ·AS · Hδ)

3N

+ 8Hϵ+

√
2 · 16H3ϵ log((Hϵ)

3S ·AS · Hδ)
N

.

(12)

The first inequality is because of property 2. The second inequality is because of (10). The third inequality is because of (9).
The last inequality is because of (11) and

√
a+ b ≤

√
a+
√
b.

We can simply choose ϵ = HS
32N and plug in property (3) of Y , then by solving the following quadratic inequality we can

finish the proof.

Eµh
|(P̂h − Ph)G(s, a)|21{a = ν(s)}

≤

√
8H2Eµh

|(P̂h − Ph)G(s, a)|21{a = ν(s)} · 3S log(32HAN
δ)

N
+

2H2S log(32HAN
δ)

N
.

(13)

G. Proof of Theorem 4.1
We first give a proof for the upper bound on the number of stages.

Lemma G.1. If T (k) = K1− 1

2k for k = 1, 2 · · · , we have

K0 = min{j : 2
j∑

k=1

T (k) ≥ K} = O(log logK).

Proof of Lemma G.1. Take j = log2 log2 K, we have 2T (j) = 2 K

K(log2 K)−1 = 2K
2 = K, which means that

K0 ≤ log2 log2 K + 1 = O(log logK).

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Then we are able to bound the total global switching cost of Algorithm 1.

Lemma G.2. The total global switching cost of Algorithm 1 is bounded by O(HSA log log T).

Proof of Lemma G.2. For each stage, the global switching cost is bounded by 2HSA because of Lemma E.1 and Lemma F.1.
There are O(log log T) stages, so the total global switching cost is at most O(HSA log log T).

Recall that in Algorithm 1, in each stage k (1 ≤ k ≤ K0), we run Algorithm 2 to construct the infrequent tuples Fk and the
intermediate transition kernel P int,k. The absorbing MDP P̃ k is constructed as in Definition 3.1 based on Fk and the real
MDP P . Then we run Algorithm 3 to construct an empirical estimate of P̃ k, which is P̂ k.

Lemma G.3 (Restate Lemma 6.1). There exists a constant C, such that with probability 1− δ, it holds that for any k and
π ∈ ϕk,

|V π(r, P̂ k)− V π(r, P)| ≤ C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
),

where ι = log(2HAK/δ).

Proof of Lemma G.3. For the choice of the universal constant C, we can first let C be the constant hidden by the big O in
Lemma F.3. Then because of Lemma E.12, we can choose C = max{C, 168}. Note that this C is also used as the universal
constant in the elimination step in Algorithm 1.
Because of triangular inequality, we have for any k and any π ∈ ϕk,

|V π(r, P̂ k)− V π(r, P)| ≤ |V π(r, P̂ k)− V π(r, P̃ k)|+ |V π(r, P̃ k)− V π(r, P)|. (14)

For any k ≤ K0, because of Lemma E.3 and Lemma E.12, we have with probability 1 − (S
2δ
K + δ

AK), it holds that for
any π ∈ ϕk, |V π(r, P)− V π(r, P̃ k)| ≤ C S3A2H5

T (k) while P int,k is 1
H -multiplicatively accurate to P̃ k. Conditioned on this

case, because of Lemma F.3, we have with probability 1− T (k)δ
2K , for any π ∈ ϕk, |V π(r, P̂ k)− V π(r, P̃ k)| ≤ C

√
H5S2Aι
T (k) .

Combining these two results, we have for any 1 ≤ k ≤ K0, with probability 1− (S
2δ
K + δ

AK + T (k)δ
2K), for any π ∈ ϕk,

|V π(r, P̂ k)− V π(r, P)| ≤ C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
).

Finally, the proof is completed through a union bound on k and the fact that the failure probability is bounded by

(
S2δ

K
+

δ

AK
)×O(log logK) +

K0∑
k=1

T (k)δ

2K
≤ δ,

if K ≥ Ω̃(S2).

Lemma G.4. Conditioned on the same high probability event of Lemma G.3, the optimal policy π⋆ will never be eliminated,
i.e., π⋆ ∈ ϕk for k = 1, 2, 3, · · · .

Proof of Lemma G.4. We will prove this lemma by induction. First, because ϕ1 contains all the deterministic policies,
π⋆ ∈ ϕ1. Assume π⋆ ∈ ϕk, then we have

sup
π̂∈ϕk

V π̂(r, P̂ k)− V π⋆

(r, P̂ k) = V π̂k

(r, P̂ k)− V π⋆

(r, P̂ k)

≤ |V π̂k

(r, P̂ k)− V π̂k

(r, P)|+ V π̂k

(r, P)− V π⋆

(r, P) + |V π⋆

(r, P)− V π⋆

(r, P̂ k)|

≤ 2C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
).

The last inequality is because of Lemma G.3 and π⋆ is the optimal policy.
Then according to the elimination rule in Algorithm 1, we have that π⋆ ∈ ϕk+1, which means the optimal policy π⋆ will
never be eliminated.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Lemma G.5. Conditioned on the same high probability event of Lemma G.3, for any remaining policies, i.e., π ∈ ϕk+1, we
have that

V π⋆

(r, P)− V π(r, P) ≤ 4C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
).

Proof of Lemma G.5. For π ∈ ϕk+1, because the optimal policy π⋆ will never be eliminated (Lemma G.4), we have that

V π⋆

(r, P̂ k)− V π(r, P̂ k) ≤ sup
π̂∈ϕk

V π̂(r, P̂ k)− V π(r, P̂ k) ≤ 2C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
). (15)

Then we have

V π⋆

(r, P)− V π(r, P) ≤ |V π⋆

(r, P)− V π⋆

(r, P̂ k)|+ V π⋆

(r, P̂ k)− V π(r, P̂ k) + |V π(r, P̂ k)− V π(r, P)|

≤ 4C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
).

The last inequality is because of Lemma G.3 and (15) .

Lemma G.6. Conditioned on the same high probability event of Lemma G.3, if K ≥ Ω̃(S8A6H10), the total regret is at
most Õ(

√
H4S2AT).

Proof of Lemma G.6. The regret for the first stage (stage 1) is at most 2HT (1) = O(HK
1
2).

For stage k ≥ 2, because of Lemma G.5, the policies we use (any π ∈ ϕk) are at most 4C(
√

H5S2Aι
T (k−1) + S3A2H5ι

T (k−1))

sub-optimal, so the regret for the k-th stage (2T (k) episodes) is at most 8CT (k)(
√

H5S2Aι
T (k−1) + S3A2H5ι

T (k−1)).

Adding up the regret for each stage , we have that the total regret is bounded by

Regret(T) ≤ 2HK
1
2 +

K0∑
k=2

8CT (k)(

√
H5S2Aι

T (k−1)
+

S3A2H5ι

T (k−1)
)

= O(HK
1
2) +O(

√
H5S2AKι · log logK) +O(S3A2H5K

1
4 ι)

= O(
√
H5S2AKι · log logK) +O(S3A2H5K

1
4 ι)

= Õ(
√
H4S2AT),

where the last equality is because K ≥ Ω̃(S8A6H10).

Then Theorem 4.1 holds because of Lemma G.2, Lemma G.3 and Lemma G.6.

Corollary G.7 (Transition to a PAC bound). Under the same assumption as Theorem 4.1, for any ϵ > 0, Algorithm 1 can
output a stochastic policy π̂ such that with high probability,

V ⋆
1 (s1)− V π̂

1 (s1) ≤ ϵ

after K = Õ(H
5S2A
ϵ2) episodes.

Proof. By Theorem 4.1, we have that the regret is bounded by Õ(
√
H4S2AT) with high probability, which means we have

K∑
k=1

V ⋆
1 (s1)− V πk

1 (s1) ≤ Õ(
√
H4S2AT),

where πk is the policy used in episode k. Now define a stochastic policy π̂ as

π̂ =
1

K

K∑
k=1

πk.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Then we have

E[V ⋆
1 (s1)− V π̂

1 (s1)] =
1

K

K∑
k=1

V ⋆
1 (s1)− V πk

1 (s1) ≤ Õ(

√
H5S2A

K
).

By Markov inequality, we have with high probability that

V ⋆
1 (s1)− V π̂

1 (s1) ≤ Õ(

√
H5S2A

K
).

Taking K = Õ(H
5S2A
ϵ2) bounds the above by ϵ.

Remark G.8. In addition to constructing a random policy, we can output any policy in the remaining policy set ϕK0+1.
Because there are K0 = O(log logK) stages in total, the maximal T (k) is larger than Ω(K

log logK). According to Lemma G.5,
for any π ∈ ϕK0+1,

V π⋆

(r, P)− V π(r, P) ≤ 4C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
), ∀ k = 1, 2, · · · ,K0.

Combining these two results, we have for any π ∈ ϕK0+1,

V π⋆

(r, P)− V π(r, P) ≤ Õ(

√
H5S2A

K
).

Then K = Õ(H
5S2A
ϵ2) bounds the above by ϵ.

H. Proof of lower bounds (Theorem 4.2 and Theorem 4.3)
Theorem H.1 (Restate Theorem 4.2). If S ≤ A

H
2 , for any algorithm with near-optimal Õ∗(

√
T) regret bound, the global

switching cost is at least Ω(HSA log log T).

Theorem H.2 (Restate Theorem 4.3). If S ≤ A
H
2 , for any algorithm with sub-linear regret bound, the global switching cost

is at least Ω(HSA).

First, we will state the high level idea of the proof and some related discussions. For the Ω(HSA log log T) and Ω(HSA)
lower bounds, we construct a MDP to show that it is at least as difficult as multi-armed bandits with Ω(HSA) arms.
Previously, Bai et al. (2019) proved an Ω(HSA) lower bound for local switching cost, which can only imply an Ω(A) lower
bound for global switching cost in the worst case. In (Huang et al., 2022), the authors proved an Ω(dH) lower bound for
global switching cost under linear setting for all algorithms with PAC bound. The same lower bound is derived in (Gao et al.,
2021) for all algorithms with sub-linear regret. However, for the MDPs constructed by both papers, the number of actions
available at each state is not the same, which means we can not get an Ω(HSA) lower bound for global switching cost by
directly plugging in d = SH . Finally, we state that both lower bounds we present are optimal. An Ω(HSA log log T) lower
bound on global switching cost is optimal since this bound is matched by the upper bound of switching cost in Theorem 4.1.
Also, an Ω(HSA) lower bound on global switching cost is the optimal result for any no-regret algorithms. This is because
we can run our low adaptive reward-free exploration (Algorithm 4) for K

2
3 episodes and run the policy π̂r where r is the

real reward function for the remaining episodes. It can be shown that the regret is of order O(T
2
3) and global switching cost

is bounded by 2HSA.

Proof of Theorem H.1 and Theorem H.2. In this part of proof, we will add a mild assumption to parameters H,S,A by
assuming that S ≤ A

H
2 . First we will show that under this assumption, a MDP with S states, A actions and horizon H can

be at least as difficult as a multi-armed bandit with Ω(HSA) arms. We will consider a MDP with deterministic transition
kernel and a fixed initial state s1, a special state s† will be used as absorbing state. The state space S can be divided into
S = {s1, s2, · · · , sS−1, s

†}. The action space A can be divided into A = {a1, a2, · · · , aA}. Then the construction of MDP
can be divided into three parts.

Absorbing state For the absorbing state s†, for any action a and h ∈ [H], Ph(s
†|s†, a) = 1 while Ph(s|s†, a) = 0 for any

s ̸= s†. The reward is defined as rh(s†, a) = 0 for any a, h ∈ [H].

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

The first several layers Let H0 be the minimal positive integer such that S ≤ AH0 . By the assumption that S ≤ A
H
2 , we

have H0 ≤ H
2 . Then we can use an A-armed tree structure to ensure that for any state s ̸= s†, there exists a unique path

starting from s1 to arrive at (H0 + 1, s). Formally, for each h ≤ H0, i ∈ [1, S − 1], j ∈ [1, A], Ph(sA(i−1)+j |si, aj) = 1

(here if A(i − 1) + j ≥ S, sA(i−1)+j = s†). By induction, we can see that for s ̸= s†, there is a unique trajectory that
arrives at s at time step H0 + 1. The reward rh is always 0 when h ≤ H0.

The remaining layers For each state s ̸= s† and H > h ≥ H0 + 1, there exists a single action as,h such that
Ph(s|s, as,h) = 1 while Ph(s

′|s, as,h) = 0 for s′ ̸= s. For any a ̸= as,h, we have that Ph(s
†|s, a) = 1. The reward

function rh(s, as,h) = 0 when the action is the as,h that keeps the agent at s, and the reward for other actions rh(s, a) is
unknown (can be non-zero) when H > h ≥ H0 + 1, a ̸= as,h. For the last layer, for any state s ̸= s† and any action a ∈ A,
PH(s†|s, a) = 1. The reward rH(s, a) is unknown and can be non-zero.

We can see that under this MDP, there are two cases. The first one is for some policies, the agent arrives at (H0 +1, s†) with
no reward, then such a trajectory will have total reward 0. The second one is the agent arrives at some (H0 + 1, s) (s ̸= s†)
and finally arrives at s† from the tuple (h, s, a) (H > h ≥ H0 + 1 and a ̸= as,h or h = H) with total reward rh(s, a). Also,
for any deterministic policy, the trajectory is fixed, like pulling an “arm” in bandit setting. Note that the total number of such
“arms” with non-zero unknown reward is at least (S − 1)(A− 1)H2 ≥ Ω(HSA). Even if the transition kernel is known to
the agent, this MDP is still as difficult as a multi-armed bandit problem with Ω(HSA) arms. Then Theorem H.1 results
from Lemma H.3 while Theorem H.2 holds because of the following Lemma H.4.

Lemma H.3 (Theorem 2 in (Simchi-Levi & Xu, 2019)). Under the K-armed bandits problem, there exists an absolute
constant C > 0 such that for all K > 1, S ≥ 0, T ≥ 2K and for all policy π with switching budget S, the regret satisfies

Rπ(K,T) ≥ C

log T
·K1− 1

2−2−q(S,K)−1 T
1

2−2−q(S,K)−1 ,

where q(S,K) = ⌊ S−1
K−1⌋. This further implies that Ω(K log log T) switches are necessary for achieving Õ(

√
T) regret

bound.

Lemma H.4 (Switching cost lower bound under MAB setting). For any algorithm with sub-linear regret bound under
K-armed bandit problem, the switching cost is at least Ω(K).

Proof of Lemma H.4. The K-armed bandit problem can be described by a vector µ = [µ1, · · · , µK], where µk is the mean
reward of the k-th arm. We consider the following base problem and K possible problems.

µbase = [0, 0, · · · , 0], µproblem k = [µ1, · · · , µK , whereµi = 1(i = k)], ∀ k ∈ [K].

Note that under the base problem, all arms have reward 0 while under problem k, only the k-th arm has reward 1 and all
other arms have reward 0. We will prove that for any algorithm with switching cost bounded by K

2 − 1, even if the reward is
deterministic, the regret bound can not be sub-linear.
For any algorithm Alg with switching cost smaller than K

2 − 1, because the maximum is larger than the average, we only
need to provide a lower bound for R = 1

K

∑K
k=1 EAlg[Regret(T)|problem k].

Consider using algorithm Alg on the base problem, let T = {τ} be all the possible strings of {a1, r1, · · · , aT , rT }, where
ai is the index of the arm pulled at time i and ri is its reward. Then we have

∑
τ∈T PAlg[τ |base problem] = 1. In addition,

because of the restriction on Alg that the switching cost is bounded by K
2 − 1, each τ can only pull at most K

2 arms. Then it

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

holds that

R =
1

K

K∑
k=1

EAlg[Regret(T)|problem k]

=
1

K

K∑
k=1

∑
τ∈T

[Regret(τ)|problem k]× PAlg[τ |problem k]

=
∑
τ∈T

1

K

K∑
k=1

[Regret(τ)|problem k]× PAlg[τ |problem k]

≥
∑
τ∈T

T × PAlg[τ |base problem]

2

=
T

2
,

(16)

where [Regret(τ)|problem k] is the regret of string τ under problem k. The inequality is because for any string τ , if
problem k satisfies that the k-th arm does not appear in τ , then [Regret(τ)|problem k] = T and PAlg[τ |problem k] =
PAlg[τ |base problem].

I. Proof of Theorem 5.1
Lemma I.1. The total global switching cost of Algorithm 4 is bounded by 2HSA.
Remark I.2. The switching cost O(HSA) is optimal for reward-free setting. With the same MDP in Appendix H, we can
show that it takes Ω(HSA) switching cost to find out the mapping between the policy and which “arm” it is pulling.

In this part of proof, we also construct the absorbing MDP P̃ in the same way as Definition 3.1 based on the infrequent
tuples F and the true MDP P . Similar to the proof of Lemma G.3, we construct the universal constant C, we can first let C
be the constant hidden by the big O in Lemma F.3. Then because of Lemma E.12, we can choose C = max{C, 672}. With
the C, we are able to choose the universal constant in this section to be c′ = 16C2. Note that the ι used in Algorithm 4
is ι = log(2HA(N0+N)

δ), while the ι′ used in the upper bound of sample complexity is ι′ = log(HSA
ϵδ). According to the

conclusion about Algorithm 2, we have the following lemma regarding the choice of N0.

Lemma I.3. There exists c′ > 0, for any ϵ > 0, when N0 > c′ · S
3AH5ι

ϵ , it holds that with probability 1− δ
2 , for any π ∈ ϕ1

and any reward function r, |V π(r, P)− V π(r, P̃)| ≤ ϵ
4 , while P int is 1

H -multiplicatively accurate to P̃ .

Proof of Lemma I.3. This is a direct corollary of lemma E.3 and lemma E.12.

Then because of the conclusions about Algorithm 3, we have the following lemma regarding the choice of N .

Lemma I.4. There exists c′ > 0, for any ϵ > 0, when N > c′ · H
5S2Aι
ϵ2 , conditioned on the case in Lemma I.3 that P int is

1
H -multiplicatively accurate to P̃ , with probability 1− δ

2 , for any π ∈ ϕ1 and reward function r, |V π(r, P̂)−V π(r, P̃)| ≤ ϵ
4 .

Proof of Lemma I.4. This is a direct corollary of Lemma F.3.

Lemma I.5. There exists c′ > 0, for any ϵ > 0, when the number of total episodes K > c′ · (H
5S2Aι
ϵ2 + S3AH5ι

ϵ), there
exists a choice of N0 and N such that N0 +N = K and with probability 1 − δ, for any π ∈ ϕ1 and reward function r,
|V π(r, P̂)− V π(r, P)| ≤ ϵ

2 .

Proof of Lemma I.5. Because of triangular inequality,

|V π(r, P̂)− V π(r, P)| ≤ |V π(r, P̂)− V π(r, P̃)|+ |V π(r, P̃)− V π(r, P)|.

Because of Lemma I.3 and Lemma I.4, if we choose N0 > c′ · S
3AH5ι

ϵ and N > c′ · H
5S2Aι
ϵ2 , it holds that with probability

1− δ, for any π ∈ ϕ1 and reward function r,

|V π(r, P)− V π(r, P̃)| ≤ ϵ

4
, |V π(r, P̂)− V π(r, P̃)| ≤ ϵ

4
.

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Then the proof is finished by plugging in these two inequalities to the triangular inequality.

Note that K > c′ · (H
5S2Aι
ϵ2 + S3AH5ι

ϵ) is not a good representation of constraints on K because K appears on both sides
of the inequality. The following Lemma I.6 gives a valid solution to this inequality.

Lemma I.6. For a fixed c′, there exists a constant c such that if K > c(H
5S2Aι′

ϵ2 + S3AH5ι′

ϵ), then K > c′ · (H
5S2Aι
ϵ2 +

S3AH5ι
ϵ), where ι = log(2HAK

δ) and ι′ = log(HSA
ϵδ).

Lemma I.7. Conditioned on the case in Lemma I.5, we have that 0 ≤ V π⋆

(r, P)− V π̂r

(r, P) ≤ ϵ holds for any reward
function r.

Proof of Lemma I.7. V π⋆

(r, P)− V π̂r

(r, P) ≥ 0 directly results from the definition of optimal policy. Also,

V π⋆

(r, P)− V π̂r

(r, P) ≤ |V π⋆

(r, P)− V π⋆

(r, P̂)|+ V π⋆

(r, P̂)− V π̂r

(r, P̂) + |V π̂r

(r, P̂)− V π̂r

(r, P)|
≤ ϵ.

The second inequality is because of Lemma I.5 and π̂r = argmaxπ∈ϕ1V π(r, P̂).

Then Theorem 5.1 holds because of Lemma I.1, Lemma I.5, Lemma I.6 and Lemma I.7.

J. Improved algorithm with near optimal number of batches
First of all, we will analyze the batch complexity of APEVE (Algorithm 1). Note that one application of Crude Exploration
(Algorithm 2) can be finished in H batches, because the exploration of each layer can be finished in one batch. Besides,
one application of Fine Exploration (Algorithm 3) can be finished in one batch. According to the schedule of APEVE
(Algorithm 1), there are O(log log T) stages, each stage contains one Crude Exploration and one Fine Exploration. Therefore,
the batch complexity of APEVE is O(H log log T).

We further improve the batch complexity by revising APEVE (Algorithm 1) slightly to get this APEVE+ (Algorithm 6). The
main difference is that in Algorithm 6, only the first two stages contain the use of Crude Exploration (Algorithm 2), the
remaining stages only run Fine Exploration (Algorithm 3) and eliminate policies at the end of each stage. First, we consider
the number of batches. In Algorithm 6, there are two applications of Crude Exploration and O(log log T) applications of
Fine Exploration, so we have the following theorem.

Theorem J.1. APEVE+ (Algorithm 6) can be applied in O(2H + log log T) = O(H + log log T) batches.

Remark J.2. Gao et al. (2019) proved that for any algorithm with Õ(
√
T) regret bound under multi-armed bandit setting,

the number of batches is at least Ω(log log T). In the construction of our lower bound in Appendix H, we show that tabular
RL can be at least as difficult as a multi-armed bandit problem, which means the Ω(log log T) lower bound on batches also
applies to tabular RL. Theorem B.3 in (Huang et al., 2022) states an Ω(H

log T) lower bound for number of batches for any
algorithm with PAC guarantee. Because regret guarantee is stronger than PAC guarantee, this lower bound also applies to
any algorithm with Õ(

√
T) regret bound. Combining these two results, we have an Ω(H

log T + log log T) lower bound on

number of batches for any algorithm with Õ(
√
T) regret. According to Theorem J.1, we conclude that our Algorithm 6

nearly matches the lower bound of batches.

Now we will consider the regret bound of APEVE+. We have the following key lemma whose proof and choice of the
constant C is identical to Lemma G.3.

Lemma J.3. There exists a constant C, such that with probability 1− δ, for any k = 1, 2 and π ∈ ϕk,

|V π(r, P̂ k)− V π(r, P)| ≤ C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
),

while for any k ≥ 3 and π ∈ ϕk,

|V π(r, P̂ k)− V π(r, P)| ≤ C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (2)
).

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Then using the identical proof as Lemma G.4 and Lemma G.5, we have an upper bound on the sub-optimality of policies
used in each stage.

Lemma J.4. With probability 1− δ, for the policies that have not been eliminated at stage k, i.e. π ∈ ϕk+1, we have that

V π⋆

(r, P)− V π(r, P) ≤ 4C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (k)
), k = 1, 2.

V π⋆

(r, P)− V π(r, P) ≤ 4C(

√
H5S2Aι

T (k)
+

S3A2H5ι

T (2)
), k ≥ 3.

Now we are ready to bound the total regret of Algorithm 6.

Theorem J.5. If K ≥ Ω̃(S8A6H10), with probability 1 − δ, the total regret of APEVE+ (Algorithm 6) is at most
Õ(
√
H4S2AT).

Proof of Theorem J.5. Because the case in Lemma J.4 holds with probability 1 − δ, we will prove under the case in
Lemma J.4 and show that the regret is Õ(

√
H4S2AT).

The regret for the first stage (stage 1) is at most 2HT (1) = O(HK
1
2).

Because of Lemma J.4, the regret for the second stage (stage 2) is at most 2T (2) × 4C(
√

H5S2Aι
T (1) + S3A2H5

T (1)).

For stage k ≥ 3, the policies we use (any π ∈ ϕk) are at most 4C(
√

H5S2Aι
T (k−1) + S3A2H5ι

T (2)) sub-optimal, so the regret for the

k-th stage is at most 8CT (k)(
√

H5S2Aι
T (k−1) + S3A2H5ι

T (2)).

Adding up the regret for each stage , we have that the total regret is bounded by

Regret(T) ≤ 2HK
1
2 +

K0∑
k=2

8CT (k)

√
H5S2Aι

T (k−1)
+ 8CT (2)S

3A2H5ι

T (1)
+

K0∑
k=3

8CT (k)S
3A2H5ι

T (2)

= O(HK
1
2) +O(

√
H5S2AKι · log logK) +O(S3A2H5K

1
4 ι)

= O(
√
H5S2AKι · log logK) +O(S3A2H5K

1
4 ι)

= Õ(
√
H4S2AT),

where the last equality is because K ≥ Ω̃(S8A6H10).

Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost

Algorithm 6 Adaptive Policy Elimination by Value Estimation+ (APEVE+)
1: Require: Number of episodes for exploration K, r is the known deterministic reward. Universal constant C. Failure

probability δ.
2: Initialize: T (k) = K1− 1

2k , k ≤ K0 = O(log logK), ϕ1 := {the set of all the deterministic policies}, ι =
log(2HAK/δ).

3: for k = 1, 2, · · · ,K0 do
4: ⋄ Number of episodes in k-th stage:
5: if T (1) + T (2) +

∑k
i=1 T

(i) ≥ K then
6: T (k) = K − T (1) − T (2) −

∑k−1
i=1 T (i). (o.w. T (k) = K1− 1

2k)
7: end if
8: end for
9: Adaptive policy elimination for the first two stages:

10: for k = 1, 2 do
11: Update the infrequent set Fk and construct empirical estimate of the absorbing MDP:
12: Fk,P int,k = Crude Exploration(ϕk, T (k)).

13: P̂ k = Fine Exploration(Fk, P int,k, T (k), ϕk).
14: Uk = ∅
15: for π ∈ ϕk do
16: if V π(r, P̂ k) ≤ supπ̂∈ϕkV π̂(r, P̂ k)− 2C(

√
H5S2Aι
T (k) + S3A2H5ι

T (k)) then
17: Update Uk ← Uk ∪ {π}.
18: end if
19: end for
20: ϕk+1 ← ϕk\Uk.
21: end for
22: Adaptive policy elimination for the remaining stages:
23: for k = 3, 4, · · · ,K0 do
24: Keep the infrequent set F2 and construct empirical estimate of the absorbing MDP with new data set:
25: P̂ k = Fine Exploration(F2, P int,2, T (k), ϕk).
26: Uk = ∅
27: for π ∈ ϕk do
28: if V π(r, P̂ k) ≤ supπ̂∈ϕkV π̂(r, P̂ k)− 2C(

√
H5S2Aι
T (k) + S3A2H5ι

T (2)) then
29: Update Uk ← Uk ∪ {π}.
30: end if
31: end for
32: ϕk+1 ← ϕk\Uk.
33: end for

