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Abstract
We study the inference of mean-variance robust-
ness measures to quantify input uncertainty under
the Gaussian Process (GP) framework. These
measures are widely used in applications where
the robustness of the solution is of interest, for
example, in engineering design. While the vari-
ance is commonly used to characterize the robust-
ness, Bayesian inference of the variance using
GPs is known to be challenging. In this paper, we
propose a Spectral Representation of Robustness
Measures based on the GP’s spectral representa-
tion, i.e., an analytical approach to approximately
infer both robustness measures for normal and uni-
form input uncertainty distributions. We present
two approximations based on different Fourier
features and compare their accuracy numerically.
To demonstrate their utility and efficacy in robust
Bayesian Optimization, we integrate the analyti-
cal robustness measures in three standard acqui-
sition functions for various robust optimization
formulations. We show their competitive perfor-
mance on numerical benchmarks and real-life ap-
plications.

1. Introduction
Bayesian Optimization (BO) is a well-established approach
for solving expensive non-convex black-box optimization
problems efficiently (Frazier, 2018; Shahriari et al., 2015).
Its agnostic treatment of black-box functions has made it
applicable in many real-life application domains. Start-
ing with a limited number of training data, BO constructs
a probabilistic surrogate model, with a Gaussian Process
(GP) as the common choice (Rasmussen, 2003), to provide
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a computationally efficient approximation to the problem.
By leveraging an acquisition function based on the model
posterior, BO is able to efficiently quantify the potential of
candidate solutions and will only query the most interesting
candidate(s) using the expensive black-box function. Af-
ter querying the new data, BO updates the posterior of the
surrogate model and searches for the next most interesting
candidate(s). Eventually, the deemed optimal solution is
recommended to the practitioners.

Living in a chaotic world full of undetermined events, we
strive for, yet are far from, obtaining an exact representation
of the world. When ignored, uncertainties can degrade the
performance of the chosen optimal solutions significantly.
Among different types of uncertainties, input uncertainties,
for instance, robotics position error (Nogueira et al., 2016),
manufacturing tolerances (Cui et al., 2021), and imprecise
measurements (Wu et al., 2021), are of practical interest
in this work. To mitigate the side effects of uncertainties
and aim for providing a robust solution, a sensible approach
is robust optimization. In robust optimization, the goal
is to maximize an objective function which is formulated
upon robustness measure(s), and, thus, that is able to take
uncertainty into account (Beyer & Sendhoff, 2007).

Two common robustness measures (Manfredi & Trinchero,
2021; Wauters et al., 2020; Hoque & Low, 2020; Markowitz
& Todd, 2000) are the mean (a.k.a., Bayes risk, expected
regret (Beland & Nair, 2017; Oliveira et al., 2019)) and
the variance, representing the first raw moment and sec-
ond central moment of the objective function distribution
induced by input uncertainty, respectively. Without loss of
generality, they can be defined as1:

Jξ(f) = Eξ (f(x + ξ))
Vξ(f) = Eξ (f2(x + ξ)) − [Eξ (f(x + ξ))]2

(1)

where the random variable ξ denotes a pre-defined additive

1Unless needed for clarity, we drop the subscript ξ for robust-
ness measure notation hereafter.
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input uncertainty2 on candidate x and f represents the black-
box objective function.

Pursuing optimal solutions being robust against input un-
certainties is of practical interest in Bayesian Optimization,
which we term as Robust Bayesian Optimization (RBO). In
this context, a proper approach to infer these non-observable
robustness measures is of immediate interest. Unfortunately,
while it has been well-known that the posterior of the mean3

is tractable under the GP framework (O’Hagan, 1991; Pa-
poulis & Pillai, 2002), the variance is much more difficult
to infer. Practitioners have commonly used a degenerated
variance approximation, i.e., performing Monte Carlo sam-
pling on the GP posterior mean (e.g., Rivier & Congedo
(2018)) to approximate the variance as a point estimation.
Nevertheless, as we will theoretically elaborate later, it is un-
fortunately a biased estimation of the variance distribution’s
first moment.

Contribution We provide an effective inference scheme
for the mean and the variance distributions under the GP
framework, supporting normal and uniform input uncer-
tainty distribution forms. This has been achieved using an
analytical calculation of the robustness measures through
the spectral representation of the GP, which is based on
the kernel approximation using Fourier features. We de-
rive two different expressions for the robustness measures
based on Fourier features (FF) methods, namely Random
Fourier Features (RFF) (Rahimi et al., 2007) and Quadrature
Fourier Features (QFF) (Mutnỳ & Krause, 2019), as shown
in Fig. 1. We empirically compare their accuracy through
synthetic uncertainty calibration experiments. As a direct
application of this scheme, we elaborate on how to utilize
these robustness measures in RBO. To that end, we extend
three standard acquisition functions for handling robustness,
corresponding to three common robust optimization formu-
lations. We provide empirical and real-life benchmarking of
these acquisition functions, demonstrating their competitive
performance against relevant methods for recommending
robust optimal solutions.

Related Work Bayesian inference of the mean Jξ(f) and
variance Vξ(f) is of practical interest in the GP literature.
Pioneer works (Girard et al., 2002; McHutchon & Ras-
mussen, 2011) focus on approximating the propagated objec-
tive function distribution. However, the objective function
distribution generally does not disentangle the model and
input uncertainties. Regarding variance inference, O’Hagan
(2011) provides an approach to calculate its first two mo-

2It is straightforward to extend this formulation, as well as
our approaches proposed subsequently, to more generic problems
containing environmental variables, see discussion in appendix E.

3For clarity, we use GP posterior mean and GP posterior vari-
ance to represent the mean and the variance of the conditional
distribution of the GP posterior.

ments, though expressions still rely on approximating a
set of integrals. Iwazaki et al. (2021) consider the task of
performing robust pool-based active learning under envi-
ronmental uncertainty, where confidence intervals for both
mean and variance are derived and utilized in the formu-
lation of acquisition functions. However, the confidence
interval does not provide a principled way of inspecting the
distribution form (e.g., through sampling the distribution).
In addition, while an extension for continuous input spaces
is proposed, the continuous input uncertainty scenario is not
considered.

Fruitful RBO research has been conducted solely based
on the mean distribution as it is preserved as a GP. Re-
garding the acquisition functions for RBO, the expected
improvement (Beland & Nair, 2017), its modified formula-
tion (Nogueira et al., 2016), and other common acquisition
functions (Oliveira et al., 2019; Wang et al., 2020a) are con-
sidered. Fröhlich et al. (2020) also sample an expression
for the mean using Fourier features in entropy search, but is
restricted to independent normal uncertainty distributions,
while we derive an extended expression for generic mul-
tivariate normal input uncertainties. Besides the common
mean measure, input uncertainty has also been considered
in more conservative approaches such as the adversarial
form (Bogunovic et al., 2018; Sessa et al., 2020; Weichert &
Kister, 2021), quantile form (Torossian et al., 2020) value-
at-risk and conditional value-at-risk form (Cakmak et al.,
2020; Nguyen et al., 2021a;b).

Other types of robustness are also extensively investigated
in RBO such as the robustness to model mis-specification
(Bogunovic & Krause, 2021; Neiswanger & Ramdas, 2021).
Finally, more generic types of input uncertainties are also in-
vestigated in (Kirschner et al., 2020; Rahimian & Mehrotra,
2019), and heteroscedastic noise is considered in (Makarova
et al., 2021).

2. Preliminaries
2.1. Weight-Space Approximations of Gaussian Process

GP is well-known to be a generalization of a paramet-
ric Bayesian linear model in weight-space (Rasmussen,
2003; Wilson et al., 2020). Starting with a linear model
f(x) = ϕ(x)Tθ, where ϕ(x) represents the feature map-
ping function with weights θ, the kernel trick (Schölkopf
et al., 2002) can be utilized to replace a feature mapping
function with infinite features by a kernel. This transfor-
mation has endowed advantages, including the freedom of
parametric feature functions and flexible expressivity scal-
ing with training data. Nevertheless, mainly encouraged
by avoiding the expensive kernel inversion in big data sce-
narios, one may still want to look back to its weight-space
formulation (Lázaro-Gredilla et al., 2010),
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Figure 1. Comparison of different sample trajectories based on Fourier features (RFF and QFF) on a synthetic function: f =

−20 [0.5 − 0.8exp (−(x−0.35
0.25

)2) − exp (−(x−0.8
0.05

)2)]. With 256 Fourier features and uniform input uncertainty ξ ∼ U(−0.05, 0.05).
Black crosses are training data, dashed line represents GP posterior mean, shaded areas are 95 confidence intervals of GP posterior, and
the plotted trajectories represent posterior samples based on Fourier features.

Fourier Feature based Kernel Approximation The com-
mon way of looking back to weight-space is through degen-
erate kernels in a parametric form through approximation.
We remark that Bochner’s theorem (e.g., Stein (1999)) im-
plies that any stationary kernel k and its spectral density
S(ω) are Fourier dual as shown in the r.h.s. of Eq. 2. After
scaling S(ω) to a probability distribution (Lázaro-Gredilla
et al., 2010), the expectation integral can be approximated
by a finite number of Fourier features and subsequently be
written as an inner product (Rahimi et al., 2007):

k(x,x′) = ∫ S(ω)ejω
T
L(x−x′)

dω

= σ
2 ∫ p(ω) cos (ωTL(x − x

′)) dω

≈ ϕ
T (x)ϕ(x′)

(2)

where ϕ(x) ∶= [ϕ1(x), ϕ2(x), ..., ϕNf
(x)]T represents

the stacked Nf parametric feature functions approximat-
ing the integration, L ∶ diag(ℓ)−1 ∈ Rd×d built upon the
kernel lengthscales ℓ represents the Automatic Relevance
Detection (ARD) (Rasmussen, 2003).

Spectral Representation of a Gaussian Process With this
formulation, one can subsequently obtain an asymptotic
approximation of the GP posterior in weight-space as a
Bayesian linear model (Hernández-Lobato et al., 2014; Wil-
son et al., 2020), also known as the spectral representation
of GPs (Hensman et al., 2017):

GP(f) ∼̇ ϕ(x)Tθ (3)

where ∼̇ represents an approximation of distributions. The
posterior of the weights θ ∈ RNf , given prior N (0, I)
and ND observations D = {(xi,yi)}i≤ND

, where yi ∼

N (f(xi), σ2
n), is multivariate normal4 :

θ ∼ N (ΦTΦ + σ2
nI)−1ΦTy, (ΦTΦ + σ2

nI)−1σ2
n) (4)

where Φ ∶= [ϕ(x1),ϕ(x2), ...,ϕ(xND
)] represent

stacked feature function values for all training inputs, and
σ
2
n represents the noise likelihood variance. The spectral

representation of a GP has been extensively investigated
(Lázaro-Gredilla et al., 2010; Hensman et al., 2017) as it
has mitigated the O(N3

D) complexity. Moreover, there is
another advantage which enjoys growing interest in BO
(Hernández-Lobato et al., 2014; Mutnỳ & Krause, 2019;
Suzuki et al., 2020; Fröhlich et al., 2020). It provides a
deterministic approach to sample GP posterior trajectories,
which is useful for inference of interesting quantities.

2.2. Robust Bayesian Optimization

Problem Formulation Let f ∶ X → R be a time-
consuming black-box function, we can observe y = f(x)+
η, where η is independent Gaussian observation noise with
variance σ2

n. Assuming ξ is additive noise generated from
a known distribution p(ξ) specified by the practitioner, the
goal of RBO is to maximize Jξ(f) and minimize Vξ(f)
simultaneously in a bounded space X ⊂ Rd. The most
common formulations include:

Multi-Objective Formulation Multi-objective optimiza-
tion is a common formulation, for instance, in finances
(Iwazaki et al., 2021) and engineering (Tang & Périaux,
2012). Under this formulation, RBO is performed by treat-
ing the mean and the variance as a bi-objective optimization

4In case of Nf > ND , more efficient computation can be real-
ized through the Woodbury matrix identity (see e.g., Rasmussen
(2003)) or pathwise update strategy (Wilson et al., 2020).
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problem,

maximize
x∈X

(J(x),−V(x)) (5)

where one seeks a Pareto frontier F∗
MV ∶= {fMV ∈

FMV ∣{f ′MV ∈ FMV ∣f ′MV ≻ fMV } = ∅}, where
FMV ∶= {fMV ∈ R2∣fMV = [J(x),−V(x)],x ∈ X },
≻ represents the standard dominance operator (see, e.g.,
Section 1 of Daulton et al. (2020)).

Variance as Constraint Another scenario is performing
the optimization, while make sure that the deviation of the
final optimal solution with respect to input uncertainty is
acceptable. This can be formulated as:

maximize
x∈X

J(x)

s.t. V(x) ≤ Cv
(6)

where Cv ∈ R is a pre-specified constraint threshold, the
goal is to locate the feasible maximum J∗Fea.

Scalarization Formulation Scalarization (also known as
Multi-Task (Iwazaki et al., 2021)) aggregates multiple ob-
jectives into a single cost function. For instance, a straight-
forward aggregation is linear scalarization (e.g., Paria et al.
(2020)):

ψMV ∶= maximize
x∈X

J(x) − αV(x) (7)

where α ≥ 0 is the pre-specified scalarization coefficient.

Finally, we like to point out the interchangeability between
the above formulations through the following remark:
Remark 2.1. Given f, ξ’s distribution and their correspond-
ing F∗

MV :

1. ∀fMV ∈ F∗
MV ,∃C

′
v ≥ 0 s.t. J∗Fea∣C ′v = fMV ;

2. If F∗
MV is concave: ∀fMV ∈ F∗

MV ,∃α
′

≥

0 s.t. ψMV ∣α′ = fMV .

3. Spectral Representation of Robustness
Measures
Motivation The calculation of robustness measures in Eq. 1
expects a continuous f to be handled appropriately by the
expectation operation. Nevertheless, the standard GP pre-
dictive posterior depends on a finite number of discrete test
input which makes the analytical calculation of the expecta-
tion non-trivial. Hence, we propose to degenerate the GP to
its spectral representation of Eq. 3. This sheds light on an
analytical expression of Eq. 1.

Definition 3.2. (Spectral representation of robustness mea-
sure) With the Fourier feature based approximation of
the kernel, we are able to reach the following Bayesian

robustness measures approximation J̃ (GP(f)) ∣ϕ,θ and
Ṽ (GP(f)) ∣ϕ,θ:

J(GP(f)) ∼̇ J̃(GP(f))∣ϕ,θ = Eξ[ϕ(x + ξ)T ]θ
V(GP(f)) ∼̇ Ṽ(GP(f))∣ϕ,θ

= θ
TEξ[ϕ(x + ξ)ϕ(x + ξ)T ]θ

− [Eξ[ϕ(x + ξ)T ]θ]2

(8)

It can be seen that under finite parameterization, the mean
expression is a normal distribution. The variance conditional
distribution is the difference of two correlated generalized
χ
2 distributions.

With these spectral representations. we are also able to
provide their first moments through the following theorem:

Theorem 3.3. Given GP(f) ∼̇ ϕ(x)Tθ, where θ ∼

N (µθ,Σθ), the robustness measure’s first moments are:

Eθ [J̃(GP(f))] = Eξ[ϕ(x + ξ)T ]µθ

Eθ [Ṽ(GP(f))] = µ
T
θEξ[ϕ(x + ξ)ϕ(x + ξ)T ]µθ

− [Eξ[ϕ(x + ξ)T ]µθ]
2

+ tr (Eξ[ϕ(x + ξ)ϕ(x + ξ)T ]Σθ)
− tr (Eξ[ϕ(x + ξ)T ]ΣθEξ[ϕ(x + ξ)])

(9)

Theorem 3.3 provides the first moments of the parametric
robustness measures5. It also indicates why the degenerate
approximation of the variance on the GP posterior mean
is not unbiased with regard to its first moment, which we
further illustrate through the following proposition.

Proposition 3.4. Denoting the GP posterior mean as
µ(f), define Eθ [V(GP(f))] = limNf→∞ Ṽ(GP(f)) to
represent the variance’s mean under the GP , one has
Eθ [V(GP(f))] > V(µ(f)).

This states that the degenerate variance approximation is an
underestimation compared to the variance’s first moment
under a GP. In fact, this holds for arbitrary Bayesian linear
models with a normal prior on θ (see appendix B.1).

In the following, we discuss two different approaches for
constructing the Fourier feature mapping ϕ, resulting in
two different spectral representing forms. Each with its
advantages and drawbacks.
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Table 1. Random Fourier feature based robustness measures

ξ Eξ[ϕ(x + ξ)Tm] Eξ[ϕ(x + ξ)mϕ(x + ξ)Tn ]
distribution (Mean)

N (0,Σ)

√
2σ2

Nf
cos[ωTmLx + bm]⋅

e
− 1

2
ω

T
mL

T
ΣLωm

∑
#∈{+,−}

[ σ
2

Nf
cos[(ωTm#ω

T
n )Lx + (bm#bn)]⋅

e
− 1

2
(ωT

m#ω
T
n )LT

ΣL(ωm#ωm)]

U(−δ, δ)

√
2σ2

Nf
cos(ωTmLx + bm)⋅

sinω
T
mLδ

ωTmLδ

∑
#∈{+,−}

[ σ
2

Nf
cos [(ωTm#ω

T
n )Lx + (bm#bn)] ⋅

sin ((ωTm#ωTn )Lδ)
(ωTm#ωTn )Lδ

]

3.1. Fourier Feature based Robustness Measures

3.1.1. RANDOM FOURIER FEATURES

In order to generate the feature mapping function, a common
approach is to draw the Fourier features randomly, known
as Random Fourier Features (RFF) (Rahimi et al., 2007).
Consider the following inner product form:

k(x,x′)
= σ

2Eω,b [cos(ωTLx + b) cos(ωTLx′ + b)]
≈ ϕ

T (x)ϕ(x′)
(10)

For the mth feature function, we can decompose x
and x

′ into an inner product form as ϕ(x)m =√
2σ2

Nf
cos(ωTmLx) + bm) ∈ R using the sum of angle

formula, where x ∈ Rd, σ2 represents the kernel variance,
ωm ∈ Rd ∼ p(ω), bm ∼ U(0, 2π).

Definition 3.5. (RFF-Mean, RFF-Variance) Given the RFF
based kernel approximation using the decomposition of
Eq. 10, the spectral robustness measures, using the expres-
sions in Table 1, are called RFF-Mean and RFF-Variance.

RFF-Mean and RFF-Variance share the advantage of flex-
ibility regarding the specification of their Fourier feature
number Nf . Unfortunately, RFF is known to have vari-
ance starvation (Wang et al., 2018; Mutnỳ & Krause, 2019;
Wilson et al., 2020): its kernel approximation can lead to
inaccurate GP posterior approximations if the training data
size is huge. This inaccuracy will affect the robustness mea-
sures’ posterior as well (see RFF based robustness measure

5The second (central) moment is also available in appendix
A.2.

trajectory samples using algorithm 1 in Fig. 1). To miti-
gate this potential issue, we can utilize quasi-Monte Carlo
to sample from common kernels’ spectral densities (Yang
et al., 2014). In order to provide a more accurate infer-
ence of the robustness measures, we introduce a numerical
quadrature-based Fourier features constructing technique
and demonstrate how we can build robustness measures on
top of it.

3.1.2. QUADRATURE FOURIER FEATURES

In order to mitigate the variance starvation problem, Mutnỳ
& Krause (2019) propose to make use of a numerical quadra-
ture technique. For stationary kernels with decomposable
spectral density, one can expect a much more accurate ap-
proximation of Eq. 2 with the same Nf , by utilizing numer-
ical quadrature based Fourier features. This can be achieved
by an alternative decomposition of the kernel (Rahimi et al.,
2007) and can be written as:

k(x,x′)

= σ
2Eω

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[ cos(ωTLx)

sin(ωTLx) ]
T

[ cos(ωTLx′)
sin(ωTLx′) ]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≈ ϕ

T (x)ϕ(x′)

(11)

For the common Squared Exponential (SE) kernel, its nor-
malized spectral density is decomposable as product of in-
dependent normal factors. Hence, the multidimensional
integration in Eq. 11 can be approximated using a multivari-
ate Gauss-Hermit quadrature, which results in the feature
mapping expression ϕ ∈ R2Nf represented as:

ϕj(x)

= {
√
σ2v(ωj) cos(ωTj Lx) j ≤ Nf ,√
σ2v(ωj−Nf

) sin(ωTj−Nf
Lx) Nf < j ≤ 2Nf

(12)
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where v(ωj), v(ωj−Nf
) represents the quadrature weights

on integration node ωj , ωj−Nf
respectively, which has

been generated on a Cartesian product grid: assuming
Nf = m

d
, m ∈ N, defining the set ζ = {v(ω1), ..., v(ωm)}

representing one-dimensional quadrature weights, we have
v(ωj) ∈ ζd, where ζd represents d times Cartesian product
over ζ. We refer to (Mutnỳ & Krause, 2019) for a more
thorough discussion and show our robustness measure’s
expression based on QFF below.

Definition 3.6. (QFF-Mean, QFF-Variance) Substituting
Eq. 12 into Eq. 8, the mean and the variance robustness
measures using the expressions in Table 2 (in the appendix
D.1) are defined as QFF-Mean and QFF-Variance.

We demonstrate the QFF-Mean and Variance based sample
trajectories using algorithm 1 in Fig. 1. It can be seen
that, with this kind of technique, the variance starvation can
be effectively suppressed and hence provide an accurate
approximation of uncertainty, even with densely sampled
training data.

Algorithm 1 Sampling Robustness Measure’s Trajectories

1: Input: Stacked feature function Φ, training data D,
sample size N .

2: Calculate θ’s posterior distribution parameter: µθ, Σθ

(Eq. 4).
3: for i = 1 to N do
4: θi ∼ N (µθ,Σθ).
5: Construct J̃i (GP(f)) ∣ϕ,θi trajectory sample.

(RFF: Eq. 1 use Table 1, QFF: Eq. 1 use Table 2)
6: Construct Ṽi (GP(f)) ∣ϕ,θi trajectory sample.

(RFF: Eq. 1 use Table 1, QFF: Eq. 1 use Table 2)
7: end for

We remark the main limitations of QFF based robustness
measures are twofold: 1) the quadrature utilized in (Mutnỳ &
Krause, 2019) depends on the decomposable assumption of
the kernel’s spectral density. 2) the Fourier feature number
Nf grows exponentially with the input dimensionality due
to the Cartesian form of integration nodes, hence restricting
the application of this strategy to small to medium scale (see
appendix F for a discussion of computational complexity).

We summarize that a fully Bayesian posterior can be ob-
tained by marginalizing out the kernel hyperparameters,
which is the same as for the GPs (Simpson et al., 2020; Lalc-
hand & Rasmussen, 2020; Filippone & Girolami, 2014).
Meanwhile, we highlight one advantage of this spectral ro-
bustness measure representation is its utilization in posterior
sampling, as deterministic posterior trajectory samples are
available through sampling the weights θ. This property is
readily useful in RBO through different forms of acquisition
functions, we will discuss several of the main forms in the
next section.

4. Application in Robust Bayesian
Optimization
We elaborate on how the Bayesian inference of the robust-
ness measures can be utilized in different RBO formulations.
More specifically, we provide modified myopic acquisition
functions (Daulton et al., 2021; Letham et al., 2019; Jones
et al., 1998) to take the robustness measures into account.

Mean-Variance based Multi-Objective Approach We pro-
vide Fourier Feature based, Mean Variance considered, Ex-
pected HyperVolume Improvement acquisition function (FF-
MV-EHVI) to search for the optimal Pareto front F∗

MV .

αFF-MV-EHVI

= ∫
FMV

∫
J,V

HVI(J,V,F∗
MV )p(J,V∣FMV )

p(FMV ∣X)dJdVdFMV

≈
1

N

N

∑
i=1

HVI(J̃i, Ṽi, F̃∗
MV i

∣θi, D)

(13)

where X ∶ {xi}i≤ND
represents the training data’s input,

FMV represents the corresponding output in FMV , HVI
represents the hypervolume improvement (see e.g., Defini-
tion 2 of Daulton et al. (2020)) based on the current Pareto
frontier F∗

MV . Since this quantity is not directly observed
in our scenario, we propose using a Monte Carlo approach
to approximately integrate F∗

MV similar as Daulton et al.
(2021), this can be easily achieved within the Fourier feature
based robustness measures, as jointly sample J̃i, Ṽi, F̃

∗
MVi

can be achieved by simply sampling θ
6.

Variance as Constraint Assuming the objective is to per-
form RBO by considering the variance to be lower than
a specified threshold Cv. Based on (Letham et al., 2019),
we propose the Fourier Feature based, Mean Variance con-
sidered, Expected Constrained Improvement acquisition
function (FF-MV-ECI):

αFF-MV-ECI

= ∫
J∗Fea

∫
J,V

l(J, J∗Fea)I−(V − Cv)

p(J,V∣J∗Fea)p(J∗Fea∣D)dJdVdJ∗Fea

≈
1

N

N

∑
i=1

[l(J̃i, J̃∗Feai∣θi, D)σs (
Cv − Ṽi∣θi

τ )]

(14)

6One can also use a vanilla approach (Gramacy & Lee, 2010) to
simplify the problem by utilizing the model posterior mean to infer
the current Pareto frontier F∗

MV based on evaluated candidates. We
note this is also applicable for the other two acquisition functions.
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Figure 2. Uncertainty calibration comparison between RFF and QFF based robustness measures. Dashed lines represents normal input
uncertainty: ξ ∼ N (0, σ2

I) and solid lines represents uniform: ξ ∼ U(−1δ,1δ). We use {orange , blue} to represent {QFF , RFF},
respectively. We use {◯,_,☆} to represent σ2

= {0.001, 0.005, 0.01} for normal and δ = {0.05, 0.1, 0.2} for uniform uncertainty
respectively.

The utility function l is defined as : l(J̃i, J̃∗Feai∣θi) ∶=
max(J̃i − J̃∗Feai , 0). For the constraint handling, we relax
the original indicator function I− to a sigmoid function σs(⋅)
with a small positive temperature parameter τ to ensure
differentiability (Wilson et al., 2018; Maddison et al., 2016).

Scalarization based Approach Finally, the Fourier Feature
based, Mean Variance considered, Expected Improvement
acquisition function (FF-MV-EI) is:

αFF-MV-EI

= ∫
ψ∗

∫
J,V

l(J − αV, ψ∗)p(J,V∣ψ∗)p(ψ∗∣D)dψ∗dJdV

≈
1

N

N

∑
i=1

l(J̃i − αṼi, ψ̃∗i ∣θi, D)

(15)

where ψ̃
∗
i is extracted from the training data, l(J̃ −

αṼ, ψ̃∗,θi) ∶= max(J̃ − αṼ − ψ̃∗, 0).

Other Extensions We restricted ourselves to three exam-
ples using the Bayesian robustness measures. Nevertheless,
the strength of this work is that one could easily extend it
to any acquisition function like Thompson sampling (Brad-
ford et al., 2018) or non-myopic acquisition functions. We
discuss in appendix G that a batch extension of the above
acquisition functions can be easily achieved.

5. Experiments
Benchmarking of Uncertainty Calibration

We conduct multiple experiments to investigate the accuracy
of the spectral representation of the robustness measures7.
We also benchmark their performance for RBO, using the
three proposed acquisition functions. The code is imple-
mented using the open-source library Trieste (Berkeley et al.,
2021)8.

7We provide an additional benchmark comparing the point
estimation’s (cfr. Theorem 3.3) accuracy with direct Monte Carlo
sample ξ in X in appendix H.1.

8Our code is available at https://github.com/
TsingQAQ/gp_mean_var_rbo.

We first present an empirical uncertainty calibration study to
investigate the inference accuracy of the RFF and QFF based
robustness measures for guiding real-life applications. A
data set of 10d samples is drawn from a GP prior based on a
SE kernel. Afterwards, a GP is constructed and we compare
the robustness measure distributions (based on RFF and
QFF) at different input locations with an exhaustive Monte
Carlo approach, which is regarded as the ground-truth. The
difference between distributions is measured using the 1-
Wasserstein distance (Ramdas et al., 2017), and we report
the average of the 1-Wasserstein distance across eight runs
in Fig. 2. As expected, given the same Fourier Feature
numbers, QFF provides more accurate distributions.

Robust Bayesian Optimization The proposed FF-MV-
EHVI, FF-MV-ECI and FF-SMV-EI acquisition functions
are benchmarked on different synthetic functions and real-
life problems. For each problem, 5d initial randomly gener-
ated data are used. For multi-objective formulation, we com-
pare against MO-MVA-BO (Iwazaki et al., 2021). For the
variance as constraint formulation, we compare against Co-
MVA-BO (Iwazaki et al., 2021). Finally, in the scalarization
approach we benchmark against MT-MBA-BO (Iwazaki
et al., 2021)9. These acquisition functions are known demon-
strating the state-of-the-art performance in active learning.
Besides, we also compare with Uncertainty Sampling (US)
(Iwazaki et al., 2021) and random search for all three formu-
lations. We adopt the log-hypervolume difference (Daulton
et al., 2020), utility gap (Hernández-Lobato et al., 2016) and
simple regret for multi-objective, constraint and scalariza-
tion formulation, respectively, to indicate the performance.
We conduct the optimal solutions recommendation based
on model inference. For the comparing methods, we use
their corresponding optimal solution extracting strategies.
For the GP constructing, the SE ARD kernel is used with a
log-normal prior on lengthscales, where the kernel hyperpa-
rameter is inferred using maximum a posteriori estimation.
Each experiment is repeated 30 times.

9Since Iwazaki et al. (2021) use the standard deviation for the
problem formulations, we reformulate it to be variance for the
same objective setting, see appendix H.2 for details.

https://github.com/TsingQAQ/gp_mean_var_rbo
https://github.com/TsingQAQ/gp_mean_var_rbo
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Figure 3. Numerical experiment results on synthetic functions shown through median performances and interquartile ranges, where
Σξ = [ 0.01 0.009 −0.009

0.009 0.01 −0.008
−0.009 −0.008 0.01

]. Each row represents one formulation of the objective functions.

Synthetic Experiments We conduct RBO on common syn-
thetic benchmark functions and report the normal input
uncertainty results in Fig. 3, as well as the uniform input
uncertainty results in appendix H.5. It can be seen that
both QFF and RFF based acquisition functions demonstrate
competitive performance. Intriguingly, while the QFF ro-
bustness measure is expected to provide a more accurate
robustness measure, the RFF based approach also seems to
have competitive performance on most problems.

Conceptual Low Drag Wing Design

Figure 4. Conceptual Aircraft Low Drag Wing Design

We perform RBO on a two-dimensional conceptual design
problem of an aircraft’s rectangular wing in level flight
condition. The goal is to find the optimal wing geometry,
i.e., the wing span b and chord length c (see Fig. 4), to

achieve a realistic wing geometry with high aerodynamic
efficiency.

In practice, this geometric parameters can easily get shifted
not only because of fabrication errors, but also the deforma-
tion due to aerodynamic force during flight. Hence, in order
to have a wing configuration that endows high aerodynamic
efficiency even under slight geometry change, we consider
a multi-objective formulation on this problem in the input
space: (b, c) ∈ [1, 3]×[0.05, 1] under the input uncertainty
of the form (b, c) ∼ N (0, [ 0.004 0.0

0.0 0.00045125 ]). The objec-
tive function definition is provided in appendix H.4. we
remark that the multi-objective formulation provides a lot
of flexibility to the practitioner, which is especially useful in
engineering design as the designer is able to choose among
the Pareto optimal solutions according to his own prefer-
ence. The log-Hypervolume convergence curve is shown in
Fig. 4, both QFF and RFF based MV-EHVI demonstrate a
faster convergence speed.

Pre-Image Learning in Robot Pushing

Lastly, a deterministic version of pre-image learning for a
robot pushing task (Kaelbling & Lozano-Pérez, 2017) is
used in a RBO setting10. The goal of the robot pushing prob-

10The objective function is available at https://github.
com/zi-w/Max-value-Entropy-Search.

https://github.com/zi-w/Max-value-Entropy-Search
https://github.com/zi-w/Max-value-Entropy-Search
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lem is to find a good pre-image to stop at a target location
(Wang & Jegelka, 2017). The three-dimensional problem
takes the initial object’s position (rx1

, rx2
) ∈ [−5, 5]2, as

well as the pushing time rt ∈ [1, 30] as input, and the ob-
jective function is the Euclidean distance between the object
stop location and the target location (gx1

, gx2
). A normal

input noise ξ ∼ N (0,diag(0.004, 0.004, 0.002)) is speci-
fied on the input parameters, and the goal location is set as
(gx1

, gx2
) = [4, 3].

Figure 5. Results of robot pushing problem using scalarization and
variance as constraint formulations.

We consider both variance as constraint and scalarization for-
mulations for this problem, The results are shown in Fig. 5.
It can be seen that for both formulations, our methods tend to
converge well in practice. For the scalarization formulation,
MT-MVA-BO demonstrates a faster convergence speed af-
ter 10 iterations. For the variance as constraint formulation,
both QFF and RFF based EI demonstrate clear advantages.

6. Conclusions
A spectral approximation of two robustness measures is
introduced based on the GP’s weight-space approximation,
in which we provide two versions of the robustness mea-
sures using different kernel approximations. We compare
these two formulations on uncertainty calibration. We also
elaborate on how these robustness measures can be uti-
lized in robust Bayesian Optimization by extending three
well-known acquisition functions, and we demonstrate their
competitive performance through synthetic problems and
real-life applications.

Limitations and Future work Since the spectral representa-
tion is based on kernel approximation through the finite num-
ber of feature mapping function, a larger feature numbers
are expected in higher dimensions for an accurate approxi-
mation, hence our robustness measures. As a unfavorable
result, practitioners have to make a trade off between approx-
imation accuracy, computation time and memory footprint.
Future work will be focused on two aspects: (i) provide a
more accurate and efficient approximation of the robustness
measures, which is crucial for scaling to a higher number of
input dimensions, and (ii) different acquisition functions and
robustness measures shall be considered, tailored to specific
robust Bayesian Optimization problems and formulations.
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A. The Moments of the Spectral Robustness Measures
A.1. Deriving the First Moments

Lemma A.1. Let x ∼ N (µ,Σ) ∈ Rd, let A ∈ Rd×d is a symmetric matrix, one have E [xTAx] = µ
T
Aµ + tr(AΣ)

Proof see Theorem 1.5 of Seber & Lee (2012).

Now we begin the proof of Theorem 3.3:

Proof.

Eθ[θTEξ[ϕ(x + ξ)ϕ(x + ξ)T ]θ − [Eξ[ϕ(x + ξ)T ]θ]2]

= Eθ[θTEξ[ϕ(x + ξ)ϕ(x + ξ)T ]θ] − Eθ [[Eξ[ϕ(x + ξ)T ]θ]2]
(16)

The first part is a quadratic form of θ, with Lemma A.1 its expectation can hence be written as :
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Eθ[θTEξ[ϕ(x + ξ)ϕ(x + ξ)T ]θ] = tr(Eξ[ϕ(x + ξ)ϕ(x + ξ)T ]Σθ) + µ
T
θ Eξ[ϕ(x + ξ)ϕ(x + ξ)T ]µθ (17)

For the second term, since Eξ[ϕ(x+ ξ)T ]θ ∼ N (Eξ[ϕ(x + ξ)T ]µθ,Eξ[ϕ(x + ξ)T ]ΣθEξ[ϕ(x + ξ)]), with the same
lemma it is:

Eθ [[Eξ[ϕ(x + ξ)T ]θ]2] = [Eξ[ϕ(x + ξ)T ]µθ]
2
+ tr (Eξ[ϕ(x + ξ)T ]ΣθEξ[ϕ(x + ξ)]) (18)

Hence the proof complete.

A.2. Second Moments

The second moments for both robustness measures are provided through the following theorem.

Theorem A.2. Given GP(f) ≈ ϕ(x)Tθ, where θ ∼ N (µθ,Σθ), the second moments of the robustness measures are:

Vθ[J̃(f)] = Eξ[ϕ(x + ξ)T ]ΣθEξ[ϕ(x + ξ)] (19)

Vθ[Ṽ(f)] = Vθ [θTEξ[ϕ(x + ξ)ϕ(x + ξ)T ]θ − θ
TEξ[ϕ(x + ξ)]Eξ[ϕ(x + ξ)T ]θ]

= 2 tr[Λ1ΣθΛ1Σθ] + 4µ
T
θΛ1ΣθΛ1µθ + 2 tr[Λ2ΣθΛ2Σθ] + 4µ

T
θΛ2ΣθΛ2µθ−

4 tr[Λ1ΣθΛ2Σθ] − 8µ
T
θΛ1ΣθΛ2µθ

(20)

where Λ1 ∶= Eξ[ϕ(x + ξ)ϕ(x + ξ)T ],Λ2 ∶= Eξ[ϕ(x + ξ)]Eξ[ϕ(x + ξ)T ].

We remark the second moment of the variance measure (Eq. 20) is calculated as the variance of difference of two quadrature
forms with respect to random variable θ, which is known to have an analytical form (see e.g., Theorem 10.9.11 of Graybill
(1983)).

B. Proof of Proposition. 3.4

Lemma B.1. For any Bayesian linear regression model: f = ϕ
T (x)θ, ϕ ∈ RNf , Nf ∈ N

+, if θ ∼ N (µθ,Σθ). Define its
mean function as µ = ϕ

T (x)µθ and for random variable ξ we have Eθ [Vξ(f(x + ξ))] ≥ Vξ(µ(x + ξ)).

Proof.
Eθ [Vξ(f(x + ξ))] − Vξ(µ(x + ξ))

= µ
T
θEξ[ϕ(ξ)ϕ(x + ξ)T ]µθ − [Eξ[ϕ(x + ξ)T ]µθ]

2
− [Eξ[µ2] − Eξ[µ]2]

+ [tr (Eξ[ϕ(x + ξ)ϕ(x + ξ)T ]Σθ) − tr (Eξ[ϕ(x + ξ)T ]ΣθEξ[ϕ(x + ξ)])]
= [tr (Eξ[ϕ(x + ξ)ϕ(x + ξ)T ]Σθ) − tr (Eξ[ϕ(x + ξ)T ]ΣθEξ[ϕ(x + ξ)])]
= tr ([Eξ[ϕ(x + ξ)ϕ(x + ξ)T ] − Eξ[ϕ(x + ξ)]Eξ[ϕ(x + ξ)T ]]Σθ)

(21)

Define Z ∈ RNf , and λ = Z
T
ϕ(x + ξ). Then we have,

Vξ[λ] = Eξ [(ZTϕ(x + ξ))2] − [Eξ [(ZTϕ(x + ξ))]]2

= Z
TEξ [ϕ(x + ξ)ϕ(x + ξ)T ]Z − ZTEξ [ϕ(x + ξ)]Eξ[ϕ(x + ξ)]TZ

(22)

By substituting Z = 1, Eq. 21 results in tr (Vξ[λ] tr(Σθ)), hence the prove complete. We remark the equality can only be
achieved when all the entries of ϕ are constant, which is not the case for almost all the realistic Bayesian linear models.

This also leads to the proof of proposition. 3.4. As the first line of r.h.s. of Eq. 21 is zero when Nf →∞. The remaining
proof is the same as above.
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C. Spectral Robustness Measures based on Random Fourier Features
C.1. Derivation for Normal Distributed Input Uncertainty

Lemma C.1. Given ξ ∼ N (µ,Σ), ξ ∈ RD, C ∈ R, the following expression holds:

Eξ [sin(tT ξ + C)] = [sin(µt) cos(C) + cos(µt) sin(C)] e−
1
2
t
T
Σt (23)

Eξ [cos(tT ξ + C)] = [cos(µt) cos(C) − sin(µt) sin(C)] e−
1
2
t
T
Σt (24)

where t ∈ RD.

Proof. Recall that E[eit
T
ξ] = Eξ[cos(tT ξ)] + iEξ[sin(tT ξ)], and that the characteristic function of ξ is φ(ξ) =

Eξ[eit
T
ξ] = eit

T
µ− 1

2
t
T
Σt, we have:

Eξ[eit
T
ξ] = eit

T
µ− 1

2
t
T
Σt

= cos(tT ξ)e−
1
2
t
T
Σt
+ i sin(tT ξ)e−

1
2
t
T
Σt

= Eξ[cos(tT ξ)] + iEξ[sin(tT ξ)]

(25)

then the proof can be finished by using the sum of angle identity.

Now we are able to give the main expression for RFF-Mean and RFF-Variance when ξ is normal distributed:

Eξ[ϕm(x + ξ)T ] =
√

2σ2

Nf
Eξ[cos(ωTmLξ + ω

T
mLx + bm)] (26)

With Lemma. C.1, we have:

Eξ[ϕm(x + ξ)T ] =
√

2σ2

Nf
cos(ωTmLx + bm)e−

1
2
ω

T
mLΣL

T
ωm (27)

We now derive the first part of the variance expression in Eq. 8. For any m,n element of the feature function, its expectation
with respect to input uncertainty can be calculated using the product-to-sum rule as:

Eξ[ϕm(x + ξ)ϕn(x + ξ)]

=
2σ

2

Nf
Eξ[cos(ωTmLξ + ω

T
mLx + bm) cos(ωTnLξ + ω

T
nLx + bn)]

=
σ
2

Nf
Eξ[cos((ωTm + ω

T
n )Lξ + (ωTm + ω

T
n )Lx + (bm + bn))]+

σ
2

Nf
Eξ[cos((ωTm − ω

T
n )Lξ + (ωTm − ω

T
n )Lx + (bm − bn))]

=
σ
2

Nf
cos[(ωTm + ω

T
n )Lx + (bm + bn)]e−

1
2
(ωT

m+ω
T
n )LΣLT (ωm+ωm)

+

σ
2

Nf
cos[(ωTm − ω

T
n )Lx + (bm − bn)]e−

1
2
(ωT

m−ω
T
n )LΣLT (ωm−ωm)

(28)
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C.2. Derivation for Uniform Distributed Input Uncertainty

We derive the analytical expression of expectation through Fourier feature mapping under uniform uncertainty. As each of
the input dimensionality is independent, we perform the integration in each dimension separately using the same derivation
trick of (Fröhlich et al., 2020):

Eξ[ϕm(x + ξ)T ]

= Eξ¬dEξd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos

⎛
⎜⎜⎜
⎝
(ωTmL)d(xd + ξd) + (ωTmL)¬dx¬d + bmÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

cd

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

where d represents the dth input dimensionality and ¬d is its complement. Note that the inner expectation is a cross-
correlation between ϕ and the complex conjugate of ξd’s probability density function p: (p ⋆ ϕd)(xd). As the conjugate of
p is itself, the integral can be calculated with the property of cross-correlation (Kapinchev et al., 2015):

(p ⋆ ϕm,d)(xd) = F−1{F(p(−ξd)) ⋅ F(ϕm,d)}
= F−1{F(p) ⋅ F(ϕm,d)}

(30)

where F represents a Fourier transformation and F−1 is its inverse.

The standard Fourier transformation (i.e., ∫ f(t)e−jωtdt) of a uniform distribution: u ∼ [δld , δud
], by assuming the

distribution is symmetric (i.e., δud
= −δld ∶= δd), can be given as:

F( 1

2δd
) = sin (ωδd)

ωδd
(31)

For convenience, the standard Fourier transform of ϕ is provided here as well:

F(ϕm,d)

=

√
2σ2

Nf
F(cos((ωm,dLd,d)xd + cd))

=

√
2σ2

Nf
∫ e

jcde
j(ωm,dLd,dxd) + e−jcde−j(ωm,dLd,dxd)

2
e
−jωxdxd

=

√
2σ2

Nf
π (ejcdδ(ω − ωm,dLd,d) + e−jcdδ(ω + ωm,dLd,d))

(32)

Finally, multiplying Eq. 31 and Eq. 32 and applying the inverse Fourier transformation leads to:

∫ F( 1

2δd
) ⋅ F(ϕm,d)exp(jωxd)dω

=
1

2π
∫

√
2σ2

Nf
π (ejcdδ(ω − ωm,dLd,d) + e−jcdδ(ω + ωm,dLd,d))

sin (ωδd)
ωδd

e
jωxddω

=

√
2σ2

Nf

sinωm,dLd,dδd
ωm,dLd,dδd

1

2
[e(j(ωm,dLd,dxd+cd)) + e

(−j(ωm,dLd,dxd+cd))]

=
sinωm,dLd,dδd
ωm,dLd,dδd

√
2σ2

Nf
cos(ωm,dLd,dxd + cd)

=
sinωm,dLd,dδd
ωm,dLd,dδd

ϕm,d

(33)

extending to an arbitrary input dimensionality D, this leads to:
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Eξ[ϕm(x + ξ)T ] = ϕm(x)
D

∏
d=1

sin (ωm,dLd,dδd)
ωm,dLd,dδd

= ϕm
sin (ωmLδ)
ωmLδ

(34)

Similarly, we can calculate the following integration when ξ is uniformly distributed:

Eξ[ϕm(x + ξ)ϕn(x + ξ)]

=
2σ

2

Nf
Eξ[cos(ωTmLξ + ω

T
mLx + bm) cos(ωTnLξ + ω

T
nLx + bn)]

=
σ
2

Nf
Eξ[cos((ωTm + ω

T
n )Lξ + (ωTm + ω

T
n )Lx + (bm + bn))]+

σ
2

Nf
Eξ[cos((ωTm − ω

T
n )Lξ + (ωTm − ω

T
n )Lx + (bm − bn))]

=
σ
2

Nf
cos((ωTm − ω

T
n )Lx + (bm − bn))

sin ((ωTm − ωTn )Lδ)
(ωTm − ωTn )Lδ

+

σ
2

Nf
cos((ωTm + ω

T
n )Lx + (bm + bn))

sin ((ωTm + ωTn )Lδ)
(ωTm + ωTn )Lδ

(35)

D. Spectral Robustness Measures based on Quadrature Fourier Features
D.1. Quadrature Fourier Feature based Robustness Measure

Table 2: Expressions of quadrature Fourier features based robustness measures

ξ Eξ[ϕ(x + ξ)Tm] Eξ[ϕ(x + ξ)mϕ(x + ξ)Tn ]
distribution (Mean)

N (0,Σ) 1
◦
m ≤ Nf ∶ 1

◦
m ≤ Nf , n ≤ Nf ∶

σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d)

cos(ωTmLx)⋅

e
− 1

2
ω

T
mLΣL

T
ωm

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm,d)v(ωn,d)⋅

cos[(ωTm + ω
T
n )Lx]⋅

e
− 1

2
(ωT

m+ω
T
n )LΣLT (ωm+ωm)

+

cos[(ωTm − ω
T
n )Lx]⋅

e
− 1

2
(ωT

m−ω
T
n )LΣLT (ωm−ωm)

2
◦
Nf < m ≤ 2Nf ∶ 2

◦
Nf < m ≤ 2Nf , n ≤ Nf ∶

σ

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)⋅

sin(ωTm−Nf
Lx)⋅

e
− 1

2
ω

T
m−Nf

LΣL
T
ωm−Nf

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d)[

sin((ωTm−Nf
+ ω

T
n )Lx)⋅

e
− 1

2
(ωT

m−Nf
+ωT

n )LΣLT (ωm−Nf
+ωn)+

sin((ωTm−Nf
− ω

T
n )Lx)⋅

e
− 1

2
(ωT

m−Nf
−ωT

n )LΣLT (ωm−Nf
−ωn)]

3
◦
m ≤ Nf , Nf < n ≤ 2Nf ∶
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σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm,d)v(ωn−Nf ,d)[

sin((ωTm + ω
T
n−Nf

)Lx)⋅

e
− 1

2
(ωT

m+ω
T
n−Nf

)LT
ΣL(ωm+ωn−Nf

)
+

sin((−ωTm + ω
T
n−Nf

)Lx)⋅

e
− 1

2
(−ωT

m+ω
T
n−Nf

)LΣLT (−ωm+ωn−Nf
)]

4
◦
Nf < m ≤ 2Nf , Nf < n ≤ 2Nf ∶

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn−Nf ,d) ⋅ [

cos((ωTm−Nf
− ω

T
n−Nf

)Lx)⋅

e
− 1

2
(ωT

m−Nf
−ωT

n−Nf
)LT

ΣL(ωm−Nf
−ωn−Nf

)
−

cos((ωTm−Nf
+ ω

T
n−Nf

)Lx)⋅

e
− 1

2
(ωT

m−Nf
+ωT

n−Nf
)LΣLT (ωm−Nf

+ωn−Nf
)]

U(−δ, δ) 1
◦
m < Nf 1

◦
m ≤ Nf , n ≤ Nf ∶

σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d)⋅

cos(ωTmLx)
sin (ωmLδ)
ωmLδ

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) ⋅ [

cos((ωTm − ω
T
n )Lx) ⋅

sin ((ωTm − ωTn )Lδ)
(ωTm − ωTn )Lδ

+

cos((ωTm + ω
T
n )Lx)

sin ((ωTm + ωTn )Lδ)
(ωTm + ωTn )Lδ

]

2
◦
Nf < m ≤ 2Nf ∶ 2

◦
m ≤ Nf , Nf < n ≤ 2Nf ∶

σ

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)⋅

sin(ωTm−Nf
Lx)⋅

sin (ωm−Nf
Lδ)

ωm−Nf
Lδ

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) ⋅ [

sin ((ωTm−Nf
+ ω

T
n )Lx)

sin ((ωTm−Nf
+ ω

T
n )Lδ)

(ωTm−Nf
+ ωTn )Lδ

+

sin ((ωTm−Nf
− ω

T
n )Lx)

sin ((ωTm−Nf
− ω

T
n )Lδ)

(ωTm−Nf
− ωTn )Lδ

]

3
◦
Nf < m ≤ 2Nf , n ≤ Nf ∶
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σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) ⋅ [

sin ((ωTm−Nf
+ ω

T
n )Lx)

sin ((ωTm−Nf
+ ω

T
n )Lδ)

(ωTm−Nf
+ ωTn )Lδ

+

sin ((−ωTm−Nf
+ ω

T
n )Lx) ⋅

sin ((−ωTm−Nf
+ ω

T
n )Lδ)

(−ωTm−Nf
+ ωTn )Lδ

]

4
◦
Nf < m ≤ 2Nf , Nf < n ≤ 2Nf ∶

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) ⋅ [

cos ((ωTm−Nf
− ω

T
n−Nf

)Lx) ⋅
sin ((ωTm−Nf

− ω
T
n−Nf

)Lδ)
(ωTm−Nf

− ωTn−Nf
)Lδ

−

cos ((ωTm−Nf
+ ω

T
n−Nf

)Lx)
(sin(ωTm−Nf

+ ω
T
n−Nf

)Lδ)
(ωTm−Nf

+ ωTn−Nf
)Lδ

]

D.2. Derivation for Normal Distributed Input Uncertainty

To get the mean expression, when m ≤ Nf in Eq. 11, the expression from Eq. 27 can be reused:

Eξ[ϕm(x + ξ)T ] = σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d)Eξ [cos (ωTmLx + ω
T
mLξ)]

= σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d) cos(ωTmLx)e−
1
2
ω

T
mLΣL

T
ωm

(36)

When m > Nf :

Eξ[ϕm(x + ξ)T ] = σ

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)Eξ [sin (ωTm−Nf
Lx + ω

T
m−Nf

Lξ)]

= σ

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d) sin(ω
T
m−Nf

Lx)e−
1
2
ω

T
m−Nf

LΣL
T
ωm−Nf

(37)
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For the expectation of Eξ[ϕ(x + ξ)mϕ(x + ξ)Tn ], when Nf < m ≤ 2Nf and n ≤ Nf , we have:

Eξ[ϕm(x + ξ)ϕn(x + ξ)]

= σ
2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) ⋅ Eξ [sin(ωTm−Nf
Lξ + ω

T
m−Nf

Lx) cos(ωTnLξ + ω
T
nLx)]

=
σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) sin ((ω
T
m−Nf

+ ω
T
n )Lx) e−

1
2
(ωT

m−Nf
+ωT

n )LΣLT (ωm−Nf
+ωn)+

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) sin ((ω
T
m−Nf

− ω
T
n )Lx) e−

1
2
(ωT

m−Nf
−ωT

n )LΣLT (ωm−Nf
−ωn)

(38)

The other three conditions can be derived in the same fashion.

D.3. Derivation for Uniform Distributed Input Uncertainty

We need the Fourier transformation of cos(⋅) sin(⋅) and sin(⋅) sin′(⋅), cos(⋅) cos′(⋅). By making use of the prodct-to-
summation rule, we, in fact, only need the Fourier transformation of sin function. Starting from Eq. 36 and Eq. 37:

Eξ[ϕm(x + ξ)T ] = σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d)Eξ [cos (ωTmLx + ω
T
mLξ)]

= σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d) cos(ωTmLx)Eξ [cos(ωTmLξ)]

= σ

√
√√√√√√⎷

d

∏
i=1

v(ωm,d) cos(ωTmLx)
sin(ωmLδ)
ωmLδ

(39)

When m > Nf :

Eξ[ϕm(x + ξ)T ] = σ

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d) sin(ω
T
m−Nf

Lx) sin(ωmLδ)
ωmLδ

(40)

For the expectation of Eξ[ϕ(x + ξ)mϕ(x + ξ)Tn ], with Nf < m ≤ 2Nf and n ≤ Nf , we have:

Eξ[ϕm(x + ξ)ϕn(x + ξ)]

= σ
2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) ⋅ Eξ [sin(ωTm−Nf
Lξ + ω

T
m−Nf

Lx) cos(ωTnLξ + ω
T
nLx)]

=
σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) sin ((ω
T
m−Nf

+ ω
T
n )Lx)

sin ((ωTm−Nf
+ ω

T
n )Lδ)

(ωTm−Nf
+ ωTn )Lδ

+

σ
2

2

√
√√√√√√⎷

d

∏
i=1

v(ωm−Nf ,d)v(ωn,d) sin ((ω
T
m−Nf

− ω
T
n )Lx)

sin (ωTm−Nf
− ω

T
n )Lδ)

(ωTm−Nf
− ωTn )Lδ

(41)

The rest of the cases can be obtained in a similar fashion.
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E. Spectral Robustness Measures Supporting Continuous Environmental Variable
In real-life applications, another commonly investigated problem is the robustness with respect to environmental variables
(e.g., Beland & Nair (2017)). Let f ∶ X × Γ → R, where γ represents the environmental variable defined in a bounded
space Γ. In these kinds of problems, We are interested in the following extended robustness measures:

Jγ,ξ(GP(f)) ≈ J̃(GP(f))∣ϕ,θ = Eγ,ξ[ϕ(γ,x + ξ)T ]θ
Vγ,ξ(GP(f)) ≈ Ṽ(GP(f))∣ϕ,θ

= θ
TEγ,ξ[ϕ(γ,x + ξ)ϕ(γ,x + ξ)T ]θ − [Eγ,ξ[ϕ(γ,x + ξ)T ]θ]2

(42)

Assuming we are able query f(x,γ) exactly, e.g., in a simulating scenario. It turns out that this problem can be regarded as
a special case of Eq. 1, where the environmental variable is reformulated as a design variable located at the center of Γ with
uniform distributed input uncertainty ξ.

Hence, for RFF based robustness measures, we give their expressions in Table 3.

Table 3. Expression of the RFF based robustness measures supporting environmental variables

γ Eγ,ξ[ϕ(x + ξ,γ)Tm] Eγ,ξ[ϕ(x + ξ,γ)mϕ(x + ξ,γ)Tn ]
distribution (Mean)

U(Γl,Γu)

√
2σ2

Nf
cos(ωTmx

Lxx + ω
T
mγ
LγΓ

+ bm) ⋅
sin (ωmγ

Lγδγ + ωmx
Lxδx)

(ωmγ
Lγδγ + ωmx

Lxδx)

∑
#∈{+,−}

[ σ
2

Nf
cos [(ωTmx

#ω
T
nx

)Lxx + (ωTmγ
#γ

T
nx

)LγΓ

+(bm#bn)] ⋅
sin[(ωTmγ

#ωTnγ
)Lγδγ + (ωTmx

#ωTnx
)Lxδx]

(ωTmγ
#ωTnγ

)Lγδγ + (ωTmx
#ωTnx

)Lxδx
]

where δγ = (Γu − Γl)/2, Γ = (Γu + Γl)/2. We remark the same strategy can be utilized for QFF based robustness
measures under environmental uncertainty.

F. Computational Complexity

Table 4. Inference complexity of RFF and QFF based robustness measures.
Category Method Computation Cost
Point Estimation
(Theorem 3.3)

RFF-Eθ[J̃] Nfd

RFF-Eθ[Ṽ] N
2
f d

QFF-Eθ[J̃] 2Nfd

QFF-Eθ[Ṽ] 4N
2
f d

Bayesian Inference
RFF-Mean Init: N

3
f d, Query: Nfd

QFF-Mean Init: 8N3
f d, Query: 2Nfd

RFF-Variance Init: N
3
f d, Query: N

2
f d

QFF-Variance Init: 8N3
f d, Query: 4N2

f d

We provide inference complexity on sample trajectories in Table 4. The Initialization cost is the Cholesky decomposition of
θ posterior covariance matrix (i.e., Eq. 4). At this stage, given the same Fourier feature number Nf , the QFF based strategies
are 8 times more expensive than the corresponding RFF based strategies. For the query stage, the variance inference’s
complexity for both Fourier features scales quadratic with the number of Fourier features. Besides, we also remark that if
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only utilizing the posterior mean of the robustness measure (i.e., Theorem 3.3), one could avoid the cubic initialization cost.
We note a sequential strategy can be used through test data for memory-efficient inference.

G. Batch Query Support for the Acquisition Functions
Parallel computation resources can be available in real-life applications, where a practitioner can be interested in query more
than one point per iteration to booster the optimization process. We remark that the joint posterior distribution condition
on multiple candidate points is supported in the spectral robustness measure representation. Hence, all of the Fourier
feature-based acquisition functions we described can easily be extended in this scenario, that is, one can easily obtain
FF-MV-qEHVI, FF-MV-qECI and FF-MV-qEI acquisition functions (q is commonly given as a representation of acquisition
function is supported for batch query, e.g., Daulton et al. (2020); Wang et al. (2020b)). For FF-MV-EHVI, the calculation of
HVI(J̃i, Ṽi, F̃∗

MV i
∣θi, D) behaves naturally as the cached box decomposition (Daulton et al., 2021). For FF-MV-ECI and

FF-MV-EI, Fourier feature-based posterior supports batch evaluation on the differentiable trajectories, which acts similar to
the sample average approximation (Balandat et al., 2019). We leave such an extension and thorough performance assessment
as future work.

H. Additional Experiments
H.1. Comparison of the First Moments of the Robustness Measures

Figure 6. Comparison of robustness measure model accuracy through MC in input space vs on spectral density on the first moments (J,V).
Dashed lines represents normal input uncertainty: ξ ∼ N (0, σI) and the solid line rest represents uniform : ξ ∼ U(−1δ,1δ). We use
{orange, blue, green} to represent {QFF, RFF, MC} respectively. We use {◯,_,☆} to represent σ = {0.001, 0.005, 0.01} for normal
and δ = {0.05, 0.1, 0.2} for uniform uncertainty respectively.

Estimating the robustness measure through MC sampling in the input space on the GP posterior mean is a common
non-Bayesian strategy (i.e., a point estimation) used in the robust optimization community (e.g., Rivier & Congedo (2018)).
Since we also provide the first moment of robustness measures through Fourier features, we conduct empirical experiments
comparing the model accuracy of robustness measures between the two approaches (i.e., we compare how well our
approaches approximate J ∶= Ef [J (GP(f))] and V ∶= Ef [V (GP(f))]). We conduct experiment on synthetic functions
(GMM function is from (Nogueira et al., 2016)) ranging from 1 − 3 input dimensionality. For each synthetic problem, we
use 20d training data to construct a GP with SE kernel. This number is chosen to avoid either an inaccurate model (i.e., the
GP posterior collapses into its prior) or an overconfident model (the model uncertainty vanishes). Then, we compare the
modeling error of the robustness measures between MC in the input space and using spectral density (i.e., Fourier feature
based approximation). For a fair comparison, we use the same MC sample numbers 11.

The benchmark results are provided in Fig. 6. For each experiment, we calculate the Root-Mean-Squared-Error (RMSE)

11For the Fourier feature based method, the MC sample number is used as Nf .
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between the approximation and the ground truth extracted from the GP posterior 12 based on a 20 ∗ 2
d test sample size.

The experiments are conducted for a different number of Fourier features, and each experiment is repeated 64 times for
robustness. It can be seen that, especially for the QFF robustness measure, its first moment can reach a better accuracy,
provided there are enough MC samples.

H.2. Overview of the Acquisition Functions for Comparison

We provide an overview of the acquisition functions from Iwazaki et al. (2021) in this section. As the second objective F2

(Eq. 3 of (Iwazaki et al., 2021)) represents negative standard deviation, we modify it to be the variance to compare in the
same setting. As a result, the upper and lower bound for variance can be calculated as:

l
F2

t (x) = ∫ l̃
sq
t (x + ξ)p(ξ)dξ (43)

u
F2

t (x) = ∫ ũ
sq
t (x + ξ)p(ξ)dξ (44)

where l̃sqt , ũ
sq
t are defined the same as in (Iwazaki et al., 2021), we use 200 MC samples to approximate the integration. As

the code is not open-sourced yet, we implement their acquisition function for numerical comparison.

We remark that at iteration t, one is optimizing the following two-stage acquisition optimization process (see appendix B.2
of (Iwazaki et al., 2021)) and evaluate f(x̃t + ξ̃t):

x̃t = arg max
x∈X

αt(x) (45)

ξ̃t = arg max
ξ∈∆

σt(x̃t + ξ)p(ξ) (46)

where σt represents the standard deviation of the GP posterior. For the definition of ∆, since the original paper does not
mention an extension to the input uncertainty scenario, we define it as: ∆ ∶= [−δ, δ] when ξ ∼ U[−δ, δ]. When ξ is
normal distributed, then ∆ ∶= [−CI.025,CI.975], CI.975d ∶= Q(0.975∣ξd), where Q is the quantile function built upon
marginal distribution ξd. For all acquisition functions, we use βt = 2 as suggested in the original paper.

MO-MVA-BO is originally proposed in the active learning settings (Iwazaki et al., 2021). In order to make use of it in a
continuous input space, we discretize the input space X evenly using a space segmentation parameter τ = {0.001, 0.05, 0.05}
for input dimensionality d = {1, 2, 3} respectively. We make a post recommendation based on Π̂t, which is extracted from
the discretized input set X̃ as the same setting in the origin paper. Nevertheless, we remark the comparison is not fair as
this recommendation is an out-of-sample strategy: which is potentially better, especially at the beginning as the candidate
size can be larger than the in-sample data size.

CO-MVA-BO We follow the same discretization approach as for MO-MVA-BO. For both FF-MV-ECI and CO-MVA-BO
acquisition functions, if the feasible candidates set is empty(St = ∅ ), we use a small pseudo constant value as the current
best value keeping the acquisition function operating as defined. We use arg max

x∈X̃
l
F1

t for making recommendations.

Uncertainty Sampling For the 2nd stage, instead of performing Eq. 46, we only optimize the standard deviation σt. We
make optimal recommendations based on in-sample evaluations that are in X .

H.3. Experimental Setup for the Robust Bayesian Optimization

Number of Fourier features Since Fourier feature-based acquisition functions need to specify the number of features
explicitly, we use {128, 900, 1000} for {1d, 2d, 3d} problems, respectively, for both RFF and QFF.

12The ground truth robustness measures’ means are extracted by doing an exhausted MC on input space with min(2000/500 ∗ 2
d,

10000/6000) sample size for first moment accuracy measure/uncertainty calibration respectively, the maximum is taken to enforce a
feasible Cholesky decomposition on sampling robustness measure. 256 samples are used extracted the mean of robustness (i.e., variance)
from GP posterior samples
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Recommendations for optimal solutions At the end of the optimization process, we need to provide the optimal candidate
for the practitioner. In our problem scenario, both robustness measures are not observable. To extract the optimal solution,
one can either perform an in-sample recommendation (i.e., extracting optimal recommendations based on queried data X),
or perform an out-of-sample recommendation (see, e.g., Daulton et al. (2021); Fröhlich et al. (2020)). Since out-of-sample
strategies require performing another optimization process to extract optimal solutions, which makes the computation cost
even higher, we focus on the in-sample strategy in this paper. We recommend the optimal candidate based on the inferred
robustness measures for the scalarization and multi-objective formulations. For the variance as constraint approach, we use
x
∗
= arg max

x∈F
J(x) for conservative recommendations in case the constraint is expected to be satisfied with high priority

(e.g., the Utility Gap metric), where F ∶= {x ∈ X∣Pr(Ṽ(x) ≤ Cv) ≥ p}. p can be specified by practitioners and this
probability can be approximated by MC sampling of Ṽ(x), we use p = 0.8 in our numerical experiments. We alternatively
recommend arg max

x∈X
Pr(Ṽ(x) ≤ Cv) in case F = ∅.

Reference point setting For hypervolume based multi-objective optimization approaches, a reference point is needed to
partition the non-dominated region into hypercubes. In this paper, we follow the strategy by keeping an automatically
updated reference point as an agnostic treatment of the Pareto front.

We use a fixed reference point extracted from a reference Pareto front to calculate the log-hypervolume metric. We provide the
corresponding reference point setting in Table 513 which is calculated as Knudde et al. (2017): FMV ref

= minr(F∗
MV ) −

2 (maxr(F∗
MV ) −minr(F∗

MV )) /∣F∗
MV ∣, where the operator maxr() ∶= [maxfMV ∈F∗

MV
f
(1)
MV ,maxfMV ∈F∗

MV
f
(2)
MV ],

minr() ∶= [minfMV ∈F∗
MV

f
(1)
MV ,minfMV ∈F∗

MV
f
(2)
MV ].

Table 5. Reference Point Setting
Problem Input Uncertainty ξ distribution Reference point

SineLinear (Fröhlich et al., 2020) N (0, 0.001) [0.03003507, 0.07371671]
U(−0.05, 0.05), [0.03320457, 0.02952188]

Forrester (Keane et al., 2008) N (0, 0.005) [0.15948319, 5.8976241]
U(−0.1, 0.1), [0.17751173, 1.79019393]

Branin N (0, 0.01I2) [15.77117159, 84.70987466]
U(−[0.1, 0.01], [0.1, 0.01]), [19.4079212, 10.30334723]

Hartmann3 N (0, 0.01I3) [0.11863389, 0.46989925]
U(−[0.15, 0.15, 0.15], [0.15, 0.15, 0.15]), [0.12358115, 0.21843887]

Conceptual Low Drag Wing Design N (0, [ 0.004 0.0
0.0 0.00045125 ]) [3.10164206, 0.24411262]

U(−[0.08, 0.02], [0.08, 0.02]) [3.13006765, 0.07853147]

H.4. Details of the Conceptual Low Drag Wing Design Problem

We perform RBO on a two-dimensional conceptual low drag wing design problem in level flight conditions. The goal is to
find the optimal wing geometry (i.e., wingspan b and chord length c) to achieve a low drag coefficient CD, which is usually
represented by lift-to-drag ratio CL

CD
. In practice, besides the low drag requirement, we also favor a light aircraft, and the

wing geometry cannot be too long span-wise (i.e., large b) while too short in chord-wise (i.e., small c), which may impose
difficulties for structural design. Moreover, the lift coefficient CL is preferably not too big, as otherwise it may impose
difficulties for airfoil design. Hence, the objective function is defined as:

arg max
{b,c∈X }

− log [− (5CL
CD

−max(A − 10, 0) − 100 ∗max(CL − 0.9, 0) − 0.4W − 5)] (47)

where A =
b
c

represents the aspect ratio. The drag coefficient is defined as:

CD =
0.03062702

S
+ kCf

Swet
S

+
C

2
L

πAe
(48)

13The reference point is specified for performing minimization as is the default in Trieste.
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where the wing area S = bc, friction drag coefficient Cf =
0.074
Re0.2

, Reynolds number Re = ρV c

µ
. For design specified weight

W and speed V , the lift coefficient required in steady level flight can be determined by:

CL =
2W

ρV 2S
(49)

where ρ = 1.29 is the air density. The aircraft weight is W = W0 +Ww, where Ww represents the weight of the wing,
which can be determined by:

Ww = 45.42S + 8.71 × 10
−5Nultb

3√
W0W

S(t/c) (50)

The remaining parameters are defined as follows:

Table 6. Parameters for steady level flight
Parameter Value Unit Notes
W0 18 N aircraft weight (excluding weight of the wing)
t/c 0.12 NA average thickness-to-chord ratio
Nult 2.5 NA ultimate load factor
Swet 2.05S m

2 wing wetted area
µ 17.8 × 10

−6 kg/(m sec) air viscosity
k 1.2 NA form factor
e 0.96 NA Oswald efficiency number

H.5. Results for Uniform Distributed Input Uncertainty

We provide the additional experiments for uniformly distributed input uncertainty ξ in Fig. 7. For the conceptual wing design
problem, the settings for the input uncertainty are provided in Table 5. For the robot pushing problem, input uncertainty ξ’s
distribution is specified as U(−[0.2, 0.2, 0.58], [0.2, 0.2, 0.58]) and U(−[0.3, 0.3, 0.29], [0.3, 0.3, 0.29]) for scalarization
and variance as constraint formulation, respectively.



Spectral Representation of Robustness Measures for Optimization Under Input Uncertainty

Figure 7. Experiment results on synthetic functions and real-life applications for uniform distributed input uncertainty.
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