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Abstract

In view of its power in extracting feature repre-
sentation, contrastive self-supervised learning has
been successfully integrated into the practice of
(deep) reinforcement learning (RL), leading to
efficient policy learning on various applications.
Despite its tremendous empirical successes, the
understanding of contrastive learning for RL re-
mains elusive. To narrow such a gap, we study
contrastive-learning empowered RL for a class of
Markov decision processes (MDPs) and Markov
games (MGs) with low-rank transitions. For both
models, we propose to extract the correct feature
representations of the low-rank model by mini-
mizing a contrastive loss. Moreover, under the
online setting, we propose novel upper confidence
bound (UCB)-type algorithms that incorporate
such a contrastive loss with online RL algorithms
for MDPs or MGs. We further theoretically prove
that our algorithm recovers the true representa-
tions and simultaneously achieves sample effi-
ciency in learning the optimal policy and Nash
equilibrium in MDPs and MGs. We also provide
empirical studies to demonstrate the efficacy of
the UCB-based contrastive learning method for
RL. To the best of our knowledge, we provide the
first provably efficient online RL algorithm that in-
corporates contrastive learning for representation
learning.

1. Introduction
Deep reinforcement learning (DRL) has achieved great
empirical successes in various real-world decision-making
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problems (e.g., Mnih et al. (2015); Silver et al. (2016; 2017);
Sallab et al. (2017); Sutton & Barto (2018); Silver et al.
(2018); Vinyals et al. (2019)). A key to the success of DRL
is the superior representation power of the neural networks,
which extracts the effective information from raw input pixel
states. Nevertheless, learning such effective representation
of states typically demands millions of interactions with the
environment, which limits the usefulness of RL algorithms
in domains where the interaction with environments is ex-
pensive or prohibitive, such as healthcare (Yu et al., 2021)
and autonomous driving (Kiran et al., 2021).

To improve the sample efficiency of RL algorithms, re-
cent works propose to learn low-dimensional representa-
tions of the states via solving auxiliary problems (Jaderberg
et al., 2016; Hafner et al., 2019a;b; Gelada et al., 2019;
François-Lavet et al., 2019; Bellemare et al., 2019; Srini-
vas et al., 2020; Zhang et al., 2020; Liu et al., 2021; Yang
& Nachum, 2021; Stooke et al., 2021). Among the recent
breakthroughs in representation learning for RL, contrastive
self-supervised learning gains popularity for its superior
empirical performance (Oord et al., 2018b; Sermanet et al.,
2018; Dwibedi et al., 2018; Anand et al., 2019; Schwarzer
et al., 2020; Srinivas et al., 2020; Liu et al., 2021). A typical
paradigm for such contrastive RL is to construct an auxiliary
contrastive loss for representation learning, add it to the loss
function in RL, and deploy an RL algorithm with the learned
representation being the state and action input. However,
the theoretical underpinnings of such an enterprise remain
elusive. To summarize, we raise the following question:

Can contrastive self-supervised learning provably improve
the sample efficiency of RL via representation learning?

To answer such a question, we face two challenges. Firstly,
how to integrate contrastive self-supervised learning into the
provably efficient online exploration strategies, such as ex-
ploration with the upper confidence bound (UCB), remains
unknown. Secondly, how to analyze the sample complexity
of such integration between self-supervised learning and RL
remains unknown. This paper takes an initial step towards
tackling such challenges based on an instantiation of the
contrastive self-supervised learning empowered RL. Con-
cretely, we first investigate the sample complexity of the
online single-agent RL problem under the low-rank MDP
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setting, where the representations are learned via the tem-
poral contrastive self-supervised learning similar to Oord
et al. (2018b); Sermanet et al. (2018). The algorithm we
propose iteratively solves a temporal contrastive loss to ob-
tain the state-action representations and then constructs a
UCB bonus with such representations to conduct explo-
ration in a provably efficient way. Our theory shows that
the proposed algorithm can recover the true representations
under the low-rank MDP setting. Moreover, our proposed
algorithm achieves a Õ(1/ε2) sample complexity for attain-
ing the ε-approximate optimal value function, where the
notation Õ(·) hides logarithmic factors. Furthermore, we
extend our proposed algorithm to the zero-sum MG under
the low-rank setting, a multi-agent extension of MDPs in a
competitive environment. We construct upper and lower con-
fidence bounds (ULCB) for such a competitive RL setting
and prove that the proposed approach achieves an Õ(1/ε2)
sample complexity to attain an ε-approximate Nash equi-
librium. To the best of our knowledge, we propose the
first provably efficient online RL algorithms that employ
contrastive learning for representation learning. Our major
contributions are summarized as follows:

Contribution. Our contributions are three-fold. First, We
show that contrastive self-supervised learning recovers the
underlying true transition dynamics, which reveals the ben-
efit of incorporating representation learning into RL in a
provable way. Second, we propose the first provably ef-
ficient exploration strategy incorporated with contrastive
self-supervised learning. Our proposed UCB-based method
is readily adapted to existing representation learning meth-
ods for RL, which then demonstrates improvements over
the previous empirical results as shown in our experiments.
Finally, we extend our findings to the zero-sum MG, which
reveals a potential direction of utilizing the contrastive self-
supervised learning for RL.

Related Work. Our work is closely related to the line of
research on RL with low-rank transition kernels, which as-
sumes that the transition dynamics take the form of an inner
product of two unknown feature vectors for the current state-
action pair and the next state (see Assumption 2.1 for details)
(Jiang et al., 2017; Agarwal et al., 2020; Uehara et al., 2021).
In contrast, as a special case of the low-rank model, linear
MDPs have a similar form of structures but with an extra
assumption that the linear representation is known a priori
(Du et al., 2019b; Yang & Wang, 2019; Jin et al., 2020; Xie
et al., 2020; Ayoub et al., 2020; Cai et al., 2020; Yang &
Wang, 2020; Chen et al.; Zhou et al., 2021a;b). Our work
focuses on the more challenging low-rank setting and aims
to recover the unknown state-action representation via con-
trastive self-supervised learning. Our theory is motivated
by the recent progress in low-rank MDPs (Agarwal et al.,
2020; Uehara et al., 2021), which show that the transition
dynamics can be effectively recovered via maximum like-

lihood estimation (MLE). In contrast, our work recovers
the representation via contrastive self-supervised learning.
Upon acceptance of our work, we notice a concurrent work
(Zhang et al., 2022) studies contrastive learning in RL on
linear MDPs.

There is a large amount of literature studying contrastive
learning in RL empirically. To improve the sample effi-
ciency of RL, previous empirical works leverages different
types of information for representation learning, e.g., tempo-
ral information (Sermanet et al., 2018; Dwibedi et al., 2018;
Oord et al., 2018b; Anand et al., 2019; Schwarzer et al.,
2020), local spatial structure(Anand et al., 2019), image
augmentation(Srinivas et al., 2020), and return feedback(Liu
et al., 2021). Our work follows the utilization of contrastive
learning for RL to extract temporal information. Similar
to our work, recent work by Misra et al. (2020) shows that
contrastive learning provably recovers the latent embedding
under the restrictive Block MDP setting (Du et al., 2019a).
In contrast, our work analyzes contrastive learning in RL
under the more general low-rank setting, which includes
Block MDP as a special case (Agarwal et al., 2020) for both
MDPs and MGs.

2. Preliminaries
In this section, we introduce the backgrounds of single-agent
MDPs, zero-sum MGs, and the low-rank assumption.

Single-Agent MDP. An episodic single-agent MDP is de-
fined by (S,A, H, r,P), where S is the state space, A is the
action space, H is the length of an episode, r = {rh}Hh=1

is the reward function with rh : S × A 7→ [0, 1], and
P = {Ph}Hh=1 denotes the transition model with Ph(s′|s, a)
being the probability density of an agent transitioning to
s′ ∈ S from state s ∈ S after taking action a ∈ A at the
step h. Specifically, S can be an infinite state space1 and the
action space A is assumed to be finite with the size of |A|.
A deterministic policy is denoted as π = {πh}Hh=1 where
πh : S 7→ A is the map from the agent’s state s to an action
a at the h-th step. We further denote the policy learned at
the k-th episode by πk = {πkh}Hh=1. For simplicity, assume
the initial state is fixed as sk1 = s1 for any episode k.

For the single-agent MDP, for any (s, a) ∈ S × A, we
define the associated Q-function and value function as
Qπh(s, a) = E[

∑H
h′=h rh′(sh′ , ah′) | sh = s, ah = a, π,P]

and V πh (s) = E[
∑H
h′=h rh′(sh′ , ah′) | sh = s, π,P]. Then,

we further have the Bellman equation as Qπh(s, a) =
rh(s, a) + PhV πh+1(s, a) and V πh (s) = Qπh(s, πh(s))
where, for the ease of notation, we denote PhV (s, a) =∫
s′
Ph(s′|s, a)V (s′)ds′ for any value function V . Moreover,

1We assume that the volume (Lebesgue measure) of the infinite
state space S satisfies Vol(S) ≤ c, where Vol(·) denotes the
volume of a space. WOLG, we let c = 1 for simplicity.
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we define the optimal policy as π∗ := argmaxπ V
π
1 (s1).

We say a policy π is an ε-suboptimal policy if

V π
∗

1 (s1)− V π1 (s1) ≤ ε.

Zero-Sum Markov Game. Our work further studies the
zero-sum two-player Markov game that can be defined by
(S,A,B, H, r,P), where S is the infinite state space with
Vol(S) ≤ 1, A and B are the finite action spaces for two
players with the sizes of |A| and |B|, H is the length of an
episode, r = {rh}Hh=1 is the reward function with rh : S ×
A× B 7→ [−1, 1], and P = {Ph}Hh=1 denotes the transition
model with Ph(s′|s, a, b) being the probability density of
the two players transitioning to s′ ∈ S from state s ∈ S after
taking action a ∈ A and b ∈ B at step h. The policies of the
two players are denoted as π = {πh}Hh=1 and ν = {νh}Hh=1,
where πh(a|s) and νh(b|s) are the probabilities of taking
actions a ∈ A or b ∈ B at the state s ∈ S. Moreover, we
denote σ = {σh}Hh=1 as a joint policy, where σh(a, b|s) is
the probability of taking actions a ∈ A and b ∈ B at the
state s ∈ S . Note that the actions a and b are not necessarily
mutually independent conditioned on state s. One special
case of a joint policy is the product of a policy pair π × ν.
Here we also assume the initial state is fixed as sk1 = s1 for
any episode k. The Markov game is a multi-agent extension
of the MDP model under a competitive environment.

For any (s, a, b) ∈ S × A × B and joint policy σ, we de-
fine the Q-function and value function as Qσh(s, a, b) =

E[
∑H
h′=h rh′(sh′ , ah′ , bh′) | sh = s, ah = a, bh = b, σ,P]

and V σh (s) = E[
∑H
h′=h rh′(sh′ , ah′ , bh′) | sh = s, σ,P].

We have the Bellman equation asQσh(s, a, b) = rh(s, a, b)+
PhV σh+1(s, a, b) and V σh (s) = ⟨σh(·, ·|s), Qσh(s, ·, ·)⟩. We
denote PhV (s, a, b) =

∫
s′
Ph(s′|s, a, b)V (s′)ds′ for any

value function V . We say (π†, ν†) is a Nash equilibrium
(NE) if it is a solution to the max-min optimization problem
maxπminν V

π,ν
1 (s1). Then, (π, ν) is an ε-approximate NE

if it satisfies

max
π′

V π
′,ν

1 (s1)−min
ν′

V π,ν
′

1 (s1) ≤ ε.

In addition, we denote br(·) as the best response, which
is defined as br(ν) = argmaxπ V

π,ν
1 (s1) and br(π) =

argminν V
π,ν
1 (s1).

Low-Rank Transition Kernel. In this paper, we consider
the low-rank structures with the dimension d (Jiang et al.,
2017; Agarwal et al., 2020; Uehara et al., 2021) for both
single-agent MDPs and Markov games, in which the transi-
tion model admits the structure in the following assumption.
To unify both settings, with a slight abuse of notation, we let
Z := S ×A for single-agent MDPs and Z := S ×A× B
for Markov games.

Assumption 2.1 (Low-Rank Transition Kernel). Assuming
there exist two unknown maps ψ∗ : S 7→ Rd and ϕ∗ : Z 7→

Algorithm 1 Online Contrastive RL for Single-Agent MDPs
1: Initialize: π0

h(a|s) = 1/|A|,∀(s, a) ∈ S × A. D0
h =

∅,∀h ∈ [H]. δ > 0, β > 0, and ε > 0.
2: for episode k = 1, . . . ,K do
3: Let V kH+1(·) = 0 and QkH+1(·, ·) = 0

4: Collect bonus data {D̃k
h = {(s̃τh, ãτh)}kτ=1}Hh=1 and

contrastive training data {Dk
h}Hh=1 by Alg. 3.

5: for step h = H,H − 1, . . . , 1 do
6: Obtain ϕ̃kh and ψ̃kh by solving (3) with Dk

h.
7: Normalize ϕ̃kh and ψ̃kh by (1) to obtain ϕ̂kh and ψ̂kh.
8: Estimate Ph by P̂kh(·|·, ·) = ψ̂kh(·)⊤ϕ̂kh(·, ·).
9: Σ̂kh = 1

k

∑k
τ=1 ϕ̂

k
h(s̃

τ
h, ã

τ
h)ϕ̂

k
h(s̃

τ
h, ã

τ
h)

⊤ + λkI .
10: Bonus βkh(·, ·) = min{γk∥ϕ̂kh(·, ·)∥(Σ̂k

h)
−1 , 2H}.

11: Q
k

h(·, ·) = (rh + βkh + P̂khV
k

h+1)(·, ·).
12: V

k

h(·) = maxa∈AQ
k

h(·, a).
13: πkh(·) = argmaxa∈AQ

k

h(·, a).
14: end for
15: end for

Rd, the true transition kernel admits the following low-rank
decomposition for all h ∈ [H], (z, s′) ∈ Z × S,

Ph(s′|z) = ψ∗
h(s

′)⊤ϕ∗h(z),

where ∥ϕ∗h(z)∥2 ≤ 1 and ∥ψ∗
h(s

′)∥2 ≤
√
d.

Remark 2.2. In contrast to linear MDPs (Jin et al., 2020)
or linear Markov games (Xie et al., 2020) where ϕ∗h is known
a priori, we adopt the more challenging setting that both
ψ∗
h and ϕ∗h are unknown and hence should be identified via

contrastive learning. Moreover, our work also extends the
scenario of the low-rank transition model from single-agent
RL (Jiang et al., 2017; Agarwal et al., 2020; Uehara et al.,
2021) to the multi-agent competitive RL.

3. Contrastive Learning for Single-Agent MDP
3.1. Algorithm

Algorithmic Framework. We propose an online UCB-type
contrastive RL algorithm, Contrastive UCB, for MDPs in
Algorithm 1. At the k-th episode, we execute the learned
policy from the last round to collect the datasets {D̃k

h}Hh=1

and {Dk
h}Hh=1 as bonus construction data and the contrastive

learning data according to the sampling strategy in Al-
gorithm 3. Specifically, the contrastive learning sample
is composed of positive and negative data points. At a
state-action pair (sh, ah) that is sampled independently fol-
lowing a certain distribution formed by the current policy
and the true transition, with probability 1/2, we collect
the positive transition data point as (sh, ah, sh+1, 1) with
sh+1 ∼ Ph(·|sh, ah) and a label y = 1. On the other
hand, with probability 1/2, we generate the negative tran-
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sition data point as (sh, ah, s
−
h+1, 0) with s−h+1 ∼ P−

S (·)
and a label y = 0, where P−

S (·) is a designed negative sam-
pling distribution. Given the data sample for contrastive
learning {Dk

h}Hh=1, we propose to solve the minimization
problem (3) at each step h with Lh(ψ, ϕ;Dk

h) denoting the
contrastive loss defined in (2) to learn the low-rank rep-
resentation ϕ̃kh and ψ̃kh. More detailed implementation of
data sampling and the contrastive loss will be elaborated
below. According to our analysis in Section 5.1, the true
transition kernel Ph(s′|s, a) can be well approximated by
the learned representation ϕ̃kh(s

′)⊤ψ̃kh(s, a)P
−
S (s′). How-

ever, such learned features are not guaranteed to sat-
isfy the relation

∫
s′∈S ϕ̃

k
h(s

′)⊤ψ̃kh(s, a)P
−
S (s′)ds′ = 1 or

ϕ̃kh(·)⊤ψ̃kh(s, a)P
−
S (·) may not be a distribution over S.

Thus, we further normalize learned representations by

ψ̂kh(s
′) := P−

S (s′)ψ̃kh(s
′),

ϕ̂kh(z) := ϕ̃kh(z)
/ ∫

s′∈S P−
S (s′)ϕ̃kh(z)

⊤ψ̃kh(s
′)ds′,

(1)

where z = (s, a). Then, we obtain an approximated transi-
tion kernel P̂kh(·|s, a) := ψ̂kh(·)⊤ϕ̂kh(s, a). Our analysis in
Section 5.1 shows that P̂kh(·|s, a) lies in a probability sim-
plex and can well approximate the true transition Ph(·|s, a).

Simultaneously, we construct the UCB bonus term βkh with
the learned representation ϕ̂kh and the empirical covariance
matrix Σ̂kh using the bonus construction data sampled online
via Algorithm 3. Then, with the estimated transition P̂kh and
the UCB bonus term βkh , we obtain a UCB estimation of
the Q-function and value function in Line 11 and Line 12.
The policy πkh is then the greedy policy corresponding to
the estimated Q-function Q

k

h.

Remark 3.1. To focus our analysis on the contrastive learn-
ing for the transition dynamics, we only consider the setting
where the reward function rh(·, ·) is known. One might fur-
ther modify the proposed algorithm to the unknown reward
setting under the linear reward function assumption by con-
sidering to minimize a square loss with observed rewards
as the regression target to learn the parameters. The cor-
responding analysis would then take the statistical error of
such a procedure into consideration.

Dataset for Contrastive Learning. For our algorithm, we
make the following assumption for the negative sampling
distribution P−

S (·).
Assumption 3.2 (Negative Sampling Distribution). Let
P−
S (·) be a distribution over S. The distribution P−

S (·)
satisfies infs∈S P−

S (s) ≥ C−
S > 0 for a constant C−

S .

The detailed sampling scheme for the contrastive learning
dataset is presented in Algorithm 3 in Appendix. Here
we provide a brief idea of this algorithm. Letting dπh(·)
be the state distribution at step h under the true transition

P and a policy π, we define two state-action distributions
induced by π and P at step h as d̃πh(s, a) = dπh(s)Unif(a)

and d̆πh(s, a) = d̃πh−1(s
′, a′)Ph−1(s|s′, a′)Unif(a), where

Unif(a) = 1/|A|. Then, at each round k, we sample the
temporal data as follows:

• Sample (s̃kh, ã
k
h) ∼ d̃π

k−1

h (·, ·) for all h ∈ [H] and
(s̆kh, ă

k
h) ∼ d̆π

k−1

h (·, ·) for all h ≥ 2.
• For each (s̃kh, ã

k
h) or (s̆kh, ă

k
h), generate a label y ∈ {0, 1}

from a Bernoulli distribution Ber(1/2) independently.
• Sample the next state from the true transition as s̃kh+1 ∼
Ph(·|s̃kh, ãkh) or s̆kh+1 ∼ Ph(·|s̆kh, ăkh) when the associated
labels are 1 and sample negative transition data points by
s̃k,−h+1 ∼ P−

S (·) or s̆k,−h+1 ∼ P−
S (·) if labels are 0.

• Given the dataset Dk−1
h from the last round, add the new

transition data with labels, i.e., (s̃kh, ã
k
h, s̃

k
h+1, 1)

or (s̃kh, ã
k
h, s̃

k,−
h+1, 0) and (s̆kh, ă

k
h, s̆

k
h+1, 1) or

(s̆kh, ă
k
h, s̆

k,−
h+1, 0), into it to compose a new set Dk

h.

In addition, we also acquire a dataset D̃k
h via Algorithm 3

for the construction of the UCB bonus term in Algorithm 1,
where D̃k

h is composed of the present and historical state-

action pairs sampled from d̃π
k′

h (·, ·) for all k′ ∈ [0, k − 1].
Algorithm 3 illustrates how to sample the above data by
interacting with the environment in an online manner, which
can also guarantee the data points are mutually independent
within Dk

h and D̃k
h.

Contrastive Loss. Given the dataset {Dk
h}Hh=1 for con-

trastive learning, we further define the following contrastive
loss for each step h ∈ [H]

Lh(ψ, ϕ;Dk
h) := EDk

h

[
y log(1 + 1/ψ(s′)⊤ϕ(z))

+ (1− y) log(1 + ψ(s′)⊤ϕ(z))
]
,

(2)

where z = (s, a) and EDk
h

indicates taking average over all
(s, a, s′, y) in the collected contrastive training dataset Dk

h.
Here ϕ and ψ are two functions lying in the function classes
Φ and Φ as defined below. Letting Z = S ×A, we define:

Definition 3.3 (Function Class). Let F := {ψ(·)⊤ϕ(·, ·) :
ψ ∈ Ψ, ϕ ∈ Φ} be a function class where Ψ := {ϕ : S 7→
Rd} and Φ := {ψ : Z 7→ Rd} are two finite function
classes. For any ψ ∈ Ψ, sups∈S ∥ψ(s)∥2 ≤

√
d/C−

S . And
for any ϕ ∈ Φ, sups∈S ∥ϕ(z)∥2 ≤ 1. The cardinality of F
is |F| = |Ψ| · |Φ|.

The fundamental idea of designing (2) is to consider a nega-
tive log-likelihood loss for the probability Prh(y|s, a, s′) :=(

fh(s,a,s
′)

1+fh(s,a,s′)

)y(
1

1+fh(s,a,s′)

)1−y
where fh(s, a, s

′) =

ψ(s′)⊤ϕ(s, a) and Prh denote the associated probability
at step h. Then (2) is equivalent to Lh(ψ, ϕ;Dk

h) =
−EDk

h
[log Prh(y|s, a, s′)]. Thus, to learn the contrastive
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feature representation, we seek to solve the following prob-
lem of contrastive loss minimization(

ψ̃kh, ϕ̃
k
h

)
= argmin
ψ∈Ψ,ϕ∈Φ

Lh(ψ, ϕ;Dk
h). (3)

According to Lemma C.1 in Appendix, letting z = (s, a),
the learning target of the above minimization problem is

f∗h(z, s
′) = Ph(s′|z)/P−

S (s′). (4)

Since Ph(s′|z) = ψ∗
h(s

′)⊤ϕ∗h(z) with ∥ϕ∗h(z)∥2 ≤ 1 and
∥ψ∗

h(s
′)∥2 ≤

√
d as in Assumption 2.1, by Definition 3.3,

we know f∗h ∈ F , i.e., ψ∗
h(·)/P

−
S (·) ∈ Ψ and ϕ∗h(·) ∈ Φ.

Remark 3.4. The parameter C−
S in Assumption 3.2 cap-

tures the fundamental difficulty of contrastive learning in
RL by characterizing how large the function class (Defini-
tion 3.3) should be to include the underlying true density
ratio in (4). Technically, it also guarantees that the problem
is mathematically well-defined. In particular, the true den-
sity ratio (4) has non-zero denominator P−

S (s),∀s ∈ S if
the parameter C−

S is positive.

Remark 3.5. One can further extend the setting of the
finite function class to the infinite function class setting by
utilizing the covering argument as in Van de Geer (2000);
Uehara & Sun (2021) such that the terms depending on the
cardinality of F would be replaced by terms related to the
covering number of F . We leave such an analysis under the
online setting as our future work.

3.2. Main Result for Single-Agent MDP Setting

Theorem 3.6 (Sample Complexity). Letting λk =
c0d log(H|F|k/δ) for a sufficiently large constant c0 > 0
and γk = 4H

(
12
√

|A|d+√
c0d
)
/C−

S ·
√
log(2Hk|F|/δ),

with probability at least 1− 3δ, we have

1/K ·
∑K
k=1

[
V π

∗

1 (s1)− V π
k

1 (s1)
]

≲
√
C log(H|F|K/δ) log(c′0K)/K,

where C = H4d4|A|/(C−
S )2 + H4d3|A|2/(C−

S )2 +
H6d2|A|/(C−

S )2 +H6d3 and c′0 is an absolute constant.

Letting π̂ be a policy uniformly sampled from {πk}Kk=1

generated by Algorithm 1, the above theorem indicates π̂ is
an ε-suboptimial policy with probability at least 1−3δ after
executing Algorithm 1 for K ≥ Õ(1/ε2) episodes. Here Õ
hides logarithmic dependence on |F|, H,K, 1/δ, and 1/ε.

4. Contrastive Learning for Markov Game
4.1. Algorithm

Algorithmic Framework. We propose an online algorithm,
Contrastive ULCB, for contrastive learning on Markov

Algorithm 2 Online Contrastive RL for Markov Games
1: Initialize: σ0

h(a, b|s) = 1/(|A||B|),∀(s, a, b) ∈ S ×
A× B. D0

h = ∅,∀h ∈ [H]. δ > 0, β > 0, and ε > 0.
2: for episode k = 1, . . . ,K do
3: Let V kH+1(·) = 0 and QkH+1(·, ·, ·) = 0

4: Collect bonus data {D̃k
h = {(s̃τh, ãτh, b̃τh)}kτ=1}Hh=1

and contrastive training data {Dk
h}Hh=1 by Alg. 4.

5: for step h = H,H − 1, . . . , 1 do
6: Obtain ϕ̃kh and ψ̃kh by solving (3) with Dh.
7: Normalize ϕ̃kh and ψ̃kh by (1) to obtain ϕ̂kh and ψ̂kh.
8: Estimate Ph by P̂kh(·|·, ·, ·) = ψ̂kh(·)⊤ϕ̂kh(·, ·, ·).
9: Σ̂kh = 1

k

∑k
τ=1 ϕ̂

k
h(s̃

τ
h, ã

τ
h, b̃

τ
h)ϕ̂

k
h(s̃

τ
h, ã

τ
h, b̃

τ
h)

⊤+λkI

10: βkh(·, ·, ·) = min{γk∥ϕ̂kh(·, ·, ·)∥(Σ̂k
h)

−1 , 2H}.

11: Q
k

h(·, ·, ·) = (rh + P̂khV
k

h+1 + βkh)(·, ·, ·).
12: Qk

h
(·, ·, ·) = (rh + P̂khV

k
h+1 − βkh)(·, ·, ·).

13: V
k

h(·) = ⟨σkh(·, ·|·), Q
k

h(·, ·, ·)⟩.
14: V kh(·) = ⟨σkh(·, ·|·), Q

k

h
(·, ·, ·)⟩.

15: σkh(·, ·|s) = ιk-CCE(Q
k

h(s, ·, ·), Q
k

h
(s, ·, ·)),∀s.

16: πkh = P1σ
k
h and νkh = P2σ

k
h.

17: end for
18: end for

games in Algorithm 2. At the k-th round, we execute the
learned joint policy σk−1 from the last round to collect
the bonus construction data {D̃k

h}Hh=1 and the contrastive
learning data {Dk

h}Hh=1 via the sampling algorithm in Al-
gorithm 4. At a state-action pair (sh, ah, bh) sampled at
the h-th step, with probability 1/2 respectively, we col-
lect the positive transition data point (sh, ah, bh, sh+1, 1)
with sh+1 ∼ P(·|sh, ah, bh) and the negative transition data
point (sh, ah, s−h+1, 0) with s−h+1 ∼ P−

S (·), where P−
S (·)

is the negative sampling distribution. Given the dataset
{Dk

h}Hh=1 for contrastive learning, we define the contrastive
loss Lh(ψ, ϕ;Dk

h) as in (2) with setting z = (s, a, b). The
function class F is then defined the same as in Definition 3.3
by setting z = (s, a, b). We solve the contrastive loss
minimization problem as (3) at each step h to learn the
representation ϕ̃kh and ψ̃kh. Since it is not guaranteed that
ϕ̃kh(·)⊤ψ̃kh(s, a, b)P

−
S (·) is a distribution over S, we nor-

malize ϕ̃kh and ψ̃kh as (1) where z = (s, a, b). Then we
obtain an approximated transition kernel P̂kh(·|s, a, b) :=

ψ̂kh(·)⊤ϕ̂kh(s, a, b). Furthermore, we use the bonus dataset
to construct the empirical covariance matrix Σ̂kh and then
the bonus term βkh . The major differences between algo-
rithms for single-agent MDPs and Markov games lie in the
following two steps: (1) In Lines 11 and 12, we have two
types of Q-functions with both addition and subtraction of
bonus terms such that Algorithm 2 is an upper and lower
confidence bound (ULCB)-type algorithm. (2) We update
policies of two players by first finding an ιk-coarse corre-
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lated equilibrium (CCE) with the two Q-functions as a joint
policy {σkh}Hh=1 in Line 15 and then applying marginaliza-
tion to obtain the policies as in Line 16, where P1 and P2

denote getting marginal distributions over A and B respec-
tively. In particular, the notion of an ι-CCE (Moulin & Vial,
1978; Aumann, 1987) is defined as follows:

Definition 4.1 (ι-CCE). For two payoff matrices Q,Q ∈
R|A|×|B|, a distribution µ over A×B is ι-CCE if it satisfies

E(a,b)∼µ[Q(a, b)] ≥ Eb∼P2µ[Q(a′, b)]− ι,∀a′ ∈ A,
E(a,b)∼µ[Q(a, b)] ≤ Ea∼P1µ[Q(a, b′)] + ι, ∀b′ ∈ B.

An ι-CCE may not have mutually independent marginals
since the two players take actions in a correlated way. The
ι-CCE can be found efficiently by the method developed in
Xie et al. (2020) for arbitrary ι > 0.

Dataset for Contrastive Learning. Summarized in
Algorithm 4 in Appendix, the sampling algorithm for
Markov games follows a similar sampling strategy to
Algorithm 3 with extending the action space from
A to A × B. Letting dσh(s) be a state probability
at step h under P and a joint policy σ, we define
d̃σh(s, a, b) = dσh(s)Unif(a)Unif(b) and d̆σh(s, a, b) =

d̃σh−1(s
′, a′, b′)Ph−1(s|s′, a′, b′)Unif(a)Unif(b), where we

define Unif(a) = 1/|A| and Unif(b) = 1/|B|. Analo-
gously, at round k, we sample state-action pairs following
d̃σ

k−1

h (·, ·, ·) for all h ∈ [H] and d̆σ
k−1

h (·, ·, ·) for all h ≥ 2
and then sample the next state from Ph or negative sam-
pling distribution P−

S with probability 1/2. We also acquire
a dataset for the construction of the bonus term in Algo-
rithm 2 by sampling from d̃σ

k′

h (·, ·, ·) for all k′ ∈ [0, k − 1].

4.2. Main Result for Markov Game Setting

Theorem 4.2 (Sample Complexity). Letting λk =
c0d log(H|F|k/δ) for a sufficiently large constant c0 > 0,
γk = 4H

(
12
√
|A||B|d+√

c0d
)
/C−

S ·
√
log(2Hk|F|/δ),

and ιk ≤ O(
√
1/k), with probability at least 1 − 3δ, we

have

1/K ·
∑K
k=1

[
V

br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1)

]
≲
√
C log(H|F|K/δ) log(c′0K)/K,

where C = H4d4|A||B|/(C−
S )2+H4d3|A|2|B|2/(C−

S )2+
H6d2|A||B|/(C−

S )2+H6d3 and c′0 is an absolute constant.

This theorem further implies a PAC bound for learning an ap-
proximate NE (Xie et al., 2020). Specifically, Theorem 4.2
implies that there exists k0 ∈ [K] such that (πk0 , νk0) is
an ε-approximate NE with probability at least 1− 3δ after
executing Algorithm 2 for K ≥ Õ(1/ε2) episodes, i.e., let-

ting k0 := mink∈[K][V
br(νk),νk

1 (s1)−V
πk,br(πk)
1 (s1)], we

then have

V
br(νk0 ),νk0

1 (s1)− V
πk0 ,br(πk0 )
1 (s1)

≤ 1/K ·
∑K
k=1[V

br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1)] ≤ ε

with probability at least 1− 3δ.

5. Theoretical Analysis
This section provides the analysis of the transition kernel
recovery via contrastive learning and the proofs of the main
results for single-agent MDPs and zero-sum MGs. Our
theoretical analysis integrates contrastive self-supervised
learning for transition recovery and low-rank MDPs in a
unified manner. Part of our analysis is motivated by the
recent work (Uehara et al., 2021) for learning the low-rank
MDPs. In contrast to this work, our paper analyzes the repre-
sentation recovery via contrastive learning under the online
setting. In addition, we consider an episodic setting distinct
from the infinite-horizon setting in the aforementioned work.
On the other hand, the existing work on low-rank MDPs
only focuses on a single-agent setting. Our analysis further
considers a Markov game setting where a natural challenge
of non-stationarity arises due to competitive policies of mul-
tiple players. We develop the first representation learning
analysis for Markov games based on the proposed ULCB
algorithm.

We first define several notations for our analysis. Re-
call that we have defined dπh, d̃πh, and d̆πh as in Sec-
tion 3.1. Then, we subsequently define ρkh(s, a) := 1/k ·∑k−1
k′=0 d

πk′

h (s, a), ρ̃kh(s, a) := 1/k ·
∑k−1
k′=0 d̃

πk′

h (s, a), and

ρ̆kh(s, a) := 1/k ·
∑k−1
k′=0 d̆

πk′

h (s, a), which are the aver-
aged distributions across k episodes for the correspond-
ing state-action distributions. In addition, for any ρ and
ϕ, we define the associated covariance matrix Σρ,ϕ :=
k·E(s,a)∼ρkh(·,·)

[
ϕ(s, a)ϕ(s, a)⊤

]
+λkI . On the other hand,

for zero-sum MGs, in Section 4.1, we have defined dσh, d̃σh,
and d̆σh for any joint policy σ. Then, we can analogously
define ρkh, ρ̃kh, ρ̆kh, and Σρ,ϕ for MGs by extending action
spaces from A to A × B. We summarize these notations
in a table in Section B. Moreover, for abbreviation, letting
z = (s, a) for MDPs and z = (s, a, b) for MGs and ρ̃kh, ρ̆kh
be corresponding distributions, we define

ζkh := Ez∼ρ̃kh [∥P1(·|z)− P̂k1(·|z)∥21],

ξkh := Ez∼ρ̆kh [∥Ph(·|z)− P̂kh(·|z)∥21].
(5)

5.1. Analysis for Single-Agent MDP

Based on the above definitions and notations, we have the
following lemma to show the transition recovery via con-
trastive learning.
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Lemma 5.1 (Transition Recovery). After executing Algo-
rithm 1 for k rounds, with probability at least 1− 2δ,

ζkh ≤ 32d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 1,

ξkh ≤ 32d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2,

where ζkh and ξkh are defined as (5).

This lemma indicates that via the contrastive learning step
in Algorithm 1, we can successfully learn a correct repre-
sentation and recover the transition model. Next, we give
the proof sketch of this lemma.

Proof Sketch of Lemma 5.1. Letting Prfh(y|s, a, s′) be
defined as in Section 3.1, we have Pr fh(y, s

′|s, a) =

Pr fh(y|s, a, s′) Pr h(s′|s, a) with defining fh(s, a, s
′) :=

ψ(s′)⊤ϕ(s, a). Furthermore, we can calculate that
Pr h(s

′|s, a) = 1
2 [Ph(s

′|s, a) + P−
S (s′)] ≥ 1

2C
−
S > 0

by Assumption 3.2. Thus, the contrastive loss minimiza-
tion (3) is equivalent to maxϕh,ψh

EDk
h
log Pr fh(y|s, a, s′),

which further equals maxϕh,ψh
EDk

h
log Pr fh(y, s

′|s, a),
since Prh(s

′|s, a) is only determined by Ph(s′|s, a)
and P−

S (s′) and is independent of fh. Denot-
ing the solution as f̂kh (s, a, s

′) = ψ̃kh(s
′)⊤ϕ̃kh(s, a).

With Algorithm 3, further by the MLE guarantee
in Lemma E.2, we can show with high probability,
E(s,a)∼ρ̃kh(·,·)

∥Pr f̂
k

h (·, ·|s, a)−Pr f
∗

h (·, ·|s, a)∥2TV ≤ ϵk and

E(s,a)∼ρ̆kh(·,·)
∥Pr f̂

k

h (·, ·|s, a) − Pr f
∗

h (·, ·|s, a)∥2TV ≤ ϵk,
where f∗h is defined in (4) and ϵk := 2 log(2kH|F|/δ)/k.

Next, we show the recovery error bound of the transi-
tion model based on f̂kh . By expanding Pr f̂

k

h (·, ·|s, a) −
Pr f

∗

h (·, ·|s, a), we further obtain E(s,a)∼ρ̃kh(·,·)
∥Ph(·|s, a)−

P−
S (·)ϕ̃kh(s, a)⊤ψ̃kh(·)∥2TV ≤ 4dϵk/(C

−
S )2 as well as

E(s,a)∼ρ̆kh(·,·)
∥Ph(·|s, a) − P−

S (·)ϕ̃kh(s, a)⊤ψ̃kh(·)∥2TV ≤
4dϵk/(C

−
S )2.

Now we define ĝkh(s, a, s
′) := P−

S (s′)ϕ̃kh(s, a)
⊤ψ̃kh(s

′).
Since that

∫
s′∈S ĝ

k
h(s, a, s

′)ds′ may not be guaranteed to
be 1 though ĝkh(s, a, ·) is close to the true transition model
Ph(·|s, a). Therefore, to obtain a distribution approximator
of the transition model Ph, we further normalize ĝkh(s, a, s

′)

and define P̂kh(s′|s, a) := ĝkh(s, a, s
′)/∥ĝkh(s, a, ·)∥1 =

ψ̂kh(s
′)⊤ϕ̂kh(s, a) which is equivalent to (1). Ac-

cording to the definition of the approximation error
ζkh := E(s,a)∼ρ̃kh(·,·)

∥P̂kh(·|s, a) − Ph(·|s, a)∥2TV, we
can further prove in our formal proof that ζkh ≤
4E(s,a)∼ρ̃kh(·,·)

∥Ph(·|s, a) − P−
S (·)ϕ̃kh(s, a)⊤ψ̃kh(·)∥2TV ≤

16dϵk/(C
−
S )2. We similarly can have ξkh ≤ 16dϵk/(C

−
S )2.

Plugging in ϵk = 2 log(2kH|F|/δ)/k gives the desired
results. Please see Section C.2 for a detailed proof.

Based on Lemma 5.1, we give the analysis of Theorem 3.6.

Proof Sketch of Theorem 3.6. We first define that V
π

k,h is
the value function on an auxiliary MDP defined by P̂k and
r + βk. Then we can decompose V π

∗

1 (s1)− V π
k

1 (s1) as

V π
∗

1 (s1)− V π
k

1 (s1) = V π
∗

1 (s1)− V
π∗

k,1(s1)

+ V
π∗

k,1(s1)− V k1 (s1) + V k1 (s1)− V π
k

1 (s1)

≤ V π
∗

1 (s1)− V
π∗

k,1(s1)︸ ︷︷ ︸
(i)

+V
πk

k,1(s1)− V π
k

1 (s1)︸ ︷︷ ︸
(ii)

,

(6)

where the first inequality is by Lemma C.6 that V
π∗

k,1(s1) ≤
V k1 (s1) due to the value iteration step in Algorithm 1. More-

over, by the definition of V
k

h above, we known V
k

h = V
πk

k,h

for any h ∈ [H]. Thus, we need to bound (i) and (ii).

To bound term (i), by Lemma C.2 and Lemma C.4, we have

(i) = V π
∗

1 (s1)− V π
∗

1 (s1) ≤
√
|A|ζk1 ,

which indicates a near-optimism (Uehara et al., 2021) with
a bias

√
|A|ζk1 ≤ Õ(

√
1/k) according to Lemma 5.1. This

is guaranteed by adding a UCB bonus to the Q-function.

Term (ii) reflects the model difference between the
defined auxiliary MDP and the true MDP under the
learned policy πk. By Lemma C.3 and Lemma C.5,
we have that (ii) ≤ [

√
3d|A|γ2k/k + 3H2

√
|A|ζk1 ] +∑H−1

h=1 [
√
3d|A|γ2k + 4H2λkd+3H2

√
k|A|ζkh+1 + 4λkd]

· E
(s,a)∼dπ

k,P
h

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

h

. In fact, we can bound the

term
∑K
k=1 E(s,a)∼dπ

k,P
h

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

h

≤ Õ(
√
dK) by

Lemma E.3. According to Lemma 5.1, with high probability,
we can bound ζkh and ξkh. Then, 1

K

∑K
k=1(ii) ≤ Õ(1/

√
K)

with polynomial dependence on |A|, H, d by setting param-
eters as in Theorem 3.6.

By (6), we have 1
K [V π

∗

1 (s1)− V π
k

1 (s1)] ≤ 1
K

∑K
k=1[(i) +

(ii)]. Then, plugging in the upper bounds for terms (i) and
(ii), setting the parameters γk and λk as in Theorem 3.6,
we obtain the desired bound. Please see Section C.3 in
Appendix for a detailed proof.

5.2. Analysis for Markov Game

We further have a transition recovery lemma for Algorithm 2
similar to Lemma 5.1.

Lemma 5.2 (Transition Recovery). After executing Algo-
rithm 2 for k rounds, with probability at least 1− 2δ,

ζkh ≤ 32d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 1,

ξkh ≤ 32d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2,

where ζkh and ξkh are defined as (5).
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The proof idea for Lemma 5.2 is nearly identical to the one
for Lemma 5.1 with extending the action space from A to
A × B. We defer the proof to Section D.2 in Appendix.
Based on Lemma 5.2, we further give the analysis of Theo-
rem 4.2.

Proof Sketch of Theorem 4.2. We define two auxiliary
MGs respectively by reward function r + βk and transition
model P̂k, and r − βk, P̂k. Then, for any joint policy σ,
let V

σ

k,h and V σk,h be the associated value functions on

the two auxiliary MGs respectively. Recall that V
k

h and
V kh are generated by Algorithm 2. We then decompose

V
br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1) as follows

V
br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1) = V

σk
ν

1 (s1)− V
σk
ν

k,1(s1)︸ ︷︷ ︸
(i)

+ V
σk
ν

k,1(s1)− V
k

1(s1)︸ ︷︷ ︸
(ii)

+V
k

1(s1)− V k1(s1)︸ ︷︷ ︸
(iii)

(7)

+ V k1(s1)− V
σk
π

k,1(s1)︸ ︷︷ ︸
(iv)

+V
σk
π

k,1(s1)− V
σk
π

1 (s1)︸ ︷︷ ︸
(v)

.

Here we let σkν := (br(νk), νk) and σkπ := (πk,br(πk)) for
abbreviation. Terms (ii) and (iv) depict the planning error
on the two auxiliary MGs, which is guaranteed to be small
by finding ιk-CCE in Algorithm 2. Thus, by Lemma D.6,
we have

(ii) ≤ Hιk, (iv) ≤ Hιk,

which can be controlled by setting a proper value to ιk as in
Theorem 4.2.

Moreover, by Lemma D.2 and Lemma D.4, we obtain

(i) ≤
√

|A||B|ζk1 , (v) ≤
√
|A||B|ζk1 ,

which is guaranteed by the design of ULCB-type Q-
functions with the bonus term in our algorithm. Thus we
obtain the near-optimism and near-pessimism properties for
terms (i) and (v) respectively.

Term (iii) is the model difference between the two auxiliary
MGs under the learned joint policy σk. By Lemma D.3
and Lemma D.5, we have that (iii) ≤ [2

√
3d|A|γ2k/k +

6H2
√

|A|ζk1 ] +
∑H−1
h=1 [2

√
3d|A|γ2k + 4H2λkd +

6H2
√
k|A|ζkh+1 + 4λkd] · Edσk,P

h

∥ϕ∗h∥Σ−1

ρk
h
,ϕ∗

h

. Further-

more, we obtain that
∑K
k=1 Edσk,P

h

∥ϕ∗h∥Σ−1

ρk
h
,ϕ∗

h

≤ Õ(
√
dK)

by Lemma E.3. According to Lemma 5.2 for the con-
trastive learning, with high probability, we can bound
1
K

∑K
k=1(iii) ≤ Õ(1/

√
K) under the same conditions in

Theorem 3.6.

According to (7), we have 1
K

∑K
k=1[V

br(νk),νk

1 (s1) −
V
πk,br(πk)
1 (s1)] ≤ 1

K

∑K
k=1[(i) + (ii) + (iii) + (iv) +

(v)]. Thus, plugging in the above upper bounds for terms
(i), (ii), (iii), (iv), and (v), setting the parameters ιk, γk
and, λk as in Theorem 3.6, we get the desired result. Please
see Section D.3 in Appendix for a detailed proof.

6. Proof of Concept Experiments
In this section, we present the experimental justification
of the UCB-based exploration in practice inspired by our
theory. The codes are available at https://github.
com/Baichenjia/Contrastive-UCB.

6.1. Implementation of Bonus

Representation Learning with SPR. Our goal is to exam-
ine whether the proposed UCB bonus practically enhances
the exploration of deep RL algorithms with contrastive learn-
ing. To this end, we adopt the SPR method (Schwarzer
et al., 2021), the state-of-the-art RL approach with con-
trastive learning on the benchmark Atari 100K (Kaiser et al.,
2020). SPR utilizes the temporal information and learns
the representation via maximizing the similarity between
the future state representations and the corresponding pre-
dicted next state representations based on the observed state
and action sequences. The representation learning under
the framework of SPR is different from the proposed rep-
resentation learning from the following aspects: (1) SPR
considers multi-step consistency in addition to the one-step
prediction of our proposed contrastive objective, namely,
SPR incorporates the information of multiple steps ahead
of (sh, ah) in the representation ϕ̂(sh, ah). Although rep-
resentation learning with one-step prediction is sufficient
according to our theory, such a multi-step approach further
enhances the temporal consistency of the learned represen-
tation empirically. Similar techniques also arise in various
empirical studies (Oord et al., 2018a; Guo et al., 2018). (2)
SPR utilizes the cosine similarity to maximize the similarity
of state-action representations and the embeddings of the
corresponding next states. We remark that we adopt the
architecture of SPR as an empirical simplification to our
proposed contrastive objective, which does not require ex-
plicit negative sampling and the corresponding parameter
tuning (Schwarzer et al., 2021). This leads to better compu-
tational efficiency and avoidance of defining an improper
negative sampling distribution. In addition, we remark that
the representations obtained from SPR contain sufficient
temporal information of the transition dynamics required
for exploration, as shown in our experiments.

Architecture and UCB Bonus. In our experiments, we
adopt the same architecture as SPR. We further construct
the UCB bonus based on SPR and propose the SPR-UCB
method. In particular, we adopt the same hyper-parameters
as that of SPR (Schwarzer et al., 2021). Meanwhile, we
adopt the last layer of the Q-network as our learned rep-

https://github.com/Baichenjia/Contrastive-UCB
https://github.com/Baichenjia/Contrastive-UCB
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Figure 1. Mean human-normalized score in Atari-100K bench-
mark. The results of baseline algorithms are adopted from Agarwal
et al. (2021). We observe that SPR-UCB outperforms SPR and
other baseline algorithms.

resentation ϕ̂ which is linear in the estimated Q-function.
In the training stage, we update the empirical covari-
ance matrix Σ̂kh ∈ Rd×d by adding the feature covari-
ance ϕ̂(skh, a

k
h)ϕ̂(s

k
h, a

k
h)

⊤ over the sampled transition tu-
ples {(skh, akh, s

k+1
h )}h∈[H] from the replay buffer, where

ϕ̂ ∈ Rd×1 is the learned representation from the Q-network
of SPR. The transition data is sampled from the interaction
history. The bonus for the state-action pair (s, a) is calcu-
lated by βk(s, a) = γk · [ϕ̂(s, a)⊤(Σ̂kh)−1ϕ̂(s, a)]

1
2 , where

we set the hyperparameter γk = 1 for all iterations k ∈ [K].
Upon computing the bonus for each state-action pair of the
sampled transition tuples from the replay buffer, we follow
our proposed update in Algorithm 1 and add the bonus on
the target of Q-functions in fitting the Q-network.

6.2. Environments and Baselines

In our experiments, we use Atari 100K (Kaiser et al., 2020)
benchmark for evaluation, which contains 26 Atari games
from various domains. The benchmark Atari 100K only
allows the agent to interact with the environment for 100K
steps. Such a setup aims to test the sample efficiency of RL
algorithms.

We compare the SPR-UCB method with several baselines in
Atari 100K benchmark, including (1) SimPLe (Kaiser et al.,
2020), which learns an environment model based on the
video prediction task and trains a policy under the learned
model; (2) DER (van Hasselt et al., 2019) and (3) OTR
(Kielak, 2020), which improve Rainbow (van Hasselt et al.,
2019) to perform sample-efficient model-free RL; (4) CURL
(Laskin et al., 2020), which incorporates contrastive learning
based on data augmentation; (5) DrQ (Yarats et al., 2021),
which directly utilizes data augmentation based on the image
observations; and (6) SPR (Schwarzer et al., 2021), which
learns temporal consistent representation for model-free RL.
For all methods, we calculate the human normalized score

by agent score−random score
human score−random score . In our experiments, we run the

proposed SPR-UCB over 10 different random seeds.

6.3. Result Comparison

We illustrate the aggregated mean of human normalized
scores among all tasks in Figure 1. We report the score
for each task in Appendix F. In our experiments, we ob-
serve that (1) Both SPR and SPR-UCB outperform baselines
that do not learn temporal consistent representations signifi-
cantly, including DER, OTR, SimPLe, CURL, and DrQ. (2)
By incorporating the UCB bonus, SPR-UCB outperforms
SPR. In addition, we remark that SPR-UCB outperforms
SPR significantly in challenging environments including
Boxing, Freeway, Frostbite, KungfuMaster, PrivateEye, and
RoadRunner. Please see Appendix F for the details.

7. Conclusion
We study contrastive-learning empowered RL for MDPs
and MGs with low-rank transitions. We propose novel on-
line RL algorithms that incorporate such a contrastive loss
with temporal information for MDPs or MGs. We further
theoretically prove that our algorithms recover the true repre-
sentations and simultaneously achieve sample efficiency in
learning the optimal policy and Nash equilibrium in MDPs
and MGs respectively. We also provide empirical studies
to demonstrate the efficacy of the UCB-based contrastive
learning method for RL. To the best of our knowledge, we
provide the first provably efficient online RL algorithm that
incorporates contrastive learning for representation learning.
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A. Omitted Sampling Algorithm

Algorithm 3 Contrastive Data Sampling for Single-Agent MDP
1: for step h = 1, . . . ,H − 1 do
2: Sample (s̃kh, ã

k
h) ∼ d̃π

k−1

h (·, ·), s̃kh+1 ∼ Ph(·|s̃kh, ãkh)
3: Let s̆kh+1 = s̃kh+1. Sample ăkh+1 ∼ Unif(A), s̆kh+2 = Ph+1(·|s̆kh+1, ă

k
h+1), and ykh ∼ Ber(1/2)

4: D̃k
h = D̃k−1

h ∪ {(s̃kh, ãkh)}.
5: if ykh = 1 then
6: Dk

h = Dk−1
h ∪ {(s̃kh, ãkh, s̃kh+1, 1)}.

7: Dk
h+1 = Dk−1

h+1 ∪ {(s̆kh+1, ă
k
h+1, s̆

k
h+2, 1)}.

8: else if ykh = 0 then
9: Sample negative transition s̃k,−h+1, s̆

k,−
h+2 ∼ P−

S (·).
10: Dk

h = Dk−1
h ∪ {(s̃kh, ãkh, s̃

k,−
h+1, 0)}.

11: Dk
h+1 = Dk−1

h+1 ∪ {(s̆kh+1, ă
k
h+1, s̆

k,−
h+2, 0)}.

12: end if
13: end for
14: (s̃kH , ã

k
H) ∼ d̃π

k−1

H (·, ·), s̃kH+1 ∼ Ph(·|s̃kH , ãkH), and ykH ∼ Ber(1/2)

15: D̃k
H = D̃k−1

H ∪ {(s̃kH , ãkH)}.
16: if ykH = 1 then
17: Dk

H = Dk−1
H ∪ {(s̃kH , ãkH , s̃kH+1, 1)}.

18: else if ykH = 0 then
19: Sample negative transition s̃k,−H+1 ∼ P−

S (·).
20: Dk

H = Dk−1
H ∪ {(s̃kH , ãkH , s̃

k,−
H+1, 0)}.

21: end if
22: return {Dk

h}Hh=1 and {D̃k
h}Hh=1.

Algorithm 4 Contrastive Data Sampling for Markov Game
1: for step h = 1, . . . ,H − 1 do
2: Sample (s̃kh, ã

k
h, b̃

k
h) ∼ d̃π

k−1

h (·, ·, ·), s̃kh+1 ∼ Ph(·|s̃kh, ãkh, b̃kh)
3: Let s̆kh+1 = s̃kh+1. Sample ăkh+1 ∼ Unif(A), b̆kh+1 ∼ Unif(B), s̆kh+2 = Ph+1(·|s̆kh+1, ă

k
h+1, b̆

k
h+1), y

k
h ∼ Ber(1/2)

4: D̃k
h = D̃k−1

h ∪ {(s̃kh, ãkh, b̃kh)}.
5: if ykh = 1 then
6: Dk

h = Dk−1
h ∪ {(s̃kh, ãkh, b̃kh, s̃kh+1, 1)}.

7: Dk
h+1 = Dk−1

h+1 ∪ {(s̆kh+1, ă
k
h+1, b̆

k
h+1, s̆

k
h+2, 1)}.

8: else if ykh = 0 then
9: Sample negative transition s̃k,−h+1, s̆

k,−
h+2 ∼ P−

S (·).
10: Dk

h = Dk−1
h ∪ {(s̃kh, ãkh, b̃kh, s̃

k,−
h+1, 0)}.

11: Dk
h+1 = Dk−1

h+1 ∪ {(s̆kh+1, ă
k
h+1, b̆

k
h+1, s̆

k,−
h+2, 0)}.

12: end if
13: end for
14: Sample (s̃kH , ã

k
H , b̃

k
H) ∼ d̃π

k−1

H (·, ·, ·), s̃kH+1 ∼ Ph(·|s̃kH , ãkH , b̃kH), and ykH ∼ Ber(1/2)

15: D̃k
H = D̃k−1

H ∪ {(s̃kH , ãkH , b̃kH)}.
16: if ykH = 1 then
17: Dk

H = Dk−1
H ∪ {(s̃kH , ãkH , b̃kH , s̃kH+1, 1)}.

18: else if ykH = 0 then
19: Sample negative transition s̃k,−H+1 ∼ P−

S (·).
20: Dk

H = Dk−1
H ∪ {(s̃kH , ãkH , b̃kH , s̃

k,−
H+1, 0)}.

21: end if
22: return {Dk

h}Hh=1 and {D̃k
h}Hh=1.
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B. Table of Notation
We present the following table of notations. We denote by σ an arbitrary joint policy. If the joint policy σ is equivalent to a
product of two separate policies for each player, i.e., σ(a, b|s) = π(a|s)× ν(b|s), then we can replace σ by π, ν.

Table 1. Table of Notation
Notation Meaning
dπh(s) state probability at step h under the true transition P and a policy π
dπh(s, a) state-action probability at step h under the true transition P and a policy π
d̃πh(s, a) d̃πh(s, a) := dπh(s)Unif(a)

d̆πh(s, a) d̆πh(s, a) := d̃πh−1(s
′, a′)Ph−1(s|s′, a′)Unif(a)

ρkh(s, a) ρkh(s, a) := 1/k ·
∑k−1
k′=0 d

πk′

h (s, a)

ρ̃kh(s, a) ρ̃kh(s, a) := 1/k ·
∑k−1
k′=0 d̃

πk′

h (s, a)

ρ̆kh(s, a) ρ̆kh(s, a) := 1/k ·
∑k−1
k′=0 d̆

πk′

h (s, a)

Σρ,ϕ covariance matrix defined as k · E(s,a)∼ρkh(·,·)
[
ϕ(s, a)ϕ(s, a)⊤

]
+ λkI for any ρ and ϕ

dσh(s) state probability at step h under the true transition P and a joint policy σ
dσh(s, a, b) state-action probability at step h under the true transition P and a joint policy σ
d̃σh(s, a, b) d̃σh(s, a, b) := dσh(s)Unif(a)Unif(b)

d̆σh(s, a, b) d̆σh(s, a, b) := d̃σh−1(s
′, a′, b′)Ph−1(s|s′, a′, b′)Unif(a)Unif(b)

ρkh(s, a, b) ρkh(s, a, b) := 1/k ·
∑k−1
k′=0 d

σk′

h (s, a, b)

ρ̃kh(s, a, b) ρ̃kh(s, a, b) := 1/k ·
∑k−1
k′=0 d̃

σk′

h (s, a, b)

ρ̆kh(s, a, b) ρ̆kh(s, a, b) := 1/k ·
∑k−1
k′=0 d̆

σk′

h (s, a, b)

Σρ,ϕ covariance matrix defined as k · E(s,a,b)∼ρ(·,·,·)
[
ϕ(s, a, b)ϕ(s, a, b)⊤

]
+ λkI

V πh , Q
π
h value and Q-functions at step h under the policy π and the true transition and reward P, r

V
k

h, Q
k

h value and Q-functions generated in Lines 11 and 12 of Algorithm 1
V
π

k,h, Q
π

k,h value and Q-functions at step h on the auxiliary MDP defined by r + βk and P̂k

V σh , Q
σ
h value and Q-functions at step h under the joint policy σ and the true transition and reward P, r

V
k

h, Q
k

h value and Q-functions generated in Lines 11 and 13 of Algorithm 2
V kh, Q

k

h
value and Q-functions generated in Lines 12 and 14 of Algorithm 2

V
σ

k,h, Q
σ

k,h value and Q-functions at step h on the auxiliary MG defined by r + βk and P̂k

V σk,h, Q
σ

k,h
value and Q-functions at step h on the auxiliary MG defined by r − βk and P̂k

Unif(A),Unif(B) uniform distribution over spaces A or B
Unif(a),Unif(b) probabilities for the above distributions: Unif(a) = 1/|A| and Unif(b) = 1/|B|

∥ · ∥TV total variation distance
∥ · ∥1 define ∥f∥1 :=

∫
x
|f(x)|dx

C. Theoretical Analysis for Single-Agent MDP
C.1. Lemmas

Lemma C.1 (Learning Target of Contrastive Loss). For any (s, a) ∈ S × A that is reachable under certain sampling
strategy, the learning target of the contrastive loss in (2) is

f∗h(s, a, s
′) =

Ph(s′|s, a)
P−
S (s′)

.

Proof. For any h ∈ [H], we let Pr h denote the probability for some event at the h-th step of an MDP. Our contrastive loss
in (2) implicitly assumes

Pr h(y|s, a, s′) =
(

f∗h(s, a, s
′)

1 + f∗h(s, a, s
′)

)y (
1

1 + f∗h(s, a, s
′)

)1−y

.
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On the other hand, by Bayes’ rule, we know Pr h(y|s, a, s′) can be rewritten as

Pr h(y|s, a, s′) =
Pr h(s, a, s

′|y) Pr h(y)∑
y∈{0,1} Pr h(s, a, s

′|y) Pr h(y)
=

Pr h(s, a, s
′|y)

Pr h(s, a)Ph(s′|s, a) + Pr h(s, a)P−
S (s′)

,

where the last equation uses the fact that Pr h(y) = 1/2 for any y ∈ {0, 1} at the h-th step according to our sampling
algorithm. In the last equality, we also have

Pr h(s, a, s
′|y = 1) = Pr h(s, a|y = 1)Pr h(s

′|y = 1, s, a) = Pr h(s, a)Ph(s′|s, a),
Pr h(s, a, s

′|y = 0) = Pr h(s, a|y = 0)Pr h(s
′|y = 0, s, a) = Pr h(s, a)P−

S (s′),

where we use Pr h(s, a|y = 1) = Pr h(s, a|y = 0) = Pr h(s, a) since (s, a) and y are independent at each step, and also
Pr h(s

′|y = 1, s, a) = Ph(s′|s, a) as well as Pr h(s′|y = 0, s, a) = P−
S (s′).

Therefore, combining the above results, when y = 1 at the h-th step, we obtain

f∗h(s, a, s
′)

1 + f∗h(s, a, s
′)

=
Pr h(s, a)Ph(s′|s, a)

Pr h(s, a)Ph(s′|s, a) + Pr h(s, a)P−
S (s′)

,

which further gives

f∗h(s, a, s
′) =

Ph(s′|s, a)
P−
S (s′)

,

since(s, a) is reachable under the sampling algorithm, namely Pr h(s, a) > 0. Equivalently, when y = 0, we get the same
result. This completes the proof.

Lemma C.2. Let π∗ := argmaxπ V
π
1 (s1) be the optimal policy and V

π

k,1 be the value function under any policy π
associated with an MDP defined by the reward function r + βk and the estimated transition P̂k with βk and P̂k obtained at
episode k of Algorithm 1. We have the decomposition of the difference between the following two value functions as

V π
∗

1 (s1)− V
π∗

k,1(s1) = E

[
H∑
h=1

(
−βkh(sh, ah) + (Ph − P̂kh)V π

∗

h+1(sh, ah)
) ∣∣∣∣∣π∗, P̂k

]
.

Proof. We consider two MDPs defined by (S,A, H, r,P) and (S,A, H, r+β,P′) where P and P′ are any transition models
and r and β are arbitrary reward function and bonus term. Then, for any deterministic policy π, we let Qπh and V πh be the
associated Q-function and value function at the h-th step for the MDP defined by (S,A, H, r,P), and Q̃πh and Ṽ πh be the
associated Q-function and value function at the h-th step for the MDP defined by (S,A, H, r + β,P′). Then, we have for
any (sh, ah) ∈ S ×A,

Qπh(sh, ah)− Q̃πh(sh, ah)

= −βh(sh, ah) + PhV πh+1(sh, ah)− P′
hṼ

π
h+1(sh, ah)

= −βh(sh, ah) + PhV πh+1(sh, ah)− P′
hV

π
h+1(sh, ah) + P′

hV
π
h+1(sh, ah)− P′

hṼ
π
h+1(sh, ah)

= −βh(sh, ah) + (Ph − P′
h)V

π
h+1(sh, ah) + P′

h[V
π
h+1(sh, ah)− Ṽ πh+1(sh, ah)],

where we use the Bellman equation for the above equalities. Thus, further by the Bellman equation and the above result, we
have

V πh (sh)− Ṽ πh (sh)

= Qπh(sh, πh(sh))− Q̃πh(sh, πh(sh))

= −bh(sh, πh(sh)) + (Ph − P′
h)V

π
h+1(sh, πh(sh)) + P′

h[V
π
h+1(sh, πh(sh))− Ṽ πh+1(sh, πh(sh))].

By the fact that V πH+1(s) = Ṽ πH+1(s) = 0 for any s ∈ S and π, recursively applying the above relation, we have

V π1 (s1)− Ṽ π1 (s1) = E

[
H∑
h=1

(
−βh(sh, ah) + (Ph − P′

h)V
π
h+1(sh, ah)

) ∣∣∣∣∣π,P′

]
.
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Note that the above results can be straightforwardly extended to any randomized policy π = {πh}Hh=1 with πh : S ×A 7→
[0, 1].

For any episode k, setting P′, π, β to be P̂k, π∗, βk defined in Algorithm 1 and P, r to be the true transition model and
reward function, by the above equation and the definition of V πh and V

π

h, we obtain

V π
∗

1 (s1)− V
π∗

k,1(s1) = E

[
H∑
h=1

(
−βkh(sh, ah) + (Ph − P̂kh)V π

∗

h+1(sh, ah)
) ∣∣∣∣∣π∗, P̂k

]
.

This completes the proof.

Lemma C.3. Let πk be the learned policy at episode k of Algorithm 1 and V
π

k,1 be the value function under any policy π
associated with an MDP defined by the reward function r + βk and the estimated transition P̂k with βk and P̂k obtained at
episode k of Algorithm 1. We have the decomposition of the difference between the following two value functions as

V π
k

1 (s1)− V
πk

k,1(s1) = E

[
H∑
h=1

(
−βkh(sh, ah) + (Ph − P̂kh)V

πk

h+1(sh, ah)

) ∣∣∣∣∣πk,P
]
.

Proof. Similar to Proof of Lemma C.2, we consider two arbitrary MDPs defined by (S,A, H, r,P) and (S,A, H, r+β,P′).
For any deterministic policy π, let Qπh and V πh be the associated Q-function and value function at the h-th step for the MDP
defined by (S,A, H, r,P), and Q̃πh and Ṽ πh be the associated Q-function and value function at the h-th step for the MDP
defined by (S,A, H, r + β,P′). For any (sh, ah) ∈ S ×A, by Bellman equation, we have

Qπh(sh, ah)− Q̃πh(sh, ah)

= −βh(sh, ah) + PhV πh+1(sh, ah)− P′
hṼ

π
h+1(sh, ah)

= −βh(sh, ah) + PhV πh+1(sh, ah)− PhṼ πh+1(sh, ah) + PhṼ πh+1(sh, ah)− P′
hṼ

π
h+1(sh, ah)

= −βh(sh, ah) + Ph[V πh+1(sh, ah)− Ṽ πh+1(sh, ah)] + (Ph − P′
h)Ṽ

π
h+1(sh, ah).

Then, further by the Bellman equation and the above result, we have

V πh (sh)− Ṽ πh (sh)

= Qπh(sh, πh(sh))− Q̃πh(sh, πh(sh))

= −βh(sh, πh(sh)) + Ph[V πh+1(sh, πh(sh))− Ṽ πh+1(sh, πh(sh))] + (Ph − P′
h)Ṽ

π
h+1(sh, πh(sh))].

By the fact that V πH+1(s) = Ṽ πH+1(s) = 0 for any s ∈ S and π, recursively applying the above relation, we have

V π1 (s1)− Ṽ π1 (s1) = E

[
H∑
h=1

(
−βh(sh, ah) + (Ph − P′

h)Ṽ
π
h+1(sh, ah)

) ∣∣∣∣∣π,P
]
.

The above results can be straightforwardly extended to any randomized policy π = {πh}Hh=1 with πh : S ×A 7→ [0, 1].

For any episode k, setting P′, π, β to be P̂k, πk, βk defined in Algorithm 1 and P, r to be the true transition model and
reward function, by the above equation and the definition of V πh and V

π

h, we obtain

V π
k

1 (s1)− V
πk

k,1(s1) = E

[
H∑
h=1

(
−βkh(sh, ah) + (Ph − P̂kh)V

πk

h+1(sh, ah)

) ∣∣∣∣∣πk,P
]
.

This completes the proof.

Lemma C.4. Let P̂k be the estimated transition obtained at episode k of Algorithm 1. Define ζkh−1 := E(s′′,a′′)∼ρ̃kh−1(·,·)

∥P̂kh−1(·|s′′, a′′) − Ph−1(·|s′′, a′′)∥21 for all h ≥ 2, ρ̃kh(·, ·) := 1
k

∑k−1
k′=0 d̃

πk′

h (·, ·) for all h ≥ 1 with ρ̃k1(s1, a) = Unif(a),
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and ρ̆kh(·, ·) := 1
k

∑k−1
k′=0 d̆

πk′

h (·, ·) for all h ≥ 2. Then for any function g : S ×A 7→ [0, B] and policy π, we have for any
h ≥ 2, the following inequality holds∣∣∣E

(s,a)∼dπ,P̂k
h (·,·)

[g(s, a)]
∣∣∣

≤
√

2kB2ζkh−1 + 2k|A| · E(s,a)∼ρ̆kh(·,·)
[g(s, a)2] + λkB2d/(C−

S )2 · E
(s′,a′)∼dπ,P̂k

h−1 (·,·)

∥∥∥ϕ̂kh−1(s
′, a′)

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

.

Moreover, for h = 1, we have∣∣∣E
(s,a)∼dπ,P̂k

1 (·,·)
[g(s, a)]

∣∣∣ =√g(s1, π1(s1))2 ≤
√
|A|Ea∼ρ̃k1 (s1,·)[g(s1, a)

2],

where ρ̃k1(s1, a) = Unif(a).

Proof. For any function g : S ×A 7→ [0, B] and any deterministic policy π, under the estimated transition model P̂k at the
episode k, for any h ≥ 2, we have∣∣∣E

(s,a)∼dπ,P̂k
h (·,·)

[g(s, a)]
∣∣∣

=

∣∣∣∣E(s′,a′)∼dπ,P̂k
h−1 (·,·),s∼P̂k

h−1(·|s′,a′)
[g(s, πh(s))]

∣∣∣∣
=

∣∣∣∣E(s′,a′)∼dπ,P̂k
h−1 (·,·)

[
ϕ̂kh−1(s

′, a′)⊤
∫
S
ψ̂kh−1(s)g(s, πh(s))ds

]∣∣∣∣
≤ E

(s′,a′)∼dπ,P̂k
h−1 (·,·)

∥∥∥ϕ̂kh−1(s
′, a′)

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

∥∥∥∥∫
S
ψ̂kh−1(s)g(s, πh(s))ds

∥∥∥∥
Σ

ρ̃k
h−1

,ϕ̂k
h−1

,

(8)

where the inequality is due to the Cauchy-Schwarz inequality. Hereafter, we define the covariance matrix Σρ̃kh−1,ϕ̂
k
h−1

:=

kE(s,a)∼ρ̃kh−1
[ϕ̂kh−1(s, a)ϕ̂

k
h−1(s, a)

⊤] + λkI with ρ̃kh−1(s, a) =
1
k

∑k−1
k′=0 d̃

πk′

h−1(s, a).

Next, we can bound∥∥∥∥∫
S
ψ̂kh−1(s)g(s, πh(s))ds

∥∥∥∥2
Σ

ρ̃k
h−1

,ϕ̂k
h−1

= k

(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)⊤

Eρ̃kh−1

[
ϕ̂kh−1(ϕ̂

k
h−1)

⊤
](∫

S
ψ̂kh−1(s)g(s, πh(s))ds

)
+ λk

(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)⊤(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)
= kE(s′′,a′′)∼ρ̃kh−1(·,·)

[∫
S
ϕ̂kh−1(s

′′, a′′)⊤ψ̂kh−1(s)g(s, πh(s))ds

]
+ λk

(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)⊤(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)
≤ kE(s′′,a′′)∼ρ̃kh−1(·,·)

[∫
S
ϕ̂kh−1(s

′′, a′′)⊤ψ̂kh−1(s)g(s, πh(s))ds

]2
+ λkB

2d/(C−
S )2,

(9)

where the last inequality is due to(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)⊤(∫
S
ψ̂kh−1(s)g(s, πh(s))ds

)
≤ B2

∣∣∣∣∫
S
ψ̂kh−1(s)ds

∣∣∣∣2
2

≤ B2d/(C−
S )2,

since ∥
∫
S ψ̂

k
h−1(s)ds∥22 := ∥

∫
S P−

S (s)ψ̃kh−1(s)ds∥22 ≤ ∥
∫
S ψ̃

k
h−1(s)ds∥22 ≤ (

∫
S ∥ψ̃kh−1(s)∥2ds)2 ≤ d/(C−

S )2 according
to the definition of the function class in Definition 3.3 and the assumption that all states are normalized such that Vol(S) ≤ 1.
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Moreover, we have

kE(s′′,a′′)∼ρ̃kh−1(·,·)

[∫
S
ϕ̂kh−1(s

′′, a′′)⊤ψ̂kh−1(s)g(s, πh(s))ds

]2
≤ 2kE(s′′,a′′)∼ρ̃kh−1(·,·)

[∫
S

(
P̂kh−1(s|s′′, a′′)− Ph−1(s|s′′, a′′)

)
g(s, πh(s))ds

]2
+ 2kE(s′′,a′′)∼ρ̃kh−1(·,·)

[∫
S
Ph−1(s|s′′, a′′)g(s, πh(s))ds

]2
≤ 2kB2ζkh−1 + 2kE(s′′,a′′)∼ρ̃kh−1(·,·)

[∫
S
Ph−1(s|s′′, a′′)g(s, πh(s))ds

]2
≤ 2kB2ζkh−1 + 2kE(s′′,a′′)∼ρ̃kh−1(·,·),s∼Ph−1(·|s′′,a′′)[g(s, πh(s))

2]

≤ 2kB2ζkh−1 + 2k
1

Unif(a)
E(s,a)∼ρ̆kh(·,·)

[g(s, a)2]

= 2kB2ζkh−1 + 2k|A| · E(s,a)∼ρ̆kh(·,·)
[g(s, a)2],

(10)

where the first inequality is due to (x + y)2 ≤ 2x2 + 2y2, the second inequality is due to E(s′′,a′′)∼ρ̃kh−1(·,·)

[
∫
S(P̂

k
h−1(s|s′′, a′′) − Ph−1(s|s′′, a′′))g(s, πh(s))ds]2 ≤ B2E(s′′,a′′)∼ρ̃kh−1(·,·)

∥P̂kh−1(·|s′′, a′′) − Ph−1(·|s′′, a′′)∥21 =

B2ζkh−1 with ζkh−1 := E(s′′,a′′)∼ρ̃kh−1(·,·)
∥P̂kh−1(·|s′′, a′′) − Ph−1(·|s′′, a′′)∥21, the third inequality is by Jensen’s in-

equality, and the fourth inequality is due to g(s, πh(s))
2 ≤

∑
a∈A g(s, a)

2 = 1/Unif(a) · Ea∼Unif(A)[g(s, a)
2] and

ρ̆kh(s, a) := ρ̃kh−1(s
′, a′)Ph−1(s|s′, a′)Unif(a) for all h ≥ 2.

Combining (8),(9), and (10), we have for any h ≥ 2,∣∣∣E
(s,a)∼dπ,P̂k

h (·,·)
[g(s, a)]

∣∣∣
≤
√

2kB2ζkh−1 + 2k|A| · E(s,a)∼ρ̆kh(·,·)
[g(s, a)2] + λkB2d/(C−

S )2 · E
(s′,a′)∼dπ,P̂k

h−1 (·,·)

∥∥∥ϕ̂kh−1(s
′, a′)

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

.

For h = 1, we have ∣∣∣E
(s,a)∼dπ,P̂k

1 (·,·)
[g(s, a)]

∣∣∣ =√g(s1, π1(s1))2 ≤
√
|A|Ea∼ρ̃k1 (s1,·)[g(s1, a)

2],

where we let ρ̃k1(s1, a) = Unif(a). Note that the above derivations also hold for any randomized policy π. The proof is
completed.

Lemma C.5. Define ρ̃kh(·, ·) := 1
k

∑k−1
k′=0 d̃

πk′

h (·, ·) for all h ≥ 1 with ρ̃k1(s1, a) = Unif(a) and ρkh(·, ·) :=
1
k

∑k−1
k′=0 d

πk′

h (·, ·) for all h ≥ 2. Then for any function g : S × A 7→ [0, B] and policy π, we have for any h ≥ 2,
the following inequality holds∣∣∣E(s,a)∼dπ,P

h (·,·)[g(s, a)]
∣∣∣

≤
√
k|A| · E(s,a)∼ρ̃kh(·,·)

[g(s, a)2] + λkB2d · E(s′,a′)∼dπ,P
h−1(·,·)

∥∥ϕ∗h−1(s
′, a′)

∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.

Moreover, for h = 1, we have∣∣∣E(s,a)∼dπ,P
1 (·,·)[g(s, a)]

∣∣∣ ≤√g(s1, π1(s1))2 ≤
√

|A|Ea∼ρ̃k1 (s1,·)[g(1s, a)
2].

Proof. For any function g : S × A 7→ [0, B] and any deterministic policy π, under the true transition model P, for any
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h ≥ 2, we have∣∣∣E(s,a)∼dπ,P
h (·,·)[g(s, a)]

∣∣∣
=
∣∣∣E(s′,a′)∼dπ,P

h−1(·,·),s∼Ph−1(·|s′,a′)[g(s, πh(s))]
∣∣∣

=

∣∣∣∣E(s′,a′)∼dπ,P
h−1(·,·)

[
ϕ∗h−1(s

′, a′)⊤
∫
S
ψ∗
h−1(s)g(s, πh(s))ds

]∣∣∣∣
≤ E(s′,a′)∼dπ,P

h−1(·,·)
∥∥ϕ∗h−1(s

′, a′)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

∥∥∥∥∫
S
ψ∗
h−1(s)g(s, πh(s))ds

∥∥∥∥
Σ

ρk
h−1

,ϕ∗
h−1

,

(11)

where the inequality is due to the Cauchy-Schwarz inequality. Here, we define the covariance matrix Σρkh−1,ϕ
∗
h−1

:=

kE(s,a)∼ρkh−1
[ϕ∗h−1(s, a)ϕ

∗
h−1(s, a)

⊤] + λkI with ρkh−1(s, a) =
1
k

∑k−1
k′=0 d

πk′

h−1(s, a).

Next, we have∥∥∥∥∫
S
ψ∗
h−1(s)g(s, πh(s))ds

∥∥∥∥2
Σ

ρk
h−1

,ϕ∗
h−1

= k

(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)⊤

Eρkh−1

[
ϕ∗h−1(ϕ

∗
h−1)

⊤](∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)
+ λk

(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)⊤(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)
= kE(s′′,a′′)∼ρkh−1(·,·)

[∫
S
ϕ∗h−1(s

′′, a′′)⊤ψ∗
h−1(s)g(s, πh(s))ds

]
+ λk

(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)⊤(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)
≤ kE(s′′,a′′)∼ρkh−1(·,·)

[∫
S
ϕ∗h−1(s

′′, a′′)⊤ψ∗
h−1(s)g(s, πh(s))ds

]2
+ λkB

2d,

(12)

where, by Assumption 2.1, the last inequality is due to(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)⊤(∫
S
ψ∗
h−1(s)g(s, πh(s))ds

)
≤ B2

∣∣∣∣∫
S
ψ∗
h−1(s)ds

∣∣∣∣2
2

≤ B2d.

Furthermore, we have

kE(s′′,a′′)∼ρkh−1(·,·)

[∫
S
ϕ∗h−1(s

′′, a′′)⊤ψ∗
h−1(s)g(s, πh(s))ds

]2
= kE(s′′,a′′)∼ρkh−1(·,·)

[∫
S
Ph−1(s|s′′, a′′)g(s, πh(s))ds

]2
≤ kE(s′′,a′′)∼ρkh−1(·,·),s∼Ph−1(·|s′′,a′′)[g(s, πh(s))

2]

≤ k
1

Unif(a)
E(s,a)∼ρ̃kh(·,·)

[g(s, a)2]

= k|A| · E(s,a)∼ρ̃kh(·,·)
[g(s, a)2],

(13)

where the first inequality is due to Jensen’s inequality and the second inequality is by g(s, πh(s))2 ≤
∑
a∈A g(s, a)

2 =

1/Unif(a) · Ea∼Unif(A)[g(s, a)
2] and ρ̃kh(s, a) := ρkh−1(s

′, a′)Ph−1(s|s′, a′)Unif(a) for all h ≥ 2.

Combining (11), (12), and (13), we have for any h ≥ 2,∣∣∣E(s,a)∼dπ,P
h (·,·)[g(s, a)]

∣∣∣
≤
√
k|A| · E(s,a)∼ρ̃kh(·,·)

[g(s, a)2] + λkB2d · E(s′,a′)∼dπ,P
h−1(·,·)

∥∥ϕ∗h−1(s
′, a′)

∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.
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For h = 1, we have ∣∣∣E(s,a)∼dπ,P
1 (·,·)[g(s, a)]

∣∣∣ ≤√g(s1, π1(s1))2 ≤
√

|A|Ea∼ρ̃k1 (s1,·)[g(1s, a)
2],

where we define ρ̃k1(s1, a) = Unif(a). The above derivations also hold for any randomized policy π. The proof is
completed.

Lemma C.6. Let π∗ := argmaxπ V
π
1 (s1), V

k

1(s1) be the value function updated in Algorithm 1, and V
π

k,1 be the value
function under any policy π associated with an MDP defined by the reward function r + βk and the estimated transition P̂k
with βk and P̂k obtained at episode k of Algorithm 1. Then we have

V
k

1(s1) ≥ V
π∗

k,1(s1).

Proof. We prove this lemma by induction. First, we have V
k

H+1(s) = V
π

k,H+1(s) = 0 for any s ∈ S and any (randomized)
policy π such that the Bellman equation is written asQπh(s, a) = rh(s, a)+PhV πh+1(s, a) and V πh (s) = Ea∼π(·|s)[Qπh(s, a)].
Here, we aim to prove this lemma holds for any policy π, we slightly abuse the notation π and let πh(a|s) be the probability
of taking action a under the state s. Next, we assume the following inequality holds

V
k

h+1(s) ≥ V
π

k,h+1(s).

Then, with the above inequality, by the Bellman equation, we have

Q
k

h(s, a)−Q
π

k,h(s, a)

= rh(s, a) + βkh(s, a) + P̂khV
k

h+1(s, a)− rh(s, a)− βkh(s, a)− P̂khV
π

k,h+1(s, a)

= P̂khV
k

h+1(s)− P̂khV
π

k,h+1(s) ≥ 0.

(14)

Then, we have

V
k

h(s) = max
a∈A

Q
k

h(s, a)

≥ max
a∈A

Q
π

k,h(s, a)

≥ Ea∼πh(·|s)[Q
π

k,h(s, a)] = V
π

k,h(s),

where the first inequality is by (14) and the second inequality is due to the fact that maxi vi ≥ ⟨v,d⟩ when v is any vector
and d is a vector in a probability simplex satisfying

∑
i di = 1 and di ≥ 0. Thus, we obtain for any policy π,

V
k

1(s1) ≥ V
π

k,1(s1),

which further implies

V
k

1(s1) ≥ V
π∗

k,1(s1).

This completes the proof.

C.2. Proof of Lemma 5.1

Proof. For any function fh ∈ F , we let Prfh(y|s, a, s′) denote the conditional probability characterized by the function fh
at the step h, which is

Pr fh(y|s, a, s
′) =

(
fh(s, a, s

′)

1 + fh(s, a, s′)

)y (
1

1 + fh(s, a, s′)

)1−y

.

Furthermore, we have

Pr fh(y, s
′|s, a) = Pr fh(y|s, a, s

′) Pr h(s
′|s, a) =

(
fh(s, a, s

′) Pr h(s
′|s, a)

1 + fh(s, a, s′)

)y (
Pr h(s

′|s, a)
1 + fh(s, a, s′)

)1−y

,
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where we have

Pr h(s
′|s, a) = Pr h(y = 1|s, a) Pr h(s′|y = 1, s, a) + Pr h(y = 0|s, a) Pr h(s′|y = 0, s, a)

= Pr h(y = 1)Pr h(s
′|y = 1, s, a) + Pr h(y = 0)Pr h(s

′|y = 0, s, a)

=
1

2
[Ph(s′|s, a) + P−

S (s′)] ≥ 1

2
C−

S > 0,

(15)

since we assume P−
S (s′) ≥ C−

S .

Thus, we have the equivalency of solving the following two problems with fh(s, a, s′) = ϕh(s, a)
⊤ψh(s

′), which is

max
ϕh∈Φ,ψh∈Ψ

∑
(s,a,s′,y)∈Dk

h

log Pr fh(y|s, a, s
′) = max

ϕh,ψh

∑
(s,a,s′,y)∈Dk

h

log Pr fh(y, s
′|s, a), (16)

since the conditional probability Prh(s
′|s, a) is only determined by Ph(s′|s, a) and P−

S (s′) and is independent of fh as
shown in (15). We denote the solution of (16) as ϕ̃kh and ψ̃kh such that

f̂kh (s, a, s
′) = ψ̃kh(s

′)⊤ϕ̃kh(s, a).

According to Algorithm 3, we know that for each h ≥ 2, at each episode k′ ∈ [k], the data (s, a) is sampled from both
d̃π

k′

h (·, ·) and d̆π
k′

h (·, ·). Therefore, further with Lemma E.2, by solving the contrastive loss in (2) or equivalently as in (16),
with probability at least 1− δ, for all h ≥ 2, we have

k∑
k′=1

[
E
(s,a)∼d̃πk′

h (·,·)

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV

+ E
(s,a)∼d̆πk′

h (·,·)

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV

]
≤ 2 log(2kH|F|/δ),

where the factor 2H inside log is due to the data being sampled from two distributions and applying union bound for all
h ≥ 2. The above inequality is equivalent to

E(s,a)∼ρ̃kh(·,·)

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV

+ E(s,a)∼ρ̆kh(·,·)

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV
≤ 2 log(2kH|F|/δ)/k, ∀h ≥ 2,

(17)

where we use the fact that ρ̃kh(s, a) = 1
k

∑k−1
k′=0 d̃

πk′

h (s, a) and ρ̆kh(s, a) = 1
k

∑k−1
k′=0 d̆

πk′

h (s, a). On the other hand, for

h = 1, the data is only sampled from d̃π
k′

1 (·, ·) for any k′ ∈ [k]. Therefore, we have

k∑
k′=1

[
E
(s,a)∼d̃πk′

1 (·,·)

∥∥∥Pr f̂k

1 (·, ·|s, a)− Pr f
∗

1 (·, ·|s, a)
∥∥∥2

TV

]
≤ 2 log(2k|F|/δ),

which, analogously, gives

E(s,a)∼ρ̃k1 (·,·)

∥∥∥Pr f̂k

1 (·, ·|s, a)− Pr f
∗

1 (·, ·|s, a)
∥∥∥2

TV
≤ 2 log(2k|F|/δ)/k. (18)

Thus, by (17) and (18), with probability at least 1− 2δ, we have

E(s,a)∼ρ̃kh(·,·)

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV
≤ 2 log(2kH|F|/δ)/k, ∀h ≥ 1,

E(s,a)∼ρ̆kh(·,·)

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV
≤ 2 log(2kH|F|/δ)/k, ∀h ≥ 2,

(19)
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Next, we show the recovery error bound of the transition model based on (19). We have∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV

=
(∥∥∥Pr f̂k

h (y = 0, ·|s, a)− Pr f
∗

h (y = 0, ·|s, a)
∥∥∥

TV
+
∥∥∥Pr f̂k

h (y = 1, ·|s, a)− Pr f
∗

h (y = 1, ·|s, a)
∥∥∥

TV

)2
= 4

∥∥∥∥∥ Pr h(·|s, a)
1 + f̂kh (s, a, ·)

− Pr h(·|s, a)
1 + f∗h(s, a, ·)

∥∥∥∥∥
2

TV

= 2

[∫
s′∈S

Pr h(s
′|s, a) · |f∗h(s, a, s′)− f̂kh (s, a, s

′)|
[1 + f̂kh (s, a, s

′)] · [1 + f∗h(s, a, s
′)]

ds′

]2
,

where f∗(s, a, s′) = P(s′|s,a)
P−

S (s′)
with P−

S (s′) ≥ C−
S , ∀s′ ∈ S and the second equation is due to ∥Pr f̂

k

h (y = 0, ·|s, a) −

Pr f
∗

h (y = 0, ·|s, a)∥TV = ∥Pr f̂
k

h (y = 1, ·|s, a) − Pr f
∗

h (y = 1, ·|s, a)∥TV =
∥∥∥ Pr h(·|s,a)
1+f̂k

h (s,a,·)
− Pr h(·|s,a)

1+f∗
h(s,a,·)

∥∥∥
TV

. Moreover,

according to Lemma C.1 and (15), we have

Pr h(s
′|s, a) · |f∗h(s, a, s′)− f̂kh (s, a, s

′)|
[1 + f̂kh (s, a, s

′)] · [1 + f∗h(s, a, s
′)]

=
1/2 · [Ph(s′|s, a) + P−

S (s′)] · |Ph(s′|s, a)/P−
S (s′)− f̂kh (s, a, s

′)|
[1 + f̂kh (s, a, s

′)] · [1 + Ph(s′|s, a)/P−
S (s′)]

=
1/2 · |Ph(s′|s, a)− P−

S (s′)f̂kh (s, a, s
′)|

1 + f̂kh (s, a, s
′)

≥
|Ph(s′|s, a)− P−

S (s′)f̂kh (s, a, s
′)|

4
√
d/C−

S
,

where the inequality is due to [1 + f̂kh (s, a, s
′)] ≤ (1 +

√
d/C−

S ) ≤ 2
√
d/C−

S since f̂kh (s, a, s
′) ≤

√
d/C−

S with d ≥ 1 and
0 < C−

S ≤ 1. Thus, the above results further give

(C−
S )2

8d

[∫
s′∈S

∣∣∣Ph(s′|s, a)− P−
S (s′)f̂kh (s, a, s

′)
∣∣∣ds′]2 ≤

∥∥∥Pr f̂k

h (·, ·|s, a)− Pr f
∗

h (·, ·|s, a)
∥∥∥2

TV
.

Therefore, combining this inequality with (19), we obtain

E(s,a)∼ρ̃kh(·,·)

∥∥∥Ph(·|s, a)− P−
S (·)ϕ̃kh(s, a)⊤ψ̃kh(·)

∥∥∥2
TV

(20)

= 1/2 · E(s,a)∼ρ̃kh(·,·)

[∫
s′∈S

∣∣∣Ph(s′|s, a)− P−
S (s′)ϕ̃kh(s, a)

⊤ψ̃kh(s
′)
∣∣∣ds′]2 ≤ 8d/(C−

S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2.

Similarly, we can obtain

E(s,a)∼ρ̃k1 (·,·)

∥∥∥Ph(·|s, a)− P−
S (·)ϕ̃kh(s, a)⊤ψ̃kh(·)

∥∥∥2
TV

≤ 8d/(C−
S )2 · log(2k|F|/δ)/k,

E(s,a)∼ρ̆kh(·,·)

∥∥∥Ph(·|s, a)− P−
S (·)ϕ̃kh(s, a)⊤ψ̃kh(·)

∥∥∥2
TV

≤ 8d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2.

(21)

Now we define

ĝkh(s, a, s
′) := P−

S (s′)ϕ̃kh(s, a)
⊤ψ̃kh(s

′).

Note that
∫
s′∈S ĝ

k
h(s, a, s

′)ds′ may not be guaranteed to be 1 though ĝkh(s, a, ·) is close to the true transition model Ph(·|s, a)
according to (20) and (21). Therefore, to obtain an approximator of the transition model Ph lying on a probability simplex,
we should further normalize ĝkh(s, a, s

′). Thus, we define for all (s, a, s′) ∈ S ×A× S,

P̂kh(s′|s, a) :=
ĝkh(s, a, s

′)

∥ĝkh(s, a, ·)∥1
=

ĝkh(s, a, s
′)∫

s′∈S ĝ
k
h(s, a, s

′)ds′
=

P−
S (s′)ϕ̃kh(s, a)

⊤ψ̃kh(s
′)∫

s′∈S P−
S (s′)ϕ̃kh(s, a)

⊤ψ̃kh(s
′)ds′

.



Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning

We further let

ϕ̂kh(s, a) := ϕ̃kh(s, a)
/ ∫

s′∈S P−
S (s′)ϕ̃kh(s, a)

⊤ψ̃kh(s
′)ds′, ψ̂kh(s

′) := P−
S (s′)ψ̃kh(s

′),

such that

P̂kh(s′|s, a) = ψ̂kh(s
′)⊤ϕ̂kh(s, a).

Next, based on the above definitions and results, we will give the upper bound of the approximation error
E(s,a)∼ρ̃kh(·,·)

∥P̂kh(·|s, a)− Ph(·|s, a)∥2TV. We have

E(s,a)∼ρ̃kh(·,·)
∥P̂kh(·|s, a)− Ph(·|s, a)∥2TV

≤ 2E(s,a)∼ρ̃kh(·,·)
∥P̂kh(·|s, a)− ĝkh(s, a, ·)∥2TV + 2E(s,a)∼ρ̃kh(·,·)

∥ĝkh(s, a, ·)− Ph(·|s, a)∥2TV

≤ 2E(s,a)∼ρ̃kh(·,·)
∥P̂kh(·|s, a)− ĝkh(s, a, ·)∥2TV + 16d/(C−

S )2 · log(2kH|F|/δ)/k,

(22)

where the first inequality is by (x+ y)2 ≤ 2x2 + 2y2 and the last inequality is by (20). Moreover, we have

E(s,a)∼ρ̃kh(·,·)
∥P̂kh(·|s, a)− ĝkh(s, a, ·)∥2TV

= E(s,a)∼ρ̃kh(·,·)

∥∥∥∥ ĝkh(s, a, s
′)

∥ĝkh(s, a, ·)∥1
− ĝkh(s, a, ·)

∥∥∥∥2
TV

=
1

4
E(s,a)∼ρ̃kh(·,·)

(
∥ĝkh(s, a, ·)∥1 − 1

)2
≤ 1

4
E(s,a)∼ρ̃kh(·,·)

(
∥ĝkh(s, a, ·)− Ph(·|s, a)∥1 + ∥Ph(·|s, a)∥1 − 1

)2
≤ 1

4
E(s,a)∼ρ̃kh(·,·)

∥ĝkh(s, a, ·)− Ph(·|s, a)∥21

= E(s,a)∼ρ̃kh(·,·)
∥ĝkh(s, a, ·)− Ph(·|s, a)∥2TV ≤ 8d/(C−

S )2 · log(2kH|F|/δ)/k.

Combining the above inequality with (22), we eventually obtain

E(s,a)∼ρ̃kh(·,·)
∥P̂kh(·|s, a)− Ph(·|s, a)∥2TV ≤ 32d/(C−

S )2 · log(2kH|F|/δ)/k, ∀h ≥ 1.

Thus, we similarly have

E(s,a)∼ρ̆kh(·,·)
∥P̂kh(·|s, a)− Ph(·|s, a)∥2TV ≤ 32d/(C−

S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2.

The above three inequalities hold with probability at least 1− 2δ. This completes the proof.

C.3. Proof of Theorem 3.6

Proof. We first decompose the term V π
∗

1 (s1)− V π
k

1 (s1) as follows

V π
∗

1 (s1)− V π
k

1 (s1)

= V π
∗

1 (s1)− V
π∗

k,1(s1) + V
π∗

k,1(s1)− V k1 (s1) + V k1 (s1)− V π
k

1 (s1)

≤ V π
∗

1 (s1)− V
π∗

k,1(s1) + V
k

1(s1)− V π
k

1 (s1)

= V π
∗

1 (s1)− V
π∗

k,1(s1)︸ ︷︷ ︸
(i)

+V
πk

k,1(s1)− V π
k

1 (s1)︸ ︷︷ ︸
(ii)

,

(23)

where the first inequality is by the result of Lemma C.6 that V
π∗

k,1(s1) ≤ V k1 (s1) and the second equation is by the definition

of V
k

h as in Algorithm 1 such that V
k

h = V
πk

k,h for any h ∈ [H]. Thus, to bound the term V π
∗

1 (s1)− V π
k

1 (s1), we only need
to bound the terms (i) and (ii) as in (23).
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To bound term (i), by Lemma C.2, we have

(i) = V π
∗

1 (s1)− V
π∗

k,1(s1) = E

[
H∑
h=1

(
−βkh(sh, ah) + (Ph − P̂kh)V π

∗

h+1(sh, ah)
) ∣∣∣∣∣π∗, P̂k

]

≤ E

[
H∑
h=1

(
−βkh(sh, ah) +H∥Ph(·|sh, ah)− P̂kh(·|sh, ah)∥1

) ∣∣∣∣∣π∗, P̂k
]
,

(24)

where the first inequality is by the fact sups∈S V
π
h+1(s) ≤ H . Next, we bound the term E[

∑H
h=1H∥Ph(·|sh, ah) −

P̂kh(·|sh, ah)∥1 |π∗, P̂k]. Note that for the term ∥Ph(·|sh, ah) − P̂kh(·|sh, ah)∥1, we first have a trivial bound that
∥Ph(·|sh, ah) − P̂kh(·|sh, ah)∥1 ≤ ∥Ph(·|sh, ah)∥1 + ∥P̂kh(·|sh, ah)∥1 = 2. Moreover, according to Lemma C.4, we
have

E

[
H∑
h=1

∥Ph(·|sh, ah)− P̂kh(·|sh, ah)∥1

∣∣∣∣∣π∗, P̂k
]

=

H∑
h=1

E
(sh,ah)∼dπ

∗,P̂k
h (·,·)

[∥Ph(·|sh, ah)− P̂kh(·|sh, ah)∥1]

=

H∑
h=2

√
8kζkh−1 + 2k|A|E(s,a)∼ρ̆kh(·,·)

[∥Ph(·|s, a)− P̂kh(·|s, a)∥21] + 4λkd/(C
−
S )2 · E

(s,a)∼dπ
∗,P̂k

h−1 (·,·)

∥∥∥ϕ̂kh−1(s, a)
∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

+
√

|A|Ea∼ρ̃k1 (s1,·)[∥P1(·|s1, a)− P̂k1(·|s1, a)∥21]

=

H∑
h=2

√
8kζkh−1 + 2k|A|ξkh + 4λkd/(C

−
S )2 · E

(s,a)∼dπ
∗,P̂k

h−1 (·,·)

∥∥∥ϕ̂kh−1(s, a)
∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

+
√
|A|ζk1 ,

where the last equation is by the below definitions for all (h, k) ∈ [H]× [K],

ζkh := E(s,a)∼ρ̃kh(·,·)
[∥P1(·|s, a)− P̂k1(·|s, a)∥21],

ξkh := E(s,a)∼ρ̆kh(·,·)
[∥Ph(·|s, a)− P̂kh(·|s, a)∥21],

(25)

whose upper bound will be characterized later. Therefore, the above results imply that

E

[
H∑
h=1

H∥Ph(·|sh, ah)− P̂kh(·|sh, ah)∥1

∣∣∣∣∣π∗, P̂k
]

≤ min

H
√
|A|ζk1 +

H∑
h=2

H
√
8kζkh−1 + 2k|A|ξkh + 4λkd/(C

−
S )2 · E

(s,a)∼dπ
∗,P̂k

h−1 (·,·)

∥∥∥ϕ̂kh−1(s, a)
∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

, 2H2

 .
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On the other hand, we further bound the term E[
∑H
h=1 −βkh(sh, ah) |π∗, P̂k] in (24). We have

E

[
H∑
h=1

−βkh(sh, ah)
∣∣∣∣π∗, P̂k

]

= E

[
H∑
h=1

−min{γk∥ϕ̂kh(sh, ah)∥(Σ̂k
h)

−1 , 2H}
∣∣∣∣π∗, P̂k

]

≤ E

[
H∑
h=1

−min

{
3

5
γk∥ϕ̂kh(sh, ah)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H

} ∣∣∣∣π∗, P̂k
]

= −min

{
3

5
γk

H∑
h=1

E
(s,a)∼dπ

∗,P̂k
h (·,·)

∥ϕ̂kh(s, a)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H2

}

≤ −min

{
3

5
γk

H−1∑
h=1

E
(s,a)∼dπ

∗,P̂k
h (·,·)

∥ϕ̂kh(s, a)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H2

}
,

when λk ≥ c0d log(H|Φ|k/δ) with probability at least 1− δ. The first inequality is obtained by applying Lemma E.1 for all
h ∈ [H]. Thus, plugging in the above results into (24), for a sufficient large c0, setting

λk = c0d log(H|Φ|k/δ), γk =
5

3
H
√

8kζkh−1 + 2k|A|ξkh + 4λkd/(C
−
S )2, (26)

we have that

(i) = V π
∗

1 (s1)− V π
∗

1 (s1) ≤
√
|A|ζk1 , (27)

where the inequality is due to min{x+ y, 2H2}−min{y, 2H2} ≤ x,∀x, y ≥ 0. The above inequality (27) looks similar to
the optimism in linear MDPs (Jin et al., 2020) but has an additional positive bias

√
|A|ζk1 which depends on

√
1/k. Uehara

et al. (2021) refers to such a biased optimism as near-optimism. In our work, we prove that our algorithm for the low-rank
MDP in an episodic setting also leads to near-optimism.

Next, we show the upper bound of the term (ii) in (23). By Lemma C.3, we have

(ii) = V
πk

k,1(s1)− V π
k

1 (s1) = E

[
H∑
h=1

(
βkh(sh, ah)− (Ph − P̂kh)V

πk

h+1(sh, ah)

) ∣∣∣∣∣πk,P
]

≤ E

[
H∑
h=1

(
βkh(sh, ah) + 3H2∥Ph(·|sh, ah)− P̂kh(·|sh, ah)∥1

) ∣∣∣∣∣πk,P
]

=

H∑
h=1

E
(s,a)∼dπ

k,P
h (·,·)

(
βkh(s, a) + 3H2∥Ph(·|s, a)− P̂kh(·|s, a)∥1

)
.

(28)

where the first inequality is due to sups∈S,a∈A(rh+β
k
h)(s, a) ≤ 1+2H ≤ 3H such that sups∈S V

π

h(s) ≤ 3H2,∀h ∈ [H]

and the last equation is by the definition of dπ
k,P
h . Then, we need to separately bound the two terms in the last equation

above. By Lemma C.5, since sups∈S,a∈A β
k
h(s, a) ≤ 2H according to the definition of βkh in Algorithm 1, we have

H∑
h=1

E
(s,a)∼dπ

k,P
h (·,·)

[βkh(s, a)]

≤
√
|A|Ea∼ρ̃k1 (s1,·)[β

k
1 (s1, a)

2] +

H∑
h=2

√
k|A|E(s,a)∼ρ̃kh(·,·)

[βkh(s, a)
2] + 4H2λkd E(s,a)∼dπ

k,P
h−1 (·,·)

∥∥ϕ∗h−1(s, a)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

≤
√
|A|γ2kEa∼ρ̃k1 (s1,·)∥ϕ̂

k
1(s1, a)∥2(Σ̂k

1 )
−1

+

H∑
h=2

√
k|A|γ2kE(s,a)∼ρ̃kh(·,·)

∥ϕ̂kh(s, a)∥2(Σ̂k
h)

−1
+ 4H2λkd E(s,a)∼dπ

k,P
h−1 (·,·)

∥∥ϕ∗h−1(s, a)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

,
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where the second inequality is due to βkh(s, a) ≤ ∥ϕ̂kh(s, a)∥(Σ̂k
h)

−1 . Furthermore, we have that with λk ≥ c0d log(H|Φ|k/δ),
with probability at least 1− δ, for all h ∈ [H],

E(s,a)∼ρ̃kh(·,·)
∥ϕ̂kh(s, a)∥2(Σ̂k

h)
−1 ≤ 3E(s,a)∼ρ̃kh(·,·)

∥ϕ̂kh(s, a)∥2Σ−1

ρ̃k
h
,ϕ̂k

h

= 3Eρ̃kh

[
ϕ̂kh

⊤
(
kEρ̃kh [ϕ̂

k
h(ϕ̂

k
h)

⊤] + λkI
)−1

ϕ̂kh

]
=

3

k
tr

{
kEρ̃kh [ϕ̂

k
hϕ̂

k
h
⊤]
(
kEρ̃kh [ϕ̂

k
h(ϕ̂

k
h)

⊤] + λkI
)−1

}
≤ 3

k
tr(I) =

3d

k
,

where the first inequality is by Lemma E.1 and Eρ̃kh is short for E(s,a)∼ρ̃kh(·,·)
. Thus, combining the above results, we have

the following inequality holds with probability at least 1− δ,

H∑
h=1

E
(s,a)∼dπ

k,P
h (·,·)

[βkh(s, a)]

≤
√
3d|A|γ2k/k +

H∑
h=2

√
3d|A|γ2k + 4H2λkd E(s,a)∼dπ

k,P
h−1 (·,·)

∥∥ϕ∗h−1(s, a)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.

(29)

In addition, further by Lemma C.5, due to ∥Ph(·|s, a)− P̂kh(·|s, a)∥1 ≤ ∥Ph(·|s, a)∥1 + ∥P̂kh(·|s, a)∥1 ≤ 2, we have

H∑
h=1

E
(s,a)∼dπ

k,P
h (·,·)

[∥Ph(·|s, a)− P̂kh(·|s, a)∥1]

≤
√
|A|Ea∼ρ̃k1 (s1,·)[∥Ph(·|s, a)− P̂kh(·|s, a)∥21]

+

H∑
h=2

√
k|A|E(s,a)∼ρ̃kh(·,·)

[∥Ph(·|s, a)− P̂kh(·|s, a)∥21] + 4λkd E(s,a)∼dπ
k,P

h−1 (·,·)

∥∥ϕ∗h−1(s, a)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

=
√
|A|ζk1 +

H∑
h=2

√
k|A|ζkh + 4λkd E(s,a)∼dπ

k,P
h−1 (·,·)

∥∥ϕ∗h−1(s, a)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.

(30)

Therefore, combining (28), (29), and (30), we obtain

(ii) ≤
[√

3d|A|γ2k/k + 3H2
√
|A|ζk1

]
+

H∑
h=2

[√
3d|A|γ2k + 4H2λkd+ 3H2

√
k|A|ζkh + 4λkd

]
E
(s,a)∼dπ

k,P
h−1 (·,·)

∥∥ϕ∗h−1(s, a)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.

(31)

Now we characterize the upper bound of ζkh and ξkh as defined in (25). According to Lemma 5.1, we have with probability at
least 1− 2δ,

ζkh ≤ 32d log(2kH|F|/δ)/k, ∀h ≥ 1,

ξkh ≤ 32d log(2kH|F|/δ)/k, ∀h ≥ 2,
(32)

Plugging (32) and (26) into (27) and (31), we obtain

(i) = V π
∗

1 (s1)− V π
∗

1 (s1) ≲
√
d|A| log(KH|F|/δ)/k,

(ii) = V
πk

k,1(s1)− V π
k

1 (s1) ≲
√
C1 log(H|F|K/δ)/k +

√
(C1 + C2) log(H|F|K/δ)

H−1∑
h=1

E
(s,a)∼dπ

k,P
h (·,·)

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

h

.
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where we let C1 = H2d3|A|/(C−
S )2 +H2d2|A|2/(C−

S )2 +H4d|A|/(C−
S )2 and C2 = H4d2. Further by (23), we have

1

K

K∑
k=1

[
V π

∗

1 (s1)− V π
k

1 (s1)
]
≲
√

(C1 + C2) log(H|F|K/δ)/K ·
H−1∑
h=1

K∑
k=1

E
(s,a)∼dπ

k,P
h (·,·)

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

h

+
√
C1 log(H|F|K/δ)/K.

Moreover, we have

1

K

K∑
k=1

E
(s,a)∼dπ

k,P
h (·,·)

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

h

≤

√√√√ 1

K

K∑
k=1

E
(s,a)∼dπ

k,P
h (·,·)

∥ϕ∗h(s, a)∥
2
Σ−1

ρk
h
,ϕ∗

h

=

√√√√ 1

K

K∑
k=1

tr
(
E
(s,a)∼dπ

k,P
h (·,·)

(ϕ∗h(s, a)ϕ
∗
h(s, a)

⊤) Σ−1
ρkh,ϕ

∗
h

)
≤
√
d log(1 + kd/λk)/K ≤

√
d log(1 + c1K)/K.

where the first inequality is by Jensen’s inequality and the second inequality is by Lemma E.3 with c1 being some absolute
constant. Thus, we have

1

K

K∑
k=1

[
V π

∗

1 (s1)− V π
k

1 (s1)
]
≲
√
(C1 + C2) log(H|F|K/δ)H2d log(1 + c1K)/K +

√
C1 log(H|F|K/δ)/K

≲
√
H2d(C1 + C2) log(H|F|K/δ) log(1 + c1K)/K.

Taking union bound for all events in this proof, due to |F| ≥ |Φ|, setting

λk = c0d log(H|F|k/δ), γk = 4H
(
12
√
|A|d+

√
c0d
)
/C−

S ·
√
log(2Hk|F|/δ),

we obtain with probability at least 1− 3δ,

1

K

K∑
k=1

[
V π

∗

1 (s1)− V π
k

1 (s1)
]
≲
√
C log(H|F|K/δ) log(c′0K)/K,

where C = H4d4|A|/(C−
S )2 + H4d3|A|2/(C−

S )2 + H6d2|A|/(C−
S )2 + H6d3 and c0, c′0 are absolute constants. This

completes the proof.

D. Theoretical Analysis for Markov Game
D.1. Lemmas

Lemma D.1 (Learning Target of Contrastive Loss). For any (s, a, b) ∈ S ×A×B that is reachable under certain sampling
strategy, the learning target of the contrastive loss in (2) with setting z = (s, a, b) is

f∗h(s, a, b, s
′) =

Ph(s′|s, a, b)
P−
S (s′)

.

Proof. For any h ∈ [H], we let Pr h denote the probability for some event at the h-th step of a Markov game. The contrastive
loss in (2) with setting z = (s, a, b) implicitly assumes

Pr h(y|s, a, b, s′) =
(

f∗h(s, a, b, s
′)

1 + f∗h(s, a, b, s
′)

)y (
1

1 + f∗h(s, a, b, s
′)

)1−y

.
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In addition, by Bayes’ rule, we also have

Pr h(y|s, a, b, s′) =
Pr h(s, a, b, s

′|y) Pr h(y)∑
y∈{0,1} Pr h(s, a, b, s

′|y) Pr h(y)
=

Pr h(s, a, b, s
′|y)

Pr h(s, a, b)Ph(s′|s, a, b) + Pr h(s, a, b)P−
S (s′)

,

where we use Pr h(y) = 1/2 for any y ∈ {0, 1} according to Algorithm 4. In the last equality, we also have

Pr h(s, a, b, s
′|y = 1) = Pr h(s, a, b|y = 1)Pr h(s

′|y = 1, s, a, b) = Pr h(s, a, b)Ph(s′|s, a, b),
Pr h(s, a, b, s

′|y = 0) = Pr h(s, a, b|y = 0)Pr h(s
′|y = 0, s, a, b) = Pr h(s, a, b)P−

S (s′),

where we use Pr h(s, a, b|y = 1) = Pr h(s, a, b|y = 0) = Pr h(s, a, b) and also Pr h(s
′|y = 1, s, a, b) = Ph(s′|s, a, b),

Pr h(s
′|y = 0, s, a, b) = P−

S (s′).

Combining the above results, when y = 1 at the h-th step, we obtain

f∗h(s, a, b, s
′)

1 + f∗h(s, a, b, s
′)

=
Pr h(s, a, b)Ph(s′|s, a, b)

Pr h(s, a, b)Ph(s′|s, a, b) + Pr h(s, a, b)P−
S (s′)

,

which gives

f∗h(s, a, b, s
′) =

Ph(s′|s, a, b)
P−
S (s′)

.

Equivalently, when y = 0, we get the same result. This completes the proof.

Lemma D.2. Suppose the policies πk, νk, the estimated transition P̂k, and the bonus βk are obtained at episode k of
Algorithm 2. Let br(·) denote the best response policy given the opponent’s policy. Moreover, V σk,1(s1) denotes the value
function under any joint policy σ for the zero-sum Markov game defined by the reward function r − βk and P̂k while
V
σ

k,1(s1) denotes the value function for the zero-sum Markov game defined by r + βk and P̂k. Then, we have the following
value function differences decomposed as

V
br(νk),νk

1 (s1)− V
br(νk),νk

k,1 (s1) = E

[
H∑
h=1

(
−βkh(sh, ah, bh) + (Ph − P̂kh)V

br(νk),νk

h+1 (sh, ah, bh)
) ∣∣∣∣∣ br(νk), νk, P̂k

]
,

V
πk,br(πk)
k,1 (s1)− V

πk,br(πk)
1 (s1) = E

[
H∑
h=1

(
−βkh(sh, ah, bh)− (Ph − P̂kh)V

πk,br(πk)
h+1 (sh, ah, bh)

) ∣∣∣∣∣πk,br(πk), P̂k
]
.

Proof. Consider two zero-sum Markov games defined by (S,A,B, H, r,P) and (S,A,B, H, r + β,P′) where P and
P′ are any transition models and r and β are arbitrary reward function and bonus term. Then, for any joint policy σ,
we let Qσh and V σh be the associated Q-function and value function at the h-th step for the Markov game defined by
(S,A,B, H, r,P), and Q̃σh and Ṽ σh be the associated Q-function and value function at the h-th step for the Markov game
defined by (S,A,B, H, r + β,P′). Then, by Bellman equation, we have for any (sh, ah, bh) ∈ S ×A× B,

Qσh(sh, ah, bh)− Q̃σh(sh, ah, bh)

= −βh(sh, ah, bh) + PhV σh+1(sh, ah, bh)− P′
hṼ

σ
h+1(sh, ah, bh)

= −βh(sh, ah, bh) + PhV σh+1(sh, ah, bh)− P′
hṼ

σ
h+1(sh, ah, bh)

= −βh(sh, ah, bh) + (Ph − P′
h)V

σ
h+1(sh, ah, bh) + P′

h[V
σ
h+1(sh, ah, bh)− Ṽ σh+1(sh, ah, bh)].

Further by the Bellman equation and the above result, we have

V σh (sh)− Ṽ σh (sh)

= ⟨σh(·, ·|sh), Qσh(sh, ·, ·)− Q̃σh(sh, ·, ·)⟩

= ⟨σh(·, ·|sh),−βh(sh, ·, ·) + (Ph − P′
h)V

σ
h+1(sh, ·, ·) + P′

h[V
σ
h+1(sh, ·, ·)− Ṽ σh+1(sh, ·, ·)]⟩.
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Since V σH+1(s) = Ṽ σH+1(s) = 0 for any s ∈ S and σ, recursively applying the above relation, we have

V σ1 (s1)− Ṽ σ1 (s1) = E

[
H∑
h=1

(
−βh(sh, ah, bh) + (Ph − P′

h)V
σ
h+1(sh, ah, bh)

) ∣∣∣∣∣σ,P′

]
.

For any episode k, setting P′, σ, β to be P̂k, (br(νk), νk), βk defined in Algorithm 2 and P, r to be the true transition model
and reward function, by the above equality, according to the definition of V σh and V

σ

k,h, we obtain

V
br(νk),νk

1 (s1)− V
br(νk),νk

k,1 (s1) = E

[
H∑
h=1

(
−βkh(sh, ah, bh) + (Ph − P̂kh)V

br(νk),νk

h+1 (sh, ah, bh)
) ∣∣∣∣∣ br(νk), νk, P̂k

]
.

Moreover, setting P′, σ, β to be P̂k, (πk,br(πk)),−βk defined in Algorithm 2 and P, r to be the true transition model and
reward function, by the definition of V σh and V σh, we obtain

V
πk,br(πk)
1 (s1)− V

πk,br(πk)
k,1 (s1) = E

[
H∑
h=1

(
βkh(sh, ah, bh) + (Ph − P̂kh)V

πk,br(πk)
h+1 (sh, ah, bh)

) ∣∣∣∣∣πk,br(πk), P̂k
]
,

which leads to

V
πk,br(πk)
k,1 (s1)− V

πk,br(πk)
1 (s1) = E

[
H∑
h=1

(
−βkh(sh, ah, bh)− (Ph − P̂kh)V

πk,br(πk)
h+1 (sh, ah, bh)

) ∣∣∣∣∣πk,br(πk), P̂k
]
.

This completes the proof.

Lemma D.3. Suppose the joint policy σk, the estimated transition P̂k, and the bonus βk are obtained at episode k of
Algorithm 2. Moreover, V

k

1(s1) and V k1(s1) are the estimated value functions based on UCB and LCB obtained at episode
k of Algorithm 2. Then, their difference can be decomposed as

V
k

1(s1)− V k1(s1) = E

[
H∑
h=1

2βkh(sh, ah, bh) + (P̂kh − Ph)
(
V
k

h+1 − V kh+1

)
(sh, ah, bh)

∣∣∣∣∣σk,P
]
.

Proof. For the episode k, we consider two Markov games defined by (S,A,B, H, r+βk, P̂k) and (S,A,B, H, r−βk, P̂k).
Then, for the joint policy σk, by Algorithm 2, we have for any (sh, ah, bh) ∈ S ×A× B,

Q
k

h(sh, ah, bh)−Qk
h
(sh, ah, bh)

= 2βkh(sh, ah, bh) + P̂kh
(
V
k

h+1 − V kh+1

)
(sh, ah, bh)

= 2βkh(sh, ah, bh) + (P̂kh − Ph)
(
V
k

h+1 − V kh+1

)
(sh, ah, bh) + Ph

(
V
k

h+1 − V kh+1

)
(sh, ah, bh).

Then, we have

V
k

h(sh)− V kh(sh)

= ⟨σkh(·, ·|sh), Q
k

h(sh, ·, ·)−Qk
h
(sh, ·, ·)⟩

= 2
〈
σkh(·, ·|sh), βkh(sh, ah, bh)

〉
+
〈
σkh(·, ·|sh), (P̂kh − Ph)

(
V
k

h+1 − V kh+1

)
(sh, ·, ·)

〉
+
〈
σkh(·, ·|sh),Ph

(
V
k

h+1 − V kh+1

)
(sh, ·, ·)

〉
.

By the fact that V
k

H+1(s) = V kH+1(s) = 0 for any s ∈ S, recursively applying the above relation, we have

V
k

1(s1)− V k1(s1) = E

[
H∑
h=1

2βkh(sh, ah, bh) + (P̂kh − Ph)
(
V
k

h+1 − V kh+1

)
(sh, ah, bh)

∣∣∣∣∣σk,P
]
.

This completes the proof.
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Lemma D.4. Suppose that P̂k is the estimated transition obtained at episode k of Algorithm 2. We define ζkh−1 :=

E(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)
∥P̂kh−1(·|s′′, a′′, b′′) − Ph−1(·|s′′, a′′, b′′)∥21 for all h ≥ 2, ρ̃kh(·, ·, ·) := 1

k

∑k−1
k′=0 d̃

σk′

h (·, ·, ·) for all

h ≥ 1 with ρ̃k1(s1, a, b) = Unif(a)Unif(b), and ρ̆kh(·, ·, ·) := 1
k

∑k−1
k′=0 d̆

σk′

h (·, ·, ·) for all h ≥ 2. Then for any function
g : S ×A× B 7→ [0, B] and joint policy σ, we have for any h ≥ 2, the following inequality holds∣∣∣E

(s,a,b)∼dσ,P̂k
h (·,·,·)

[g(s, a, b)]
∣∣∣

≤
√
2kB2ζkh−1 + 2k|A||B| · E(s,a,b)∼ρ̆kh(·,·,·)

[g(s, a, b)2] + λkB2d/(C−
S )2 · E

(s′,a′,b′)∼dσ,P̂k
h−1 (·,·,·)

∥∥∥ϕ̂kh−1(s
′, a′, b′)

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

.

In addition, for h = 1, we have∣∣∣E(s,a,b)∼dσ,P
1 (·,·,·)[g(s, a, b)]

∣∣∣ =√E(a,b)∼σ1(·,·|s1)[g(s1, a, b)
2] ≤

√
|A||B|E(a,b)∼ρ̃k1 (s1,·,·)[g(s1, a, b)

2].

Proof. For any function g : S ×A×B 7→ [0, B] and any joint policy σ, under the estimated transition model P̂k at the k-th
episode, for any h ≥ 2, we have∣∣∣E

(s,a,b)∼dσ,P̂k
h (·,·,·)

[g(s, a, b)]
∣∣∣

=

∣∣∣∣E(s′,a′,b′)∼dσ,P̂k
h−1 (·,·,·),s∼P̂k

h−1(·|s′,a′,b′),(a,b)∼σh(·,·|s)
[g(s, a, b)]

∣∣∣∣
=

∣∣∣∣∣∣E(s′,a′,b′)∼dσ,P̂k
h−1 (·,·,·)

ϕ̂kh−1(s
′, a′, b′)⊤

∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

∣∣∣∣∣∣
≤ E

(s′,a′,b′)∼dσ,P̂k
h−1 (·,·,·)

∥∥∥ϕ̂kh−1(s
′, a′, b′)

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

∥∥∥∥∥∥
∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

∥∥∥∥∥∥
Σ

ρ̃k
h−1

,ϕ̂k
h−1

,

(33)

where the inequality is due to the Cauchy-Schwarz inequality. We define the covariance matrix as Σρ̃kh−1,ϕ̂
k
h−1

:=

kE(s,a,b)∼ρ̃kh−1(·,·,·)
[ϕ̂kh−1(s, a, b)ϕ̂

k
h−1(s, a, b)

⊤] + λkI with ρ̃kh−1(s, a, b) =
1
k

∑k−1
k′=0 d̃

σk′

h−1(s, a, b).

Moreover, we have∥∥∥∥∥∥
∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

∥∥∥∥∥∥
2

Σ
ρ̃k
h−1

,ϕ̂k
h−1

= k

∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤

Eρ̃kh−1

[
ϕ̂kh−1(ϕ̂

k
h−1)

⊤
]∫

S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


+ λk

∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


= kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∫
S
ϕ̂kh−1(s

′′, a′′, b′′)⊤ψ̂kh−1(s)
∑

a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


+ λk

∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


≤ kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∫
S
ϕ̂kh−1(s

′′, a′′, b′′)⊤ψ̂kh−1(s)
∑

a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

+ λkB
2d/(C−

S )2, (34)
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where the last inequality is by∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤∫
S
ψ̂kh−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

 ≤ B2d/(C−
S )2,

since 0 ≤ g(s, a, b) ≤ B and ∥
∫
S ψ̂

k
h−1(s)ds∥22 := ∥

∫
S P−

S (s)ψ̃kh−1(s)ds∥22 ≤ ∥
∫
S ψ̃

k
h−1(s)ds∥22 ≤

(
∫
S ∥ψ̃kh−1(s)∥2ds)2 ≤ d/(C−

S )2 according to the definition of the function class in Definition 3.3 and the assumption that
all states are normalized such that Vol(S) ≤ 1. In addition, we have

kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∫
S
ϕ̂kh−1(s

′′, a′′, b′′)⊤ψ̂kh−1(s)
∑

a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

≤ 2kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∫
S

(
P̂kh−1(s|s′′, a′′, b′′)− Ph−1(s|s′′, a′′, b′′)

) ∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

+ 2kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∫
S
Ph−1(s|s′′, a′′, b′′)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

≤ 2kB2ζkh−1 + 2kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∫
S
Ph−1(s|s′′, a′′, b′′)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

≤ 2kB2ζkh−1 + 2kE(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·),s∼Ph−1(·|s′′,a′′,b′′),(a,b)∼σh(·,·|s)[g(s, a, b)
2]

≤ 2kB2ζkh−1 + 2k sup
a∈A,b∈B,s∈S

σh(a, b|s)
Unif(a)Unif(b)

E(s,a,b)∼ρ̆kh(·,·,·)
[g(s, a, b)2]

= 2kB2ζkh−1 + 2k|A||B| · E(s,a,b)∼ρ̆kh(·,·,·)
[g(s, a, b)2],

(35)

where the first inequality is by (a + b)2 ≤ 2a2 + 2b2, the second inequality is by E(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

[
∫
S(P̂

k
h−1(s|s′′, a′′, b′′) − Ph−1(s|s′′, a′′, b′′))

∑
a∈A,b∈B σh(a, b|s)g(s, a, b)ds]2 ≤ B2E(s′′,a′′,b′′)∼ρ̃kh−1(·,·,·)

∥P̂kh−1(·|s′′, a′′, b′′) − Ph−1(·|s′′, a′′, b′′)∥21 ≤ B2ζkh−1, the third inequality is by Jensen’s inequality, and the
fourth inequality is by substituting the joint policy σ with the uniform distribution.

Combining (33),(34), and (35), we have for any h ≥ 2,∣∣∣E
(s,a,b)∼dσ,P̂k

h (·,·,·)
[g(s, a, b)]

∣∣∣
≤
√
2kB2ζkh−1 + 2k|A||B| · E(s,a,b)∼ρ̆kh(·,·,·)

[g(s, a, b)2] + λkB2d/(C−
S )2 · E

(s′,a′,b′)∼dσ,P̂k
h−1 (·,·,·)

∥∥∥ϕ̂kh−1(s
′, a′, b′)

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

.

On the other hand, for h = 1, we have∣∣∣E(s,a,b)∼dσ,P
1 (·,·,·)[g(s, a, b)]

∣∣∣ =√E(a,b)∼σ1(·,·|s1)[g(s1, a, b)
2] ≤

√
|A||B|E(a,b)∼ρ̃k1 (s1,·,·)[g(s1, a, b)

2],

where we let ρ̃k1(s1, a, b) = Unif(a)Unif(b) and the last inequality is by E(a,b)∼σ1(·,·|s1)[g(s1, a, b)
2] ≤

maxa,b
σ1(a,b|s1)

Unif(a)Unif(b)E(a,b)∼ρ̃k1 (s1,·,·)[g(s1, a, b)
2]. The proof is completed.

Lemma D.5. Suppose that P̂k is the estimated transition obtained at episode k of Algorithm 2. We define ρ̃kh(·, ·, ·) :=
1
k

∑k−1
k′=0 d̃

σk′

h (·, ·, ·) for all h ≥ 1 with ρ̃k1(s1, a, b) = Unif(a)Unif(b) and ρkh(·, ·, ·) := 1
k

∑k−1
k′=0 d

σk′

h (·, ·, ·) for all h ≥ 2.
Then for any function g : S ×A× B 7→ [0, B] and joint policy σ, we have for any h ≥ 2, the following inequality holds∣∣∣E(s,a,b)∼dσ,P

h (·,·,·)[g(s, a, b)]
∣∣∣

≤
√
k|A||B| · E(s,a,b)∼ρ̃kh(·,·,·)

[g(s, a, b)2] + λkB2d · E(s′,a′,b′)∼dσ,P
h−1(·,·,·)

∥∥ϕ∗h−1(s
′, a′, b′)

∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.
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In addition, for h = 1, we have∣∣∣E(s,a,b)∼dσ,P
1 (·,·,·)[g(s, a, b)]

∣∣∣ ≤√E(a,b)∼σ1(·,·|s1)[g(s1, a, b)
2] ≤

√
|A||B|E(a,b)∼ρ̃k1 (s1,·,·)[g(s1, a, b)

2].

Proof. For any function g : S ×A× B 7→ R and any joint policy σ, under the true transition model P, for any h ≥ 2, we
have∣∣∣E(s,a,b)∼dσ,P

h (·,·,·)[g(s, a, b)]
∣∣∣

=
∣∣∣E(s′,a′,b′)∼dσ,P

h−1(·,·,·),s∼Ph−1(·|s′,a′),(a,b)∼σh(·,·|s)[g(s, a, b)]
∣∣∣

=

∣∣∣∣∣∣E(s′,a′,b′)∼dσ,P
h−1(·,·,·)

ϕ∗h−1(s
′, a′, b′)⊤

∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

∣∣∣∣∣∣
≤ E(s′,a′,b′)∼dσ,P

h−1(·,·,·)
∥∥ϕ∗h−1(s

′, a′, b′)
∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

∥∥∥∥∥∥
∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

∥∥∥∥∥∥
Σ

ρk
h−1

,ϕ∗
h−1

,

(36)

where the inequality is by Cauchy-Schwarz inequality. We define the covariance matrix Σρkh−1,ϕ
∗
h−1

:=

kE(s,a,b)∼ρkh−1
[ϕ∗h−1(s, a, b)ϕ

∗
h−1(s, a, b)

⊤] + λkI with ρkh−1(s, a, b) =
1
k

∑k−1
k′=0 d

πk′

h−1(s, a, b).

Next, we have∥∥∥∥∥∥
∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

∥∥∥∥∥∥
2

Σ
ρk
h−1

,ϕ∗
h−1

= k

∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤

Eρkh−1

[
ϕ∗h−1(ϕ

∗
h−1)

⊤]∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


+ λk

∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


= kE(s′′,a′′,b′′)∼ρkh−1(·,·,·)

∫
S
ϕ∗h−1(s

′′, a′′, b′′)⊤ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


+ λk

∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


≤ kE(s′′,a′′,b′′)∼ρkh−1(·,·,·)

∫
S
ϕ∗h−1(s

′′, a′′, b′′)⊤ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

+ λkB
2d, (37)

where, by Assumption 2.1, the last inequality is due to∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

⊤∫
S
ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds


≤ B2

∣∣∣∣∫
S
ψ∗
h−1(s)ds

∣∣∣∣2
2

≤ B2d.
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Moreover, we have

kE(s′′,a′′,b′′)∼ρkh−1(·,·,·)

∫
S
ϕ∗h−1(s

′′, a′′, b′′)⊤ψ∗
h−1(s)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

= kE(s′′,a′′,b′′)∼ρkh−1(·,·,·)

∫
S
Ph−1(s|s′′, a′′, b′′)

∑
a∈A,b∈B

σh(a, b|s)g(s, a, b)ds

2

≤ kE(s′′,a′′,b′′)∼ρkh−1(·,·,·),s∼Ph−1(·|s′′,a′′,b′′),(a,b)∼σh(·,·|s)[g(s, a, b)
2]

≤ k sup
a∈A,b∈A,s∈S

σh(a, b|s)
Unif(a)Unif(b)

E(s,a,b)∼ρ̃kh(·,·,·)
[g(s, a, b)2]

= k|A||B| · E(s,a,b)∼ρ̃kh(·,·,·)
[g(s, a, b)2],

(38)

where the first inequality is due to Jensen’s inequality and the second inequality is by substituting the joint policy σ with the
uniform distribution and ρ̃kh(s, a, b) := ρkh−1(s

′, a′, b′)Ph−1(s|s′, a′, b′)Unif(a)Unif(b) for all h ≥ 2. Combining (36),(37),
and (38), we have for any h ≥ 2,∣∣∣E(s,a,b)∼dσ,P

h (·,·,·)[g(s, a, b)]
∣∣∣

≤
√
k|A||B| · E(s,a,b)∼ρ̃kh(·,·,·)

[g(s, a, b)2] + λkB2d · E(s′,a′,b′)∼dσ,P
h−1(·,·,·)

∥∥ϕ∗h−1(s
′, a′, b′)

∥∥
Σ−1

ρk
h−1

,ϕ∗
h−1

.

For h = 1, we have∣∣∣E(s,a,b)∼dσ,P
1 (·,·,·)[g(s, a, b)]

∣∣∣ ≤√E(a,b)∼σ1(·,·|s1)[g(s1, a, b)
2] ≤

√
|A||B|E(a,b)∼ρ̃k1 (s1,·,·)[g(s1, a, b)

2],

where we let ρ̃k1(s1, a, b) = Unif(a)Unif(b) and the last inequality is by E(a,b)∼σ1(·,·|s1)[g(s1, a, b)
2] ≤

maxa,b
σ1(a,b|s1)

Unif(a)Unif(b)E(a,b)∼ρ̃k1 (s1,·,·)[g(s1, a, b)
2]. The proof is completed.

Lemma D.6. Suppose at the k-th episode of Algorithm 2, πk, νk are learned policies , ιk is the CCE learning accuracy,
and V

k

1(s1) and V k1(s1) are the value functions updated as in the algorithm. Moreover, for any joint policy σ, V
σ

k,1(s1) is
the value function associated with the Markov game defined by the reward function r + βk and the estimated transition
P̂k while V σk,1(s1) is the value function associated with the Markov game defined by the reward function r − βk and the
estimated transition P̂k. Then we have

V
br(νk),νk

k,1 (s1) ≤ V
k

1(s1) +Hιk,

V
πk,br(πk)
k,1 (s1) ≥ V k1(s1)−Hιk.

Proof. We prove this lemma by induction. For the first inequality in this lemma, we have V
br(νk),νk

k,H+1 (s) = V
k

H+1(s) = 0
for any s ∈ S. Next, we assume the following inequality holds

V
br(νk),νk

k,h+1 (s) ≤ V
k

h+1(s) + (H − h)ιk.

Then, with the above inequality, by the Bellman equation, we have

Q
br(νk),νk

k,h (s, a, b)−Q
k

h(s, a, b)

= rh(s, a, b) + βkh(s, a, b) + PhV
br(νk),νk

k,h+1 (s, a, b)− rh(s, a, b)− βkh(s, a, b)− PhV
k

h+1(s, a, b)

= PhV
br(νk),νk

k,h+1 (s, a, b)− PhV
k

h+1(s, a, b) ≤ (H − h)ιk.

(39)
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Then, we have

V
br(νk),νk

k,h (s) = Ea∼br(νk)h,b∼νk
h

[
Q

br(νk),νk

k,h (s, a, b)

]
≤ Ea∼br(νk)h,b∼νk

h

[
Q
k

h(s, a, b)
]
+ (H − h)ιk

≤ E(a,b)∼σk
h

[
Q
k

h(s, a, b)
]
+ (H + 1− h)ιk

= V
k

h(s) + (H + 1− h)ιk,

where the first inequality is by (39) and the second inequality is by the definition of ιk-CCE as in Definition 4.1. Thus, we
obtain

V
br(νk),νk

k,1 (s1) ≤ V
k

1(s1) +Hιk.

For the second inequality in this lemma, we have V π
k,br(πk)
k,H+1 (s) = V kH+1(s) = 0. Then, we assume that

V
πk,br(πk)
k,h+1 (s) ≥ V kh+1(s)− (H − h)ιk.

Then, by the Bellman equation, we have

Qπ
k,br(πk)

k,h
(s, a, b)−Qk

h
(s, a, b)

= rh(s, a, b) + βkh(s, a, b) + PhV π
k,br(πk)
k,h+1 (s, a, b)− rh(s, a, b)− βkh(s, a, b)− PhV kh+1(s, a, b)

= PhV π
k,br(πk)
k,h+1 (s, a, b)− PhV kh+1(s, a, b) ≥ −(H − h)ιk.

(40)

Then, we have

V
πk,br(πk)
k,h (s) = Ea∼πk

h,b∼br(πk)h

[
Qπ

k,br(πk)

k,h
(s, a, b)

]
≥ Ea∼πk

h,b∼br(πk)h

[
Qk
h
(s, a, b)

]
− (H − h)ιk

≥ E(a,b)∼σk
h

[
Qk
h
(s, a, b)

]
− (H + 1− h)ιk

= V kh(s)− (H + 1− h)ιk,

where the first inequality is by (40) and the second inequality is by the definition of ιk-CCE as in Definition 4.1. Thus, we
obtain

V
πk,br(πk)
k,1 (s1) ≥ V k1(s1)−Hιk.

This completes the proof.

D.2. Proof of Lemma 5.2

The proof of this lemma follows from Proof of Lemma 5.1 by expanding the action space from A to A × B. In this
subsection, we briefly present the major steps of the proof.

Proof. For any function fh ∈ F , we let Prfh(y|s, a, b, s′) denote the conditional probability characterized by the function
fh at the step h, which is

Pr fh(y|s, a, b, s
′) =

(
fh(s, a, b, s

′)

1 + fh(s, a, b, s′)

)y (
1

1 + fh(s, a, b, s′)

)1−y

.

Moreover, there is

Pr fh(y, s
′|s, a, b) = Pr fh(y|s, a, b, s

′) Pr h(s
′|s, a, b) =

(
fh(s, a, b, s

′) Pr h(s
′|s, a, b)

1 + fh(s, a, b, s′)

)y (
Pr h(s

′|s, a, b)
1 + fh(s, a, b, s′)

)1−y

,



Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning

where we have

Pr h(s
′|s, a, b) = Pr h(y = 1|s, a, b) Pr h(s′|y = 1, s, a, b) + Pr h(y = 0|s, a, b) Pr h(s′|y = 0, s, a, b)

= Pr h(y = 1)Pr h(s
′|y = 1, s, a, b) + Pr h(y = 0)Pr h(s

′|y = 0, s, a, b)

=
1

2
[Ph(s′|s, a, b) + P−

S (s′)] ≥ 1

2
C−

S > 0.

(41)

Thus, we have the equivalency of solving the following two problems with fh(s, a, b, s′) = ϕh(s, a, b)
⊤ψh(s

′), which is

max
ϕh∈Φ,ψh∈Ψ

∑
(s,a,s′,y)∈Dk

h

log Pr fh(y|s, a, b, s
′) = max

ϕh,ψh

∑
(s,a,s′,y)∈Dk

h

log Pr fh(y, s
′|s, a, b). (42)

We denote the solution of (42) as ϕ̃kh and ψ̃kh such that

f̂kh (s, a, b, s
′) = ψ̃kh(s

′)⊤ϕ̃kh(s, a, b).

According to Algorithm 4, for any h ≥ 2 and k′ ∈ [k], the data (s, a, b) is sampled from both d̃σ
k′

h (·, ·, ·) and d̆σ
k′

h (·, ·, ·).
Then, by Lemma E.2, solving the contrastive loss in (2) with letting z = (s, a, b) gives, with probability at least 1− δ, for
all h ≥ 2,

k∑
k′=1

[
E
(s,a,b)∼d̃σk′

h (·,·,·)

∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV

+ E
(s,a,b)∼d̆σk′

h (·,·,·)

∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV

]
≤ 2 log(2kH|F|/δ),

which is equivalent to

E(s,a,b)∼ρ̃kh(·,·,·)

∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV

+ E(s,a,b)∼ρ̆kh(·,·,·)

∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV
≤ 2 log(2kH|F|/δ)/k, ∀h ≥ 2,

(43)

where ρ̃kh(s, a, b) =
1
k

∑k−1
k′=0 d̃

πk′

h (s, a, b) and ρ̆kh(s, a, b) =
1
k

∑k−1
k′=0 d̆

πk′

h (s, a, b). Moreover, since for h = 1, the data is

only sampled from d̃π
k′

1 (·, ·, ·) for any k′ ∈ [k], then we analogously have

E(s,a,b)∼ρ̃k1 (·,·,·)

∥∥∥Pr f̂k

1 (·, ·|s, a, b)− Pr f
∗

1 (·, ·|s, a, b)
∥∥∥2

TV
≤ 2 log(2k|F|/δ)/k. (44)

Thus, combining (43) and (44), with probability at least 1− 2δ, we have

E(s,a,b)∼ρ̃kh(·,·,·)

∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV
≤ 2 log(2kH|F|/δ)/k, ∀h ≥ 1,

E(s,a,b)∼ρ̆kh(·,·,·)

∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV
≤ 2 log(2kH|F|/δ)/k, ∀h ≥ 2,

(45)

Next, we show the recovery error bound of the transition model based on (45). We have∥∥∥Pr f̂k

h (·, ·|s, a, b)− Pr f
∗

h (·, ·|s, a, b)
∥∥∥2

TV

=
(∥∥∥Pr f̂k

h (y = 0, ·|s, a, b)− Pr f
∗

h (y = 0, ·|s, a, b)
∥∥∥

TV
+
∥∥∥Pr f̂k

h (y = 1, ·|s, a, b)− Pr f
∗

h (y = 1, ·|s, a, b)
∥∥∥

TV

)2
= 4

∥∥∥∥∥ Pr h(·|s, a, b)
1 + f̂kh (s, a, b, ·)

− Pr h(·|s, a, b)
1 + f∗h(s, a, b, ·)

∥∥∥∥∥
2

TV

= 2

[∫
s′∈S

Pr h(s
′|s, a, b) · |f∗h(s, a, b, s′)− f̂kh (s, a, b, s

′)|
[1 + f̂kh (s, a, b, s

′)] · [1 + f∗h(s, a, b, s
′)]

ds′

]2
,
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where f∗(s, a, b, s′) = P(s′|s,a,b)
P−

S (s′)
with P−

S (s′) ≥ C−
S , ∀s′ ∈ S and the second equation is due to

∥∥Pr f̂k

h (y = 0, ·|s, a, b)−

Pr f
∗

h (y = 0, ·|s, a, b)
∥∥

TV =
∥∥Pr f̂k

h (y = 1, ·|s, a, b) − Pr f
∗

h (y = 1, ·|s, a, b)
∥∥

TV =
∥∥∥ Pr h(·|s,a,b)
1+f̂k

h (s,a,b,·)
− Pr h(·|s,a,b)

1+f∗
h(s,a,b,·)

∥∥∥
TV

.

Moreover, according to Lemma C.1 and (15), we have

Pr h(s
′|s, a, b) · |f∗h(s, a, b, s′)− f̂kh (s, a, b, s

′)|
[1 + f̂kh (s, a, b, s

′)] · [1 + f∗h(s, a, b, s
′)]

=
1/2 · [Ph(s′|s, a, b) + P−

S (s′)] · |Ph(s′|s, a, b)/P−
S (s′)− f̂kh (s, a, b, s

′)|
[1 + f̂kh (s, a, b, s

′)] · [1 + Ph(s′|s, a, b)/P−
S (s′)]

=
1/2 · |Ph(s′|s, a, b)− P−

S (s′)f̂kh (s, a, b, s
′)|

1 + f̂kh (s, a, b, s
′)

≥
|Ph(s′|s, a, b)− P−

S (s′)f̂kh (s, a, b, s
′)|

4
√
d/C−

S
,

where the inequality is due to [1 + f̂kh (s, a, b, s
′)] ≤ (1 +

√
d) ≤ 2

√
d/C−

S since f̂kh (s, a, b, s
′) ≤

√
d/C−

S with d ≥ 1 and
0 < C−

S ≤ 1. Thus, combining this inequality with (45), we further have, ∀h ≥ 2,

E(s,a,b)∼ρ̃kh(·,·,·)

∥∥∥Ph(·|s, a, b)− P−
S (·)ϕ̃kh(s, a, b)⊤ψ̃kh(·)

∥∥∥2
TV

≤ 8d/(C−
S )2 · log(2kH|F|/δ)/k. (46)

Similarly, we can obtain

E(s,a,b)∼ρ̃k1 (·,·,·)

∥∥∥Ph(·|s, a, b)− P−
S (·)ϕ̃kh(s, a, b)⊤ψ̃kh(·)

∥∥∥2
TV

≤ 8d/(C−
S )2 · log(2k|F|/δ)/k,

E(s,a,b)∼ρ̆kh(·,·,·)

∥∥∥Ph(·|s, a, b)− P−
S (·)ϕ̃kh(s, a, b)⊤ψ̃kh(·)

∥∥∥2
TV

≤ 8d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2.

(47)

Now we define

ĝkh(s, a, b, s
′) := P−

S (s′)ϕ̃kh(s, a, b)
⊤ψ̃kh(s

′).

Since
∫
s′∈S ĝ

k
h(s, a, b, s

′)ds′ may not be guaranteed to be 1, to obtain an approximator of the transition model Ph lying on a
probability simplex, we should further normalize ĝkh(s, a, b, s

′). Thus, we define for all (s, a, b, s′) ∈ S ×A× B × S ,

P̂kh(s′|s, a, b) :=
ĝkh(s, a, b, s

′)

∥ĝkh(s, a, b, ·)∥1
=

ĝkh(s, a, b, s
′)∫

s′∈S ĝ
k
h(s, a, b, s

′)ds′
=

P−
S (s′)ϕ̃kh(s, a, b)

⊤ψ̃kh(s
′)∫

s′∈S P−
S (s′)ϕ̃kh(s, a, b)

⊤ψ̃kh(s
′)ds′

.

We further let

ϕ̂kh(s, a, b) := ϕ̃kh(s, a, b)
/ ∫

s′∈S P−
S (s′)ϕ̃kh(s, a, b)

⊤ψ̃kh(s
′)ds′, ψ̂kh(s

′) := P−
S (s′)ψ̃kh(s

′),

such that

P̂kh(s′|s, a, b) = ψ̂kh(s
′)⊤ϕ̂kh(s, a, b).

Next, we give the upper bound of the approximation error E(s,a,b)∼ρ̃kh(·,·,·)
∥P̂kh(·|s, a, b)− Ph(·|s, a, b)∥2TV. We have

E(s,a,b)∼ρ̃kh(·,·,·)
∥P̂kh(·|s, a, b)− Ph(·|s, a, b)∥2TV

≤ 2E(s,a,b)∼ρ̃kh(·,·,·)
∥P̂kh(·|s, a, b)− ĝkh(s, a, b, ·)∥2TV + 2E(s,a,b)∼ρ̃kh(·,·,·)

∥ĝkh(s, a, b, ·)− Ph(·|s, a, b)∥2TV

≤ 2E(s,a,b)∼ρ̃kh(·,·,·)
∥P̂kh(·|s, a, b)− ĝkh(s, a, b, ·)∥2TV + 16d/(C−

S )2 · log(2kH|F|/δ)/k,

(48)
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where the first inequality is by (x+ y)2 ≤ 2x2 + 2y2 and the last inequality is by (46). Moreover, we have

E(s,a,b)∼ρ̃kh(·,·,·)
∥P̂kh(·|s, a, b)− ĝkh(s, a, b, ·)∥2TV

= E(s,a,b)∼ρ̃kh(·,·,·)

∥∥∥∥ ĝkh(s, a, b, s
′)

∥ĝkh(s, a, b, ·)∥1
− ĝkh(s, a, b, ·)

∥∥∥∥2
TV

=
1

4
E(s,a,b)∼ρ̃kh(·,·,·)

(
∥ĝkh(s, a, b, ·)∥1 − 1

)2
≤ 1

4
E(s,a,b)∼ρ̃kh(·,·,·)

(
∥ĝkh(s, a, b, ·)− Ph(·|s, a, b)∥1 + ∥Ph(·|s, a, b)∥1 − 1

)2
≤ 1

4
E(s,a,b)∼ρ̃kh(·,·,·)

∥ĝkh(s, a, b, ·)− Ph(·|s, a, b)∥21

= E(s,a,b)∼ρ̃kh(·,·,·)
∥ĝkh(s, a, b, ·)− Ph(·|s, a, b)∥2TV ≤ 8d/(C−

S )2 · log(2kH|F|/δ)/k.

Combining the above inequality with (22), we eventually obtain

E(s,a,b)∼ρ̃kh(·,·,·)
∥P̂kh(·|s, a, b)− Ph(·|s, a, b)∥2TV ≤ 32d/(C−

S )2 · log(2kH|F|/δ)/k, ∀h ≥ 1.

Thus, we similarly have

E(s,a,b)∼ρ̆kh(·,·,·)
∥P̂kh(·|s, a, b)− Ph(·|s, a, b)∥2TV ≤ 32d/(C−

S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2.

The above three inequalities hold with probability at least 1− 2δ. This completes the proof.

D.3. Proof of Theorem 4.2

Proof. We define two auxiliary MGs respectively by reward function r+ βk and transition model P̂k, and r− βk, P̂k. Then
for any joint policy σ, let V

σ

k,h and V σk,h be the associated value functions on the two auxiliary MGs respectively. We first

decompose the instantaneous regret term V
br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1) as follows

V
br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1)

= V
br(νk),νk

1 (s1)− V
br(νk),νk

k,1 (s1)︸ ︷︷ ︸
(i)

+V
br(νk),νk

k,1 (s1)− V
k

1(s1)︸ ︷︷ ︸
(ii)

+V
k

1(s1)− V k1(s1)︸ ︷︷ ︸
(iii)

+ V k1(s1)− V
πk,br(πk)
k,1 (s1)︸ ︷︷ ︸

(iv)

+V
πk,br(πk)
k,1 (s1)− V

πk,br(πk)
1 (s1)︸ ︷︷ ︸

(v)

.

(49)

Terms (ii) and (iv) depict the planning error on two auxiliary Markov games. According to Lemma D.6, we have

V
br(νk),νk

k,1 (s1) ≤ V
k

1(s1) +Hιk,

V
πk,br(πk)
k,1 (s1) ≥ V k1(s1)−Hιk,

where ιk is the learning accuracy of CCE. Thus, together with (49), we have

V
br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1)

= V
br(νk),νk

1 (s1)− V
br(νk),νk

k,1 (s1)︸ ︷︷ ︸
(i)

+V
k

1(s1)− V k1(s1)︸ ︷︷ ︸
(iii)

+V
πk,br(πk)
k,1 (s1)− V

πk,br(πk)
1 (s1)︸ ︷︷ ︸

(v)

+2Hιk. (50)

Thus, to bound the term V
br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1), we only need to bound the terms (i), (iii), and (v) as in (50).



Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning

To bound term (i), by Lemma D.2, we have

(i) = V
br(νk),νk

1 (s1)− V
br(νk),νk

k,1 (s1)

= E

[
H∑
h=1

(
−βkh(sh, ah, bh) + (Ph − P̂kh)V

br(νk),νk

h+1 (sh, ah, bh)
) ∣∣∣∣∣br(νk), νk, P̂k

]

≤ E

[
H∑
h=1

(
−βkh(sh, ah, bh) +H∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1

) ∣∣∣∣∣ br(νk), νk, P̂k
]
,

(51)

where the first inequality is by the fact sups∈S
∣∣V br(νk),νk

h+1 (s)
∣∣ ≤ H . Next, we bound E

[∑H
h=1 ∥Ph(·|sh, ah, bh)

− P̂kh(·|sh, ah, bh)∥1
∣∣br(νk), νk, P̂k]. Note that for ∥Ph(·|sh, ah, bh) − P̂kh(·|sh, ah, bh)∥1, we have a trivial bound

∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1 ≤ 2. Furthermore, by Lemma D.4, we have

E

[
H∑
h=1

∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1

∣∣∣∣∣ br(νk), νk, P̂k
]

=

H∑
h=1

E
(sh,ah,bh)∼dbr(νk),νk,P̂k

h (·,·,·)
[∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1]

=

H∑
h=2

√
8kζkh−1 + 2k|A||B|E(s,a,b)∼ρ̆kh(·,·,·)

[∥Ph(·|s, a, b)− P̂kh(·|s, a, b)∥21] + 4λkd/(C
−
S )2 · E

d
br(νk),νk,P̂k
h−1

∥∥∥ϕ̂kh−1

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

+
√

|A||B|E(a,b)∼ρ̃k1 (s1,·,·)[∥P1(·|s1, a, b)− P̂k1(·|s1, a, b)∥21]

=

H∑
h=2

√
8kζkh−1 + 2k|A||B|ξkh + 4λkd/(C

−
S )2 · E

(s,a,b)∼dbr(ν
k),νk,P̂k

h−1 (·,·,·)

∥∥∥ϕ̂kh−1(s, a, b)
∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

+
√
|A||B|ζk1 ,

where the last equation is by the below definitions for all (h, k) ∈ [H]× [K],

ζkh := E(s,a,b)∼ρ̃kh(·,·,·)
[∥P1(·|s, a, b)− P̂k1(·|s, a, b)∥21],

ξkh := E(s,a,b)∼ρ̆kh(·,·,·)
[∥Ph(·|s, a, b)− P̂kh(·|s, a, b)∥21],

(52)

whose upper bound will be characterized later. Thus, the above results imply that

E

[
H∑
h=1

H∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1

∣∣∣∣∣br(νk), νk, P̂k
]

≤ min

H
√
|A||B|ζk1 +

H∑
h=2

H
√

8kζkh−1 + 2k|A||B|ξkh + 4λkd/(C
−
S )2 · E

d
br(νk),νk,P̂k
h−1

∥∥∥ϕ̂kh−1

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

, 2H2

 .
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On the other hand, we bound E[
∑H
h=1 −βkh(sh, ah, bh) |br(νk), νk, P̂k] in (51). We have

E

[
H∑
h=1

−βkh(sh, ah, bh)
∣∣∣∣ br(νk), νk, P̂k

]

= E

[
H∑
h=1

−min{γk∥ϕ̂kh(sh, ah, bh)∥(Σ̂k
h)

−1 , 2H}
∣∣∣∣br(νk), νk, P̂k

]

≤ E

[
H∑
h=1

−min

{
3

5
γk∥ϕ̂kh(sh, ah, bh)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H

} ∣∣∣∣br(νk), νk, P̂k
]

= −min

{
3

5
γk

H∑
h=1

E
(s,a,b)∼dbr(ν

k),νk,P̂k
h (·,·,·)

∥ϕ̂kh(s, a, b)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H2

}

≤ −min

{
3

5
γk

H−1∑
h=1

E
(s,a,b)∼dbr(ν

k),νk,P̂k
h (·,·,·)

∥ϕ̂kh(s, a, b)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H2

}
,

(53)

when λk ≥ c0d log(H|Φ|k/δ) with probability at least 1− δ. The first inequality is by Lemma E.1 for all h ∈ [H]. Thus,
plugging in the above results into (51), for a sufficient large c0, setting

λk ≥ c0d log(H|Φ|k/δ), γk ≥ 5

3
H
√
8kζkh−1 + 2k|A||B|ξkh + 4λkd/(C

−
S )2, (54)

we have that

(i) = V
br(νk),νk

1 (s1)− V
br(νk),νk

1 (s1) ≤
√
|A||B|ζk1 , (55)

where the inequality is due to min{x+ y, 2H2} −min{y, 2H2} ≤ x, ∀x, y ≥ 0.

On the other hand, we prove the upper bound for term (v). Specifically, by Lemma D.2, we have

(v) = V
πk,br(πk)
1 (s1)− V

πk,br(πk)
1 (s1)

= E

[
H∑
h=1

(
−βkh(sh, ah, bh)− (Ph − P̂kh)V

πk,br(πk)
h+1 (sh, ah, bh)

) ∣∣∣∣∣πk,br(πk), P̂k
]

≤ E

[
H∑
h=1

(
−βkh(sh, ah, bh) +H∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1

) ∣∣∣∣∣πk,br(πk), P̂k
]
,

(56)

where the first inequality is by the fact sups∈S
∣∣V πk,br(πk)
h+1 (s)

∣∣ ≤ H . Next, for ∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1, we
have a trivial bound ∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1 ≤ 2. In addition, by Lemma D.4, we obtain

E

[
H∑
h=1

∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1

∣∣∣∣∣πk,br(πk), P̂k
]

=

H∑
h=1

E
(sh,ah,bh)∼dπ

k,br(πk),P̂k
h (·,·,·)

[∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1]

=

H∑
h=2

√
8kζkh−1 + 2k|A||B|ξkh + 4λkd · E

(s,a,b)∼dπ
k,br(πk),P̂k

h−1 (·,·,·)

∥∥∥ϕ̂kh−1(s, a, b)
∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

+
√

|A||B|ζk1 ,

where the last equation is by the definitions of ζkh and ξkh in (52). Thus, the above results imply that

E

[
H∑
h=1

H∥Ph(·|sh, ah, bh)− P̂kh(·|sh, ah, bh)∥1

∣∣∣∣∣πk,br(πk), P̂k
]

≤ min

H
√
|A||B|ζk1 +

H∑
h=2

H
√
8kζkh−1 + 2k|A||B|ξkh + 4λkd · E

d
πk,br(πk),P̂k
h−1

∥∥∥ϕ̂kh−1

∥∥∥
Σ−1

ρ̃k
h−1

,ϕ̂k
h−1

, 2H2

 .
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On the other hand, we bound E[
∑H
h=1 −βkh(sh, ah, bh) |πk,br(πk), P̂k] in (56). Analogous to (53), we can obtain

E

[
H∑
h=1

−βkh(sh, ah, bh)
∣∣∣∣πk,br(πk), P̂k

]
≤ −min

{
3

5
γk

H−1∑
h=1

E
(s,a,b)∼dπ

k,br(πk),P̂k
h (·,·,·)

∥ϕ̂kh(s, a, b)∥Σ−1

ρ̃k
h
,ϕ̂k

h

, 2H2

}
,

when λk ≥ c0d log(H|Φ|k/δ) with probability at least 1− δ. Thus, plugging in the above results into (56), setting λk and
γk as in (54), we have

(v) = V
πk,br(πk)
1 (s1)− V

πk,br(πk)
1 (s1) ≤

√
|A||B|ζk1 , (57)

where the inequality is due to min{x+ y, 2H2} −min{y, 2H2} ≤ x, ∀x, y ≥ 0.

Now we have proved the near-optimism and near-pessimism in (55) and (57) respectively, which extends the related result
for single-agent MDPs.

Next, we show the upper bound of the term (iii) in (49). By Lemma D.3, we have

(iii) = V
k

1(s1)− V k1(s1) = E

[
H∑
h=1

2βkh(sh, ah, bh) + (P̂kh − Ph)
(
V
k

h+1 − V kh+1

)
(sh, ah, bh)

∣∣∣∣∣σk,P
]

≤ 2

H∑
h=1

E
(s,a,b)∼dσ

k,P
h (·,·,·)

[βkh(s, a, b)] + 6H2
H∑
h=1

E
(s,a,b)∼dσ

k,P
h (·,·,·)

[∥Pkh(·|s, a, b)− Ph(·|s, a, b)∥1]

(58)

where the above inequality is due to sups∈S |V kh(s)| ≤ H(1 + 2H) ≤ 3H2 and sups∈S |V kh(s)| ≤ H(1 + 2H) ≤ 3H2.
By Lemma D.5, since sups∈S,a∈A,b∈B β

k
h(s, a, b) ≤ 2H according to the definition of βkh in Algorithm 2, we have

H∑
h=1

E
(s,a,b)∼dσ

k,P
h (·,·,·)

[βkh(s, a, b)]

≤
√
|A||B|E(a,b)∼ρ̃k1 (s1,·,·)[β

k
1 (s1, a, b)

2] +

H∑
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k|A||B|E(s,a,b)∼ρ̃kh(·,·,·)
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k
1(s1, a, b)∥2(Σ̂k
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+
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,

where the second inequality is due to βkh(s, a, b) ≤ ∥ϕ̂kh(s, a, b)∥(Σ̂k
h)

−1 . Furthermore, we have that with λk ≥
c0d log(H|Φ|k/δ), with probability at least 1− δ, for all h ∈ [H],

E(s,a,b)∼ρ̃kh(·,·,·)
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}
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tr(I) =

3d

k
,

where the first inequality is by Lemma E.1. Combining the above results, we have the following inequality holds with
probability at least 1− δ,

H∑
h=1

E
(s,a,b)∼dσ

k,P
h (·,·,·)

[βkh(s, a, b)]

≤
√
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.

(59)



Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning

Further by Lemma D.5, due to ∥Ph(·|s, a, b)− P̂kh(·|s, a, b)∥1 ≤ 2, we have

H∑
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E
(s,a,b)∼dσ

k,P
h (·,·,·)

[∥Ph(·|s, a, b)− P̂kh(·|s, a, b)∥1]
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. (60)

Therefore, combining (58), (59), and (60), we obtain

(iii) ≤
(
2
√
3d|A||B|γ2k/k + 6H2

√
|A||B|ζk1

)
(61)

+
H∑
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2
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h−1 (·,·,·)
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ρk
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,ϕ∗
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.

We characterize the upper bound of ζkh and ξkh as defined in (52). According to Lemma 5.2, we have with probability at least
1− 2δ,

ζkh ≤ 32d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 1,

ξkh ≤ 32d/(C−
S )2 · log(2kH|F|/δ)/k, ∀h ≥ 2,

(62)

Plugging (62) and (54) into (55),(57), and (61), we obtain

(i) = V
br(νk),νk

1 (s1)− V
br(νk),νk

k,1 (s1) ≲
√
d|A||B|/(C−
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,

where we let C1 = H2d3|A||B|/(C−
S )2 +H2d2|A|2|B|2/(C−

S )2 +H4d|A||B|/(C−
S )2 and C2 = H4d2. Further by (50),

we have
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Moreover, we have
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where the first inequality is by Jensen’s inequality and the second inequality is by Lemma E.3 with c1 being some absolute
constant. Thus, we have

1

K

K∑
k=1

[
V

br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1)

]
≲
√
H2/K +

√
H2d(C1 + C2) log(H|F|K/δ) log(1 + c1K)/K.

Taking union bound for all events in this proof, due to |F| ≥ |Φ|, letting

λk = c0d log(H|F|k/δ), γk = 4H
(
12
√
|A||B|d+

√
c0d
)
/C−

S ·
√
log(2Hk|F|/δ), ιk ≤ O(

√
1/k),

we have with probability at least 1− 3δ,

1

K

K∑
k=1

[
V

br(νk),νk

1 (s1)− V
πk,br(πk)
1 (s1)

]
≲
√
C log(H|F|K/δ) log(c′0K)/K,

where C = H4d4|A||B|/(C−
S )2 +H4d3|A|2|B|2/(C−

S )2 +H6d2|A||B|/(C−
S )2 +H6d3 and c0, c′0 are absolute constants.

This completes the proof.

E. Other Supporting Lemmas
Lemma E.1 (Concentration of Inverse Covariances (Zanette et al., 2021)). Let µi be the conditional distribution of ϕ given
the sampled ϕ1, · · · , ϕi−1 with ∥ϕi∥2 ≤ 1 holding for ϕi as the realization of ϕ. Let Λ = 1

k

∑k
i=1 Eϕ∼µi [ϕϕ

⊤]. Then there
exists an absolute constant c0 > 0. If λ ≥ c0d log(|Φ|k/δ), we have with probability at least 1− δ, for all k ≥ 1,

3

5
(kΛ + λI)−1 ⪯

(
k∑
i=1

ϕiϕ
⊤
i + λI

)−1

⪯ 3(kΛ + λI)−1.

Proof. The proof of this lemma is adapted from Lemma 39 in Zanette et al. (2021). Further applying Lemma 39 of Zanette
et al. (2021) to all the elements in the function class Φ, we obtain Lemma E.1. This completes the proof.

Lemma E.2 (Agarwal et al. (2020)). Let F be a function class with |F| <∞ and f∗ ∈ F where

f∗(x, z) = P ∗(z|x)

is some conditional distribution. Given a dataset D := {(xi, zi)}k−1
i=0 , let Ti be some distribution that is dependent on

{(xi′ , zi′)}i−1
i′=0 for all i ≤ k. Suppose xi ∼ Ti and zi ∼ P ∗(·|x) = f∗(x, ·) for all i ≤ k. Then, we have with probability

at least 1− δ,

k−1∑
i=0

Ex∼Ti
∥f̂(x, ·)− f∗(x, ·)∥2TV ≤ 2 log(k|F|/δ),

where

f̂ := argmax
f∈F

∑
(x,z)∈D

log f(x, z).

Lemma E.3 (Uehara et al. (2021); Jin et al. (2020)). For i = 1, . . . , k, Σi := Σi−1 +Gi where Σ0 = λI with λ > 0 and
Gi ∈ Rd×d is a positive semidefinite matrix with eigenvalues upper bounded by 1 and tr(Gi) ≤ C2 for some C > 0. Then,
we have the following inequality

k∑
i=1

tr(GiΣ
−1
i−1) ≤ 2 log det(Σk)− 2 log det(λI) ≤ d log(1 + kC2d/λ).
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F. Additional Experimental Results
In this section, we present the additional experimental results. In Table 2, we report the human normalized scores for all
the algorithms under all the tasks of Atari 100K. In Figure 2, we follow Agarwal et al. (2021) and report the stratified
bootstrap of experiments, which consists of the 95% confidence intervals (CIs) of median, interquartile mean (IQM), mean,
and optimality gap, over the 26 Atari 100K tasks. Here IQM is the 25% trimmed mean obtained by discarding the top and
bottom 25% score and calculating the mean. See Agarwal et al. (2021) for details. According to Figure 2, our proposed
SPR-UCB performs similarly to SPR on average, without the top 5% scores. Nevertheless, we remark that SPR-UCB
outperforms SPR significantly on some hard exploration tasks (Taiga et al., 2020), including PrivateEye, Frostbite, and
Freeway, as shown in Table 2.

0.15 0.30 0.45
SimPLe

DER
OTR

CURL
DrQ

DrQ(ε)
SPR

SPR-UCB
Median

0.1 0.2 0.3 0.4

IQM

0.2 0.4 0.6 0.8

Mean

0.6 0.7 0.8

Optimality Gap

Human Normalized ScoreFigure 2. Stratified Bootstrap (Agarwal et al., 2021) of experiments, with 95% confidence intervals (CIs) based on 26 Atari 100K tasks.
Higher mean, median, interquartile mean (IQM), and lower optimality gap a better. See Agarwal et al. (2021) for details. The results for
baseline algorithms are collected from the report by Agarwal et al. (2021). The results for SPR-UCB are based on 10 runs per game.

Table 2. Table of the comparison of human normalized scores over tasks of Atari 100K. The scores of baselines are adopted from Agarwal
et al. (2021), which runs each method over 100 seeds. We follow Agarwal et al. (2021) and evaluate the scores of SPR-UCB by evaluating
the final policy obtained by SPR-UCB over 100 episodes. Highlighted scores are the highest and second highest among all algorithms.

CURL OTR DER SIMPLE DRQ DRQ(ϵ) SPR SPR-UCB

ALIEN 0.0700 0.0497 0.0833 0.0564 0.0734 0.0924 0.0890±0.03 0.0997±0.02
AMIDAR 0.0630 0.0420 0.0701 0.0399 0.0516 0.0770 0.1015±0.02 0.0973±0.02
ASSAULT 0.5360 0.2088 0.6525 0.5866 0.4949 0.6875 0.6605±0.11 0.6729±0.07
ASTERIX 0.0431 0.0150 0.0392 0.1107 0.0393 0.0668 0.0907±0.02 0.0965±0.01
BANKHEIST 0.0692 0.0552 0.2318 0.0271 0.1884 0.2960 0.4483±0.29 0.3011±0.36
BATTLEZONE 0.1906 0.0798 0.1900 0.0480 0.2355 0.2241 0.3582±0.14 0.3663±0.09
BOXING 0.0708 0.1284 -0.0340 0.6375 0.5443 0.7452 2.9667±1.19 3.4332±0.94
BREAKOUT 0.0297 0.2216 0.2609 0.5099 0.4759 0.6272 0.6208±0.46 0.7245±0.47
CHOPPERCOMMAND -0.0042 0.0003 0.0175 0.0256 -0.0028 0.0051 0.0206±0.04 0.0041±0.04
CRAZYCLIMBER -0.0649 0.1684 0.9473 2.0681 0.4476 0.4295 1.0348±0.48 1.2936±0.62
DEMONATTACK 0.2718 0.2911 0.2614 0.0308 0.5445 0.6429 0.2010±0.07 0.2214±0.10
FREEWAY 0.9550 0.3877 0.7046 0.5637 0.6006 0.6843 0.6512±0.47 0.9592±0.11
FROSTBITE 0.2720 0.0374 0.1887 0.0402 0.1037 0.2223 0.2589±0.26 0.5591±0.15
GOPHER 0.0665 0.1308 0.0972 0.1574 0.1673 0.1689 0.1870±0.11 0.1666±0.05
HERO 0.1329 0.1654 0.1745 0.0547 0.0905 0.1054 0.1621±0.07 0.2096±0.09
JAMESBOND 1.1032 0.2156 0.9009 0.2610 0.8136 1.1691 1.2326±0.23 1.2124±0.20
KANGAROO 0.2307 0.0994 0.1776 -0.0003 0.3092 0.3474 1.1952±1.08 1.0553±0.96
KRULL 1.3595 1.9278 1.5540 0.5685 2.3732 2.6268 1.9519±0.43 2.4225±0.23
KUNGFUMASTER 0.3513 0.2848 0.2812 0.6497 0.3068 0.4987 0.6462±0.32 0.8126±0.27
MSPACMAN 0.1139 0.0904 0.1325 0.1765 0.1047 0.1371 0.1522±0.05 0.1557±0.06
PONG 0.0627 0.5168 0.3113 0.9495 0.1827 0.3298 0.4331±0.30 0.4007±0.23
PRIVATEEYE 0.0008 0.0005 0.0007 0.0001 0.0000 -0.0003 0.0009±0.00 0.0011±0.00
QBERT 0.0424 0.0292 0.1211 0.0846 0.0580 0.1239 0.0528±0.04 0.0606±0.04
ROADRUNNER 0.6376 0.3313 1.5104 0.7186 1.1123 1.4297 1.5576±0.64 2.0051±0.53
SEAQUEST 0.0059 0.0049 0.0056 0.0146 0.0058 0.0068 0.0117±0.00 0.0134±0.00
UPNDOWN 0.1893 0.1611 0.2277 0.2524 0.2765 0.3397 0.9253±1.44 0.6941±0.59

AVERAGE 0.2615 0.2171 0.3503 0.3320 0.3691 0.4647 0.6158±0.32 0.6938±0.24


