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Abstract

In this paper, we study nonconvex tensor robust
principal component analysis (RPCA) based on
the ¢t-SVD. We first propose an alternating pro-
jection method, i.e., APT, which converges lin-
early to the ground-truth under the incoherence
conditions of tensors. However, as the projec-
tion to the low-rank tensor space in APT can be
slow, we further propose to speedup such a pro-
cess by utilizing the property of the tangent space
of low-rank. The resulting algorithm, i.e., EAPT,
is not only more efficient than APT but also keeps
the linear convergence. Compared with existing
tensor RPCA works, the proposed method, espe-
cially EAPT, is not only more effective due to
the recovery guarantee and adaption in the trans-
formed (frequency) domain but also more efficient
due to faster convergence rate and lower iteration
complexity. These benefits are also empirically
verified both on synthetic data, and real appli-
cations, e.g., hyperspectral image denoising and
video background subtraction.

1. Introduction

A tensor is a multidimensional array that can model the
linear and multilinear relationships in the data. Tensor re-
lated methods have been widely used in many areas such as
recommender systems (Candes & Recht, 2009), computer
vision (Zhang et al., 2014), and signal processing (Cichocki
et al., 2015). For example, a hyperspectral image with multi-
ple bands can be naturally represented as a three-way tensor
with the column, row, and spectral bands; a grayscale video
is indexed by two spatial variables and one temporal vari-
able. All these examples are the three-way tensors, which
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are the focus of this paper.

Analogous to robust PCA (Candes et al., 2011), tensor ro-
bust PCA (Huang et al., 2015; Lu et al., 2016; Anandkumar
etal., 2016; Lu et al., 2019) attempts to recover a low-rank
tensor that best approximates grossly corrupted observa-
tions. While there are many works for matrix RPCA (Wright
et al., 2009; Netrapalli et al., 2014; Yi et al., 2016; Xu
et al., 2010), these matrix techniques cannot be directly
adopted for tensors as the tensor rank is more complicated
than matrices. Typically, to impose a low-rank structure in
the tensor RPCA, CP and Tucker decompositions (Kolda
& Bader, 2009) factorize a tensor into low-rank matrices
and are used in methods such as RTD (Anandkumar et al.,
2016). Besides, Tensor-Train decomposition (Oseledets,
2011), which approximates a higher order tensor with a
collection of small three-way tensors, has been applied to
tensor RPCA in TTNN (Yang et al., 2020). Furthermore, a
convex-optimization-based tensor decomposition approach,
called overlapped approach (Gandy et al., 2011; Liu et al.,
2012; Tomioka et al., 2010), which penalizes each unfolding
matrices from the original tensor using the nuclear norm, is
considered in SNN (Huang et al., 2015).

All the above decompositions consider low-rank structure
in the time domain. However, many applications (Chang,
1966; Rao et al., 2010) show that the structures in the fre-
quency domain is important as well. For example, both
SVD truncation and high-frequency filtering can remove
noise from an image. For tensor decomposition, there exists
a method called £-SVD (Kilmer & Martin, 2011) that can
take advantage of structures in both the time domain and fre-
quency domain. ¢-SVD first conducts fast Fourier transfor-
mation (FFT) on the tube fibers of a tensor. This operation
converts the tensor from the time domain to the frequency
domain. In this way, the high- and low-frequency informa-
tion of a tensor is separated, while the low-rank structure of
a tensor is preserved in this process. Recently, transformed
t-SVD (Kernfeld et al., 2015; Kilmer et al., 2021) extends
the FFT in £-SVD to a general unitary transformation, where
the main superiority is that the transformed tensor may have
lower multi-rank by using suitable unitary transformation.
Extensive numerical examples have shown its effectiveness
in many applications (Zhang & Ng, 2021; Lu, 2021; Song
et al., 2020a).

Because of the aforementioned benefits, there emerges
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Table 1. Comparison of various tensor RPCA methods based on (transformed) ¢-SVD. “transformed”: whether base on transformed
t-SVD; “v”’: the corresponding method has such a property or uses such a technique; “X”: the corresponding method does not have such a
property or use such a technique. The computational complexity is calculated on a tensor in R™*"™*? with multi-rank r (s, = Y &, 7).

effectiveness (recovery performance) efficiency (optimization time)
t-SVD methods i i i
methods transformed | rank recovery convergence iteration complexity
guarantee rate FFT DCT
TRPCA (Lu et al., 2019) X tubal v O(Y/e) | O (n*qlogq+ n’q) —
ETRPCA (Gao et al., 2020) X tubal X X O (n’qlog g + n’q) —
T-TRPCA (Lu, 2021) v tubal v/ O(1/e) — O(n*¢* 4+ nq)
APT v multi v O (log(Y/e)) | O(n*qlogq+n3q) | O(n*¢* +n’q)
EAPT v multi 4 O (log(1/e)) | O(n*qlog q +n?s.) | O(n’q® 4+ n’s,)

works trying to solve tensor RPCA based on ¢-SVD (Lu
et al., 2019; Gao et al., 2020; Lu, 2021). TRPCA (Lu et al.,
2019) proposes a new tensor nuclear norm and solves a
convex optimization objective for tensor RPCA with alter-
nating direction method of multipliers (ADMM) (Gabay &
Mercier, 1976) and possesses statistical recovery guaran-
tee. However, TRPCA penalizes all singular values equally,
which does not fully utilize the information in large singular
values. So ETRPCA (Gao et al., 2020) introduces weighted
tensor Schatten p-norm to make large singular values shrink
less. Transformed TRPCA (T-TRPCA) (Lu, 2021) extends
TRPCA with a new nuclear norm derived from transformed
t-SVD. Same as TRPCA, T-TRPCA also has statistical re-
covery guarantee. All these works, summarized in Table 1,
are based on the tubal rank, which cannot comprehensively
capture the difference in low- and high-frequency informa-
tion in transformed tensors. Also, these methods cannot be
efficient and effective at the same time.

In this paper, we propose two alternating projection algo-
rithms for tensor RPCA, i.e., APT and EAPT, based on
transformed ¢-SVD. Both our methods have recovery guar-
antee and linear convergence rate. Moreover, by utilizing
properties of the tangent of space of low-rank tensors, EAPT
avoids ¢-SVD on a full-sized tensor. When considering
multi-rank, our methods can adaptively keep important in-
formation in the frequency domain. The main contributions
of our method are as follows.

* We study nonconvex tensor robust PCA based on trans-
formed t-SVD and propose two alternating projection
algorithms, i.e., APT and EAPT. Specifically, EAPT is
more efficient since it utilizes the tangent space of low-
rank tensor to reduce iteration complexity.

* As far as we know, our work is the first to prove the
exact recovery guarantee for nonconvex tensor RPCA
with ¢-SVD decomposition. Specially, we show that linear
convergence to the ground-truth can be guaranteed under
suitable tensor incoherence conditions.

» Experiments on synthetic data and real data applications,
e.g., hyperspectral image denoising and video background

subtraction, demonstrate both efficiency and effectiveness
of our methods.

Notations Scalars and vectors are denoted as lowercase
letters and bold lowercase letters respectively, e.g., x and
x. Bold capital letters and calligraphic letters denote the
matrices and tensors, respectively, e.g., X and X. The
real and complex Euclidean spaces are denoted as R and
C, respectively. Superscript H and 7' denote conjugate
transpose and transpose respectively. A < B means A <
¢B for some positive number c.

For a three-way tensor X € C™*"*4_ its (i, j, k)-th en-
try is denoted as X;;;, and the MATLAB notations X'(i, :
,1), X(:,4,:) and X (:,:, ) are used to denote the i-th hori-
zontal, lateral, and frontal slice of X, respectively. A tube
fiber of a three-way tensor is defined as X (4, j,:) where
the first two indices of X are fixed. The inner product
between two tensors X and ) in C™*"™*4 is defined as
(x,¥) = Zijt X;jtYiji. We denote the Frobenius norm
of atensor as | X||p = v/(X, X). The ¢1-norm is defined
as [|X|l1 = >_,;; |Xij¢| and the infinity norm [|X'[| is de-
noted as || X|| o = max;;; |X;;¢|. The Euclidean projection
operator P is defined as P (X) = argminycq ||V — X|| 7.

2. Preliminaries

In this section, we introduce basic facts about ¢-SVD (Kern-
feld et al., 2015; Kilmer et al., 2021), which will be used in
the subsequent sections. Specifically, we focus on three-way
tensor in this paper. More related facts about tensor-tensor
product are given in the Appendix B.

For any three-way tensor X € C™*"*4 and any unitary
matrix & € C7%9, Xy denotes a three-way tensor with each
tube fiber multiplied by @, i.e.,

Xop(i,§,)=®-X(i,5,),i=1...mj=1...n. (1)

Also, Xg is often denoted as ®[X] for simplicity. The
block-diagonal matrix representation of a three-way tensor
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X defined as

)E‘@(:a :aq)

The conjugate transpose of a tensor X € C™*"*4 is de-
noted as X with X f{ = X The spectral norm of X is
defined as || X || = || X|| and denoted as || X'|| for simplicity.

Similar to the ¢-product in Fourier domain (Kilmer & Mar-
tin, 2011), the result Z € C™1*"3*4 of tensor-tensor prod-
uct (Kilmer et al., 2021; Kernfeld et al., 2015) between
two tensors X € Cm1*"2Xq gpnd Y € C"2X"3X4q with
any unitary transformation ® is given by Z = X ¢g Y =
&1 [fold (X - V)] where fold (X¥) = Xp = [X].

Transformed ¢-SVD and tensor rank are described in the
following Definitions 2.1 and 2.2 respectively. Note that
t-SVD is a special case of transformed ¢-SVD by setting
® = F/,/q where F is a DFT matrix.

Definition 2.1 (Kernfeld et al. 2015). For any X €
C™m*mx4q _the transformed t-SVD is given by X = Uo4 S0
VH where ld € C™*™*4 ) € C"*"*4 are unitary tensors
with respect to the transformation ¢, and § € C™*"*4 is a
diagonal tensor. And the singular value of X is defined as
S@(Li,C), where 1 < ¢ <min(m,n)and 1 < ¢ <gq.
Definition 2.2 (tensor rank (Kilmer et al., 2021)). The multi-
rank of a tensor X € C™*"*4? js a vector r € RY, ie.,
rank,, (X) = r, with its i-th entry being the rank of the i-th
frontal slice X4 (:, :,7) of Xy, ie., r; = rank(Xg (s, :,1)).
Let ¥ = U o5 S o V. The tubal rank of X, denoted
by ranky:(X), is defined as the number of nonzero singular
value tubes of S, i.e., ranke (X) = #{i|S(,14,:) # 0}.

The relationship between multi-rank and tubal rank is
ranky:(X) = max{r;}, i.e., tubal rank is equal to be maxi-
mum element in multi-rank. Previous works such as TRPCA
and T-TRPCA are based on tubal rank while our methods are
based on multi-rank. In real applications (Hao et al., 2013;
Kilmer et al., 2021), using multi-rank can adaptively utilize
the high- and low-frequency information in the frequency
(transformed) domain. Because for a tensor converted into
frequency domain, the high-frequency slices are more likely
to be noise, then applying lower rank for the high-frequency
slices can effectively remove the noise on the original tensor.

3. Related Work

Given the observed tensor D € R"*™*4 tensor RPCA
attempts to separate D into a low-rank tensor part £ and a
sparse tensor part S. However, different from matrices, there
are many rank definitions for tensors because a tensor can be
factorized in many ways. Common tensor decompositions
include CP, Tucker (Kolda & Bader, 2009), Tensor-Train

(TT) (Oseledets, 2011), overlapped/latent tensor nuclear
norm (Gandy et al., 2011; Tomioka et al., 2010), and ¢-
SVD (Kilmer & Martin, 2011; Kilmer et al., 2021). With
these, there are many methods (Lu et al., 2019; Lu, 2021;
Gao et al., 2020; Cai et al., 2021; Yang et al., 2020; Huang
et al., 2015; Driggs et al., 2019; Anandkumar et al., 2016)
for tensor RPCA (see Appendix A for details).

Tensor RPCA (Lu et al., 2019; Lu, 2021; Gao et al., 2020)
based on tensor-tensor product can utilize information in
both time and frequency domains simultaneously. Among
them, T-TRPCA (Lu, 2021) constructs two convex surro-
gates, i.e., ||£|l¢~ and ||S]|1, of the low-rank and sparse
constraints. The optimization objective of T-TRPCA is

rgi‘g IL|le= + Al|S||1, subjectto D = L+ S.

When ¢ = F/,/q, TRPCA (Lu et al., 2019) becomes a
special case of T-TRPCA. Both TRPCA and T-TRPCA
converge sub-linearly with recovery guarantee. The com-
putational complexities of TRPCA and T-TRPCA are
0O(n2qlog q + n3q) and O(n%q? + n3q) respectively. Dif-
ferent from TRPCA, T-TRPCA replaces the DFT matrix
with a DCT matrix, which achieves better performance in
real applications (Lu, 2021).

Besides, ETRPCA (Gao et al., 2020) is a nonconvex method
based on weighted tensor Schatten p-norm with only algo-
rithmic convergence guarantee. ETRPCA improves TRPCA
by making large singular values shrink less while TRPCA
and T-TRPCA penalize all singular values equally. The com-
putational complexity of ETRPCA is O(n?qlog q + nq).
However, all these works, summarized in Table 1, use tubal
rank that ignores the difference between the high- and low-
frequency information in transformed tensor while multi-
rank can specify different ranks for the frontal slices at
different frequencies.

Another line of tensor RPCA methods is based on alternat-
ing projection (Cai et al., 2021; Anandkumar et al., 2016).
These works alternatively project the tensor onto the low-
rank and sparse spaces. Among them, RTCUR (Cai et al.,
2021) is based on a new decomposition called Fiber CUR
without a recovery guarantee. Anandkumar et al. 2016
proposes an alternating projection algorithm based on CP
decomposition with a recovery guarantee. To better utilize
tensor-tensor product and frequency information, we will
propose two methods based on alternating projection and
transformed ¢-SVD.

4. Fast Nonconvex Tensor RPCA

Here, we first introduce APT which is an alternating pro-
jection algorithm with exact recovery guarantee and linear
convergence rate (Section 4.1). Then, EAPT improves the
low-rank projection in APT while keeping exact recovery
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guarantee and linear convergence rate (Section 4.2).

For simplicity, our methods are proposed based on symmet-
ric tensors, i.e., X = XH € C"*"*4 The extension of our
methods to asymmetric tensors is given in the Appendix B.
All proofs are presented in Appendix D.

4.1. Alternative Projection with Exact Recovery

To better utilize the information in both time and frequency
domains, the rank constraint of our objective is based on
multi-rank (see Definition 2.2) because it can better utilize
information in frequency domain. Our optimization objec-
tive follows as:

minzer ses [P — £ — 8|3, (2)

L = {X |rank,,(X) <7},

3
S={x|l|Xlo < K},

subject to {

where we assume its optimal solution £* and S* satisfying
the incoherence and sparse conditions in Section 5. More
importantly, if ® is a normalized DFT matrix or DCT matrix,
we can set multi-rank r as a descending sequence so that our
methods can adaptively take advantage of the information in
the frequency (transformed) domain which is not possible
with TRPCA and T-TRPCA as shown in Table 1.

The basic idea for solving (2) is to alternatively project
between the low multi-rank space L and sparse space S. For
example, at k-th iteration, L1 is the projection of D — Sy,
onto the low-rank space L. Let X = U ¢3 S 0 VYV be the
transformed ¢-SVD of X'. With the Eckart-Young theorem
(Theorem B.1), the projection onto L can be conducted with
truncated transformed ¢-SVD, i.e., Lry1 = PL (D — Sk)
where Py, (X) = ®7[X,] with

Ko () =UCL i, )S (L, Loy, i) VE (5 1my,4). (4)

Computing L}, is time-consuming which costs O(n2¢? +
n3q). A direct implementation obtains Sy 1 by projecting
D — Lj4+1 onto sparse space S. The projection onto S
with Sg4+1 = Ps(D — Li41) is equivalent to keep the top
K elements in D — Ly41. However, top K operation is
unstable for the change of the magnitude of sparse tensor S.
Thus, this method cannot guarantee exact recovery.

Instead, we pick an appropriate threshold keeping the el-
ements which are likely to be in the support set of S*.
At the k-th iteration, the projection onto S is Siy1 =
T¢r (D — Ly41) where

Zijt

| Zijt] > ¢
Tz (Z)ijt = {0 "

. )
otherwise

is the hard thresholding operator, and {(;} is a descend-
ing sequence to ensure the convergence and (jy; =

ﬂ’yka—l(D — Sk) L

The complete procedure of APT is presented in Algorithm 2,
which can be divided into two phases: initialization and
alternating projection. The first phase of our algorithm
is to find a good initialization for alternating projection.
The same as (Netrapalli et al., 2014; Cai et al., 2019), the
initialization phase (Algorithm 1) constructs an initial guess
that can be close to the ground-truth and our recovery theory
will give the values of Sy and Sy, in Algorithm 1. Next,
our method conducts alternating projection. At the k-th
iteration, the first step projects D — Sy onto L, i.e., L1 =
P, (D — Sk). The second step projects D — L1 onto S,
i.e., Sk+1 = TCk+1 (D - £k+1)~

Algorithm 1 Initialization
1: S_1 = Tg_l('D) where (_1 = 5init . 5’1(D)
2: Lo :PL(D—S_l)
3: SoZTCU(D—ﬂo) WhereCo:/30~5'1('D—Sfl)
4: Return: £y and So

Algorithm 2 APT: Alternating Projection Algorithm for
Tensor RPCA
: Run Algorithm 1 for initialization
tfork=0toT —1do

L1 =P (D —Sk)

Sk+1 = T§k+1 (D—£k+1) where Ck-‘rl = /37’“61(D—Sk)
end for
: Return: L7 and St

AR R

In Section 5, we can see that APT converges linearly to the
ground-truth under suitable tensor incoherence conditions.
However, the computational complexity of APT is O(n?¢*+
n3q), which mainly comes from the transformed ¢-SVD on
a full-sized tensor. Compared with previous works, APT
converges faster but does not reduce iteration complexity
(Table 1).

4.2. Speedup with Efficient Projection

For low-rank projection in matrix, SVD on a full-sized
matrix can be avoided by projection onto the tangent space
of a low-rank matrix (Vandereycken, 2013; Cai et al., 2019;
Wei et al., 2016). This idea motivates us to make use of the
property of tangent space of low-rank tensors to reduce the
computational complexity in low-rank projection of tensors.

4.2.1. EFFICIENT PROJECTION D — S, ONTO L

We begin with the projection onto the low multi-rank tensor
space. In step 3 of Algorithm 2, £ is obtained by trun-
cated transformed ¢-SVD on a full-sized tensor. To reduce
the computational complexity of transformed ¢t-SVD, we

151(X) = max{S(i,i,¢)|S(i,i,¢) > 0,i < r;} and § =
2usr/ng whete X = U 03 S 0g VI
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incorporate the property of the tangent of low multi-rank ten-
sor space. We divide this subsection into two parts: efficient
projection and selection of tangent space.

Efficient projection. The efficient projection consists of
two steps: the first step is to project D — Sy onto a tangent
space of the low multi-rank space, the second step is to
project the tensor in the tangent space onto the low multi-
rank space. Next proposition gives the tangent space of
multi-rank 7 space at any point £ and how to project to this
tangent space.

Proposition 4.1 (Proposition 2.3 in Song et al. 2020b).
Let £ € R"*"™*4 pe g multi-rank r tensor. The tangent of
multi-rank r tensor space at L is

T = {U op X + Voo VX,V e R™"¥1}

where L = U o¢ . 0 VH is the transformed t-SVD of L.
The Euclidean projection of Z € R"*"*% onto T is

=U o VH 0p Z+ Z0g Vog VI
*UO@Z/{HOq)ZO@VO@ VH

Pr(Z
T(2) )

Based on this proposition, the projection of Pr (Z) onto the
low multi-rank space can be done as follows.

Proposition 4.2. Projection of Pr(Z) onto low multi-rank
space 1L can be executed by

P]LOPT(Z):[M Q1]<><I>P]L(M)<>q> [g§:|7 (6)

where
(U op Zop YV RE 2rx2rxq
M= Ry 0|k ’
Q1<>¢>R1 = (Iq) —Z/{<>¢UH)<><I> Z<><1>Vand QQO(I)RQ =

(Zp — Vop V) o5 Z 0g U are t-QOR (Theorem B.2).

Thus, instead of performing directly transformed ¢-SVD on
Pr(D — Sy,), this proposition allows performing ¢-SVD on
a smaller-sized tensor M. Hence, we have obtained a way
for efficiently projecting onto the low multi-rank space.

Selection of tangent space. Next, we show which tangent
space to be used in Proposition 4.1, so that exact recovery
of the whole algorithm can still be ensured. Similar to
APT, we will project D — S, to L. So we need to give the
tensor where the tangent space is defined. Such a tensor
Ly, is obtained by Algorithm 3. This algorithm trims Ly
to a specific incoherence level p (Assumption 5.1) with Ly
remaining a multi-rank r tensor.

In order to get the t-SVD formulation of ﬁk, we conduct ¢-
QR on Ay and B, ie., Ay = Ql<><1>721 and B), = Qg<>q>722
Hence, the t-SVD formulation of £y, is £ = Axos E<>¢B

Algorithm 3 Trim for tensor

Require: £, = U og X 0p VI € R™"X4: tensor to be
trimmed; p: target incoherence level.

1t a, = ‘;fqr, = /:jqr

2: fori =1tondo

3: 4kH(:7Z’, :) = min{l, HZ/{H(ailHF}u ( ,Z, )
5: end for

6:

Return: £y, = Aj, 09 X 0¢ 5’,?

where A, = Ak<>q>l/{ B = BkOq;.V with R1<><I>Z<>¢RH =
Uop DoV being the transformed ¢-SVD. So we only need
to conduct ¢-SVD on a tensor with size 7 x 7 X g. According
to Proposition 4.1, the projection onto the tangent space
defined on Ek is

P’]I‘k (Z) =A; 0 AkH op Z + Z op By 0 B}:I
— Ay, 0a Af 0g Z 0g By, 0g B,

where T}, is the tangent space at Ly.
»Ck;+1 = P[L o P']rk (D - Sk)

Finally, we have

Because all operations of tensor here can be converted into
the operations of block diagonal matrix, we do not need
multiple ® to transform tensor in each operation and the
complexity of tensor transformation in low-rank projection
counts once. In t-QR decomposition, they have six times
multiplications and twice t-QR decompositions, which costs

7, (6n?r; + O(nr?)). The projection onto tangent T
has four times as many multiplications and once trans-
formed ¢-SVD, which costs Y7, (n?r; + 9nr? + O(r)).
Adding the computational complexity of transformation into
the block diagonal formulation, the overall computational
complexity is O(n?q* + n?s,) with s, = >°7_ r;, which
is less than the computational complexity of the T"-TRPCA:
O(n2¢* + n3q).

4.2.2. THE COMPLETE ALGORITHM

The complete procedure of EAPT is described in Algo-
rithm 4. The difference from APT is that the projection
onto L can be efficiently executed. Like APT, EAPT can
be divided into two parts: initialization and alternating pro-
jection. Here, we use the same initialization method as
APT. After initialization, EAPT performs alternating projec-
tion. At the k-th iteration, the first step projecting D — Si,
onto L is presented in Section 4.2.1. The second step fol-
lows the idea in Section 4.1 which projects onto S with
Sk+1 = TCk+1 (D — »Ck'+1) and

Ci1 = B (G5, 41(X) + 7 151 (X)), 7

where X = PTk (D — Sk+1), ﬁ = “Sr/an, 5’57'4’_1(*‘) =
max{S(i,i,¢)[S(i,4,¢) > 0,i > r;} with X =U 0g S0
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VH being the transformed ¢-SVD.

Algorithm 4 EAPT: Efficient Alternating Projection Algo-
rithm for Tensor RPCA
1: Run Algorithm 1 for initialization
2: fork=0toT —1do
3 Ek = Trim(ﬁk, u)
4. £k+1 :]D]LOP']r,C (D—Sk)
5
6
7

Skr1=T¢,,, (D — Liy1) where (iqq isin (7)
: end for
: Return: £ and St

In conclusion, EAPT utilizes the low multi-rank tangent
space property to reduce computational complexity. Com-
pared to other methods, EAPT has computational complex-
ity as O(n?qlog q + n?s,) when using FFT transformation
and O(n2?¢* + n?s,.) when using common unitary transfor-
mation, while keeping the exact recovery guarantee (Theo-
rem 5.5) and linear convergence rate as shown in Table 1.

5. Theoretical Guarantees

Following (Zhang & Aeron, 2016), we first have the below
tensor incoherence condition:

Assumption 5.1. Given the transformed ¢-SVD of a tensor
L=UosXogp VT € R**™*? with multi-rank r, £ is said
to satisfy the tensor incoherence condition, if there exists
> 0 such that

ngq
—max||Z/{ op &il|% <
Sy i€[n]

Tensor-column:

nq
—max||V op 5|3 < .
Sy jE€[n]

Tensor-row:

Here é; is defined as the n x 1 X ¢ column basis with
dlé)(i,1,:) = 1.

Basically, Assumption 5.1 shows that the tensor columns
U(:,14,:)’s and V(:,4,:)’s need to be uncorrelated with the
standard tensor basis. The second assumption is the sparse
condition for S shown in below.

Assumption 5.2. A sparse tensor S € R"*"*9 is -sparse,
ie., ||S(:,4,:)]lo <angand ||S(3,:,:)|lo <ang for i € [n].

This assumption ensures the sparse elements are uniformly
distributed across different slices so that S and £ will not be
low-rank tensors simultaneously. We do not require sparsity
on S(:,:,4),% € [q] here because such condition cannot
guarantee S is not low-rank.

Let D = L* 4+ S§* be the observed tensor. Proposition 5.3
guarantees that the initialization obtained by Algorithm 1 is
close to the ground-truth.

Proposition 5.3 (Algorithm 1 for initialization). Assume
that a low multi-rank r tensor L* satisfies Assumption 5.1

and a sparse tensor S* satisfies Assumption 5.2 with ap <

rG1(L”
pon f For hyperparameters obeying %1((1))) < Binir <

% and By = “S’ , the outputs of Algorithm 1 satisfy
£ = Lo| < SOzus,ol(,C*) and ||S — Solleo < EE2G1(L7).

—nq

Based on above assumptions, linear convergence to the
ground-truth of Algorithm 2 is ensured in Theorem 5.4.

Theorem 5.4 (Exact recovery of Algorithm 2). Under the
assumption of Proposition 5.3, for any ¢ > 0, we have
HET — E*H < 8w and H’ST — S*”oo < 4€/nq with T =
O (log (Ve)) , B = 215r/na.

Different from Theorem 5.4, proof of the recovery guarantee
of EAPT is more difficult because its low-rank projection is
more complicated than APT. Specifically, we need to con-
struct an inequality that reflects the relationship between Ly,
and £, while APT has no such intermediate variable. How-
ever, linear convergence to the ground-truth of Algorithm 4
is still ensured as stated in Theorem 5.5.

Theorem 5.5 (Exact recovery of Algorithm 4). Under
the assumption of Proposition 5.3 except that o« < min{
1/“53&3, qo's/ul“ssfﬂ{ qO'S/u2sfn}, for any € > 0, we have
I£r — L)oo < 8ae and ||S7 — S| < ¢/nq with
T=0 (IOg (1/5)) ,IB = Us'r'/an.

By choosing appropriate unitary transformation matrix, a
transformed tensor will have a lower multi-rank and its
prominent information will be concentrated in some spe-
cific slices (Zhang & Ng, 2021). For example, by using
DCT matrix for HSI denoising, the prominent information
will be concentrated in the low-frequency slices. While
the goodness of multi-rank truncation cannot be directly
seen from these two theorems, empirically it leads to better
performance than tubal rank in Section 6.2.

Existing works that are most technically similar to ours are
AltProj (Netrapalli et al., 2014) and AccAltProj (Cai et al.,
2019). However, they are designed for matrices. As ex-
plained in Zhang & Aeron 2016 and Lu et al. 2019, the
extension from matrices to tensors are not trivial as different
mathematical tools are required. For example, sparse ten-
sor S is not sprase any more in the frequency domain and
some bounds of norms have to use the property of tensor-
tensor product and interconvert between time and frequency
domains in proofs. The detailed proofs is presented in Ap-
pendix D.

Theorems 5.4 and 5.5 indicate that (3;,,;; and 5 depend on
unknown parameters about the ground truth tensor S*. Sim-
ilar RPCA methods namely AltProj (Netrapalli et al., 2014)
and AccAltProj (Cai et al., 2019) also rely on these unknown
parameters about their ground truth matrix. How to remove
such dependency is still an open issue. Also, unknown g,
sr, k and &1 (L*) is not a practical issue. As we can see in
Tabel 2, good empirical performance can be still obtained
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Figure 1. Comparison between different t-SVD based tensor RPCA methods.
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Figure 2. Consistent advantages over T-TRPCA with various parameters. o = 0.6 fails to successfully recovery.

by setting ;i and 8 with inaccurate u, s,., &, 51 (L*).

6. Experiments

In this section, experiments are conducted on both synthetic
and real data. All experiments are conducted on a PC with
two Intel Xeon Silver 4215R 3.20GHz CPUs and 187GB
memory with MATLAB R2021b.

6.1. Synthetic Data

We generate a symmetric low-rank tensor £ = Q ¢4 0" in
R™*"*2 where @ € R™*"*? is a random tensor with its en-
try sampled i.i.d. from the standard normal distribution. We
use normalized DFT and DCT as the unitary transformation
for tensor-tensor product because these two transformations
have clear physical meanings as the noise in the time do-
main will be transformed into the high-frequency terms in
the frequency domain (Rao et al., 2010). Considering DFT
and DCT cannot concentrate information in synthetic data,
we do not consider multi-rank in this subsection. Whether
the elements in the sparse tensor S are O is determined by
the Bernoulli distribution with the parameter «.. The value
of the non-zero entries S;;; in S is drawn uniformly from
the interval [—c - E[|£|¢], ¢ - E[|L];;¢]] for some constant
¢ > 0. We set ¢ = 3 in our synthetic experiments. The
observed tensor is D = L + S. The stop criterion of all
methods is | D — L — Sk||#/||DP||» < 10~%. Relative error
(“Rel Err” for short) is defined as ||Lx, — L||r/|| L] F-

The convergence and efficiency of our methods are shown in
Figure 1. We conduct experiments on tensor-tensor product
with both FFT and DCT, and compare with other meth-
ods based on tensor-tensor product such as TRPCA (Lu
et al., 2019), T-TRPCA (Lu, 2021), and ETRPCA (Gao

et al., 2020). We set n = 500,¢ = 5,7 = 5, = 0.3 in
Figure 1. The hyperparameters of our methods are set as
the same suggested by Proposition 5.3, Theorems 5.4 and
5.5. The hyperparameters of other methods are listed in the
Appendix C.1. The experimental results in Figure 1 show
that both APT and EAPT converge linearly. Also, EAPT
can save plenty of time cost compared to others.

Then, we conduct experiments to show the performance of
our methods with various parameters. Figure 2 shows the
running time of different methods with different parameters.
Parameters are changed based on n = 500,q = 5,r =
5, = 0.3, that is, the experiment in each figure changes
one parameter and leaves the other unchanged. The ex-
perimental results show that our methods have consistent
advantages over T-TRPCA with various parameters. We
also conduct experiments to show the robustness of our
methods in Appendix C.1.2.

6.2. Real Data

In this subsection, we compare the performance of TR-
PCA (Luetal., 2019), T-TRPCA (Lu, 2021), ETRPCA (Gao
et al., 2020), TTNN (Yang et al., 2020), SNN (Huang et al.,
2015), Atomic Norm (Driggs et al., 2019), and RTD (Anand-
kumar et al., 2016) on real datasets. The difference of these
methods is presented in Table 3.

6.2.1. HSI DENOISING

Here, we compare the performance of different methods
on hyperspectral image denoising. We use the CAVE
dataset (Yasuma et al., 2008) for experiments. For a hy-
perspectral image H € R™*"*9 amng pixels from H
are randomly selected as noises by Bernoulli distribution.
The values of these amngq pixels are sampled from uniform
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Table 2. Performance and clock time in seconds of HSI denoising. The best result in “bold” and the second best in “underline”.

TT Tucker CP CP t-SVD
TTNN SNN Atomic Norm RTD TRPCA | T-TRPCA | ETRPCA | EAPT-FFT |EAPT-DCT
PSNR [Time|[PSNR|[Time [PSNR]| Time [PSNR]Time [PSNR|[Time|[PSNR]|Time|[PSNR]|Time [PSNR[Time[PSNR |[Time
toys 29.39(85.428.47(297.3116.96 | 223.1 |24.18 [368.6|34.04 | 63.6 | 34.09|75.5|38.47121.7|39.95| 36.5 |41.87 | 35.8
feathers |29.00 | 84.528.00(297.8(17.89| 331.4 [24.42]486.8/31.62|59.9 |31.36|70.7 | 36.72[120.8|38.01 | 33.4 | 39.61 | 32.3
sponges |36.90|83.337.38(305.1]19.48 | 337.4 |28.24|249.8|31.52|59.9|30.28 | 70.8 | 34.81 {122.2|38.88 | 33.6 | 40.05 | 22.5
watercolors|28.74 [ 85.9 [ 28.31(284.7|18.33 | 377.2 |23.49|353.1|36.28 | 61.6 | 36.3 | 71.340.59|121.6|41.43 | 34.2 |41.66 | 35.9
paints  |{30.35[83.1{30.33(291.5]18.98 | 336.0 |25.16|457.5|33.83 | 61.1 |33.72|71.5|38.15[123.7{39.45 | 34.3 [ 39.53 | 35.6
sushi 31.60(84.0[31.57|312.2117.42 | 320.9 [29.96 [492.3|33.40 | 62.533.50|72.5|35.67 [120.3|36.03 | 36.3 [{39.30 | 32.3

TTRPCA ETRPCA

Original

Atomic Norm EAP-TRPCA-DCT EAP-TRPCA-FFT

122.29s 13.05s 12.09s

Figure 3. Video background subtraction results of different methods and their corresponding reconstruction clock time. (a) Escalator with
200 frames; (b) Hall with 100 frames; (c) ShoppingMall with 50 frames.

distribution between interval [0, 1]. Since EAPT has com-
parable performance with APT but is more efficient than
APT, we only involve EAPT for comparison. For detailed
hyperparameter settings, please refer to the Appendix C.2.

We randomly select 6 hyperspectral images from CAVE
dataset for comparison. The performance evaluated with
final PSNR and clock time is presented in Table 2. “EAPT-
FFT” and “EAPT-DCT” in the table mean that tensor-tensor
product with respect to a normalized DFT matrix and a DCT
matrix are used for experiments, respectively. In Table 2,
methods based on £-SVD have better performance than that
based on others because ¢-SVD can utlize information in
both time and frequency (transformed) domain. Also, the
performance of our methods is better than other methods,
while ours can save a large amount of time cost compared
to others. Besides, EAPT-DCT has better performance than
EAPT-FFT. The reason is probably the “spectral compaction”
property of DCT, i.e., a transformed tensor in frequency do-
main tends to have its value concentrated in a small number
of slices when compared to other transformation like FFT.
And multi-rank truncation can better utilize this property
by setting the large rank for the low-frequency slices and
small rank for the high-frequency slices. Also, we want
to clarify that the improvement in terms of the time cost
here is consistent with our theoretical result. Because the
hyperspectral images are reshaped into a different size (see
Figure 4) and the number of the bands of CAVE is not too
larger than the rank of the tensor so that the improvement
of our method on HSI denoising becomes less significant.

6.2.2. VIDEO BACKGROUND SUBTRACTION

In this section, we compare the performance of various meth-
ods on video background subtraction. The task is to separate
the moving foreground objects from a static background.
Three videos are used for comparison, i.e., Escalator, Hall,
and ShoppingMall. We choose 200, 100 and 50 frames from
Escalator, Hall and ShoppingMall respectively for compar-
ison. The visual comparison in Figure 3 shows that our
methods can successfully extract the background from these
videos with less reconstruction time.

7. Conclusion

In this paper, we study nonconvex tensor robust PCA based
on transformed t-SVD and propose two algorithms, i.e.,
APT and EAPT, based on alternating projection. Our meth-
ods converge linearly and guarantee exact recovery. Also,
EAPT utilizes the property of tangent space to reduce the
computational complexity. Experimental results show that
our proposed methods are more effective and efficient than
existing methods. As a future work, it will be interesting
to extend our work to higher order tensors and consider the
noise in theoretical analysis.
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A. Different Tensor RPCA Methods

Here, we present the comparison of tensor RPCA methods based on different tensor decomposition in Table 3.

Table 3. Comparison of various tensor RPCA methods. “v"”’: exist; “X”: doesn’t exist; “AP”: alternating projection; “ALM”: augmented

Lagrange Multiplier; “T t-SVD”: Transformed ¢-SVD. The computational complexities are calculated on tensors in R™*"™*™,
decomposition | Convergence Iteration complexity Algorithm | Recovery

TRPCA (Lu et al., 2019) t-SVD O(1/e) O (n’logn + n*) ADMM v
Transformed TRPCA (Lu, 2021) T ¢-SVD O(1/e) O (n*) ADMM v
ETRPCA (Gao et al., 2020) t-SVD v O (n’logn + n*) ALM X
RTCUR (Cai et al., 2021) Fiber CUR X O (nr?log”(n) + r*log*(n)) AP X
TTNN (Yang et al., 2020) TT v O (n?) ADMM X
SNN (Huang et al., 2015) Tucker O(1/e) O (n*) ADMM v
Atomic Norm (Driggs et al., 2019) Cp X O(n'r) LBFGS X
RTD (Anandkumar et al., 2016) CP O (log (/e O (n**°r?) AP v/
APT Tt-SVD | O (log(/e O(n?) AP v/

EAPT Tt-SVD | O (log(1/e) O(n* +n?s,) AP v

B. Extension of ‘“Preliminaries”

With the tensor-tensor product and the block-diagonal matrix representation, the following relation is obvious for any tensor
X € Cm*Xm2X4q gpd Y € Cn2xnsxd;
XO@JJ:C@)EJ}:é

Next, we recall the definitions of the identity tensor, unitary tensor, diagonal tensor, and conjugate transpose of a tensor. The
identity tensor Z € C"™*™*4 respect to ® is denoted as Z = & [Zs], where each frontal slice of Zg € C"*™*%isthe n x n
identity matrix. Based on the identity tensor, the unitary tensor with respect to ® is defined as U oo U7 =UH oo U =T. A
tensor with each frontal slice being diagonal is called to be diagonal. The conjugate transpose of any tensor X' € C"*"*4
with respect to a unitary matrix ® € C9*%, denoted by X € C"*™*4, s defined as XY = @ [fold (X1)].

Now we define the basis for tensor-tensor product. ¢é; is defined as the m x 1 x ¢ column basis with ®[¢é;](¢,1,:) = 1 and
é; is defined as the n x 1 x g column basis with ®[¢;](7,1,:) = 1. Another tensor basis is called tubal basis e;, of size
1 x 1 x gwithe;(1,1, k) =1 and the rest entries equal 0. Tensor &, with its (4, j, k)-th element equal 1 and others equal
0 can be denoted by &1, = €; 0o €k 0o éf.
Next theorem gives the best multi-rank  approximation of X’:
Theorem B.1 (Eckart-Young theorem, Theorem 11 in Kilmer et al. 2021). If X = U o5 S 0p VH € C™*"*4 s the
transformed t-SVD of X. Define H,.(X) to be the approximation having multi-rank v, that is,

.)E'q;.(:, 0 ’L) = Z/A[@(Z, 1: ’I“ﬂé’q;.(l LT, 1: Ty Z)Vq£{<7 1: Ti,i).

Then, H,.(X) is the best multi-rank v approximation to X in the Frobenius norm and

Hy = argminrankm()e)gr“‘x - ‘/?HF

The following theorem is transformed ¢-QR decomposition of tensors.

Theorem B.2 (transformed t-QR). Let X € C™*"™*49, Then it can be factorized as X = Q o¢ R, where Q € C™*™*4 js q
orthogonal tensor, and R € C™*"*4 js an f-upper triangle tensor (each frontal slice is an upper triangular matrix).

The tensor spectral norm || X|| with respect to a unitary matrix ® is defined as | X|| = ||X||. With block-diagonal
representation, the inner product of two tensors X', Y € C™*"*4 can also be calculated with the following property
(X, 3)=(x,p).

With above equality, the Frobenius of a tensor X € C™*"* can be represented as || X||r = || X]| .
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Some important singular values of tensor X are denoted as G1(X) := max{S(i,i,¢c)|S(i,i,¢) > 0,i < 7},
o, (X) = min{Ss(i,i,¢)|Sa(i,3,¢) > 0,i < 13}, 7o 11(X) = max{S(i,i,¢)|S(i,i,¢) > 0,i > 13}, Frg(X) :=
min{Ss (i, 7, ¢)|Sa (i,4,¢) > 0,7 <7}, and 7,4 1(X) := max{S(i,7,¢)|S(i,i,¢) > 0,i > r} where X = U 05 S 05 VI,
r; is the i-th element of multi-rank r, and » = max{r;} is the tubal rank.

A partitioned tensor is a tensor that is interpreted as having been broken into sections called subtensors or blocks. A
partitioned tensor A with ¢ row partitions and s column partitions with subtensors .4;; can be denoted by its i-th frontal
slice as

AL AR A
A(i) A21 A22 A2s
A AY A,

where AZ(-;-) is the i-th frontal slice of A; ;. For convenient, we also represent A as

A A - Ags
B Aor Az -+ Ags
Ag Ap o Ag

Our analysis are based on symmetric tensors, but similar results can be obtained for asymmetric matrix by casting the general
tensor problem to symmetric augmented tensors. Without loss of generality, assume m < n and dm < n < (d + 1)m for
some d > 1 and construct symmetric tensors £ and S as

o --- 0 <L o --- 0 S
ﬁ . L d times and S — : . : S dtimes.
0 -~ 0 0 ... 0
LE ... rd o SH ... §H
— —_—————
d times d times

It can be easily verified that £ is O(p)-incoherence, and S is O(a)-sparse where O (1) (resp. O(a)) means to hide the
constant in front of p (resp. a)). Then our methods can be applied to asymmetric tensors with the same guarantee.

C. Extension of “Experiments”
C.1. Synthetic Data
C.1.1. HYPERPARAMETER SETTINGS

We set 5 = 2%, Binit = 2‘;%1((7’3&;) for APT and set 3 = %, Binit = 2‘;%1((5;) for EAPT. Transformed TRPCA and TRPCA
use default hyperparameter A = 1/4/n and A = 1/,/nq respectively according to their theory. The weight of ETRPCA is

setas [1,---,1,1.1,--- ,1.1,1.5,--- | 1.5].
———

167 times 167 times 166 times

C.1.2. ROBUSTNESS

We also conduct experiments to show the robustness of our methods under Gaussian noisy observation with different
derivation o in Table 4, i.e., the noisy observation D,, = D + £ where &;;; ~ N(0, 0?). Wesetn = 500,q = 5,7 = 5, =
0.3 in Table 4. As can be seen, our methods have smaller relative error and are more efficient than T-TRPCA.

C.2. HSI Denoising

Given a hyperspectral image H € R™*"*4, we permute the image into 2 € R?™*" ag shown in Figure 4 since the
mode-1 unfolding matrix of H has best low-rank property based on tensor-tensor product. So we apply this permutation to
all methods based on tensor-tensor product.
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Table 4. Relative error and running time of different methods under Gaussian noise with zero mean and different standard deviation.
oc=0.5 oc=1 oc=15

Rel Err | Time | Rel Err | Time | Rel Err | Time

T-TRPCA | 0.1864 | 21.87| 0.3413 | 21.54| 0.4761 | 20.77

APT-DCT | 0.0476 | 6.94 | 0.0987 | 7.11 | 0.1483 | 6.45

EAPT-DCT | 0.0476 | 1.76 | 0.0987 | 1.66 | 0.1480 | 1.80

C.2.1. HYPERPARAMETER SETTINGS

We set A\ = 1/,/nq of TRPCA and A = 1/4/n for Transformed TRPCA. For ETRPCA, we set set p = 0.9, w =
[l,---,1,1.1,--- ,1.1,1.5,-- - , 1.5]. We do not apply ket augmentation scheme to TTNN because the shape of our tensor
N——

5 times 5 times 21 times

is 512 x 512 x 31 and set hyperparameters as A = 0.01, f = 0.01,~ = 0.001 and § = 0.001. The parameter of SNN is set
to [40, 40, 40] because we find it performs well in most cases. A and p are set to be 0.5 and 0.1 in Atomic Norm. The rank
of RTD is set to be 20 in this experiment. Here we empirically set the hyperparameters of EAPT as 3 = %fn, Binit = 48,
where we set ;© = 10. The multi-rank of our methods is set to be a descending sequence. For EAPT-FFT, the descending

sequence of multi-rank is set to be [4,--- ,4,2,--- 2,0, --]. For EAPT-DCT, the descending sequence of multi-rank is set
—— N~
50 times 50 times
tobe [4,---,4,1,---,1,0,---] and settobe [5,--- ,5,1,---,1,0,---] for “sponges” data.
S—— S—— ——
100 times 200 times 100 times 200 times

Figure 4. Illustration of the reshape scheme for hyperspectral image. The rank of the frontal slice for the right tensor is much lower than
that of the frontal slice for the left tensor. According to Lemma D.2, ¢-SVD can better model the structure in the right tensor.

D. Proofs
D.1. Proof of Proposition 4.2

Here, we give the proof of Proposition 4.2.

Proof.

Pr(Z2)=Uopg UM 05 Z+ Z0p Vou VI —Uoa U 05 Z 05V og VI
:Z/[<><I>Z/{H<>q>2<><p (I*VO@VH)ﬁ*(I*Z/{O@Z/[H)Oq)Z<><1>V<><I>VH+Z/[<><1>Z/{H<><I> ZO@VO@VH
ZUO@Rqu) Q§+Q10¢R10¢VH+UO¢UH<>¢ ZO@VO@VH

UT oy Zos B RE H YH
= [Z/{ Ql] O% 0‘?}21 o 02 :| Od |:]Q)£{:| = [Z/[ Ql} op M og |:Q£I:|

Then we have

P]L o P']I* (Z) = [L{ Ql] (o2} P]L (M) (o2} l:g;:| .
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Table 5. Sections and its corresponding lemmas / theorems / functions.

Section Function Lemma & Theorem
rank equivalence Lemma D.2
Basic lemmas | Weyl’s inequality Lemma D.3
tensor sparse Lemma D.4
initialization — Lemma D.5 and Theorem D.6
singular value bound Lemma D.21
APT bound ||£ — Lkl Lemma D.22
bound ||S — Skl Lemma D.23
convergence Theorem D.24
projection & Trim Lemma D.7 - D.13
Some bounds Lemma D.14 - D.16
EAPT bound ||£ — L] Lemma D.17
bound ||£ — Lkl Lemma D.18
bound ||S — Skl Lemma D.19
convergence Theorem D.20

D.2. Proof of Recovery Guarantees

The proof outline of our two methods follows as:

¢ In the t-th iteration, if [S];;; = 0, then [S];;r = 0.

- If [S]ijx = 0, then Ty, (D — L) =Ty, (L — L4). So we need ¢; > || £ — Lt]|oo-
- [S — S4)ijk is bounded by || £ — Lo and ;.

* Positive feedback in optimization process.

In (¢ — 1)-th iteration, the hard thresholding parameter (;_; can select S;_; which includes all the zero elements
in S.

In the ¢-th iteration, the chosen S;_; can make sure that ||£ — £ || is momently decreasing w.r.t. t.

Because || £ — Lt|| o is momently decreasing w.r.t. £, we can select smaller (;.

Because [S — Sy is bounded by || £ — L||oc and (;, we have smaller [S — S;];jx.

We also present what the following theorems and lemmas do in the Table 5.

First, we give some notations which will be used in the proof. The optimal solution £* and S* are denoted here as £ and S
for simplicity. The (i, j)-th element of a matrix S is denote as S; ;. D) is shorthand for D(:,:, c). a;, denotes S(i, 1, ¢)
where X = U 0¢ S o5 V! is transformed ¢-SVD of X and Tici= 650.

We next defined the extension of eigenvalue in matrix to tensors as:

Definition D.1. Eigen fiber can been seen as an extension of eigenvalue in tensors. The definition of eigen fiber A is:
D Sp U = UOPH A

where D € R"*"X4¢ ¢, ¢ R"*1X4 and A € R1X1xq,

D.2.1. BASIC LEMMAS

Lemma D.2 (equivalence of block diagonal matrix and mode-1 unfolding matrix / rank equivalence). Let X € R"™*"*4,
the transformed t-product between two tensors is defined with unitary matrix ®. Then

o(t, ) 0 0 0
NH

: 0 -
Xo(:,0t) = [X(,1,:) X(52,:0) - X(un,o)]- : : . : =xWo,, (8)
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Proof. Assume X € R™*™*4 with

Xop(j k,t) = X(j k) B(t, ) = X(j, k, )@ (¢, ) 7.

Then, we have
2%@(:7:7@ =xWp, = [X(:,l,:) X(:,2,:) - X(:,n,:)] . . .. ) ) ,
where Y1) € R"™*"4 apd i)t € Craxn,

Lemma D.3 (Tensor Weyl’s inequality). Let A, B,C € R"*"*1 be the symmetric tensors such that A = BB + C. Then, the
inequality |57* — &B| < ||C|| holds for all i, where 5* and G represent the it" singular values of A and B respectively.

Proof. Because A, B, C are symmetric tensors, we know Ag, By, Co are symmetric matrices such that Ay = Be + Co.
Following Weyl’s inequality, we have |5* — 55| < ||ICs|| = ||C||. O

Lemma D.4. Ler S € R"*"*9 satisfy assumption 1. Then,

S| < angl|S].

Proof. Assume two unit vector x € R”,y € R™9,

Sa(:y:,0)

n n q
SO =150 = 33" (#Ps-reee)

i=1j=1c=1

= mnax
e=1,"" g

ISl =[]l =  max

3

q

- 1 1
<335 (@F +phigne) S5 < 5 (ang + ang) S = ang]S]loc,

i=1j=1c=1

where the last inequality follows from Assumption 5.2. O

D.2.2. INITIALIZATION

Lemma D.5. Let S € R"*"*1 pe a sparse tensor satisfying Assumption 5.2. Let U € R"*"*4 be an orthogonal tensor

e sU||p < Lex for all i. Then leZSauU||p < for (ang /q||S|loo)® for all i and a > 0.

with p-incoherence, i.e.,

Proof. This proof is done by mathematical induction.
Base case: When a = 0, ||¢H og U||r < /L~ is satisfied following from the assumption.

nq

Induction Hypothesis: [[¢/ 05 S* 0¢ U||r < max; | /47x (ang /ql|é]" oo S||r)® for all i at the a'* power.
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Induction Step: We have

q—1 r n 2
|6 0 ST og U|T = [|ef 00 S 0a S®oa U||F = |6 SSUIT =D > (Z entientk[S Ulenk, cr+g>

c=0j=1 \k=1
q—1 T
= [S] cn+i,en+tky [S]cn+i,cn+k2 Z[Sau] cn+ky,cr+j [Sau]cn+k27cr+j
c=0 kq,ko 7j=1
qg—1

P||1

[Slenti,enthr [Slentisenths (€, SUC er + Lrer +1), el SU(er +1:er+71))

c=0 k,‘l,kz
qg—1
S |[8]cn+i,cn+k1 [S}cn+i,cn+k2 ‘ Hegz+k18au(:> er+1l:er+ T) H2||egl+k28au(:7 er+lier+ T) ||2
c=0 k:l,kz
qg—1
< |[Slen+i [Slen+i | legh i, SUN 2l €14, SU
> en+i,en+ky cn+i,cn+ko cn+ky 2|1€en+ko 2
k?l,klz c=0

g—1
SHGF 3 S o UH%‘ Z Z |[S]cn+i,cn+k1 [S]cn+i,cn+k2 ’

C:Okl,kz

g—1 ) q 1 9
=[éf! o0 S* o0 UIF Y (el piSCren+1:en+n)h)” = e op 8 o0 Ul Y ([ SV )Bera | )

c=1 c=0

2 2

n q
< ”é{{O‘PSaO‘?u”FZ > IS4t

- n

=[léf" o S“ 00 U|% Z >

q
ZSZ], D(c+1,1)
t=1

c=0 \j=1 c=0 \j=1t=1
q—1 s
. 2 . 2 2 1
<[éf" o0 8% 0o U7 Y (ang||S]ee)” < [IEf" 00 S 00 Ul[7 (angy/q][S]ls)” < nq (angy/q][Sllo)*“ Y.
c=0

Now, we have |[UH 0p ST og é||p < max; , / ’“” (omq\fHSHoo) . In the proof, we use the inequality
e, SUl2lled 1, S U2 < [léx, SU||rlléx, S Ul
Sy 2a
S
2 (anaylS) )

= [|éF, oa 8% oa Ul F|Iéf, 0a 8" 0a U||r <

O

Theorem D.6. With the condition of Proposition 5.3, let L € R"*"*4 and Se R”X"X‘J be two symmetric tensors satisfying
Assumptions 5.1 and 5.2. If the thresholding parameters obey ” STU < Binir < 3#; rof and 3 = 5° Sr , then the outputs of
Algorithm 1 satisfy

s s
1C — Lol < Sapus, 5, (z N Tal) 1S = Solleo < 751 and supp(So) < ©
4dng ngq
Proof. The proof can be partitioned into several parts.
(i) Note that £_; = 0 and
£ =L 1lle = [[£lloc = rz,n]ag <U Op Yoo UH,5¢jk> = fznja]i( <éiHaiz’7Héjvék> < rglj@g”éfﬁil]HEjHF “|lexllF
~Hq7 S 7 H = . S . Sp _
= max |17 p | S| U7 é | p < max |6 o U p|SNUT 00 &l < 2050,
B4,k 4,5,k n
where the last inequality follows from Assumption 5.1, i.e., £ is u-incoherence. Thus, with the choice of Siy; > “ZLU,& , wWe
have ||£ — £_1]|co < Binitd? = (_1. Since

=522 = (T ) e
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it follows that [S_1];j5 = 0 for all (3, j, k) € Q°, i.e., Q_1 := supp(S_1) C . Moreover, for any entries of S — S_1, we
have

0 0 0 (i, k) € Q°
[S —S_1lijk =< [L-1 — Liji < 1L - L)oo < Gror (6,4,k) €Qy
[Sijk £ =L 1lloo + 1 4ZST a1 (i,5,k) € Q\Q_1

where the last inequality follows from S < 35;; 71 sothat (_; < 3“(‘7 1. Therefore, we get
1

dus, _
g1.

supp(S—1) CQ and ||§ —S_1]|e <

By Lemma D.4, we also have ||S — S_1]|2 < ang||S — S—1]|cc < 4aus,71. (ii) To bound the approximation error of Lo
to L in terms of the spectral norm, note that

L — Lol < 1L — (D =S|+ (D —-8-1) — Lo
L[L- (D=8 )| =2(L-(L+S-51)| =2 -5l

where the second inequality follows from the fact Lo = H,.(D — S_1) is the best multi-rank 7 approximation of D — S_;.
It follows immediately that ||£ — Lo| < 8aus,o;. (iii) Since D = L+ S, wehave D = S_; = L+ 8 — S_;. Let by
denotes the (i, c)!" eigenvalue of D — S_; ordered by |A1 .| > |A2.c| > -+ > |As.|. The application of Tensor Weyl’s
inequality together with the bound of o implies that

_ N & & Os,
i = el < IS = S-afl < =
holds for all 7. Consequently, we have
7_ . 9_ . IS =Sl _ 1
~0ic < |Aiel < 20, VI<i<rg, < <z
£0ie < el < 2% isrg, SRS

LetD-S_, = [Uo, 120] 0P {g A} Op [Z/{O, Z/lo} = Uy op Aog U + Uy op A oo Z/léq be its eigenvalue decomposition,

where A has the multi-rank r largest eigenvalues in magmtude and A contains the rest eigenvalues. Also, U4, contains the
first r eigenvectors, and Uy has the rest. Notice Lo = H.(D—S8_1) = Uyos Aog UL due to the symmetric setting. Denote
Z=D-8 ,-L=8-8_1. Letu; =U(:,i,:) be the i!" eigenvector of D —S_; = L + Z and A\, = A(s, s, :) be the
sth eigen fiber of D — S_; = £ + Z. Then, we have (D — S_1) o¢ u; = u; oo A\;. We denote D — S_; as M, then

Mi; = u; )\
which is
MD 0 N N 2 S RPN T ol AP o 0
0 M ... 0 0 a® ... ¢ 0o a? 0|0 A® 0
0 0o - 0 o 0 -~ 0| |0 o0 0 0 0 0
0 0 MO o o al? 0 0 @210 0 Al

This means M©a( = X949 Because Pr, (D — S;,)©@ = 2 + £(), we get (AT — Z0)a\? = £ Then,

we have . )
Z(e)\  fle) Z(e) Z(e) Q)
o _ [ Z29Y LY o _ 29 (29 R )
u;, = (I X@) 5\(,6) u, = | I+ 5\@ + (5\(0) + 5\(6) u,; .

Combining all g slices, we have @; = (I +EZ+(E2)2 +--- ) &, Lu; where
1
AD r0 0 J=AS D] 0
’ 0 0 o |’ 0 0 0
0 0 1y 0 0 Z(a)
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The above inequality is valid because of || Z|| < || Z]|

Then, we get u;

To simplify the

Then, we have

1
N

T
UO<>¢,A<><I>U(§{: E ui<>q>)\7;<>q>’u,f[

i=1

:Z Z(giO@Z)(IO@giOq)L <>¢)ui<>¢,)\i<>¢,u

=1 a>0

|Z]]

=X

<

(I +E&o0p Z+ (o Z)2+ - ) og & 0o L 0 u; for each u; which implies

H

%

Z ((c/‘L OP Z)b Cp & OP L

b>0

:ZZU’O.:I) £O¢Z(g£l+1 0P Ui Ob Ai Od ulH<>q> 5£)+1) O ,C<><I> ZZ”

a>0 i=1 b>0
above formula, we have
[x0l 0 O [a® o 0
o 0 syl 0 |0 o® 0
0 0 0 0 0 0
0 0 xglw Il'fo o a'?
a0 o[z © 0
o a? 0 0 X;” 01 _ &,
0 0 0 0 0 0 e
|0 0 a0 0 ;\3q>
Extlg \ull b+t
</\51)> i a+1 ' 5\1(1) 0 0
_a 0 (ng) ) 0 0 AP? 0
0 ' 0 0 0 0 70
ati| [ O 0 X9
0 0 ()
i r 1b+1 i 7
(A;) 0 0
b+1
0 <A<12> ) 0 al
0 0 0
b+1
0 0 (x(}q) )
r a+b+1 i 7 1 i
) 0
a+b+1
= 0 (A;2)> 0 all = g, DG,
0 0 0
a+b+1
0 0 (A(l))
where we introduce new notation fE(L+b+1). Hence we have
EM og u; 09 A 0g ull 0g ETY = u; 0 T of
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Now, we get

Uy oo Aoa Ust =D 2904 LY (E1 0g ui 06 \i 0g ull 0p ET1) 0p Log Y 2"

a>0 i=1 b>0

= ZZ“ Op £<>q> Z (ui OPp F,Ea+b+1) OPp ulH) OPp [.‘,Ocp Zzb

-
a>0 i=1 b>0

= Z Z%0g L og Uy 0 T og YH o4 L 0g Z°.
a,b>0

Thus, we have
1£0 = Llloo = [Uo 00 A oo Uy — L]|so
=L o Uy 06 TV og UH 04 L — L + Z Z%og Log Uy 0 T o UH 04 L 0g 2°||

a+b>0
§||£ Op UO (o2} F(l) Op u({{ P L— £||oo + Z ||Za Op £<>q> Z/{() Op P(a+b+1) (o2} Z/I({{ O ,COcp Zb”oo
a+b>0
=Yy + Z Y.
a+b>0

We will handle Y first. Recall that £ = U o5 ¥ 0 YV is the t-SVD of the symmetric tensor £ which obeys p-incoherence,

ie, Uop U =V oy VI and ||¢]f op U og UM ||p < /5 for all . So for each (i, j, k) entry of Yo, one has

YO = max ’<£ OP Z/lo Op F(l) CP Z/IOH (o2} L— ﬁ,gi]‘k>‘

1,5,k

:ma?KelH 011;1/{0@ L{H(£ Op UO (o2} F(l) Op U({{ P L— E) <>q>u<>q> Z/{H (o2} éj,€k>’
2,75

gma_x ||61H <><I>Z/{<>q> Z/{H(ﬁ P Uo OPp F(l) P U({{ OPp L— E) <><1>Z/[<>q> Z/[H P 6J||F . Hek”F
2%

SIl’llE:JLXHelH O@UO@ Z/[HHF . H,CO@ Z/[() (o2} F(l) OP Z/[OH (o2} L— £H . ||L{ OPp UH (o2} éjHF

‘:q 1L 00 Uy 06 TD 0p U 04 £ — L],

<

where the first inequality follows from the fact U o¢ U Heow £L=LosUosUT = L. Since £L = Uy o3 Aog Z/lgl + ao Op
A og UL — Z, there holds that
£ o0 Uy 0 TN og U o5 L — L]
=||(Uo 00 A oo U + Uy 0 A og UL — 2Z) og Uy 06 TW o UL 0 (Uy 00 A og U + Uy 05 A op U — Z) — L||
=t 03 A op TW 0g A og U — L — Uy 0g A op T 0p U 06 Z — Z 06 Uy 06 T 04 A 0 UL
+ Zog Uy 0 TW og U o Z||
<\ Z = Uy o9 A oo ULT|| + ||ty 00 A oo TW o UL 0 Z|| + || Z 00 Uy 06 TV 0 A og UL |
+ |12 0g Uy 06 TW og UL o4 Z||
=2 — U r AU || + U ADOUS Z | + || ZUT VAU | + | Z2Us D VUL 2|
12|

<N1Z = Ut AU || + 21121 + o = 1 AU |+ 4121 < g | + 4] 2] < 5] 2],

r

l”)—flll < 1 and |\, 41| < ||Z]| because of 5,.q41 = 0 and Weyl’s inequality. Thus we

where the last inequality use the fact

have 5
USy
. |12 < Baps:||Z][oo-

Yy <
n
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Next, we derive an upper bound for the rest part. Note that
Yab = mal)c( <Za (o2} L O uO (o2} F(a+b+1) (o2} Z/[é{ Op L (o2} Zb, 5¢j1€>
1],

:mali( <(€{{ (o2} Ze OPp U OPp L{H) OP ,C<>q> UO O F(a+b+1) OPp Ué{ P L (o2} (u Op Z/[H OPp Zb OPp éj), €k>
Z)j7

S Hzlaj,X H(efl OP Ze OP UO@ UH) OP £<>q> MO OPp F(a+b+1) P U({I OP [:0@ (Z/{ SPp Z/{H P Zb P €])HF . ||€k||F
grrile}xﬂéfl 0g 2700 U||p - ||£ 00 Uy 00 T o U o L] - U 00 2° 00 ¢||F

S
< max %(anqﬁuznm)ﬁbnc o0 Uy 09 T 0 U o5 L]

5.5 a+b—1
<ops 12l (2) T 12 0w Uy 00 TOHD g Ul 0 ],

where last inequality uses the bound of o (o <

T e f in Proposition 5.3). Furthermore, by using £ = Uy ¢ A ¢¢ L[O
Uy o3 A op U — Z again, we get
||£ OP UO OP F(a+b+1) OP Z/{({—I P £||
:”(Z/{O op A oo M({{ +Z;lo O A o% UOH — Z) op Uy 0a F(a+b+l) O L{({{ o% (UQ op A oo Z/[JI +Z/.ZO O A O L{({{ — Z)H
:”Z/IO (o2} A Op F(a+b+1) Op A OPp Ué{ — Z/{O P A CP F(a+b+1) OP Z/[OH (o2} zZ-Z OP MO (o2} F(a+b+1) (o2} A Op Z/[éq
+ Z og Uy 09 T og Y o4 Z ||
< || U AT @FP+ DAY — Ty AT e+ H Z — Zf D+ D Ay 4 Zyf, Dt Dl Z |
e DV e L e =1 R PV | @) 2|+ X, |~ 2|2

221 . (121
_)\s (a+b—1) 1
Aorl™ T A

—(a+b—1
f‘)\ | (a+b—1) ” ” < 2|/\ | (a+b—1) <2 7 (et )
TR v 8%

Then, we have

1= a+b—1

Z Yo, < Z 2au5r\/§||z||oo (§08r>

a+b>0 a+b>0 87 8r

2
1
<oyl 2l (17 ) < 30ms, vl 2

7

1 a+b—1
< 205, /@l 2l Y (7)

a+b>0

Finally, combining them together gives

Sp _
€0~ Lllow = Yo+ 3 Ya < Sapssel| Zlloe + s, all Zlloo < T 0,
a+b>0

where the last inequality uses the bound of o (o <
(iv) From the thresholding rule, we know that

128us f) in Proposition 5.3.

Teo([S+ L = Lolije)  (4,5,k) €Q

[SO]ijk = [T§0 (S + L£— ‘CO)]ijk = { TCO([C - Eo]ijk) (i’jv k) SEO

So the above inequality and (p = ‘2‘22)\1 imply [S];;x = 0 for all (4,7, k) € Q°, i.e., supp(Sy) := Qy C Q. Also, for any

entries of S — Sy, there holds that

0 0 0 (1,7, k) € Q°
[S = Solijk = { [Lo— Llijr < L= Lollw < Tag0r  (5:7:K) € Qo

[STijk 1€ = Lol + Co bror (i,5,k) € M\ Qo
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= Wsr )\, < 3WSr 5 Therefore, we have
2nq 4nq

Here the last inequality implies

Sr _

supp(Sp) € and ||S — Solleo < l;q 7

1-

D.2.3. LocAL CONVERGENCE OF ALTERNATING PROJECTION IN EAPT

Lemma D.7 (Bounds for Projections). Let L, = Uy 03 Xf ©o V,f be a multi-rank k tensor, and T}, be the tangent space of
the multi-rank k tensor manifold at Ly,. The implicit rank of Ly, is s, and the tubal rank is k. Let £L = U oo ¥ 0 VT be
another multi-rank k tensor, and T' be the corresponding tangent space. Then,

1L — L]

L —L
H%%%f—bl%b{ﬂ\g‘ | Lk I

;e os VE —Vos VE|| < |

l1£x = L]} 9
O—min(‘c) O'min(ﬁ) ( )
JBlCs — L Vet — L
(Ui o0 U —U oo U || p < Gm’“(ﬁ)”F [V 00 VI =V og V|| < W {10
£k — LI 21Ex — Lllr
I-P < — o oo Pris = 5 ;
W= Pl < 72 Sy Won =Pl = =0 ) "

Proof. We only prove the left inequalities of Eqs (9) and Eq.(10) because the right inequalities can be easily established.
The left inequality of Eq.(9) follows directly from calculations

Ly, 00 Uit — U oo UM || = [lUU™ UUT — U || = [UUT(Z — Ul = (2 — Ul U™ |
=(Z — Ul ) LVE U || = (T — Ul ) (Lr, — L)VE U
1£s = L] _ [1£x = £
Umin(ﬁ) Jmin(ﬁ) )

<IT = Thd | - 1L = L - IVI- IS - et <

To prove the left inequality of Eq.(10), we first show that
(T = Uy, 00 UT) 00 U 06 UT || 5 = Uy 00 U 00 (T — U 06 UT)|| .
Eq.(10) can be obtained by noting that
(T — Uy o UT) o0 U0 UM |3 = |[(Z — Uf Y™ | = (T — Ui, (T — Uy o™
= (UU T —UU™) = s, — (U UUT ),
and

Uy, 00 U 00 (T —U o0 U™)||5 = U (T —UU™)|[5
— (T (T - ud™), (I - au))
=(T — UL UU")y = s — (UL U™ .
Then, it follows that

Uy o6 U — U o UT || < V2|(T — Uy 00 UT) 00 U 00 UM ||
=V2[(Z - i) LVE U || p = V2T — Uldf") Ly, — L)VETUH |
V2T Ul || - ||k = Ll - IV - IS - |
<V21Lk = Lllp _ 2Lk — Llp.

Omin ([,) Omin (E)
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Next, we prove the left inequality of Eq.(11). First we note that Pr(£) = L. So
(I = Pr)L=(Pr—Pp,)L
=U oo U — Uy 05 U ) 05 L+ Log (V op VI — V), 00 V)
— Uoa U — Uy 05 U) 05 L og Vi 0 VI —U oo U 05 L og (Vo VE — Vi 05 V)
=(Uop U — Uy, 06 UF) 0g L oo (T — Vi 0 V) + (T —U 0 UT) 05 L og (V 0 VI — V) 00 V)
=Uop U — Uy 0 UI) 05 L og (T — Vi 0oa VE) = U 06 UT — Uy 06 UF) 05 (L — L) 03 (T — Vi, 05 Vi),

where the last two inequalities follow from the fact (Z — U oo U) 0 L = 0 and Ly, 03 (Z — Vi, 0a V}T) = 0. Taking the
Frobenius norm on both sides gives

e~ £

I(Z = Pr )Ll < U 0o U — Uy 00 US| - |£x = L] 7 - I T = Vicoa V|| < o (L)

Now, we give the proof of the right side of Eq.(11). For any tensor Z, we have
(Pr, —Pr)Z =Uy,oa U 05 Z+ Z 05 Vi, 006 VI — Uy, 06 U 05 Z 05 Vi, 09 VI
—UO(@UHO@Z—ZO@ V<>q> VH—FZ/{O@UHO@ Z<>q> V<>q> VH
=Uy, oo UF —U oo UT) 05 Z + Z 0g (Vi 09 VI =V og V)
- (U}COq)u]f —U<><I>Z/{H)<>q> Z<>q> V<><I> VH —Uk<>q>l/{,f<>q, ZOcp (Vk<><p V]?—V<>q> VH>
=Up oo U —Uoa UT) 05 Z0p (T —Vop V) + (T — Uy 06 UF) 05 Z 05 (Vi 0 VI =V og V).
Taking Frobenius norm on both sides gives
|(Pr, — Pr)Z|r
<ty 00 Uy' —U oa UM|| - || Z]|F - 1T =V oa VI + 1T = Uy 0o Ui || - [|Z]|F - Vi 00 ViT =V 0a V||
2Lk = Lllr

<o) Ele

O

Lemma D.8 (Chordal and Projection Distances: the matrix version in (Wei et al., 2016)). Let Uy, U € R™"***9 be two
orthogonal tensors of multi-rank k. Then there exists a k X k X q unitary tensor Q such that

||Uk —u<>q> Q”F S ||Z/{k OPp U,f[ —u<>q> L{H||F.

Proof. Since

W — U og Q% = (Ui — UQ, Uy, — UQ) = 251 — 2 (U, U 0 Q) = 255 — 2 (U, UQ)
and

[Un o0 U — U oo U || = (Ut —UU™ LU — Ut™)

=25y, — 2 Uy, o0 UL U 0o UT) = 25, — 2 (U, UUM)
it suffices to show that there exists a Q such that
(U, U 06 Q) > (Uy oo UL U 0o UT) & (U, UQ) > (U . UU™) .
It is equivalent to show that
(U™ o6 Uy, Q) > (UM og Uy, U™ 06 Uy) = U, Q) > (U Uy, U™ UL)

for some unitary tensor Q € RFXFXa Let UH og Uy, = Q1 05 T o5 QI be the transformed t-SVD of U og Uj,. Then we
have T'(4,4,s) < 1(1 < i < k), and we can choose Q = Q; o5 QI O
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Lemma D.9. Let Z;. = Uy, 0 Xk, 0o V,CH be a multi-rank r tensor such that

o'min(ﬁ)
Zr, —L||r < .
12— clp < 22

Then the tensor Z, returned by Trim algorithm satisfies

N . 10 [us A . 10 [us
H T r
Uy o0 éillp < 9\ g and ||[Vi 09 éj]|F < 9/ g

for1 <i,j <n, where Z =U og % og VY. Furthermore, || 2y, — L| ¢ < 85| Z) — L| r.

Proof. For simplicity, let d = || 2}, — L||r. By Lemma D.7, we have

V2d V2d
U oo U —U oo U ||p < ——— and [[Vyos VI = Voo V||p < ———.
[Ur 00 Uy, oo UM ||F < (@) O Vi 00 Vi, o V| < —T)
This together with Lemma D.8 implies that there exist two unitary tensors Q,, € R"*"*? and Q,, € R"*"*4 such that
V2d V2d
U, — U ulE < d |Ve—=V ollF < .
Uy — U 00 Qullr < (@) Ve =V oo Qullr —7

It follows that
1Sk — QL 00 R oo Qullr = |8k — QT EQ,|Ir = U ZkVi — UQL) LIV, | r
<[ 26V — UQ) T ZeVellr + [UQ)T ZeVie — UL LVk | r + |UQW) T LV — (UQ)T LV, F
<|[Up —UQullF - |2kl + |2k — Ll|r + [|1£]] - Ve = VQullF
\/id(d + Omax (L)) \/idamax(ﬁ)
< — 2 4
- Omin (L) + d * O—min<£) - lid,

where & is the condition number of £, and we have used the assumption d < o,in(£)/10v/2 < 0imax(L£)/10v/2 and the
fact

1Z6ll < IEN+ 1125 = £]] < omax(£) +d

in the last two inequalities.
Recall that Ay, and By, in Trim algorithm are defined as

~ . . . uH( i :)
A (20, :mln<L[H i) ||, MST) UG
g ( ) U ( )”F ngq Huf(i,l,l)HF

3 . . . r VH(:4,:)
BH(:i,: :mm(VH 54| F, uS’)’C’_’.
g (0) Ve Gy o)lles wa ) VG

115,
n

Because
H HSy
and ||€,L [oZi’) V<><1> Q’U”F < ’

65 og U og Qulr <
ng

we have
l|éi oo (-/‘le —U s Qu) lr <||éi oo (U —U o5 Qu)|IF,
léi o0 (Bi = Vos Qu) I <liéi o0 (Vi =V oo Q) Ir-

Therefore,

V2d

i < _ <
[k = U 0a Qullr <[t = U 00 Qullr < —=r.

] 2d
_ <|[Vi - S ool D)
1B =V on Qullr <Vie = Vor Qullr < ==
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Since 2k = Ak OP 1k Ob B,f by Trim algorithm, we have

12k — LllF = [| Ak 00 i 06 B — (U 05 Qi) 00 (QF 06 T og Q) 06 (V os Q) ||»
= AxSkBE — 1Q.)(QF50,)(VQ.) |
<JAREBE — UQ)SKBE || + (U Qu)SkBE — (UQ.)(QH£Q,)BH |

+ 1) (Q£Q,)BE — UQ.)(QI50,)(VQ.) " |1
<[l A —UQullFIENIBell + 1Ex — QFEQ, | rl1Brll + EII1Br — VQull

v2d V2d V2d V2d
- (0max(£) + d) (UM(E) + 1) +4kd <Umn(£) + 1) + amax(ﬁ)m < 8kd,

where we use the fact
12kl = 12kl = I£]] + |2 — £]| < omax(L) +d.

It remains to estimate the incoherence of Zk. Because flk and l’;’k are not necessarily orthogonal, we consider their QR
factorizations:

./Ik = Z/N{k CP Ru and Bk = f)k (o2} 'RU.
First note that

. . V2d 9

: >1 — - >1— > =

Jmm(Ak) >1 ||Ak U og QuH >1 O'min([:) Z 10
. - V2d 9

min Zl - - v 2 1- Z .
Fuin(Be) 21~ B —Vou Qull 21~ s >

We give the proof of the first inequality in the above inequalities. We assume Xy € R™*"*9 || X||z = 1 and /If o0 Ai 0o
XO = Umin(Ak)XO

1= |t o Qu oo Xollr < ||U 05 Qu — Aj, + Ai) 00 X||F

< (U oo Qu — Ak) 08 X||F + || Ak 08 X[ F < [[U 05 Qu — Ak|| + Tmin(A).

Therefore,

_ 10 _ 10
IR <5 and RS < 5

Consequently,

) ~ ) ~ . - _ ) - _ 10 B
6] o0 Upllr = [l o0 Urllr = €] 00 Ak 00 Ry IF < |16 00 Aellrl|R < 9/ 'l;qr»

) - ) ~ ) ~ _ ) P _ 10 B
6] o0 Villr = 6" 00 Villr = 6] o Bi oo Ry e < €] 0o Billp|| R, < \/ /;qr

9

O
Lemma D.10 (Trim Property). Let Trim be the algorithm defined in Algorithm 3. If Lj. € R™"*"*4 is a multi-rank 7 tensor

with _
ICk — L] < 522 (12)

k = 20\/57
then the trim output with level ”n'—i; satisfies

1Lk — L]l p < 8K[|Lk — L], (13)

. 10 [us, H . 10 [ps,
ax || A o éil|p < —, /=2, d ax || By o &illp < — 4/ —, 14
grel[ﬁll K o® €illF < o\ ng jné[ﬁll koo Cillp < 5 ” (14)

where Ek = A 03 Xk Od B,{.{ is the transformed t-SVD of Zﬁk Furthermore, it follows that

1Lk — L] < 8kv/25, || Ly, — L] (15)
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Proof. Since both £ and L}, are multi-rank r tensor, £, — £ is multi-rank at most 2r. So

_ _ _ _ Os Os
Lllr =1Lk — Lllr < V25| Lk — L] = V25, | L — L] < 28yt = T
Lk — Lllp = Lk — Ll|r < V25, || L1 — L|| = V25, || L1, — L] s 205 10v2

The Trim incoherence follows directly from Lemma D.9. Furthermore, we have
1L = L]|r < 8[|Lx = Ll|r
and
125 = LI = | — L|| < 8v/2s,5l|Lx — L]| = 8v/25, ]| £ — L]]-
O

LemmaD.11. Let £ = U og X 09 VH and L}, = Ak, 00 Sk 0o Bf be the transformed t-SVD of two multi-rank r tensors,
then

Ly—L Ly—L
H 766 H;||V<><I>VH*BK<>4>B£I”§” ka- H’

U 06 UT — Ay 0p AT < (16)
and
Ly — L]|J?
(1 - Py < £ a7
Proof. From Lemma D.7 we get Eq.(16). Since £ = U o U og £ and Ly, o¢ (T — By 06 BT) = 0, we have
(I = Pr) Ll = [I(Z = Ak 0 AY) 00 L 00 (T — By ©a By ||
:H(I — Ak (o2} .AkH) <>q>u<><[> Z/{H P ,C<>q> (I— Bk P Bf)”
:||(Z/{<>¢, Z/[H — .Ak OP Af) <>q>Z/{<>q> Z/{H P [:O@ (I— Bk P B,?)H
=||U 00 U — A}, 00 A) 04 L oo (T — By, 00 B ||
=||(U oo U — Ay 0 AF) 05 (L — L) 00 (T — By, 00 B)||
=™ — A AT)(L — Li)(T — BeBE)|| < UUP — AL AE| - 1L — Lil| - 1T — BeBF ||
e- Lil® _ 1Lk — £
-0, Os,
O

Lemma D.12. Let S € R™™"*4 pe g symmetric tensor satisfying Assumption 5.2. Let L}, € R"*"*4 be a multi-rank v

tensor with %—incoher@nce. That is,

) 10 [ps, . 10 [us,
A op &llp < — d B og éillp < — ,
?é%ﬁ‘” K %@ EillF < 9,/nq an, jrrg[ﬁll K %o Ejllr < 9\ g

where L1, = Ak 03 Lk 0o B,f is the transformed t-SVD of L. If supp(Sy) C Q, then

1P, (8 = S)lloc < dapsr||S = Splloo-
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Proof. By the incoherence assumption of Ly and the sparsity assumption of S — S, we have

[Pr, (S = Sk)]ije = (Pr, (S — Sk), Eijn)
= (A 00 Af 06 (S — Sk) + (S — Sk) 06 Br 0o BY — Ay 00 Afl 06 (S — Sk) 00 By 00 B, Eijt)
= (A A(S — Sk) + (S — Sk) BB — A AJ(S — Si)BiBY 1)
= (8 — Sp, Ay A Eije + Eiu BB — A AL € BB
= (S — S, Ai, 06 Afl 00 Eiji + Eijt 00 Br oo BE — A 00 Af 0o gijt 0a By oo Bi')
={(S — Sk) 0n &, A 00 ALl 05 ¢; 0p e1) + (¢!
—{(8 = Sk), Ak 00 Afl 05 Eiji 00 By 00 B )
<D (S =8k)(4,0), (Ak 00 Afl 00 €500 €1)(1,5,0)) + D (S = k) (i, 5, ¢), (er 0 €1 00 By, o BY)(:,1,0))

c€lq] c€lq]
+ IS — Skllll Av AL Eije BBy |1+
<Y S = S) (1 lloo - (A 00 AF 00 300 €)(:,:, ) |1

celd]
+ ) IS = Sk) (G5 0)loo - (€1 00 5 00 Br 0w B (-5 )11
c€lq)

+ Oé?’LqHS — SkHooH-Ak (o2} .AkH Op gijt P Bk (o2} B}?HF

H<>q> (S Sk) €t<><1>€ Op Bk O Bk>

. . 100ps,
<IIS = Sklloe (MK 00 AL 00 €5 00 et + |ler 0o € 00 Br 0 Bi [|1) + ang 81uq IS — Sklloo
=||S—S1f||oo Z ||éf OP Ak OP .AkH P éi (o) 6t||1—|- Z ||€t OP é]H OP Bk (o) BE SPp éb||1
al(a,it)eQ b|(4,b,t)EQ
100aps,
+ S = Sl
81
:”S_Sk”oo Z ||éf Loy .Ak OP AkH OP éi OPp 6,5||F—|- Z ||€jH OP Bk P B,? SPp éb<>q> et”F
al(a,i,t)eQ b|(4,b,t)€Q
100 s, .
% IS = Sklloo one element in the {; norm
100us 100aps 200acps 1008,
<2an S — Sl + S — Sl = (Z 4 KO 5 = Sl < e S = Sl

This proof uses the fact that || X ||; < /T|| X ||z, | X ||« <
following inequality in the proof:

||./4/C P Ak <>¢, ijt O Bk OP Bk ||F = HA/CAH&]tBkBk ||F = \/Tr AkAHg”tBkBHBkBHS .Ak.AH)

| AR AL Byl = 1B EH A AL |1 = [ Te(BILEL

15t

A A A AL E 1 By) = ||BEER, Akl

o ~ - 100pus
<lIBé;lrlle lrlles Axllr = IBK on &jllrller’ lrlles” on Awllr < =70

O

Lemma D.13. Under the symmetric setting, i.e., U o6 UT =V o6 VH where U € R™*" %1 are two orthogonal tensors, we

have
4
1Pr(2)ll < 4/ 5112

for any symmetric tensor Z € R"*"*4, Moreover, the bound is tight.



Fast and Provable Nonconvex Tensor RPCA

Proof. First note that
Pr(2)=Uos U 0p Z+ Z 0 Uos UT —U 0 U 04 Z 0p U oo UM
Then, we have
|Pr(Z2)| = U o U 05 Z+ Z 0 U 06 UT — U 0 U™ 05 Z 05 U 05 U ||
e 2 + 2ot - 2| <412 = 121,
where the last inequality follows from Lemma 8§ in Cai et al. 2019. O

Lemma D.14. Let U € R™"*"*1 be an orthogonal tensor with pi-incoherence, i.e.,

UT o éi||r < %foralli € [n].

Then, for any Z € R™"*"*4, the inequality

. s .
[UT 0p 2% 0g é4]|p < max a qr (V|| Z og é1]|p)”

n

holds for all i and a > 0.

Proof. This proof is done by mathematical induction.
Base case: When a = 0, ||¢X og U||p < 5% is satisfied following from the assumption.

Induction Hypothesis: [[¢[ 0g 2% 0¢ U||p < max; /5= (Vnl|é] oo Z| ) for all i at the a' power.

Induction Step: We have

|67 o0 2T oq U|T = [|é] 00 Z0a 2 op U|T = [|ef ZZ°U|

qg—1 r n 2
) (Z[Z’]ﬂnﬂw[zammW)

¢=0 j=1 \k=1
q—1 T

= Z [Z]cn+i,cn+k1 [Z]cn+i,cn+kz Z[Zau}cn-&-khcr-&-j [Zau]cn+kz,cr+j
c=0 ki ,ks j=1
q—1

= Z [Z)entisentin [ Z]enti.cntks (eg+k12aa(:, er+1:cr+r), egl+k2 ZU( er+1:er+71))

=0 ky ko
q—1
< |[Z]cn+i7cn+k1 [Z}cn+i,cn+k2} HECH7L+’€12au(:7 cr+1:er+ T)”Q”egL-‘erZau(:’ er+1:er+ T)||2
=0 ky ko
|| - ||2 is the Iz norm of vectors.
g—1
< HZ]anri,anrh [Z}anri’anrkz‘ Hegz+klzau”2Hegwkzzaulb
kl,kz c=0
s =
< mlax - (\/ﬁ”elH o Z”F)Qa Z Z |[Z}cn+i’cn+k1 [Z]cn+i,cn+kz|
nq c=0 kl,kz
1S ! 2
= max n—qr(\/ﬁHqH o0 Z||p)*® (lef 2 (en+1:en+n) )
c=0
1S ! 2
< max nqr (Vnllef oo Z(|F)** Y (Vallel L Z (L en+1:en+n)]2)

Il
o

Sy
I ng

= max 2 (ValleH op 2] (VAlEH 2| r)?
)% (

s . . 2 s .
:m?X%(ﬁ||eﬁ 0a Z|F)** (vVnlel oo Z||r) < max L;;(\/EHBF op Z||lF)**?,



Fast and Provable Nonconvex Tensor RPCA

where we have used the inequality ||z||1 < v/n]|z]]2,z € R™. Now, we have

. S .
U 0p 244 0 &1 < max ‘;q (V| Z o0 &l ).

In the proof, we have used the inequality

2
—ar s s . .
et ZUlelet s, 2012 < (a2 (Rl 00 200" ) = a2 (el on 2]

Sr
ng ng
O

Lemma D.15. With the condition of Theorem 5.5, let L € R"*"*% and S € R"*"*? be two symmetric tensors satisfying
Assumptions 5.1 and 5.2. Let Ly, € R™"*"*4 be the trim output of Ly. If

_ Sr g
£ — Lkl < 8aus v a1, ||S — Skl < %Wktfla supp(Sk,) C Q.

then,
I(Pr, — DL+ Pr, (8 =8kl < ™/"*a,,

and

max v/nlléf" oq [(Pr, = 1)L + Pr(S = Sp)] | <v7*5s,

hold for all k > 0, provided 1 > ~ > 51275,.k% + \/% Here T = 4daus,k and v = 7(48\/5&,‘{ + ’% ).

Proof. Since D = L + S, we have

Lp—L|> [4
I(Pr, — D)L+ Pr (S = S0l < I(Pr, — Dl + [P (s — s < A s s,

(8v/25,k)?|| Lk — L||?

Os,

4 1 /4
<128 - 64a2/128§/~@37k61 + \/;a,us,fykal = <512 . 4aus$ﬁ3 + 4\/;> 4a,usrvk61

<

4 4
+ ﬁanqlls — Sklloo <128 Bausis®||L — Ll + \fganqns — Sklloo

where we have used lemmas above and the fact Hﬁgiﬁ’“‘l < Baus,k.

To compute the bound of max; /n||éff o¢ [(Pr, — I)L + Pr, (S — Sk)] ||, we first note that
mlax ||ef{ P (I — PTk)»CHF = mlax HelH OP (U O Z/{H — .A<>q> .AH) Op (ﬁ — Ek) OP (I — .A<>q> .AH)HF
= o |6 @A™ — AAT)(L = £1)(Z = AA™) |l < max|éf! QU — AAT)|[£|[(£ = £,)(Z — AA™)|

< ma | @™ — AAH) | p|£ — By IT — AAH | = mac ef! o5 U o0 U — Ao AM)]| |1 — L4 IT — AAH)

19 [us, S 3 19 [us, ~
<\ —=/—IIL=Lkl|=—4/—|L-L
<(F/=r) 1L - A= 5 e - 4,
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100
81

Hfll‘om\/ﬁﬂéfH o0 [(Pr, = )L+ Pr,.(S = Sp)l[|r < max Valléff o (Pr, — DL||p + v/nllé]" oo Pr, (S — Sk)|lr
< max Villéf' oo (Pr, — I)L||F + v/nlléf" Pr, (S — Si)lr
= max Valéh oa (Pr, — DL|F + vVnllé] oo Pr, (S — Si)|lF

where we have used the fact £ is p-incoherence, £y, is 122 y-incoherence and || X || < || X || . Hence, for all k > 0, we have

19y/n Sy ~ 19 2
< 8 Fy P (S = Se)lo < e 22 - L]+ s, S — Sil

9 ngq
19 /2 -
<—8ks, ol 8 g,usr’yk&l + daps,na/q - ﬁfyk&l < v'ykc_rsT,
9 g Vaq ng

where we have used Lemma D.10 and Lemma D.12. O
Lemma D.16. With the condition of Theorem 5.5, let L € R™*"*9 and S € R"*"*1 be two symmetric tensors satisfying
Assumptions 5.1 and 5.2. Let L}, € R"*"*4 be the trim output of Ly. If
12— Lill < Sapsr*a1, IS = Sklloe < 524¥51, and supp(Sk) 9,
nq
then |5;,. — |\ < 76,4 and (1 — 21)75,.0 < AP+ 47 A5 < (1 + 27)7/5,,0 hold for all k > 0, i > 7., and
j <k+1, provided 1 > v > 51278,k + \/% Here |5\£7’?\ is the (i, ¢)"" singular value of Pr,(D — Sp).

Proof. Since D = L+ S, we have Pr, (D — S;) = P, (L+S8 — S;) = L+ (Pr, — I)L + Pr, (S — Sk). Hence, by
Tensor Weyl’s inequality and Lemma D.15, we can see that
01— NI < (P = DL+ Pr (8 = S)l| < 9oy, < 77,

holds for all 7 and k > 0.
Notice that £ is a multi-rank 7 tensors, which implies &; . = 0,7 > 7., so we have

AL T+ A A = 0| = N2 = e + 7 N = V5
<" 6, + Ty e, < (14456, < 219761
O
Lemma D.17. With the condition of Theorem 5.5, let L € R"*"*% and S € R"*"*1 be two symmetric tensors satisfying

Assumptions 5.1 and 5.2, respectively. Let L}, € R"*"*4 be the trim output of Ly,. If

Sy

1L = Li|| < 8aps,y o1, ||S — Skllos < TqVk(}la and  supp(Sy) C 9,

then we have ||£ — Ly.41]| < 8aus,v*+1Gy, provided 1 > v > 51275,k + \/%

Proof. A direct calculation yields
1£ = Lol <NI£ = Pr(D = Si)|| + [|Pr (D = Sk) = Liya || < 2(|£ = P (D = Sp)|

=2||L — Pp,(L+S —Sp)|| = 2||(Pr, — L+ Pr,(S—S)|| <2795, =2 daus,wy"16,, = S8aps,v* oy,
where the second inequality follows from the fact L1 = H, (Pr, (D — Si)) is the best multi-rank  approximation of
Prp, (D — Sk), and the last inequality follows from Lemma D.15. O
Lemma D.18. With the condition of Theorem 5.5, let L € R"*"*% and S € R™"*"*? be two symmetric tensors satisfying
Assumptions 5.1, 5.2. Let Ly, € R™"*"*4 be the trim output of Ly. If

Sy

v*61, and supp(Sy) C Q,
nq

1£ = L]l < Baps,y a1, |8 = Sklloo <

k+1= 2v

then we have ||L — Li11]o0 < (5 —7) ™61, provided 1 > y = max{5127'sr/£2 + \/%, m} and

1
T<ﬁ
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. A O UH .. .. ..
PVOOf: Let PT;C (D — Sk) = [L{;H_l L{k+1] O |:0 A:| O [u]}f1:| = uk+1 P A (o2} U,fﬂ_l + uk+1 O A Op U,ﬁ_l be
k+1

its eigenvalue decomposition. We use the lighter notion \; = A(i,4,:) € R1*1X4 (1 < i < n) for the eigen fiber of
Prp, (D — S) at the k-th iteration and assume they are ordered by | A1|| g > || A2llr > -+ > || An||F. Moreover, A has its r
largest eigenvalues in Frobenius norm, U}, contains the first  eigenvectors, and ZJkH has the rest. Also, the multi-rank of
Up11 00 Aog UL | is 7. It follows that Li41 = H,(Pr, (D — Si)) = Up41 00 Moo U .

Denote Z = Pr, (D—S8k)— L = (Pr, — )L+ Pr, (S —Sk). Let u; = Uy 11(:, 14, :) be the i eigenvector of Pr, (D — Sk).
That is, Pp, (D — Sk) ¢ u; = u; ©¢ A;. Then we denote Pr, (D — Si) as M

Mi; = u;\;
which is
MO o 1" o 0 aV 0 ol XY o 0
0o M® 0 0 a? 0 0o a? 0 0 @ 0
0 0 0 0 0 0|l |0 0 0 0 0 0
0 0 MD] g a{? 0 0 a? 1o o Al

This means M(C)EEC) = ch)ﬂgc). Because M(©) = Pp, (D — 8;,)(@ = 2(©) + £(9) we get (S\EC)I — Z(c))ﬂgc) = Lz,

Then we have
_ -1 _ _ _ 2 _
: z() (o) z(9) Z() (o
a9 = (=22 Elge_ [y E22 (20 L) £
)\(f) C. /\EC) )\E(‘)

Combining all g slices, we have

where

1
ol 0 0 z) g 0
s 0 sl 0 s_ |0 Z(2) 0
' 0 0 0o |’ 0 0 0
0 0 5T 0 0 2z
;7

The above inequality is valid because of Lemmas D.15 and D.16 (because Z is symmetric, its eigenvalues and singular
values coincide):

k+165T T

12l o _ <1
Ns,| — 1=7)0s, 1-—7

&2 <

Then we get u; = (I + &0 Z+ (&% Z)2 + .- ) op & 0 L 0 u; which implies

T
le+1 <>¢>A0q> uk-+1 = Ui Op )‘z Op U;
i=1

:Z Z (5, (o2} Z)a O gl (o2} L OPp Ui OP )\z Op ’LLZH Z (51 (o2} Z)b (o2} 52 (o2} L
i=1 \a>0 b>0

T
:ZZ“O@EO@ E (5ia+1<>q>u7;<>q>/\i<>q>ufl<>q>€£)+1)<><p£<>q>zzb
a>0 i=1 b>0
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To simplify the above formula, we have

r 1
XE”I 0 0 ﬂgl) 0 0
1
s 0 5 I 0 0 a®? 0
o 0 0 0 0 0 0
00 sl Lo o 7"
[a{! 0] [z O 0
o a® 0 0 st 0| _ &
0 0 0 0 0 0 o
L 0 0 ﬂgq) 0 0 5\(14)
Then we have
Ertla Nl €01
( a+1 7
_L 0 0
) f
L il A 0 0
o0 () 0 0 AP o
0 0 . 0 _
ar1| | 0 0 Al
0 0 o ((1q)>
N 1

1
N
>0
Sl
"
o
+
—
(aw]
o
1

a+b+1
1
_ = _ _ =(a+bt1) -
—ii, 0 (/\52)) 0 o — UiF§a+ + )ufl,

v
0 0 (/\;q))

. . =(atb+1
where we introduce new notation Fl(»a'Ir + ). Hence we have

(a+b+1) H
i o

5;1+1 Op Ui Op )\Z P ’LL{{ OPp gf+1 = U; Op r U; -

Now, we get

T
Z/{k+1 (o2} A<>q> U,ﬁl = E zZe O ,C<>q> E (5f+1 Op Ui Op )\z (o2} uf{ OPp gEFH) <><I>£<>q;. E Zb
a>0 i=1 b>0

= Z Z P L P Z (ul OP F5a+b+1) OPp UF) OPp L Op Z Zb
a>0 i=1 b>0

= E Z¢ Op L P Z/{k+1 Op P(a+b+1) Op ulgrl P L Op Zb
a,b>0
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Thus, we have

[Lx+1 = Llloo = [Urs1 00 Aoa Uiy — L]l
:H[, P Uk+1 P F(l) P U,ﬁl P L—L + Z zZe P L OP uk+1 P F(a+b+1) P L{,ﬁl OP [,Oq; Zb”oo
a+b>0
S”E OP Z/lk+1 OPp F(l) OPp Z/{;ﬁ_l P L— [:”OO + Z ||Za OPp L P L{k+1 OPp F(a+b+1) OPp Z/l,ﬁl OP L OPp ZbHOO

a+b>0

=Yy + Z Yab
a+b>0

We will handle Yj first. Recall that £ = U og ¥ o V' is the transformed t-SVD of the symmetric tensor £ which obeys
p-incoherence, i.e., U o6 UH =V 05 VH and |6 o U 0o U || < £% for all 4. So for each (4, 7, k) entry of Yo, one
has

Yo = max ’<ﬁ og U1 00 TW o UL 06 L~ L, gijk>‘

1,5,k

=max
4.5,k

<6£I OPp Z/{()(b Z/{H OPp (E OP Z’{k+1 OPp F(l) OPp Z/l,ﬁl OP L— [,) OPp u<><1> Z/{H OPp éj,€k>‘
SH}%X ||€ZH <>q>u<>q> Z/[H Op (E O uk+1 Op F(l) OP u]ﬁl Op L — E) <>q>u<>q> Z/{H O éjHF . ||ek||F

SH}E}XHG? <><1>Z/[<>q> UHHF . H£<>q> uk+1 OPp F(l) P L{,ﬁrl OP L— EH . ||u<>q> UH OPp éj”F

Sr
l:Lq ||£ O Z/{k+1 (o2} F(l) O L{,ﬁl (o2} L— £H,

<

where the first inequality follows from the fact U op U™ 0¢ L = L o U 0o U = L. Since L = U1 00 A oo U, +
dk+1 % A P Z/l,ﬁl — Z, there holds that

£ 0p Ups1 06 T op U | 05 L — L]
=||Up+1 00 A oo U, + Ups1 00 A oo a,ﬁl — Z) 0p Upp1 00 T o4 U,
og (Upt1 03 A oa Z/l,ﬁ_l +dk+1 op A og L'Z,fil - 2)- L]
=|Up11 00 Aop TW op Aog UL, — L —Uy1 00 Aog T o UL 05 Z
— ZogUpt1 00 TW og Ao U | + Z 0g U1 00 TW og UL, | 05 2|
<||Z = Ups1 08 Aog UPL || + U1 00 Ao TW o UL | 05 2|
|12 00 Upt1 06 TW 0g Aog UL || + || 2 00 Ups1 06 TW o5 UL | 05 Z||
=12 = Upsr R | 4+ Ui s ADVUE 2] + || 20 TOAUE | + 1| 20 DOUE L 2 |
<I|Z — U RUE ) + 211 2] + '|'AZ”| < W2 AL | + 41121
<1l HAIZ] < 5| 2] < 5T e,

IZL < 2 < 1since 7 < 4, and [A, 1] < |12]] since

L is a multi-rank 7 tensor (using Tensor Wey!’s inequality). Thus we have Y < %57’7k+161. Next, we derive an upper

where the last inequality follows from Lemma D.15, and notice
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bound for the rest part. Note that
Yab = mal)c( <Za O L OP Z/[}g+1 O F(a+b+1) OPp u,fil (o2} L O Zb, g”k>
75
= max <(efl (o2} Ze P u P Z/{H) (o2} L O uk+1 (o2} F(a+b+1) (o2} Z/[]fil O L (o2} (Z/[ P L{H Op Zb Op éj), €k>

1,5,k

(a+b+1)

SH}E}X ||(6£I P Ze OPp Z/lo@ Z/[H) OPp £<>¢> Z/{k+1 SOPp I OPp Mlg-l OP ,C<><1> (u OPp Z/[H (o) Zb P e])”F . ||ek||F

< HzlajJX ||€ZH (o2} Z¢ O Z/{HF . HC (o2} Z/{k+1 Op F(a+b+1) Op L{,ﬁl (o2} £|| . ||Z/[H Op Zb (o2} ej||p

S .
S Inlax %;(\/HHSF P Z|‘F)a+b||£ OP uk’-i-l OPp F(a+b+1) OPp Z/{]g_l OPp ﬁ”,

where the last inequality follows from Lemma D.14. Furthermore, by using £ = Uy 11096 Aog Z/l,ffrl +Hk+1 O Aoq,l;?,ﬁrl —-Z
again, we get
1L 00 Up+1 00 T og UM og L||
=||U+1 00 A oo U, + Up41 00 A oo Z}i,ffrl — Z) 0p U1 09 DT o4 U,
og Up+1 00 Ao UL + Uyt 06 Aos UL | — Z))|
=|Uss1 00 A op T og Aog UL | — Upy1 05 Aog T D og UL | 05 2
— Z 06 Upt1 00 TOTPTD 60 A og UL+ Z 0g Upy1 00 rlatd+l) o0 U | oo Z|
§||Hk+15f(a+b+1)5a§1 uk+lAF(a+b+1)uH Z — ZUyp T a+b+1)AuH L+ Zuk+1r(a+b+1)uH Z||
<o | 7O N [TV 2]+ A [T 2 (R, @D HZII2

Y~ (atb— 22| , (121 121l
=|\ (a+b—1) s 2 (a+b—1) 1+
| 37~‘ A |A€ | | 9r| |>\g7‘|
<|5\ ‘—(a+b—1) ( 1 ) ( > 1 _ 7_ —(a+b-1)
=[5, 11—+ ’
<73

| ” ——, and the last inequality follows from Lemma D.16. Together with

where the last inequality follows from
Lemma D.15, we have

1S 1 \? vk e ath=t
_ 7er k= Sr
> a2 () e (755

a+b>0 a+b>0

2 a+b—1 2 2
<P ! vy* o Z . < B : vy*5 -
ng \1—r71 1—7 ng \1—r71 T
a+b>0 T

S 1 2
S'u - () v’ykﬁl.
ng \1—7—wv

Finally, combining them together gives

2
s S 1 1 s

[Lr1 — Llloo = Yo + E Yo = 22 "5ty 4 B ( > e ( - T) T
oito ngq ng \1—-7—v 2 nq

where the last inequality follows from v > O

2v
(1-127)(1—7—v)2"

Lemma D.19. Let L € R™"*"*% and S € R"*"*4 be two symmetric tensors satisfying Assumptions 5.1 and 5.2,
respectively. Let Ly, € R"*"* be the trim output of Ly. Recall that 3 = b If

1L = L]l < Bapr a1, ||S — Sklloe < %’"v’“&l, and supp(Sy,) C Q
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then we have

S _
supp(Sis1) € Qand 8 = Sl < Lo e
provided 1 > v > max {5127’&/@2 + \/%, Mﬁ} and T < 1—12
Proof. We first notice that
Teo ([S + L= Lrsalije)  (4,5,k) €Q

Sliie = [T, D-_L ik =T (S+HL—-L ik = A c -
[Sliji = Tty ( Kt 1)]ije = [Tepp, (S + k+1)]ijk { Teor (1€ = Lopalige) (1,4, k) € Q

Let |A;| denote the i*" singular value of Py, (D — Sj,). By Lemmas D.16 and D.18, we have

1 LSy _ 1 usy 1 ~(k ~(k
€~ Luadyl < 1€ = Lunile < (5 7) 2oty < (G- 1) 220 (W0 494 A01) = G

for any entry of £ — Ly41. Hence, [Sk41]ij1 = 0 for all (i, 4, k) € Q°, i.e., supp(Sk+1) C .
Denote Q41 := supp(Sk+1) = {(%, 4, K)|[D — Lr+1]ijk > Ck}- Then for any entry of S — Si41, there hold

0 0 0 (i,4,k) € Q°
[S — Skr1)ijrk = § [Lrr1 — Llijr < £ = Lit1lloo < (3-7) %’7“151 (i,7,k) € Qes1
[Slijk 1£ = Liyilloo + Cusa byl (i,5,k) € Q\Qpy1.
Here the last step follows from Lemma D.16 which implies ;11 = gg;(|§§’j)+1| + M) < (3 +7) by a.
Therefore, ||S — Ski1|lc0 < E22yF g, O

= ng

Theorem D.20 (Local Convergence). With the condition of Theorem 5.5, let L € R"*"*? and § € R"*"*1 be two
symmetric tensors satisfying Assumptions 5.1 and 5.2. If the initial guess Ly and Sy obey the following conditions:

Sy _
||£ - [’OH < 80[/157-5'1, ||S - SOHOO < /:170-17 andsupp(So) - Qa

then the iterates of Algorithm 2 with parameters 3 = ’Q‘Zq and v € (\/%, 1) satisfy

HSr

kG, and supp(Si) € Q.
nq

I£ = Lyl < Bausy a1, |S = Skl <

Proof. This theorem will be proved by mathematical induction.
Base Case: When k£ = 0, the base case is satisfied by the assumption on the initialization.
Induction Step: Assume we have

Sr k-
1L — Lkl < 8aps, "1, ||S — Skl < %Vkﬂl, and supp(Sy) C Q
at the k" iteration. At the (k + 1)*" iteration. It follows directly from Lemmas D.17 and D.19 that

Sr _
£ = Lrir|l < Baps,y* 151, |8 — Skl < %7“101’ and supp(Sk41) C €.

Additionally, notice that we overall require 1 > v > 51275,k2 + \/% By the definition of 7 and v, one can easily see that

the lower bound approaches \/% when the constant hidden in bound of « in Theorem 5.5 is sufficiently large. Therefore,

the theorem can be proved for any v € (\/%, 1). O
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D.2.4. LoCcAL CONVERGENCE OF ALTERNATING PROJECTION IN APT

Lemma D.21. With the condition of Theorem 5.4, let L, S be the symmetric tensors and satisfy Assumptions 5.2 and 5.1.
Let Sy, bethe k-th iteration of our algorithm. Suppose (1) ||S — Sk|loo < %’yk_lﬁl, (2) supp(S — Si.) C supp(S). Then
12801 <Ml <1 128

Proof. Note that D — S, = L + (S — Si;). With Lemmas D.3 and D.4, we have

< 1

P\i,c - 51‘,0’ < IS = Skll2 < daus,y* e < @01 (18)
where the last inequality follows from the bound of « (hidden constant in Theorem 5.4 is 512)
If&i’c =01, We have Bgal < |)\7, c| < |>\1|
if j\i,c = 5\1, we have |)\1| = ‘)\i,c < Oic < %5‘1. O]

Lemma D.22. Suppose v > 15, (1). [|S = Sifloe < 4,‘1%7’“7161, (2). supp(S — Sk) C supp(S). Then we have
[Lrt1 = Ll < Gizy*r.

00 — ng

. A 0O . 1H . . _
P}’()Of LetD — S, = {Uk+1,uk+1} O [0 A:| O [Uk+1,uk+1} = Z/[k+1 op A oo Uﬂ_l + Uk+1 op A oo u}ﬁ-l be its

eigenvalue decomposition, where A has the multi-rank 7 eigenvalues in magnitude and A contains the rest eigenvalues.
Also, Uy contains the first  eigenvectors, and L'Zk_H has the rest. Notice L1 = PL(D — S_1) = Ux11 %9 A 0o L{,ﬁl
due to the symmetric setting. Also, denote S — Sy, as Z. Let u; = Ug11(:, 4, :) be the ith eigenvector of D — S, = L+ Z
and \, = A(s, s, :) be the s*" eigenvalue of D — Sy, = £ + Z. Then recall that D — S, = L + Z. We denote D — S}, as
M, then

Mﬂi = azj\za
which is
MO0 o 1 [a" o 0 a0 ol AP o 0

0 M® 0 0o 0 0o a? of]o A 0

0 0 0 0 0 0| [0 o0 0 0 0 0

0 0 MO Lo o al? 0 0 @210 0 A
This means M (¢ = )\(c) ( ) Because D(©) — S( = 2 4 £ we get (5\5 )T — Z(C))EEC) = Z(C)ﬂgc). Then we
have

o 20\ L@, 2 [(z0@)\° £O
u; - = I_W W’u’z = I+W+ W + - S\(C)ui'

7 7

Combining all ¢ slices, we have @; = (I + & Z + (§,2)? + - -+ ) €, Lu; where

1
xwl 0 0 AN 0
L 0 z0 0 ’ - 0 0 . 0
)\iq)

The above inequality is valid because of || Z|| < || Z]|| ﬁ < 1. To prove the above inequality, by Lemma D.3, we have

IN

120 & 5ic — 121 < Aie < 00+ 2]
L 1 E R &

A ey
i+ 2] 7 i

)

|)\i,c - 5—i,c|

IN

IN

= & = < < - .
Gie =2 Gie+ 2] 7 ANie 7 Gic— |1 Z]
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Then, we have

1Z]| 12|l dops, o o
—— < = < - — <1< 8ausy01 <05, < ———.
¢ Oie— 12l T 05, —daps,01 512aps,k

Then, we get u; = (I +&o0p Z+ (0 Z)%+ - ) op & 09 L ©¢ u; for each u; which implies

r
H § : H
Ukﬂ OP A Op Z/{kJrl = Ui Op )\z O Uy
i=1

:Z Z ((c/‘L OP Z)a OP 52 CP L CPp Ui P >\i OP ufl Z ((c/‘L OP Z)b (oY g,’ OP L
i=1 \a>0 b>0

T
= E z° O ,C<>q> E (5g+1 0P Ui Ob Ai Od ulH O 5£)+1) O ,C<><I> E Zb
a>0 i=1 b>0

To simplify the above formula, we have

sl 0 01 [a® 0
o |0 st ! 0 0 a® 0
” 0 0 0 0 0 0
00 salf Lo o 7
[a{! 0] [z O 0
= 0 _7(2) 0 0 5‘512> 0 - ﬂz 71
0 0 0 0 0 0
L 0 0 T_LEQ) 0 0 5\514)
Then we further have
Ertta Null €Y
( o1 -
1
— 0 0
) f
l . A 7?2) ’
_a, 0 (A<12>) 0 0 X\ 0
at1| L OO A
0 0 . ()\;q) >

a+b+1
1
_ _ _ _ S(atb+1) -
—i, 0 ()\52)> 0 all = g,pletot )
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. . =(atbt1 b+1
where we introduce new notation FE(H_ + ). Hence we have Ef“ O Ui Ob N\ OP uf{ Op E,L.b“ = U; O FE(H' +1) P uf{
Now, we get

kA
Z/[k+1 <>q>A<>q> U,ﬁrl = E zZe <>q>L‘ E (5;1+1 Op Ui Op )\z (o2} ulH O 55+1) <>q;.£<>q> E Zb
a>0 i=1 b>0

= Z zZ° CP L S Z (’LLZ RoZi’) Fga+b+1) RoZi’) u{{) RoZi’} L (o2} Z Zb

a>0 i=1 b>0
= Z Ze Op L OP Z/{k+1 Op F(a+b+l) Op u]ﬁl P L Op Zb.
a,b>0
Thus, we have
1Lk41 = Llloo = Ury1 00 Moo Uy — Lo
:HE OP Z/lk+1 OPp F(l) OPp u]ﬁ—l P L—-L + Z Ze OP L OPp Z’{k+1 OP F(a+b+1) OP u,ﬁ_l OPp L OP Zb”OO
a+b>0
SH,C Op Z/{k+1 OP F(l) Op L{,ﬁl P L— ﬁ“oo + Z ||Za OPp L OP uk+1 Op F(a+b+l) Op L{,fH OP L Op ZbHOO
a+b>0
=Yy + Z Y.
a+b>0
We will handle Y first. Recall that £ = U o X 0 V¥ is the t-SVD of the symmetric tensor £ which obeys p-incoherence,
e, UopUT =V og VH and ||¢] oo U 0o U ||F < % for all 4. So for each (i, j, k) entry of Y), one has
}/0 = max ‘ <£ (o2} Uk+1 P F(l) Op Z/{]grl (o2} L— £7 gijk>’
1,7,

:ma}:;(KelH OPp Z/[<><1> Z/{H(ﬁ OPp uk+1 OPp F(l) P ulg-l OPp L— E) OPp U OPp Z/{H P éj, 6k>‘
4,75

gmax He? OP Z/[O@ UH([, (o2} Uk+1 OPp F(l) Op U,ﬁrl P L — ,C) OPp u<>q> Z/{H (o2} éjHF . ||ek||F
2,7
SII}E;XHQ{I <>q>u<>q> UHHF . ||,C<>q> uk+1 P F(l) Op Z/{]gil OP L— L” . HL{ Op Z/{H P éj”F

M
nq

||[: O Uk+1 O F(l) O U,ﬁl o L — EH,
where the first inequality follows from the fact U o¢ U 0p L = L o U 06 UT = L. Since L = Uy11 o0 A 05 Z/l,ﬁl +
Ups1 00 A oo Z/'I,grl — Z, there holds that
HE P uk+1 OPp F(l) OPp L{,ﬁl OPp L — EH
:H(Ukﬂ P A (o2} Z/{IEH + ak+1 Op A O Z/{,ﬁl — Z) (o2} U}g+1 OPp F(l) (o2} u/ﬁkl
OPp (Z/{k+1 op N\ oo Z/{]g_l +Hk+1 OPp AO@ Z/l,ffrl — Z) — £|‘
:HZ/{kJrl OP A (o2} F(l) OPp A P u,f{H - L - uk+1 P A (o2} F(l) OPp kail Op Z
— Z %9 Uk+1 O F(l) oo N oo L{,ﬁl + Z o9 Z/{k+1 O F(l) O Z/{Igﬁ-l O ZH
SHZ — ak+1 P AO@ Z/l,filﬂ + HZ/{kH P A<><I> F(l) O Z/{k}il Op Z”
+ ||2,7 Op Z/{k+1 OP F(l) OPp A O Ll,fﬂrl H + ||Z/7 O uk+1 OP F(l) O ulgi-l P ZH

=|Z - Hk+1Aalﬁ1” + Hzf_{k+1l_\f(1)aﬁ1z_“ + HZ_Z/_[IC+11:‘(1)*/_V/_{I£H” + HZ_Z/_{Ichlf‘(l)Z/_{IﬁlZH

_ = o _ ||Z||2 = v W —
<IIZ = Ut AU ||+ 201 2] + ] = Ly AUE ||+ A2 < [As,ra] + 411 2] < 512,
where the last inequality follows from the fact IL ”‘ < Land |A;, 41| < ||Z]] according to G5, +1 = 0 and the tensor Weyl’s
inequality. Thus we have
5us,
Yo < 2o 2.

ngq
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Next, we derive an upper bound for the rest part. Note that

Yop = max <Za 09 L op Uy 06 T og UL | 0g L og 27, gijlc>
5,75

= ma}i( <(€ZH Op Ze P U OPp Z/{H) OP L Op Z/{k;Jrl P F(a+b+1) P Z/{{{H OPp L P (Z/{ OPp Z/{H (o2} Zb (o2} éj), 6k>
7,

< max [(6H og 2% 0g U 06 UT) 05 L 0 Upy1 09 TOTHTD g UL 0a Loa (U oo UT 0p 2P 00 &) - |lex|lF
< max e 0g Z% 0q U||p - ||£ 0 Upt1 00 T og UL | 0g L] - U 05 Z° 0g ¢j||F
< £ (@ 7] 2]10) I 00 Ui 00 THHD 00 UfL, 00 L]
where last inequality have used the bound of «.. Furthermore, by using £ = Uy11 03 A og Uﬁrl + ZJ;CH O A Op Z/.?,ffrl - Z
again, we get
1L 00 Uy 41 00 T og UM | og L]
=||(Us41 00 A oo U | +Uss1 00 A og U, — Z) 0p Upr1 00 TP 0g U | 0g (Upy1 00 A oo U
+ Upi1 00 Aog UL, — 2)
=|Up 11 00 A op TP og Aog UL, —Upy1 05 Aog T D og UL | 05 2
— Z 06 Upy1 00 TOTTD 64 A og UL |+ Z og Upt1 00 rlatb+l) oo U | os Z|
Uy 1 ATCOHEDAYE Uy AT 2 204 (T DAY |+ 20 TR 2|
<R, |7 X, @ Z] 4 R, [T 2] 4+ [, [ 22

P (1 zlzu <|||>\Z|||) >:|As,‘|<““’ 1y <1+ |IIZI> < o[, [@o-D).

angyal 2] \ 0
Together, we have Y, < 2a15,1/4|| Z || T . Then, we have

4ausr q&l a+b—1 4 a+b—1
> Vs X tansvalzle (U <oasvilzle X (55
Sr

a+b>0 a+b>0 a+b>0

<D/l 2]l (

2
) < sans Vil Z
~ 508

Finally, combining them together gives

T Sr =
1Lki1 = Ll =Yo+ > Yap < ohs IIZII + 3ausr/q|| 2]l < 8apsr/q]| 2o < Mq g
a+b>0

where the last inequality uses the bound of « in Theorem 5.4. O

Lemma D.23. Suppose ||£ — Li11]|o0 < L224%G1, then we have (1). supp(S — Sy1+1) C supp(S), (2). |S — Skt1/loo <

— ngq
4psy
ng 'Y o1

Proof. We shall prove the first conclusion. Recall that S 1 = T¢ (D — Ly41) = T¢ (L — Ly41 — S) where ¢ = %7’“5\1.
If S;j¢e = 0, then (S — Sk11),, = (£ — Lit1),5, when | (£ — Ly11),5, | > . The first part of lemma is proved by using

assumption that || L1 — L[| < E22ykg) < 2Eqky) = (.

We now come to the second conclusion

0 0 0 (4,4, k) € Q°
1S — Skalijh = { [Cha1 — Llige < L= Lisille < Sev*ar (6,5,k) € Qe
[STijk 1€ = Lilloo +¢ kg (i, k) € D\

where 2 := supp(S) and Q41 := supp(Sk+1)- So we have ||S — Sky1|loo < 4“”7 g1 O
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Theorem D.24. With the condition of Theorem 5.4, let L € R™*"*9 and § € R"*"*1 be two symmetric tensors satisfying
Assumptions 5.1 and 5.2. If the initial guess L1 and Sy obey the following conditions:

apsy
pe a1, and supp(S1) C Q,
nq

Sy _
1L = Lilloo < E261, (IS = Siloe <
nq

then the iterates of Algorithm I with parameters 3 = ’Q‘Zq andy € (%, 1) satisfy

Sr g
1L — Lrtilloo < /;qTVkUh IS = Siti1lloe <

4psy
ﬁ’yk(}l, and supp(Sy) C €.
ngq

Proof. This theorem will be proved by mathematical induction.
Base Case: When k£ = 1, we use the initialization in our efficient implementation and the condition is satisfied.
Induction Step: Assume we have

Sr p_1- Apsy g
1€ — Lilloo < I:qu’“ 151, I8 = Sklleo < Z—qvk 151, and supp(Sy) C Q.

at the k*" iteration. At the (k + 1)*" iteration. It follows directly from Lemmas D.22 and D.23 that

Sy p_ 4us, . _
1£ = Lirlloo < E2r501, 18 = Sisillow < =045, and supp(Si) © .
nq ngq
O
D.2.5. PROOF OF PROPOSITION 5.3
Proof. The proof of Proposition 5.3 directly follows from Theorem D.6. O
D.2.6. PROOF OF THEOREM 5.4
Proof. The initialization £, and S; by Algorithm 1 satisfies
T T — T — 4 T —
1L = L1]lee < B2m5y < B2 118 = Silloe < B2261 < 22051, and supp(Sy) C Q. (19)
4dng nq nq ngq
By Theorem D.24, we have
Sr 1 4 Sy 1
1£ = Lilloe < B4 151, 18 = Sillow < =591, and supp(Si) € 2.
nq nq
To get the spectral norm bound of £ — Ly, we have
[£ =Lkl = I1£ = (D = Sg—1) + (D = Sp—1) = L|| < |£ = (D= Sp—1) [| +[[ (D — Sk—1) — Lkl
<2|L = (D = Sp-1) | <28 = Sp-1l < 2an4||S — Sp-1lo0 < Baps, " a1
By setting € = us,7* 15, we prove this theorem. O

D.2.7. PROOF OF THEOREM 5.5

Proof. The proof of Theorem 5.5 can be directly follows from Theorem D.20 by setting us, 51 as e. O



