
DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to
Power Next-Generation AI Scale

Samyam Rajbhandari 1 Conglong Li 1 Zhewei Yao 1 Minjia Zhang 1 Reza Yazdani Aminabadi 1

Ammar Ahmad Awan 1 Jeff Rasley 1 Yuxiong He 1

Abstract
As the training of giant dense models hits the
boundary on the availability and capability of
the hardware resources today, Mixture-of-Experts
(MoE) models have become one of the most
promising model architectures due to their signifi-
cant training cost reduction compared to quality-
equivalent dense models. Their training cost sav-
ing is demonstrated from encoder-decoder models
(prior works) to a 5x saving for auto-aggressive
language models (this work). However, due to the
much larger model size and unique architecture,
how to provide fast MoE model inference remains
challenging and unsolved, limiting their practical
usage. To tackle this, we present DeepSpeed-
MoE, an end-to-end MoE training and inference
solution, including novel MoE architecture de-
signs and model compression techniques that re-
duce MoE model size by up to 3.7x, and a highly
optimized inference system that provides 7.3x
better latency and cost compared to existing MoE
inference solutions. DeepSpeed-MoE offers an
unprecedented scale and efficiency to serve mas-
sive MoE models with up to 4.5x faster and 9x
cheaper inference compared to quality-equivalent
dense models. We hope our innovations and sys-
tems help open a promising path to new directions
in the large model landscape, a shift from dense
to sparse MoE models, where training and deploy-
ing higher-quality models with fewer resources
becomes more widely possible.

1. Introduction
In the last three years, the largest trained model has in-
creased in size by over 1000x, from a few hundred million

1Microsoft. Correspondence to: Samyam Rajb-
handari <samyamr@microsoft.com>, Yuxiong He
<yuxhe@microsoft.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

parameters to half a trillion parameters (Megatron-Turing
NLG 530B (Smith et al., 2022)). Improvements in model
quality with size suggest that this trend will continue, with
larger model sizes bringing better model quality.

However, sustaining the growth in model size is getting
more and more difficult due to the increasing compute re-
quirements. For example, the largest single dense model in
existence as of Dec 2021, the Megatron-Turing NLG 530B
model, took around 3 months to train on over 2000 A100
GPUs on the NVIDIA Selene Supercomputer, consuming
over 3 million GPU hours (Microsoft & Nvidia, 2021). An-
other 3 to 5 times of increase in dense model size would be
infeasible within a reasonable timeframe. Given the exor-
bitant compute resources required to train the state-of-art
models, a natural question to ask is: “Is it possible to make
non-trivial improvement to model quality without increas-
ing the compute cost?” Or equivalently, “Is it possible to
produce model with similar quality using 3 to 5 times less
resources?”

There have been numerous efforts to reduce the compute
requirements to train large models without sacrificing model
quality. To this end, architectures based on Mixture-of-
Experts (MoE) (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2021a) have paved a promising path, enabling
sub-linear compute requirements with respect to the model
parameters and allowing for improved model quality without
increasing training cost. However, MoE based models have
their own set of challenges that limit their use in a wide
range of real world scenarios:

• Limited Scope The scope of MoE based models in the
NLP area is primarily limited to encoder-decoder models
and sequence-to-sequence tasks, with limited work done
in exploring its application in other domains. Application
of MoE to auto-regressive natural language generation
(NLG) like GPT-3 and MT-NLG 530B, where the com-
pute cost of training state-of-art language models can
be orders of magnitude higher than for encoder-decoder
models, is less explored.

• Massive Memory Requirements While MoE models
require less compute to achieve the same model qual-

Author contributions listed at Appendix A.



DeepSpeed-MoE

ity as their dense counterparts, they need significantly
more number of parameters. For example, the MoE based
Switch-Base model has 10x more parameters than T5-
large (7.4B vs 0.74B) and still it does not have the same
model quality when compared across a wide range of
downstream tasks (Fedus et al., 2021a). In other words,
MoE based models have a much lower “parameter effi-
ciency” compared to quality-equivalent dense models. For
instance, if we scale the dense model size to MT-NLG
equivalent with 530B parameters, achieving similar qual-
ity with MoE based model might need a model with over
5 trillion parameters (assuming the 10x scaling still holds),
which would require over 5K GPUs to just fit the model
states for training.

• Limited Inference Performance Due to the large model
size and poor parameter efficiency mentioned above, fast
inference of MoE based models is even more challenging.
On one hand, the larger parameter size requires more
GPUs to fit, and multi-gpu inference technology is not
designed to work with MoE based models. On the other
hand, as inference is often memory bandwidth bound,
MoE based models, which can be 10x larger than their
dense equivalent, could require 10x higher achievable
memory bandwidth to achieve similar inference latency
as the dense models.

Despite the promising and non-trivial reduction in training
cost, these above mentioned challenges severely limits the
practical applicability of MoE. In an effort to make MoE
practical, accessible and applicable, in this paper, we address
these challenges by offering three corresponding solutions:

• We expand the scope of MoE based models to auto-
regressive NLG tasks, demonstrating training cost reduc-
tion of 5x to achieve same model quality for models like
GPT-3 and MT-NLG (see Section 3). These results not
only demonstrate clear opportunities to reduce the cost
of training massive NLG models, but also opens up the
possibilities to reach much higher next-generation model
quality under the limitation of current generation hard-
ware resource.

• We improve parameter efficiency of MoE based mod-
els by developing a novel MoE architecture that we call
Pyramid-Residual MoE (PR-MoE). PR-MoE is a hybrid
dense and MoE model created using residual connections,
while applying experts only where they are most effec-
tive. PR-MoE can reduce parameters by up to 3x with
no change to model quality. In addition, we leverage
staged knowledge distillation to create a distilled version
of PR-MoE, which we call Mixture-of-Students (MoS),
that further reduce model size by 12.5% while retaining
99.3% performance of the teacher (see Section 4).

• We develop DeepSpeed-MoE inference system, a highly
optimized MoE inference system which enables efficient
scaling of inference workloads on hundreds of GPUs,

providing up to 7.3x reduction in inference latency and
cost when compared with existing MoE inference solu-
tions (see Section 5). It offers ultra-fast inference la-
tencies (under 25 ms) for trillion-parameter MoE mod-
els. DeepSpeed-MoE also offers up to 4.5x faster and 9x
cheaper inference for MoE models compared to quality-
equivalent dense models by combining both system and
model optimizations.

Together, our innovations and systems enable MoE to be
a more effective and economic alternative comparing to
dense models, achieving significantly lower training and
inference cost while obtaining the same model quality. We
hope DeepSpeed-MoE helps open a promising path to new
directions in the large model landscape, a shift from dense
to sparse MoE models, where training and deploying higher-
quality models with fewer resources becomes more widely
possible.

Software The generic DeepSpeed-MoE end-to-end frame-
work for training and inference of MoE-based models is
open-sourced as part of the DeepSpeed software, and the
experiments presented in this paper were conducted on
the Microsoft Azure AI platform. Please find the code,
tutorials, and documents at DeepSpeed GitHub (https:
//github.com/microsoft/DeepSpeed) and web-
site (https://www.deepspeed.ai/).

2. Related Work
Large Scale Dense NLP Models To test and verify the up-
per bound of scaling law (Kaplan et al., 2020) for model ca-
pacity with respect to number of parameters, the pretrained
natural language processing model size has been increasing
10x per year for the last several years, e.g., models with mil-
lions of parameters (Devlin et al., 2019; Yang et al., 2019;
Liu et al., 2019; Lan et al., 2019; Radford et al., 2018),
etc, to models with dozens of billions parameters (Radford
et al., 2019; Rosset, 2020; Shoeybi et al., 2019; Raffel et al.,
2019). The GPT-3 175B (Brown et al., 2020) and MT-NLG
530B model (Smith et al., 2022) further push this limit to
hundreds of billions of parameters, and they are shown to
have better generalization performance on various of natural
language understanding and generation tasks (Paperno et al.,
2016; Wang et al., 2018; 2019; Mostafazadeh et al., 2016;
Berant et al., 2013; Joshi et al., 2017). As the training of
MT-NLG takes 3 months on over 2000 A100 GPUs, it is no
longer feasible to achieve better model quality by simply
increasing the model size due to unsurmountable compute
requirements.

Reducing Training Cost by MoE Architecture One
promising way to reduce the training cost is using Mix-
ture of Expert (MoE) (Masoudnia & Ebrahimpour, 2014).
In (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2021a;a; Lin et al., 2021; Kim et al., 2021b; Zuo et al., 2021),

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://www.deepspeed.ai/


DeepSpeed-MoE

different base model with various model sizes are trained for
encoder-decoder models and sequence-to-sequence tasks,
e.g., language modelings and machine translation, and sig-
nificant training cost reduction is observed. A few recent
and parallel works (Du et al., 2021; Artetxe et al., 2021)
show that MoE model can also be applied to auto-regressive
natural language generation tasks. However, our work has
major differences compared to these parallel explorations:
(1) our work investigates training, model design, and infer-
ence opportunities of MoE models while (Du et al., 2021;
Artetxe et al., 2021) primarily focuses on MoE training;
(2) we propose PR-MoE architecture and MoS knowledge
distillation to achieve better MoE parameter efficiency and
on-par/better zero-shot eval quality as described in Section 3;
(3) we develop DeepSpeed-MoE inference system to effi-
ciently serve large scale MoE models with high throughput
and low latency. While recent studies like (Du et al., 2021)
and (Artetxe et al., 2021) discuss reduction of FLOPs, it is
pertinent to mention that unlike training, inference latency
and cost do not depend on computation alone. Efficient in-
ference depends on model size, memory bandwidth, and the
capability of a system to read data from memory efficiently.

MoE Training Systems DeepSpeed MoE training system
(Kim et al., 2021a) was primarily targeted for optimized
training of MoE models at scale. It supports up to 8x big-
ger model sizes by leveraging flexible combinations of dif-
ferent types of parallelism including tensor-slicing, data
parallelism, ZeRO (Rajbhandari et al., 2020)-powered data
parallelism, and expert parallelism. FastMoE (He et al.,
2021) is a research software developed to show how MoE
models can be trained under data and expert (model) paral-
lelism. The combination of various parallelism dimensions
is not fully supported. Fairseq-MoE (Artetxe et al., 2021)
offers an MoE API as well as a training pipeline for generic
language models. The Fairseq system has been further op-
timized by Tutel (Microsoft, 2021), which offers up to 40
percent improvement over Fairseq. Unlike our work, we
note that none of these systems are optimized for inference.

3. DeepSpeed-MoE for NLG: Reducing the
Training Cost of Language Models by 5
Times

Transformer-based natural language generation (NLG) mod-
els offer convincing solutions to a broad range of language
tasks. Given the tremendous compute and energy require-
ments for training NLG family of models, we explore the
opportunities that MoE presents to reduce their training cost.
We show that MoE-based NLG model can achieve 5x reduc-
tion in training cost to achieve the same model quality of a
dense NLG model.

Model Architecture We studied MoE architecture for the
GPT-3 like NLG model (Brown et al., 2020). The follow-

0 60B 120B 180B 240B 300B
Tokens

2.0
2.2
2.4
2.6
2.8
3.0
3.2

Va
lid

at
io

n 
lo

ss 350M dense
350M+MoE-128

1.3B dense
1.3B+MoE-128

6.7B dense

Figure 1: Token-wise validation loss curves for dense and
MoE NLG models with different model sizes.

ing models are selected: 350M/1.3B/6.7B (24/24/32 layers,
1024/2048/4096 hidden size, 16/16/32 attention heads). We
use “350M+MoE-128” to denote a MoE model that uses
350M dense model as the base model and adds 128 experts
on every other feedforward layer. We use a top-1 gating
function to activate a single expert in the MoE layer for each
token. Therefore, during both training and inference, our
MoE model will have the same number of parameters to be
activated for each token as their dense part (Figure 3 (left)).

Training and Evaluation Settings We pre-trained both the
dense and MoE models on 128 NVIDIA Ampere A100
GPUs (Azure ND A100 instances), using the same train-
ing data as described in (Microsoft & Nvidia, 2021). We
use 300B tokens to train both dense and MoE models. In
addition to the pre-training validation loss, we employ 6
zero-shot evaluation tasks to compare the final model qual-
ity: LAMBADA (Paperno et al., 2016), PIQA (Bisk et al.,
2020), BoolQ (Wang et al., 2019), RACE-h (Lai et al., 2017),
TriviaQA (Joshi et al., 2017), WebQs (Berant et al., 2013).
Appendix B summarizes the hyperparameters for training
the dense and MoE models. For dense models we followed
the hyperparameters from the GPT-3 work. MoE models
have two additional hyperparameters: the number of experts
per MoE layer, and a coefficient when adding the MoE layer
losses to the total training loss.

MoE Leads to Better Quality for NLG Models Figure 1
shows that the validation loss of the MoE models is signifi-
cantly better than their dense counter parts (e.g., 1.3B+MoE-
128 versus 1.3B dense). In addition, MoE models are on par
with the validation loss of the dense models with 4-5x larger
base (e.g., 1.3B+MoE-128 versus 6.7B dense). Furthermore,
the model quality is also on par in terms of the zero-shot
evaluation as shown in Table 1.

Same Quality with 5x Less Training Cost Adding MoE to
the NLG model significantly improves the model quality. In
addition, these experts do not change the compute require-
ments of the model as each token is only processed by a
single expert. A 1.3B+MoE-128 model requires roughly
the same amount of training compute as 1.3B dense model,
while offering much better model quality. Furthermore, the
1.3B+MoE-128 model can achieve the model quality of the
6.7B dense model at the training cost of 1.3B parameter
dense model, resulting in a 5x training compute reduction:



DeepSpeed-MoE

Table 1: Zero-shot evaluation results (accuracy metric) for different dense and MoE NLG models.

Model (num. params) LAMBADA PIQA BoolQ RACE-h TriviaQA WebQs
Dense: 350M (350M) 52.03 69.31 53.64 31.77 3.21 1.57

1.3B (1.3B) 63.65 73.39 63.39 35.60 10.05 3.25
6.7B (6.7B) 71.94 76.71 67.03 37.42 23.47 5.12

Standard MoE: 350M+MoE-128 (13B) 62.70 74.59 60.46 35.60 16.58 5.17
1.3B+MoE-128 (52B) 69.84 76.71 64.92 38.09 31.29 7.19

0 60B 120B 180B 240B 300B
Tokens

2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

Va
lid

at
io

n 
lo

ss First-Half-MoE
Second-Half-MoE

Top2-MoE
Residual-MoE

Figure 2: The validation loss of First-Half-MoE/Second-
Half-MoE and Top2-MoE/Residual-MoE based on
350M+MoE models.

Figure 3: The illustration of standard MoE (left) and PR-
MoE (right).

on 128 A100 GPUs the 6.7B dense model achieves a train-
ing throughput of 70 samples/sec, while the 1.3B+MoE-128
model achieves 372 samples/sec.

4. PR-MoE and MoS: Reducing the Model
Size and Improving Parameter Efficiency

While MoE based models achieve the same quality with 5x
training cost reduction in the NLG example, the resulting
model has roughly 8x the parameters of the corresponding
dense model. Such a massive MoE model requires signifi-
cantly more memory during training, and it is challenging to
meet latency requirements for such models during inference
as memory bandwidth consumed to read the model weights
is the primary performance bottleneck in inference. To re-
duce the number of parameters and improve the parameter
efficiency of MoE based models, we present innovations
in the MoE model architecture (called PR-MoE) and we
design a novel MoE-to-MoE knowledge distillation tech-
nique to create a distilled version of PR-MoE, which we call
Mixture-of-Students (MoS).

4.1. PR-MoE: Pyramid-Residual-MoE for Smaller
Model Size and Fast Inference

4.1.1. TWO OBSERVATIONS AND INTUITIONS

Phenomenon-I First, the standard MoE architecture has
the same number and structure of experts in all MoE lay-
ers. This reminds us a fundamental question in machine
learning community: do all the layers in a Deep Neural
Network learn the same representation? This question has
been well-studied in Computer Vision (CV): shallow lay-
ers (close to inputs) learn general representations and deep
layers (close to outputs) learn more objective specific rep-
resentations (Zeiler & Fergus, 2014). This also inspired
transfer learning in CV to freeze shallow layers for fine-
tuning (Yosinski et al., 2014). This phenomenon, however,
has not been well-explored in NLP, particularly for MoE
architectures. To investigate this question, we compare the
performance of two different Half-MoE architectures based
on the 350M+MoE model. More specifically, (1) we put
MoE layers in the first half layers of the model and leave
the second half of layers identical to dense model (referred
to as First-Half-MoE), and (2) we switch the MoE layers to
the second half and use dense at the first half (referred to
as Second-Half-MoE). The results are shown in Figure 2.
As can be seen, Second-Half-MoE has significantly better
performance than its counterpart. This confirms that not all
MoE layers learn the same level of representations. Deeper
layers benefit more from large number of experts.

Phenomenon-II Second, to improve the generalization per-
formance of MoE models, there are two common methods:
(1) increasing the number of experts while keeping the Top-
1 expert selection (aka for each token, the number of experts
it goes through) to be the same; (2) using Top-2 expert se-
lection at the expense of slightly more computation (33%)
while keeping the same number of experts. However, for
(1), the memory requirement for training resources needs
to be increased due to larger number of experts; for (2),
higher capacity also doubles the communication volume
which can significantly slow down training and inference. Is
there a way to keep the training/inference efficiency while
getting generalization performance gain? One intuition of
why larger expert capacity helps accuracy is that those extra
experts can help correct the “representation” of the first one.
However, does this first expert need to be changed every
time? Or can we fix the first expert and only assign dif-
ferent extra experts to different tokens? To investigate this



DeepSpeed-MoE

unknown property, we perform a comparison in two ways
(1) doubling the capacity (referred to as Top2-MoE), and
(2) fixing one expert and varying the second expert across
different experts (referred to as Residual-MoE). Particularly,
for (2), a token will always pass a dense MLP module and
an expert from MoE module, which can be viewed as a
special case of residual network. Afterward, we add the
output of these two branches together to get the final output.
The main intuition is to treat the expert from MoE mod-
ule as an error correction term of the dense MLP module.
Such that, we can achieve the benefit of using 2 experts
per layer with the same amount communication volume
as Top-1 gating function. We perform the comparison for
the 350M+MoE model with 32 experts and the validation
curves are presented in Figure 2. We find out that the gen-
eralization performance of these two (aka Top2-MoE and
Residual-MoE) is on-par with each other. However, the
training speed of our new design, Residual-MoE, is more
than 10% faster than Top2-MoE due to the communication
volume reduction.

4.1.2. PYRAMID RESIDUAL MOE ARCHITECTURE AND
ITS TRAINING SYSTEM DESIGN

Based on the above, we propose our novel MoE architecture.
As Phenomenon-I in Section 4.1.1 suggested that leveraging
MoE at the later layers bring more benefits, our new architec-
ture utilizes more experts in the last few layers as compared
to previous layers. This gives the Pyramid-MoE design,
where we show an example in Figure 3 (right)–the last two
layers have 2x experts as the previous layers. Meanwhile,
considering Phenomenon II, we propose the Residual-MoE
architecture, where each token separately passes one fixed
MLP module and one chosen expert as shown in Figure 3
(right), where orange blocks are the fixed MLP. By combin-
ing Pyramid-MoE and Residual-MoE together, we have our
Pyramid-Residual-MoE model (PR-MoE in short), where
all standard MoE layers are replaced by the new PR-MoE
layer. Figure 3 shows the illustration of standard-MoE and
PR-MoE architectures.

Designing a training infrastructure that can efficiently train
PR-MoE model is non-trivial due to the presence of different
number of experts at different stages of the model. To
address the training balance (e.g., token per-expert and/or
memory requirements per GPU) of different MoE layers,
we develop and implement a flexible multi-expert and multi-
data parallelism design on top of DeepSpeed-MoE, that
allows for training different parts of the model with different
expert and data parallelism degree. For instance, a PR-MoE
model running on 128 GPUs, with 32, 64, and 128 experts
at different MoE layers, can be trained with 128-way data
parallelism for the non-expert parallelism, and {32, 64, 128}
expert parallelism plus {4, 2, 1} data parallelism for MoE
parameters. Please see Appendix C.1 for more details.

4.1.3. EVALUATION OF PR-MOE

We evaluate our new architecture, PR-MoE on two differ-
ent sizes of models, i.e., base size of 350M and 1.3B, and
compare the performance with larger Standard-MoE archi-
tectures. More specifically, we compare 350M+PR-MoE-
32/64 with 350M+MoE-128, and we compare 1.3B+PR-
MoE-64/128 with 1.3B+MoE-128. The results are shown
in Table 2. For both 350M and 1.3B cases, our PR-MoE
uses much fewer parameters but achieves comparable accu-
racy as Standard-MoE models. Particularly, (1) for 350M
case, PR-MoE only uses less than 1/3 of the parameters as
Standard-MoE; (2) for 1.3B case, PR-MoE only uses about
60% of the parameters as Standard-MoE, while achieving
similar accuracy. We also conduct an experiment to com-
pare the performance between different MoE architectures
in Appendix C.2.

4.2. Mixture-of-Students: Distillation for Even Smaller
Model Size and Faster Inference

Knowledge distillation (KD) has been proven to be a suc-
cessful way to compress a large model into a small one (Hin-
ton et al., 2015), which contains much fewer parameters and
computations but still obtaining competitive results. There
have been some works that apply KD to task-specific dis-
tillation of pre-trained large LMs into small models (Sanh
et al., 2019; Sun et al., 2019; Wang et al., 2020; Sun et al.,
2020). However, they only consider small transformers (a
few hundreds of parameters) and dense encoder-based LM
models (e.g., BERT). In contrast, we focus on studying
KD for sparse MoE-based auto-generative LMs models on
multi-billion parameter scale. The only other analysis of
MoE distillation we are aware of are by (Fedus et al., 2021b;
Artetxe et al., 2021), who study distillation of MoE into
dense models. In contrast, our study show that it is possible
to reach similar performance, such as zero-shot evaluation
on many downstream tasks, for smaller MoE model pre-
trained with knowledge distillation, resulting in models that
are lighter and faster during inference time.

4.2.1. MIXTURE-OF-STUDENTS VIA STAGED KD

To apply knowledge distillation for MoE, we reduce the
depth of each expert branch in the teacher model to obtain
a corresponding Mixture-of-Students (MoS) model. Since
MoE structure brings significant benefits by enabling sparse
training and inference, our task-agnostic distilled Mixture-
of-Students inherits these benefits while preserving the in-
ference advantage over its quality equivalent dense model.
We then take a general formulation of the KD loss (Yu
et al., 2013) to force the MoS to imitate the outputs from
the teacher MoE as:

min
θ

E(x,y)∼D[L(x; θ) + αLKD(x′; θ)], (1)



DeepSpeed-MoE

Table 2: Zero-shot evaluation comparison between standard MoE, PR-MoE, MoS.

Model (num. params) LAMBADA PIQA BoolQ RACE-h TriviaQA WebQs
350M+MoE-128 (13B) 62.70 74.59 60.46 35.60 16.58 5.17

350M+PR-MoE-32/64 (4B) 63.65 73.99 59.88 35.69 16.30 4.73
350M+PR-MoE+L21+MoS (3.5B) 63.46 73.34 58.07 34.83 13.69 5.22

1.3B+MoE-128 (52B) 69.84 76.71 64.92 38.09 31.29 7.19
1.3B+PR-MoE-64/128 (31B) 70.60 77.75 67.16 38.09 28.86 7.73

1.3B+PR-MoE+L21+MoS (27B) 70.17 77.69 65.66 36.94 29.05 8.22

0 60B 120B 180B 240B 300B
Tokens

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Va
lid

at
io

n 
lo

ss

Teacher 350M+PR-MoE-32/64
Student PR-MoE with full KD

(a)

0 60B 120B 180B 240B 300B
Tokens

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0
Va

lid
at

io
n 

lo
ss

Teacher 350M+PR-MoE-32/64
Student PR-MoE with staged KD

(b)

Figure 4: (a) The validation curves of training without dis-
tillation from scratch vs. performing knowledge distillation
for the entire pre-training process. In the figure the stu-
dent PR-MoE is trained with 21-layer. KD helps initially
but starts to hurt accuracy towards the end of training. (b)
The validation curves of training the student PR-MoE with
staged knowledge distillation obtains almost the same vali-
dation loss as the teacher PR-MoE on 350M+PR-MoE.

which measures a weighted sum of the cross-entropy loss
between predictions and the given hard label and the KL
divergence loss between the predictions and the teacher’s
soft label (e.g., α = 1). Furthermore, given the excellent
performance of PR-MoE, we combine PR-MoE together
with KD (PR-MoS) to further reduce the MoE model sizes.

Improving Student Accuracy with Staged Knowledge
Distillation One interesting observation during distilling
MoE model is that using the teacher PR-MoE leads to
lower student accuracy than a PR-MoE student trained from
scratch. As KD often improves the student generalization,
this raises a question on why KD does not improve accu-
racy for pre-training MoE on generative language model.
Since no prior experiments reported distillation experiment
results on distilled MoE for NLG, we dig deeper into the
results. Figure 4a shows a comparison of validation loss
between a PR-MoE trained from scratch and using knowl-
edge distillation with its teacher. We find that while KD
loss improves validation accuracy initially, it begins to hurt
accuracy towards the end of training (e.g., after 400K steps).

We hypothesize that because the PR-MoE already reduces
the capacity compared with the standard MoE by exploit-
ing the more parameter efficient architecture (e.g., reducing
experts in lower layers), further reducing the depth of the
model causes the student to have insufficient capacity, mak-
ing it fall into the underfitting regime. Therefore, the student

PR-MoE may not have enough capacity to minimize both
the training loss and the knowledge distillation loss, and
might end up minimizing one loss (KD loss) at the expense
of the other (cross entropy loss), especially towards the end
of training. The aforementioned hypothesis suggests that
we might want to either gradually decay the impact from
KD or stop KD early in the training process and perform
optimization only against the standard language modeling
loss for the rest of the training.

4.2.2. EVALUATION OF MIXTURE-OF-STUDENTS

We evaluate our approach on two different PR-MoE model
configs, 350M+PR-MoE-32/64 and 1.3B+PR-MoE-64/128.
We build student models by reducing the depth of the teach-
ers to 21 (12.5% depth reduction) in both cases and compare
the resulting MoS model with its teacher using the method
described in the previous section.

Figure 4b shows the validation curve comparison of stop-
ping KD at 400K steps and its comparison with the teacher
model. We find that this staged version of KD now gives us
the promised benefit of knowledge distillation: the student
model now has a similar validation curve as the teacher
towards the end of training. The evaluation results on down-
stream tasks in Table 2 also show that the MoS via staged
KD achieves an average accuracy of 42.87 and 47.96, re-
taining 99.5% and 99.1% performance of the 350M (43.08)
and 1.3B teacher model (48.37) despite having 12.5% fewer
layers. We also conduct ablation studies to compare (1)
MoS with alternative baselines in Appendix C.3 and (2)
DeepSpeed-MoE with other concurrent work (Du et al.,
2021; Artetxe et al., 2021) in Appendix C.4.

5. DeepSpeed-MoE Inference: Serving MoE
Models at Unprecedented Scale and Speed

Optimizing inference latency and cost is crucial for MoE
models to be useful in practice. During inference, the batch
size is generally small, so the inference latency of an MoE
model depends primarily on the time it takes to load the
model parameters from the main memory, contrasting with
the conventional belief that lesser compute should lead to
faster inference. Therefore, the MoE inference performance
depends on two main factors: the overall model size and the
overall achievable memory bandwidth.



DeepSpeed-MoE

Data-parallelism (no communication)

MoE Transformer Layer

Non-expert Parameters 
(e.g., Attention)

Expert Parameters 
(e.g., MLP)

Total GPUs = 16, Total Experts = 8
expert-slicing degree = 2, 
expert-parallel degree = 8
tensor-slicing degree = 4, 
data-parallel degree = 4

Alltoall
(Expert 0..7)

..………..

Expert-Slice 0
(GPU 0)

Expert-Slice 1
(GPU 8)

Expert-Slice 0
(GPU 7)

Expert-Slice 1
(GPU 15)

Slice 0
(GPU 0)

Slice 1
(GPU 1)

Slice 2
(GPU 2)

Slice 3
(GPU 3)

Slice 0
(GPU 12)

Slice 1
(GPU 13)

Slice 2
(GPU 14)

Slice 3
(GPU 15)

……..

Allgather
(GPU0 <-> GPU8)

Input

Output

Alltoall

Allgather 
(GPU7 <-> GPU15)

Expert-parallelism

All-reduce

Tensor-slicingTensor-slicing

Expert-slicing Expert-slicing

All-reduce

All-reduce All-reduce

Figure 5: DeepSpeed-MoE design that embraces the complexity of multi-dimensional parallelism for different partitions
(expert and non-expert) of the model.

Node 1 
GPU 3

GPU 2

Node 0 
GPU 0

GPU 1

A B C D

E F G H

I J K L

M N O P

Local
Transform 
→

Input Data 

GPU 0,1
Intra-node

AlltoAll
→

J

Local Transform

→

Output Data 

p/G Concurrent Inter-node AlltoAll(s)
1. GPU 0 <--> GPU 2
2. GPU 1 <--> GPU 3

Node 1 
GPU 3

GPU 2

Node 0 
GPU 0

GPU 1

A C B D

E G F H

I K J L

M O N P
Node 1 

GPU 3

GPU 2

Node 0 
GPU 0

GPU 1

A C

B D

E G

F H

I K M O

J L N P

GPU 2,3 
Intra-node

AlltoAll
→

J

Node 1 
GPU 3

GPU 2

Node 0 
GPU 0

GPU 1

A E

B F

C G

D H

I M K O

J N L P

J

Node 1 
GPU 3

GPU 2

Node 0 
GPU 0

GPU 1

A E

B F

I M

J N

C G K O

D H L P



Proposed Hierarchical AlltoAll Design

Complexity: O (G+p/G) vs. O (p) for basic alltoall
Legend: # GPUs (p) = 4, # GPUs/node (G) =2, p/G=2

Figure 6: Proposed hierarchical all-to-all design.

While PR-MoE and MoS (previous section) help to reduce
the MoE model size while preserving the model accuracy,
we now present our multi-GPU MoE inference system that
maximizes and leverages the aggregated memory bandwidth
across hundreds of GPUs to speed up inference at an un-
precedented scale.

5.1. Design of DeepSpeed-MoE Inference System

MoE inference performance is an interesting paradox. From
the best-case view, each input token of an MoE model only
activates a single expert at each MoE layer, resulting in a
critical data path that is equivalent to the base dense model
size (e.g. 1.3 billion), orders-of-magnitude smaller than the
actual model size (52 billion). From the worst-case view, the
aggregate parameters needed to process a batch of tokens
(e.g., a sentence or a paragraph of text) can be as large as the
full model size since different tokens could activate different
experts making it challenging to achieve short latency and
high throughput.

The design of DeepSpeed-MoE inference system (Figure 5)
ensures that we steer the performance toward the best case.
Here, we offer a brief summary of the main optimizations.
For more details, please refer to (Rajbhandari et al., 2022).

Expert, Tensor and Data parallelism We use tensor paral-
lelism, referred in Figure 5 as tensor-slicing (for non-expert
parameters) and expert-slicing (for expert parameters), to
split individual parameters across multiple GPUs to lever-
age the aggregate memory bandwidth across GPUs. How-
ever, tensor parallelism can only scale efficiently to a few
GPUs due to communication overhead and fine-grained par-
allelism. To address this, we use expert parallelism in con-
junction with tensor parallelism to scale experts parameters
to hundreds of GPUs. Expert parallelism does not reduce
computation granularity of individual operators, therefore
allowing our system to leverage aggregate memory band-
width across hundreds of GPUs. To scale the non-expert
computation to the same number of GPUs, we use data
parallelism at no communication overhead.

Hierarchical All-to-all Hierarchical tree-based algorithms
are often used with communication collectives like allre-
duce, broadcast, etc to reduce the number of communication
hops. We implement a hierarchical all-to-all as a two-step
process with a data-layout transformation, followed by an
intra-node all-to-all, followed by a second data-layout trans-
formation, and a final inter-node all-to-all. This reduces the
communication hops from O(p) to O(G+ p/G), where G
is the number of GPUs in a node and p is the total number
of GPU devices. Figure 6 shows the design overview of
this implementation. Despite the 2x increase in communi-
cation volume, this hierarchical implementation allows for
better scaling for small batch sizes as communication at this
message size is more latency-bound than bandwidth-bound.

Parallelism Coordinated Communication All-to-all com-
munication latency increases linearly with the number of
GPUs. To avoid this linearly increase, we leverage the data
redundancy created by tensor-slicing (Rajbhandari et al.,
2020) to limit the GPUs that participate in all-to-all . Since
each GPU in tensor parallelism contains the same data, the
all-to-all communication can be limited within GPUs with
the same tensor-parallelism rank. This reduces the total



DeepSpeed-MoE

number of GPUs participating in the communication by the
tensor-slicing degree.

Kernel Optimizations We designed custom multi-GPU
kernel optimizations to maximize aggregate memory band-
width for transformer operators. For MoE gating functions,
we use sparse data structures instead of commonly used
dense representations that contains cubic number of zeros
and quadratic number of non-zeros with respect to the num-
ber of input tokens. Thus our approach reduces the compute
complexity from cubic to quadratic. The details of our
strategy are as follows:

First, we fuse the gating function into a single kernel, and
use a dense token-to-expert mapping table to represent the
assignment from tokens to experts, greatly reducing the
kernel launch overhead, as well as memory and compute
overhead from the dense representation of sparse data. More
specifically, gating kernel includes top-k, cumsum, and scat-
ter operations in order to distribute the right tokens to each
expert. The top-k operator selects the k experts with the
k-highest logits for each input token, and since k is normally
small (e.g., 1 or 2) for the MoE models, we store the best
expert-indices in a mapping table rather than creating a mask
for the rest of gating function operations. Cumsum calcu-
lates the ID for the tokens processed by each expert, that
is defined by the capacity-factor in the MoE configuration.
We use the so-called Blelloch scan algorithm to parallelize
cumsum on GPU architecture. Finally, we use the mapping
table and token IDs in order to route the correct tokens to
the MoE experts.

Second, to optimize the remaining two sparse einsums, we
implement them as data-layout transformations using the
above-mentioned mapping table, to first sort them based on
the expert id and then back to its original ordering without
requiring any sparse einsum, reducing the complexity of
these operations from S × E × M × ce to S × M × ce.
Together with the data transformation, we use the corre-
sponding gating logits (in the probability domain) to update
the expert output. Combined, these optimizations result in
over 6x reduction in MoE Kernel related latency.

5.2. Performance Evaluation of DeepSpeed-MoE
Inference

In this section, we explore how two broad goals of high
throughput and low latency can be realized for MoE model
inference at scale. We also explore how MoE model in-
ference is different compared to their dense counterparts.
Model configurations are shown in Table 6.

Achieving Low Latency and Super-linear Throughput
Increase Simultaneously We scale a 52B MoE model (1.3B
base model and 128 experts) from 8 GPUs to 64 GPUs and
observe the latency and throughput trends on DeepSpeed-

0

100

200

300

400

500

600

700

0

10

20

30

40

50

60

70

PyTorch-MoE DeepSpeed-MoE

Tp
u

t 
(#

to
ke

n
s-

p
er

-s
ec

o
n

d
)

La
te

n
cy

 (
m

s)

107 Billion 

Latency Throughput

0

5

10

15

20

25

30

35

40

45

0
20
40
60
80

100
120
140
160
180
200

PyTorch-MoE DeepSpeed-MoE

Tp
u

t 
(#

to
ke

n
s-

p
er

-s
ec

o
n

d
)

La
te

n
cy

 (
m

s)

1.1 Trillion 
(24B+MoE-128) 

0

5

10

15

20

25

0

50

100

150

200

250

300

350

PyTorch-MoE DeepSpeed-MoE

Tp
u

t 
(#

to
ke

n
s-

p
er

-s
ec

o
n

d
)

La
te

n
cy

 (
m

s)

2 Trillion 
(35B+MoE-128) 

7.2x 7.3x

Figure 7: Latency/throughput improvement offered by
DeepSpeed-MoE (Optimized) over PyTorch (Baseline).We
ran the experiments on 256 GPUs (throughput is reported
per GPU).

Figure 8: Latency (bars) and throughput (lines) improve-
ment offered by DeepSpeed-MoE inference system (Opti-
mized) over PyTorch (Baseline) for a 52-Billion standard
MoE model with 128 experts, using between 8 to 64 GPUs.

MoE inference system comparing with a strong baseline,
a full-featured distributed PyTorch implementation that is
capable of both tensor-slicing and expert-parallelism (Kim
et al., 2021a). Figure 8 shows that both DeepSpeed-MoE
and PyTorch reduce the inference latency as we increase
the number of GPUs, as expected, although PyTorch is
much slower compared to DeepSpeed-MoE. Furthermore,
DeepSpeed-MoE obtains increased throughput per GPU
when we increase the number of GPUs from 8 to 64 and
hence a super-linear increase in total throughput as shown
in Figure 8. This is in stark contrast to dense models (best
case throughput scaling is linear with respect to the num-
ber of GPUs) and shows the major benefit of scaling MoE
models over dense models.

Low Latency and High Throughput at Unprecedented
Scale Figure 7 shows the performance and throughput of
two MoE models with one and two trillion parameters. Com-
pared to baseline, DeepSpeed-MoE achieves up to 7.3x re-
duction in latency while achieving up to 7.3x higher through-
put. By effectively exploiting hundreds of GPUs in parallel,
DeepSpeed-MoE achieves an unprecedented scale for in-
ference at incredibly low latencies - a staggering trillion
parameter MoE model can be served under 25ms.

Enhanced Benefits of PR-MoE and MoS By leveraging
model innovations of PR-MoE and MoS, DeepSpeed-MoE
delivers two more benefits as shown in Figure 9: (1) reduce



DeepSpeed-MoE

Figure 7

0

20

40

60

80

100

120

16 GPUs 32 GPUs

L
a
te

n
cy

 (
m

s)

349 Billion parameters (8B+MoE-128)

MoE (PyTorch) MoE (DeepSpeed)

PR-MoE (DeepSpeed) PR-MoE+MoS (DeepSpeed)

OOM OOM

Figure 9: 2x fewer resources needed for MoE inference
when using PR-MoE+MoS.

Figure 10: Inference latency comparison of MoE mod-
els and the quality-equivalent 6.7 billion-parameter dense
model (throughput is reported per GPU). We used 128 GPUs
for MoE models and one GPU for the dense model.

the minimum number of GPUs required to perform infer-
ence and (2) further improve both latency and throughput.

Better Latency and Throughput than Quality-equivalent
Dense Models We now show the comparison between two
MoE models with their quality-equivalent dense models: (1)
a 52 billion-parameter MoE model (1.3B-MoE-128) com-
pared to a 6.7 billion-parameter dense model in Figure 10,
and (2) a 1.5 trillion-parameter MoE model compared to
a 175 billion-parameter dense model in Figure 11. When
using PyTorch, MoE model inference is more expensive
and slower compared to its quality-equivalent dense mod-
els. However, the optimizations in DeepSpeed-MoE reverse
this trend and make MoE model inference both faster and
cheaper than quality-equivalent dense models. This is a crit-
ical result: showing the benefit of MoE models over dense
models not only on training but also on inference latency
and cost, where real-world deployments care the most.

The benefits increase for larger models because DeepSpeed-
MoE leverages parallelism-coordinated optimization to re-
duce communication overhead when using tensor-slicing on
the non-expert part of the model. Furthermore, we can take
advantage of expert-slicing at this scale, which enables us to
scale to a higher number of GPUs compared to the PyTorch
baseline. We also observe 2x additional improvement in
throughput over latency because MoE models can run with
half the tensor-slicing degree of the dense model (8-way
vs. 16-way) and thus two times higher batch size. With
benefits that scale with model size and hardware resources,
we believe that MoE models could be crucial to bring the

Figure 11: Measured inference latency comparison of 1.5T
MoE models and assumed quality-equivalent 175 billion
dense model (throughput is reported per GPU). We ran MoE
experiments on 128 and 256 GPUs for Baseline and XYZ-
MoE, while using 16 GPU for the dense model.

next generation of advances in AI scale.

6. Towards the Next Generation of AI Scale
With the exponential growth of model size recently, we
have arrived at the boundary of what modern supercomput-
ing clusters can do to train and serve large dense models.
We, along with recent literature (Du et al., 2021; Artetxe
et al., 2021), have demonstrated how MoE-based models
can reduce the training cost of the large NLG models by
several times compared to their quality-equivalent dense
counterparts. However, prior to this work, to our knowledge,
there have been no existing works on how to serve the MoE
models (with many more parameters) with latency and cost
comparable to or better than the dense models. To enable
practical and efficient inference for MoE models, we offer
novel PR-MoE model architecture and MoS distillation tech-
nique to significantly reduce the memory requirements (up
to 3.7x) of these models. We also offer an MoE inference
framework to achieve incredibly low latency (up to 4.5x)
and cost (up to 9x) at an unprecedented model scale. The
new innovations and infrastructures offer a promising path
towards training and inference of the next generation of AI
scale, without requiring an increase in compute resources.
A shift from dense to sparse MoE models can open a path to
new directions in the large model landscape, where deploy-
ing higher-quality models with fewer resources becomes
more widely possible.

Acknowledgment
We thank Olatunji Ruwase from the Microsoft DeepSpeed
Team for his contributions on developing, debugging, test-
ing, and releasing the DeepSpeed-MoE software. This work
was done in collaboration with Brandon Norick, Zhun Liu,
and Xia Song from the Microsoft Turing Team, Young Jin
Kim, Alex Muzio, and Hany Hassan Awadalla from the
Microsoft Z-Code Team, and both Saeed Maleki and Madan
Musuvathi from the Microsoft SCCL team.



DeepSpeed-MoE

References
Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M.,

Shleifer, S., Lin, X. V., Du, J., Iyer, S., Pasunuru, R.,
Anantharaman, G., Li, X., Chen, S., Akin, H., Baines, M.,
Martin, L., Zhou, X., Koura, P. S., O’Horo, B., Wang, J.,
Zettlemoyer, L., Diab, M., Kozareva, Z., and Stoyanov, V.
Efficient large scale language modeling with mixtures of
experts. arXiv preprint arXiv:2112.10684, 2021.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on freebase from question-answer pairs. In Pro-
ceedings of the 2013 conference on empirical methods in
natural language processing, pp. 1533–1544, 2013.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reason-
ing about physical commonsense in natural language. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 7432–7439, 2020.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT (1), 2019.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al.
Glam: Efficient scaling of language models with mixture-
of-experts. arXiv preprint arXiv:2112.06905, 2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and effi-
cient sparsity. arXiv preprint arXiv:2101.03961, 2021a.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. CoRR, abs/2101.03961, 2021b.

He, J., Qiu, J., Zeng, A., Yang, Z., Zhai, J., and Tang, J.
Fastmoe: A fast mixture-of-expert training system. CoRR,
abs/2103.13262, 2021. URL https://arxiv.org/
abs/2103.13262.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531,
2015.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, Y. J., Awan, A. A., Muzio, A., Cruz-Salinas, A. F., Lu,
L., Hendy, A., Rajbhandari, S., He, Y., and Awadalla,
H. H. Scalable and efficient moe training for multi-
task multilingual models. CoRR, abs/2109.10465, 2021a.
URL https://arxiv.org/abs/2109.10465.

Kim, Y. J., Awan, A. A., Muzio, A., Salinas, A. F. C., Lu,
L., Hendy, A., Rajbhandari, S., He, Y., and Awadalla,
H. H. Scalable and efficient moe training for multitask
multilingual models. arXiv preprint arXiv:2109.10465,
2021b.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race:
Large-scale reading comprehension dataset from exami-
nations. arXiv preprint arXiv:1704.04683, 2017.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. ALBERT: A lite bert for self-supervised
learning of language representations. In International
Conference on Learning Representations, 2019.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Lin, J., Yang, A., Bai, J., Zhou, C., Jiang, L., Jia, X., Wang,
A., Zhang, J., Li, Y., Lin, W., et al. M6-10t: A sharing-
delinking paradigm for efficient multi-trillion parameter
pretraining. arXiv preprint arXiv:2110.03888, 2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Masoudnia, S. and Ebrahimpour, R. Mixture of experts: a
literature survey. Artificial Intelligence Review, 42(2):
275–293, 2014.

Microsoft. Tutel: An efficient mixture-of-experts
implementation for large dnn model training.
https://www.microsoft.com/en-us/
research/blog/tutel-an-efficient-
mixture-of-experts-implementation-
for-large-dnn-model-training/, 2021.

Microsoft and Nvidia. Using DeepSpeed and Megatron
to Train Megatron-Turing NLG 530B, the World’s
Largest and Most Powerful Generative Language
Model. https://developer.nvidia.com/
blog/using-deepspeed-and-megatron-
to-train-megatron-turing-nlg-530b-
the-worlds-largest-and-most-powerful-
generative-language-model/, 2021.

https://arxiv.org/abs/2103.13262
https://arxiv.org/abs/2103.13262
https://arxiv.org/abs/2109.10465
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/


DeepSpeed-MoE

Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra,
D., Vanderwende, L., Kohli, P., and Allen, J. A corpus
and evaluation framework for deeper understanding of
commonsense stories. arXiv preprint arXiv:1604.01696,
2016.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction
requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. OpenAI Blog, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Yaz-
dani Aminabadi, R., Awan, A. A., Rasley, J.,
and He, Y. Deepspeed-moe: Advancing mixture-
of-experts inference and training to power next-
generation ai scale. ArXiv, January 2022.
URL https://www.microsoft.com/en-
us/research/publication/deepspeed-
moe-advancing-mixture-of-experts-
inference-and-training-to-power-next-
generation-ai-scale/.

Rosset, C. Turing-nlg: A 17-billion-parameter language
model by microsoft. Microsoft Blog, 1:2, 2020.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108, 2019. URL http://
arxiv.org/abs/1910.01108.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training multi-billion
parameter language models using gpu model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowl-
edge distillation for BERT model compression. In Inui,
K., Jiang, J., Ng, V., and Wan, X. (eds.), Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
pp. 4322–4331. Association for Computational Linguis-
tics, 2019.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic BERT for resource-
limited devices. In Jurafsky, D., Chai, J., Schluter, N.,
and Tetreault, J. R. (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguis-
tics, ACL 2020, Online, July 5-10, 2020, pp. 2158–2170.
Association for Computational Linguistics, 2020.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537,
2019.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. In Advances in
neural information processing systems, pp. 5753–5763,
2019.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? arXiv
preprint arXiv:1411.1792, 2014.

Yu, D., Yao, K., Su, H., Li, G., and Seide, F. Kl-divergence
regularized deep neural network adaptation for improved

https://www.microsoft.com/en-us/research/publication/deepspeed-moe-advancing-mixture-of-experts-inference-and-training-to-power-next-generation-ai-scale/
https://www.microsoft.com/en-us/research/publication/deepspeed-moe-advancing-mixture-of-experts-inference-and-training-to-power-next-generation-ai-scale/
https://www.microsoft.com/en-us/research/publication/deepspeed-moe-advancing-mixture-of-experts-inference-and-training-to-power-next-generation-ai-scale/
https://www.microsoft.com/en-us/research/publication/deepspeed-moe-advancing-mixture-of-experts-inference-and-training-to-power-next-generation-ai-scale/
https://www.microsoft.com/en-us/research/publication/deepspeed-moe-advancing-mixture-of-experts-inference-and-training-to-power-next-generation-ai-scale/
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108


DeepSpeed-MoE

large vocabulary speech recognition. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2013, Vancouver, BC, Canada, May
26-31, 2013, pp. 7893–7897. IEEE, 2013.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

Zuo, S., Liu, X., Jiao, J., Kim, Y. J., Hassan, H., Zhang,
R., Zhao, T., and Gao, J. Taming sparsely activated
transformer with stochastic experts. arXiv preprint
arXiv:2110.04260, 2021.



DeepSpeed-MoE

A. Author Contributions
Samyam Rajbhandari designed the NLG training experi-
ments and architected the inference system.

Conglong Li led the NLG training experiments (Section 3)
and contributed to Section 4.

Zhewei Yao led the design and experiments of PR-MoE,
and its system support (Section 4.1).

Minjia Zhang led the design and experiments of MoS (Sec-
tion 4.2) and memory-efficient checkpointing.

Reza Yazdani Aminabadi and Ammar Ahmad Awan led
the development and experiments of the inference system
(Section 5).

Jeff Rasley developed, debugged and integrated multiple
software features into DeepSpeed.

Yuxiong He designed, managed and led the overall research
project.

B. MoE-based NLG Model Training and
Evaluation Settings

Table 3 summarizes the hyperparameters for training the
dense and MoE models. For dense models we followed
the hyperparameters from the GPT-3 work (Brown et al.,
2020). For MoE models, we find that using a lower learning
rate and longer learning rate decay duration compared to
the dense counter parts (e.g., dense 1.3B versus 1.3B+MoE-
128) could provide better convergence. We believe that
this is because MoE models have much larger number of
parameters.

C. Appendix for PR-MoE and MoS
C.1. System Design of PR-MoE

In this section, we begin by discussing how an MoE model
can be trained efficiently using expert parallelism. Then we
discuss the limitation of such an approach when applying
it to PR-MoE model. Finally, we discuss how we can ex-
tend existing expert-parallelism based training systems to
efficiently train PR-MoE models.

Efficiently Training an MoE model Training an MoE
model efficiently requires having sufficiently large batch
size for each expert in the MoE module to achieve good
compute efficiency. This is challenging since the number of
input tokens to an MoE is partitioned across all the experts
which reduces the number of tokens per expert proportion-
ally to the number of experts when compared to the rest of
the model where no such partition is done. The simplest
way to avoid this reduction in tokens per expert is to train
the model with data parallelism in combination with expert

parallelism (Kim et al., 2021a) equal to the number of ex-
perts. This increases the aggregate tokens in the batch per
MoE replica that will be partitioned between the experts,
resulting in no reduction of the tokens per expert compared
to rest of the model.

Challenges of PR-MoE Designing a training infrastruc-
ture that can efficiently train PR-MoE model is non-trivial
due to the presence of different number of experts at dif-
ferent stages of the model. As discussed above, the most
efficient approach to training MoE based models is to make
expert parallelism equal to the number of experts, to avoid
reducing input tokens per experts. However, due to varia-
tion in the number of experts in PR-MoE, there is no single
expert parallelism degree that is optimal for all MoE lay-
ers. Furthermore, if expert parallelism is set to the smallest
number of experts in the model, then it would require mul-
tiple experts per GPU for MoE layers with larger number
of experts, resulting in poor efficiency due to reduced batch
size per expert, as well as an increase in memory required
per GPU. On the other hand, if we set the expert parallelism
to be the largest number of experts in the model, then this
would result in a load balancing problem, where some GPUs
have more experts to process than the others, ultimately lim-
iting training throughput efficiency.

DeepSpeed-MoE with Multi-expert and Multi-data Par-
allelism Support To address these challenges, we develop
and implement a flexible multi-expert and multi-data par-
allelism design on top of DeepSpeed-MoE, that allows for
training different parts of the model with different expert and
data parallelism degree. For instance, a PR-MoE model run-
ning on 128 GPUs, with 32, 64, and 128 experts at different
MoE layers, can be trained with 128-way data parallelism
for the non-expert parallelism, and {32, 64, 128} expert par-
allelism plus {4, 2, 1} data parallelism for MoE parameters.
Note that each GPU can now train exactly 1 expert per MoE
layer regardless of the number of experts in it, resulting in
no reduction in input tokens per expert, no load-imbalance,
or increase in memory requirements per GPU.

Through this flexible extension, DeepSpeed-MoE can train
PR-MoE models, along with any other future MoE varia-
tions that may require different experts at different stages of
the model, without compromising on training efficiency or
the memory requirements.

C.2. Ablation Study of Different MoE Architectures

To fully study the performance of different MoE architec-
tures, particularly the comparison between Standard-MoE
and Residual-MoE/Pyramid-MoE/PR-MoE, we evaluate
5 different MoE-based models, including 350M+MoE-32,
350M+MoE-128, 350M+Pyramid-MoE-32/64 (which has
10 MoE layers using 32 experts and 2 MoE layers using



DeepSpeed-MoE

Table 3: Hyperparameters for different dense and MoE NLG models.

Dense Dense Dense 350M+ 1.3B+ 350M+PR- 1.3B+PR-
350M 1.3B 6.7B MoE-128 MoE-128 MoE-32/64 MoE-64/128

Num. layers 24 24 32 24 24 24 24
Hidden size 1024 2048 4096 1024 2048 1024 2048

Num. attention heads 16 16 32 16 16 16 16
Num. experts per layer N/A N/A N/A 128 128 32/64 64/128

Num. parameters 350M 1.3B 6.7B 13B 52B 4B 31B
Context/sequence length 2K 2K 2K 2K 2K 2K 2K

Training tokens 300B 300B 300B 300B 300B 300B 300B
Batch size 256 512 1024 256 512 256 512

Batch size rampup tokens 0B 4B 10B 0B 0B 0B 0B
Learning rate 3.0e-4 2.0e-4 1.2e-4 2.0e-4 1.2e-4 3.0e-4 1.2e-4

Min. learning rate 3.0e-5 2.0e-5 1.2e-5 2.0e-6 1.0e-6 1.0e-6 1.0e-6
LR linear warmup tokens 375M 375M 375M 375M 375M 375M 375M

LR cosine decay tokens 260B 260B 260B 300B 300B 300B 300B
Model parallel degree 1 1 8 1 1 1 1

MoE loss coefficient N/A N/A N/A 0.01 0.01 0.01 0.01

Table 4: Zero-shot evaluation comparison (last six columns) between PR-MoE and PR-MoE + MoS.

Model (num. params) LAMBADA PIQA BoolQ RACE-h TriviaQA WebQs
350M+PR-MoE+L24(4B) 63.65 73.99 59.88 35.69 16.30 4.73

350M+PR-MoE+L21 (3.5B) 62.33 73.88 52.35 32.54 8.81 4.48
350M+PR-MoE+L21+KD only (3.5B) 61.56 73.18 57.89 33.78 12.13 4.87

350M+PR-MoE+L21+MoS (3.5B) 63.46 73.34 58.07 34.83 13.69 5.22
1.3B+PR-MoE+L24 (31B) 70.60 77.75 67.16 38.09 28.86 7.73
1.3B+PR-MoE+L21 (27B) 69.14 76.99 60.8 37.42 28.9 5.61

1.3B+PR-MoE+L21+KD only (27B) 69.73 76.93 64.16 36.17 26.17 6.25
1.3B+PR-MoE+L21+MoS (27B) 70.17 77.69 65.66 36.94 29.05 8.22

0 60B 120B 180B 240B 300B
Tokens

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

Va
lid

at
io

n 
lo

ss

350M+MoE-32
350M+MoE-128
350M+Pyramid-MoE-32/64
350M+Residual-MoE-32
350M-PR-MoE-32/64

Figure 12: The validation curves of different MoE models
based on 350M+MoE.

64 experts), 350M+Residual-MoE-32, and 350M+PR-MoE-
32/64 (same expert setting as 350M+Pyramid-MoE-32/64).

The validation curves for the full training are shown in Fig-
ure 12. As can be seen, the validation loss gap between
350M+MoE-128 and 350M+MoE-32 can be significantly
reduced by Pyramid-MoE and Residual-MoE. When we
use PR-MoE, a combination of Pyramid-MoE and Residual-

MoE, the loss gap can be further reduced to around 0.01,
demonstrating PR-MoE’s great parameter efficiency with
minimum quality impact.

C.3. Ablation Study of MoS

In this part, we conduct ablation studies of zero-shot evalua-
tion on MoS, including (1) MoS without KD: This config
trains an MoE model with reduced depth, (2) MoS with full
KD: This config trains an MoS model but with KD during
the entire training process, and (3) MoS with staged KD:
This is the config described in Section 4.2. The results on
each of the tasks are shown in Table 4. We make a few ob-
servations. First, with the same amount of depth reduction
but without MoS-based KD (row 2), the PR-MoE model
encounters noticeable accuracy drop on several tasks such as
LAMBADA (1.3 points) and BoolQ (7.5 points), indicating
that directly reducing the expert depth can hurt the model
accuracy. Second, with staged KD (row 4), we are able to
improve the student PR-MoE’s performance and observe
accuracy improvements on 5 out of 6 tasks. Notably, 1.1
points improvement for LAMBADA, 6.5 points higher for
BoolQ, 1.7 points higher for RACE-h, 4.5 points higher
for TriviaQA. One exception is PIQA, in which case the
student PR-MoE experiences some small accuracy drop.
These results indicate the effectiveness of our proposed



DeepSpeed-MoE

Table 5: Zero-shot evaluation comparison between standard MoE, PR-MoE, MoS, and related works (last 2 rows).

Model (num. params) LAMBADA PIQA BoolQ RACE-h TriviaQA WebQs
350M+MoE-128 (13B) 62.70 74.59 60.46 35.60 16.58 5.17

350M+PR-MoE-32/64 (4B) 63.65 73.99 59.88 35.69 16.30 4.73
350M+PR-MoE+L21+MoS (3.5B) 63.46 73.34 58.07 34.83 13.69 5.22

1.3B+MoE-128 (52B) 69.84 76.71 64.92 38.09 31.29 7.19
1.3B+PR-MoE-64/128 (31B) 70.60 77.75 67.16 38.09 28.86 7.73

1.3B+PR-MoE+L21+MoS (27B) 70.17 77.69 65.66 36.94 29.05 8.22
8B+MoE-64 (143B) (Du et al., 2021) 67.3 78.6 72.2 43.4 55.1 10.7

355M+MoE-512 (52B) (Artetxe et al., 2021) N/A 76.8 56.0 N/A N/A N/A

Table 6: The configuration of different MoE models used for the performance evaluation of DeepSpeed-MoE inference
system. These configurations represent the standard MoE architecture cases, and we also test the case of PR-MoE and
PR-MoE+MoS, which will have smaller sizes but same (projected) quality.

Model Size (billions) #Layers Hidden size MP degree EP degree Expert-slicing #GPUs
1.3B+MoE-128 52 24 2048 1 128 1 128
2.4B+MoE-128 107.7 16 3584 1 128 1 128

8B+MoE-128 349.0 30 4096 4 128 1 128
24B+MoE-128 1064.9 40 8192 8 128 2 256
47B+MoE-128 2024.0 58 8192 8 128 2 256

Mixture-of-Students method as a novel KD technique for
MoE models. Third, performing KD for the entire training
process (full KD, row 3) hurts the downstream task accu-
racy on LAMBADA (0.8 points lower) and PIQA (0.7 points
lower). As explained in the previous part, this is because
the student model does not have sufficient capacity to op-
timize both the KD loss and the standard LM loss towards
the end of training, due to under-fitting. In contrast, our
proposed staged-KD is able to resolve this issue and brings
the promised benefits from KD. Overall, the distilled MoE
model through staged KD achieves an average accuracy of
42.87 and 47.96, retaining 99.5% and 99.1% performance
of the 350M (43.08) and 1.3B teacher model (48.37) de-
spite having 12.5% fewer layers. This enables an additional
latency reduction and throughput reduction for inference,
which we show in Section 5.

C.4. Comparison with Related Works

Please note that with the caveats that the training data,
training time (e.g., the number of training tokens), and
other hyperparametrs are not the same, a direct model qual-
ity comparison is challenging. As such, we here give a
more detailed summary about the difference between our
DeepSpeed-MoE work and (Du et al., 2021; Artetxe et al.,
2021).

Comparisons with (Du et al., 2021) We list the results
of (Du et al., 2021) in Table 5, and as can be seen, on certain
tasks (LAMBADA/PIQA) our MoE models can achieve on-
par quality with less number of parameters. The differences
are as follows: (1) While we use Top-1 gating function to
training the MoE model, (Du et al., 2021) uses Top-2 gating
function, which can potentially improve model quality but

has higher computational and communication cost based on
our experiments; (2) We use the same number of training
samples/tokens to train the MoE model as the dense model,
but (Du et al., 2021) increases the training tokens for MoE
models to up to 600B, 2 times of what we used for our dense
and MoE models; (3) Based on (i) and (ii), the training cost
reduction from dense to our MoE model (5x) is much higher
than (Du et al., 2021) (∼2.8x); (4) We propose a new MoE
architecture, i.e., PR-MoE, to increase the parameter effi-
ciency. To support PR-MoE, we also design a new system
to support flexible expert and data parallelism at each MoE
layer. This is not supported in (Du et al., 2021); (5) To fur-
ther reduce the inference cost, we propose a new knowledge
distillation technique, Mixture-of-Students, to reduce the
depth of PR-MoE model; (6) To efficiently run inference
for MoE models, we develop a whole new inference system
which can transfer the training cost reduction to real infer-
ence as compared to dense model. In (Du et al., 2021), only
FLOP reduction is provided, which is not the full picture of
MoE model inference as we discussed in Section 5.

Comparisons with (Artetxe et al., 2021) Compared
to (Artetxe et al., 2021), our MoE models are able to achieve
better PIQA/BoolQ accuracy with 1.9x less number of pa-
rameters. Meanwhile, the authors only show the training
reduction for MoE models as compared to dense with Top-
2 experts as (Du et al., 2021) and this makes our MoE
model’s 5x training cost reduction higher than the 4x re-
duction in (Artetxe et al., 2021). In addition, similar to
the comparisons with (Du et al., 2021) above, comparing
with (Artetxe et al., 2021) our novel contributions include
(1) new MoE architecture and its system support; (2) MoE-
to-MoE knowledge distillation; and (3) end-to-end inference
system design and evaluation.


