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Abstract

Modern neural models trained on textual data
rely on pre-trained representations that emerge
without direct supervision. As these representa-
tions are increasingly being used in real-world
applications, the inability to control their content
becomes an increasingly important problem. This
paper formulates the problem of identifying and
erasing a linear subspace that corresponds to a
given concept in order to prevent linear predictors
from recovering the concept. Our formulation
consists of a constrained, linear minimax game.
We consider different concept-identification
objectives, modeled after several tasks such
as classification and regression. We derive a
closed-form solution for certain objectives, and
propose a convex relaxation, R-LACE, that
works well for others. When evaluated in the
context of binary gender removal, our method
recovers a low-dimensional subspace whose
removal mitigates bias by intrinsic and extrinsic
evaluation. We show that the method—despite
being linear—is highly expressive, effectively
mitigating bias in deep nonlinear classifiers while
maintaining tractability and interpretability.

https://github.com/shauli-ravfogel/
rlace-icml

1. Introduction

This paper studies concept erasure, the removal of infor-
mation from a given vector representation, such as those
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Figure 1. Removal of gender information from GloVe representa-
tions using R-LACE , after PCA (Experiment § 5.1). Left: original
space; Right: after a rank-1 R-LACE projection. Word vectors are
colored according to being male-biased of female-biased.

et al., 2016; Peters et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019). Specifically, we ask the following
question: Given a set of vectors z1,...,zxy € RP, and
corresponding response variables y1,...,yyN, can we de-
rive a concept-erasure function r(-) such that the resulting
vectors 7(x1), . . ., 7(x ) are not predictive of the concept
Y1,---, YN, but such that r(x,,) preserves the information
found in x,, as much as possible? This problem relates to
the more general question of obtaining representations that
do not contain information about a given concept, however,
unlike adversarial methods (Edwards and Storkey, 2016; Xie
et al., 2017; Chen et al., 2018; Elazar and Goldberg, 2018;
Zhang et al., 2018) that change the model during training,
here we are interested in post-hoc methods, which assume a
fixed, pre-trained set of vectors, e.g., those from GloVe (Pen-
nington et al., 2014), BERT (Devlin et al., 2019), or GPT
(Radford et al., 2019), and aim to learn an additional func-
tion r(-) that removes information from the set of vectors.

In this work, we focus on the case where the function r(-)
is linear—in other words, we aim to identify and remove a
linear concept subspace from the representation, preventing
any linear predictor from recovering the concept. By
restricting ourselves to the linear case, we obtain a tractable
solution while also enjoying the increased interpretability
of linear methods. Linear concept removal was pioneered
by Bolukbasi et al. (2016), who used principal component
analysis to identify a linear gender bias subspace.! Another
linear concept removal technique is iterative nullspace pro-
jection (INLP; Ravfogel et al., 2020). INLP learns the linear

!Gonen and Goldberg (2019) demonstrate that the method of
Bolukbasi et al. (2016) does not exhaustively remove bias.


https://github.com/shauli-ravfogel/rlace-icml
https://github.com/shauli-ravfogel/rlace-icml
mailto:shauli.ravfogel@gmail.com
mailto:mtwito101@gmail.com
mailto:yoav.goldberg@gmail.com
mailto:ryan.cotterell@inf.ethz.ch

Linear Adversarial Concept Erasure

bias subspace by first training a classifier on a task that
operationalizes the concept (e.g., binary gender prediction)
and then isolating the concept subspace using the classifier’s
learned weights. Despite the linearity assumption, Ravfogel
et al. (2020) found their method performs well.

In this paper, we introduce a principled framework for linear
concept erasure in the form of a linear minimax game (von
Neumann and Morgenstern, 1947). In many cases, we find
that this minimax formulation offers superior performance
to previously proposed methods, e.g., INLP. Moreover,
because the game is linear, we still retain an interpretable
concept space. Given this framework, we are able to derive
a closed-form solution to the minimax problem in several
cases, such as linear regression and Rayleigh quotient maxi-
mization. Further, we develop a convex relaxation, Relaxed
Linear Adversarial Concept Erasure (R-LACE), that
allows us to find a good solution in practice for the case of
classification, e.g., logistic regression. In the empirical por-
tion of the paper, we experiment with removing information
predictive of binary gender, and find our minimax formula-
tion effective in mitigating bias in both uncontexualized, e.g.,
GloVe, and contextualized, e.g., BERT, representations.2

2. Linear Minimax Games

This section focuses on the mathematical preliminaries nec-
essary to develop linear adversarial concept removal. Specif-
ically, we formulate the problem as a minimax game be-
tween a predictor that aims to predict a quantity that opera-
tionalizes the concept that tries to hinder the prediction by
projecting the input embeddings to a subspace of predefined
dimensionality. By constraining the adversarial intervention
to a linear projection, we maintain the advantages of linear
methods—interpretability and transparency—while directly
optimizing an expressive objective that aims to prevent any
linear model from predicting the concept of interest.

2.1. Notation and Generalized Linear Modeling

We briefly overview generalized linear modeling (Nelder
and Wedderburn, 1972) as a unified framework that encom-
passes many different linear models. e.g., linear regression
and logistic regression.

Notation. We consider the problem where we are given a
dataset D = {(yn, x,)}N_; of N response-representation
pairs, where the response variables y,, represent the infor-
mation to be neutralized (e.g., binary gender). In this work,
we take 4, € R to be a real value and x,, € R” to be a
D-dimensional real column vector.> We use the notation

2See App. B.1 for a discussion in related ethical considerations.

3We could have just as easily formulated the problem where
yn, was also a real vector. We have omitted this generalization for
simplicity.

T . .
X =[z],...,x}] €RN*P todenote a matrix contain-
ing the inputs, and y = [y1,...,yn]’ € R to denote a
vector containing all the response variables.

Generalized Linear Models. We unify several different
linear concept-removal objectives in the framework of gen-
eralized linear modeling. A linear model is a predictor of
the form 7,, = 0" z,,, where the model’s parameters 6
come from some set ©. In the case of a generalized lin-
ear model, the predictor is coupled with a link function
g(+). The link function allows us to relate the linear predic-
tion to the response in a more nuanced (perhaps non-linear)
way. We denote the link function’s inverse as g ~!(-). Using
this notation, the predictor of a generalized linear model is

~

Un=9"! (OTa}n). We additionally assume a loss function

¢(+,-) > 0, a non-negative function of the true response y,,
and a predicted response ¥,,, which is to be minimized. By
changing the link function and the loss function we obtain
different problems such as linear regression, Rayleigh quo-
tient problems, SVM, logistic regression classification inter
alia. Now, we consider the objective

N N
Zg(ynv/y\n) = ZE <yn7g_1 <0T33n)) (D
n=1 n=1

We seek to minimize (1) with respect to 8 in order to learn
a good predictor of y,, from x,,.

2.2. The Linear Bias Subspace Hypothesis

Consider a collection {zx,,}_, of M representations

where ¢, € RP. The linear bias subspace hypothesis
(Bolukbasi et al., 2016; Vargas and Cotterell, 2020) posits
that there exists a linear subspace B C RP that (fully)
contains gender bias information within representations
{x, }M_, # Tt follows from this hypothesis that one strategy
for the removal of gender information from representations
is to i) identify the subspace B and ii) to project the rep-
resentations on to the orthogonal complement of B, i.e.,
re-define every representation x,, in our collection as

Ty = DTOjBL (xm) ()

Basic linear algebra tells us that the operation projp
is represented by an orthogonal projection matrix, i.e.,
there is a symmetric matrix P such that P2 = P and
projp, () = Px,,. This means that null(P) is our bias
subspace and range(P) is its orthogonal complement, i.e.,
the space without the bias subspace. Intuitively, an orthogo-
nal projection matrix onto a subspace maps a vector to its

“While Bolukbasi et al. (2016) and Vargas and Cotterell (2020)
focused on bias-mitigation as a use-case, this notion can be ex-
tended to the recovery of any concept from representations using
linear methods.
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closest neighbor on the subspace. In our case, the projec-
tion maps a vector to the closest vector in the subspace that
excludes the bias subspace.

2.3. Linear Minimax Games

We are now in a position to define a linear minimax game
that adversarially identifies and removes a linear bias sub-
space. Following Ravfogel et al. (2020), we search for an or-
thogonal projection matrix P that projects onto B , i.e., the
orthogonal complement of the bias subspace B. We define
Py as the set of all D x D orthogonal projection matrices that
neutralize a rank k subspace. More formally, we have that
PePy«< P=Ip—-WTW,WeR>P WWT = I,
where [ denotes the k& x k identity matrix and I denotes
the D x D identity matrix. The matrix P neutralizes the
k-dimensional subspace B = span(WV).

We define a minimax game between P € P, and 0:

g ! (9Tpa;n) ) 3)

where k—the dimensionality of the neutralized subspace—
is an hyperparamter.’ Note that (3) is a special case of the
general adversarial training algorithm (Goodfellow et al.,
2014), but where the adversary is constrained to interact with
the input only via an orthogonal projection matrix of rank
at most k. This constraint enables us to derive principled
solutions, while minimally changing the input.®

N
min max { (yn,
0cO PcPy 1
n—

We now spell out several instantiations of common linear
models within the framework of adversarial generalized lin-
ear modeling: (i) linear regression, (ii) partial least squares
regression, and (iii) logistic regression.

Example Linear Regression. Consider the loss function
0y, 7) = ||y — §lI>, the parameter space © = RP, and the
inverse link function g=1(z) = z. Then (3) corresponds to

N
2

i — 0" Px 4

guin gy 2l —OTPoall

Example Partial Least Squares Regression. Consider the
loss function {(y,y) = (yﬂ)2 g Y2) = 2, and Op =
{OP | ||0P||> = 1} where the parameter space Op is
dependent on P. Then (3) corresponds to

N
i 0" Pz, 5
in max Y [lyad" Pyl 5)

|Pe||*=1 "=!

3One should choose the smallest & that maximizes the loss, so
as to minimize the damage to the representations.

SNote that an orthogonal projection of a point onto a subspace
gives the closest point on that subspace.

Example Logistic Regression. Consider the loss function
U(y,y) = ylog?, the parameter space © = RP, and the

link function g=1(z) = 1?;‘;(;2. Then (3) corresponds to

exp @' Pz,

6
1+ exp 0" Pz, ©

min max E Ynlog ——
OERD PEP), “—~

3. Solving the Linear Minimax Game

How can we effectively prevent a given generalized linear
model from recovering a concept of interest from the rep-
resentation? At the technical level, the above reduces to a
simple question: For which pairs of £(-,-) and g~1(-) can
we solve the objective given in § 2? We find a series of
satisfying answers. In the case of linear regression (Exam-
ple 1) and Rayleigh quotient problems (such as partial least
squares regression, Example 2) we derive a closed-form
solution. And, in the case of Example 3, we derive a convex
relaxation that can be solved effectively with gradient-based
optimization.

3.1. Linear Regression

We begin with the case of linear regression (Example 1).
We show that there exists an optimal solution to (4) in the
following proposition, proved in App. B.3.

Proposition 3.1. The equilibrium point of the objective
below

N
2
i w— 0" Pz, 7
Jnin max ZIIy || (7)
( )ergﬂéggg; ly — I (8)
is achieved when P = I — ﬁ;{% At this point, the

objective is equal to the variance of y.

Note that the optimal direction for linear regression, X "y,
is the covariance between the input and the target. As the
regression target is one dimensional, the covariance is a
single vector. Since linear regression aims to explain the
covariance, once this single direction is neutralized, the
input becomes completely uninformative with respect to y.

3.2. Rayleigh Quotient Maximization

We now turn to partial least squares regression (Wold,
1973) as a representative of a special class of objectives,
which also include canonical correlation analysis (Hotelling
and Pabst, 1936) and other problems. The loss function
described in Example 2 is not convex due to the constraint
that the parameters have unit norm. However, we can still
efficiently minimize the objective making use of basic
results in linear algebra. We term losses of the type in (5)
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Rayleigh quotient losses because they may be formulated
as a Rayleigh quotient (Horn and Johnson, 2012).

We now state a general lemma about minimax games in the
form of a Rayleigh quotient. This lemma allows us to show
that Example 2 can be solved exactly.

Lemma 3.2. Let A € RP*P be a symmetric matrix. Let
A = VTAV be the eigendecomposition of A. We order
the orthonormal eigenbasis {v1, . ..,vp} such that the cor-
responding eigenvalues are ordered: \1 > Ao--+ > Ap.
Then the following saddle point problem

0" PTAPO
1ClE

max min
OcRD PPy,

©))
where the constraint enforces that P is an orthogonal pro-

Jjection matrix of rank k, has the solution

0" = Vk+1 (10
D—k

pPr=1— Zvdvj (11)
d=1

Moreover, the value of (9) is A\jy1.

This lemma is proved in App. B.2.

Proposition 3.3. The PLS objective (5) has an equilibrium
point where 8 and P are given by (10) and (11).

Proof. The adversarial PLS objective Example 2 is scale
invariant. Thus, it can be equivalently expressed as

N
. T 2
min max 0 Px 12
QeRD Pepr. Eﬁ | nYnl| (12)
IPo|F=1 "=1

0'PX Tyy' XPO (13)

= min max
6cRD PcEPy,
||Po||>=1
. 0" PXTyyT XPO 14
= Imin max
6ERD PEP; || PO

The above is in the form (9) if wetake A = X Tyy ' X. O

3.3. Classification

We now turn to the case of logistic regression. In this case,
we are not able to identify a closed-form solution, so we
propose a practical convex relaxation of the problem that
can be solved with iterative methods. Note that while our
exposition focuses on logistic regression, any other convex
loss, e.g., hinge loss, may be substituted in.

Convex-Concave Games. In the general case, minimax
problems are difficult to optimize. However, one spe-
cial case that is generally well-behaved is that of convex—
concave game, i.e., where the outer optimization prob-
lem is concave and the inner is convex (Kneser, 1952;

Tuy, 2004). In the case of (3), the non-convexity stems
from optimizing over the orthogonal projection matrices set
‘Pi.. By the definition of an orthogonal projection matrix
(PEPy+ P=Ip-WTW,W e R>P WWT = 1),
‘P is a non-convex set. Fortunately, inspection of (3) reveals
that Py, is the only source of non-convexity in the optimiza-
tion problem. Thus, if we determine an appropriate convex
relaxation of set Py, the game becomes concave—convex.

3.4. R-LACE : A Convex Relaxation

In this section, we describe Relaxed Linear Adversarial
Concept Erasure (R-LACE), an effective method to solve
the objective (3) for classification problems. To overcome
the non-convex nature of the problem, we propose to relax
Ps. to its convex hull:

Fi. = conv (Py) (15)

In the case of a rank-constrained orthogonal projection ma-
trix, the convex hull is called the Fantope (Boyd and Van-
denberghe, 2014):

Fr={AcSP|I%=A%0,tr(A) =k} (16)

where SP is the of all D x D real symmetric matrices, tr
is the trace operator, and = refers to the eigenvalues of the
matrix A. This yields the following relaxation of (3):

OcRD Py,

N
. “1(pT
min max _1€<yn7g 1(0 P:cn)) 17)

where the relaxation is shown in gray.

We solve the relaxed objective (17) with alternate min-
imization and maximization over € and P, respectively.
Concretely, we alternate between: (a) holding P fixed
taking an unconstrained gradient step over 6 towards
minimizing the objective; (b) holding 6 fixed and taking an
unconstrained gradient step towards maximizing the objec-
tive; (c) adhering to the constraint by projecting P onto the
Fantope, using the algorithm given by Vu et al. (2013). See
App. B.4 for more details on the optimization procedure
and Alg. 1 for a pseudocode of the complete algorithm.

4. Relation to INLP

In this section, we provide an analysis of iterative nullspace
projection (INLP; Ravfogel et al., 2020), a recent linear
method that attempts to mitigate bias in pre-trained presen-
tations in a seemingly similar manner to our minimax for-
mulation. Concretely, in this section, we ask: For what pairs
of £(-,-) and g~1(-), does INLP return an exact solution to
the objective given in (3)? We give a counter example that
shows that INLP is not optimal in the linear regression case
in § 4.1. However, we are able to show that INLP optimally
solves problems with a Rayleigh quotient loss in § 4.2.
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INLP. The method constructs the linear bias subspace
B iteratively by finding directions 6 that minimize (3) and
neutralizing them by projecting the representation to their
nullspace. Concretely, INLP initializes Py = X, and on the
i" iteration, it performs the following two steps:

1. Identify the 6; that minimizes the following objective:

0, = alg)%ggin E(yn, g ! (OTPiwn) );

2. Calculate the projection matrix that neutralizes the

direction 8;: P;y 1 < P; (I — 0.0
i 441 [ 9:91 A

After k iterations, it returns the projection matrix Py (of
rank D — k) and the basis vectors B of the bias subspace
span(@y,...,0y). Neutralizing the concept subspace is
realized by X < X P, which decreases the rank of X in k
In other words, instead of solving the minimax game in (3),
INLP solves the inner minimization problem, and use it to
update the projection matrix P. See Ravfogel et al. (2020)
and App. B.5 for more details.

4.1. Linear Regression

The optimal solution we derived for the regression Proposi-
tion 3.1 case is generally different than the INLP solution;
this implies that INLP does not identify a minimal-rank bias
subspace: while it is guaranteed to eventually damage the
ability to perform regression, it may remove an unnecessar-
ily large number of dimensions.

Proposition 4.1. INLP does not identify the minimal set of

directions needed to be neutralized in order to maximize the
MSE loss.

Proof. The first iteration of INLP will first identify this
best regressor, given by (X T X)X Ty. This direction is
generally different than the optimal direction X "y given in
Proposition 3.1. O

4.2. Rayleigh quotient losses

In contrast to the regression case, we prove that for Rayleigh
quotient losses, INLP employs does converge to an optimal
solution to the minimax problem.

Proposition 4.2. INLP optimally identifies the set of direc-
tions that maximizes Rayleigh quotient losses.

Proof. The two steps 10 and 11 of the optimal solution are
identical to the two INLP steps 1 and 2. Rayleigh maximiza-
tion problems are solved via SVD, which can be performed
iteratively, similarly to INLP (Wold, 1966). O

4.3. Classification

In § 5, we empirically demonstrate that INLP is also not
optimal for classification: in all experiments we were able
to identify a single-dimensional subspace whose removal
completely neutralized the concept.

5. Experiments

In this section, we apply R-LACE on classification-based
binary gender removal problems in the context of bias miti-
gation.” We consider two bias mitigation tasks: mitigating
gender associations in static word representations (§5.1)
and increasing fairness in deep, contextualized classification
(§5.2). Additionally, we qualitatively demonstrate the im-
pact of the method on the input space by linearly removing
different concepts from images (§5.3).

5.1. Static Word Vectors

We replicate the experiment performed by Gonen and Gold-
berg (2019) and Ravfogel et al. (2020) on bias mitigation
in static embeddings. Our bias mitigation target is the un-
cased version of the GloVe word vectors (Pennington et al.,
2014), and we use the training and test data of Ravfogel
et al. (2020), which contains a binary gender annotation for
each word vector that describe its bias. We run Alg. 1 to
neutralize this gender information. See App. B.6 for more
details on our experimental setting. We preform 5 runs of
R-LACE and INLP with random initializations and report
mean and standard deviations. In App. B.11 we demonstrate
that our method identifies a matrix which is close to a proper
projection matrix.

Classification. Initially, a linear SVM classifier can re-
cover the gender label of a word with perfect accuracy. This
accuracy drastically drops after Alg. 1: for all the different
values of k (The dimensionality of the neutralized subspace)
we examined, post-projection accuracy drops to almost 50%
(arandom accuracy, Fig. 2). This suggests that for the GloVe
bias mitigation task, there exists a /-dimensional subspace
whose removal neutralizes all linearly-present concept infor-
mation. INLP, in contrast, does not reach majority-accuracy
even after the removal of a 20-dimensional subspace. Thus,
INLP decreases more the rank of the input matrix (Fig. 2),
and remove more features. We also examined the PCA-
based approach of Bolukbasi et al. (2016), where the sub-
space neutralized is defined by the first k principle compo-
nents of the subspace spanned by the difference vectors be-
tween gendered words.® However, for all k € {1,...,10}

"Code attached in the supplementary material.

8We used the following pairs, taken from Bolukbasi et al.
(2016): (woman, man), (girl, boy), (she, he), (mother, father),
(daughter, son), (gal, guy), (female, male), (her, his), (herself,
himself), (mary, john).
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Figure 2. Gender prediction accuracy after bias-removal projection
against the dimensionality of the neutralized subspace for INLP
and R-LACE, on GloVe representations (Experiment § 5.1). Error
bars are standard deviations.

the method did not significantly influence gender prediction
accuracy post-projection.

In Ravfogel et al. (2020) it was shown that high-dimensional
representation space tends to be (approximately) linearly
separable by multiple different orthogonal linear classifiers.
This led Ravfogel et al. (2020) to the hypothesis that multi-
ple directions are needed in order to fully capture the gender
concept. Our results, in contrast, show that there is a 1-
dimensional subspace whose neutralization exhaustively
removes the gender concept.

Importantly, as expected with a linear information removal
method, non-linear classifiers are still able to recover gender:
both RBF-SVM and a ReLU MLP with 1 hidden layer of
size 128 predict gender in above 90% accuracy. We repeat
the recommendation of Ravfogel et al. (2020): when using
linear-removal methods, one should be careful to only feed
the result to linear classifiers (such as the last layer of a
neural network).

Clustering by Gender. How does R-LACE influence the
geometry of representation space? We perform PCA of
the GloVe representations, and color the points by gender,
both on the original representations, and after 1-rank gender-
removal projection. As can be seen in Fig. 1, the original
representation space is clustered by gender, and this cluster-
ing significantly decreases post-projection. See App. B.8
for a quantitative analysis of this effect.

Word Association Tests. Caliskan et al. (2017) introduced
Word Embedding Association Test (WEAT), a measure for
the association of similarity between male and female re-
lated words and stereotypically gender-biased professions.
The test examines, for example, whether a group of words
denoting STEM professions is more similar, in average,

WEAT'sd | p-value
Math-art.
Original 1.57 0.000
PCA 1.37 £ 0.00  0.002 £+ 0.000
RLACE 0.80 £ 0.01 0.062 + 0.002
INLP 1.10 £ 0.10  0.016 £ 0.009
Professions-family.
Original 1.69 0.000
PCA 1.24 £ 0.00  0.005 £ 0.000
RLACE 0.78 £0.01  0.072 £+ 0.003
INLP 1.15£0.07 0.007 £ 0.003
Science-art.
Original 1.63 0.000
PCA 1.16 £ 0.00  0.003 £ 0.000
RLACE 0.77 £0.01  0.073 £ 0.003
INLP 1.03+£0.11 0.022 £ 0.016

Table 1. WEAT bias association results.

to male names than to female ones. We measure the as-
sociation between Female and Male names and (1) career
and family-related terms; (2) Art and Mathematics words;
(3) Artistic and Scientific Fields. We report the test statis-
tic, WEAT’s d, and the p-values after rank-1 projections
in Tab. 1. R-LACE is most effective in decreasing biased
associations to nearly nonsignificant p-values.

Influence on Semantic Content. Does R-LACE damage
the semantic content of the embeddings? We run SimLex-
999 (Hill et al., 2015), a test that measure the quality of the
embedding space by comparing word similarity in that space
to human notion of similarity. The test is composed of pairs
of words, and we calculate the Pearson correlation between
the cosine similarity before and after projection, and the
similarity score that humans gave to each pair. Similarly
to Ravfogel et al. (2020), we find no significant influence
on correlation to human judgement, from 0.399 for the
original vectors, to 0.392 after rank-1 projection and 0.395
after 1 iteration of INLP. See App. B.9 for the neighbors of
randomly-chosen words before and after R-LACE..

5.2. Deep Classification

We proceed to evaluate the impact of R-LACE on deep clas-
sifiers with a focus on the fairness of the resulting classifiers.
De-Arteaga et al. (2019) released a large dataset of short bi-
ographies collected from the web annotated for both binary
gender and profession. We embed each biography with the
[CLS] representation in the last layer of BERT, run Alg. 1 to
remove gender information from the [CLS], and then evalu-
ate the performance of the model, after the intervention, on
the main task of profession prediction.

Main-Task Classifiers.
sion classifiers:

We consider several deep profes-
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Setting Accuracy (gender) | Accuracy (Profession) 1 GAPI\T,IEISJ{Mb 1 0(GAPTPR %women) +
BERT-frozen 99.32 79.14 0.145 0.813
BERT-frozen + RLACE (rank 1) 52.48 78.86 0.109 0.680
BERT-frozen + RLACE (rank 100) 52.77 77.28 0.102 0.615
BERT-frozen + INLP (rank 1) 98.98 79.09 0.137 0.816
BERT-frozen + INLP (rank 100) 53.21 71.94 0.099 0.604
BERT-finetuned 96.89 £+ 1.01 85.12 £ 0.08 0.123 £ 0.011 0.810 4+ 0.023
BERT-finetuned + RLACE (rank 1) 54.59 £ 0.66 85.09 £ 0.07 0.117 £ 0.011 0.794 = 0.025
BERT-finetuned + RLACE (rank 100) 54.33 £ 0.36 85.04 £ 0.09 0.115 +£0.014 0.792 + 0.025
BERT-finetuned + INLP (rank 1) 93.52 +1.42 85.12 £ 0.08 0.122 £ 0.011 0.808 + 0.024
BERT-finetuned + INLP (rank 100) 53.04 +£ 0.97 84.98 £ 0.06 0.113 £ 0.009 0.797 + 0.027
BERT-finetuned-adv (MLP adversary) | 99.57 4 0.05 84.87 £ 0.11 0.128 £ 0.004 0.840 + 0.015
BERT-finetuned-adv (Linear adversary) | 99.23 4 0.09 84.92 +0.12 0.124 + 0.005 0.827 £0.012
Majority ‘ 53.52 30.0 - -

Table 2. Fair classification results, deep profession classification (Experiment § 5.2).
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Figure 3. Gender prediction accuracy after bias-removal projection
against the dimensionality of the neutralized subspace, for INLP
and R-LACE, finetuned BERT representations (Experiment § 5.2).

* A multiclass logistic regression profession classifier
over the frozen representations of pre-trained BERT
(BERT-freezed);

* A pretrained BERT model finetuned to the profession
classification task (BERT-finetuned);

* A pretrained BERT model finetuned to the profession
classification task, trained adversarially for gender re-
moval with the gradient-reversal layer method of Ganin
and Lempitsky (2015) (BERT-adv). We consider (1) a
linear adversray (2) a MLP adversary with 1-hidden-
layer of size 300 and ReLLU activations.

We run Alg. 1 on the representations of BERT-freezed and
BERT-finetuned, while BERT-adv is the commonly used
way to remove concepts, and is used as a baseline. We
report the results of 5 runs with random initializations. Be-
fore running Alg. 1, we reduce the dimensionality of the
representations to 300 using PCA. We finetune the linear
profession-classification head following the projection. See
App. B.7 for more details on our experimental setting.

Downstream Fairness Evaluation. To measure the bias
in a classifier, we follow De-Arteaga et al. (2019) and use
the TPR-GAP measure, which quantifies the bias in a classi-
fier by considering the difference (GAP) in the true positive
rate (TPR) between individuals with different protected at-
tributes (e.g. gender, race). We use the notation GAPE};R to
denote the TPR-gap in some main-class label y (e.g. “nurse”
prediction) for some protected group z (e.g. “female”),
we also consider GAPZPR’RMS, the RMS of the TPR-gap
across all professions for a protected group z. See formal
definitions in App. B.7 and De-Arteaga et al. (2019). To cal-
culate the relation between the bias the model exhibits and
the bias in the data, we also calculate oG apTPR %women)s
the correlation between the TPR gap in a given profession
and the percentage of women in that profession.

The results are summarized in Tab. 2. R-LACE effectively
hinders the ability to predict gender from the representa-
tions using a rank-1 projection, while INLP requires about
100 iterations (Fig. 3). Both methods have a moderate neg-
ative impact on the main task of profession prediction in
the finetuned model, while in the freezed model, INLP—
but not R-LACE—also significantly damages the main-
task (from 79.14% to 71.94% accuracy). Bias, as mea-
sured by GAP?ZRRMS is mitigated by both methods to a
similar degree. For the finetuned model, the decrease in
O(GAPTPR %women) 18 modest for all methods.

Interestingly, the adversarially finetuned models
(BERT-adv)-both with a linear and a MLP adversary—does
not show decreased bias according to GAPzgR’RMS, and
do not hinder the ability to predict gender at all.” Besides
the effectiveness of R-LACE for selective information
removal, we conclude that the connection between the
ability to predict gender from the representation, and the

°In training, the adversaries converged to close-to-random gen-
der prediction accuracy; but this did not generalize to new adver-
saries in test time. This phenomenon was observed — albeit to a
lesser degree—by Elazar and Goldberg (2018).
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TPR-gap metric, is not clear cut, and requires further study,
as has been noted recently (Goldfarb-Tarrant et al., 2021;
Orgad et al., 2022).

5.3. Erasing Concepts in Image Data

Our empirical focus is concept removal in textual data. Vi-
sual data, however, has the advantage of being able to clearly
inspect the influence of R-LACE on the input. To qual-
itatively assess this effect, we use face images from the
CelebsA dataset (Yang et al., 2015), which is composed
of faces annotated with different concepts, such as “sun-
glasses” and “smile”. We downscale all data to 50 over
50 grey-scale images, flatten them to 2,500-dimensional
vectors, and run our method on the raw pixels (aiming to
prevent a linear classifier to classify, for instance, whether a
person has sunglasses based on the pixels of their image).'°
We experimented with the following concepts: “glasses”,
“smile”, “mustache”, “beard”, “bald” and ‘“hat”.

Results. See Fig. 4 and App. B.10 for randomly-sampled
outputs. In all cases, a rank-1 linear projection is enough
to remove the ability to classify attributes (classification
accuracy of less than 1% above majority accuracy). The
intervention changed the images by focusing on the features
one would expect to be associated with the concepts of
interest; for example, adding “pseudo sun-glasses” to all
images (for “sunglasses”) and blurring the facial features
around the mouth (for “smile”).!! Since the intervention is
constrained to be a projection, it is limited in expressivity,
and it is easier to remove features than add new ones.

6. Related Work

Concept removal is predominantly based on adversarial ap-
proaches (Goodfellow et al., 2014), which were extensively
applied to bias mitigation problems (Ganin and Lempitsky,
2015; Edwards and Storkey, 2016; Chen et al., 2018; Xie
etal., 2017; Zhang et al., 2018; Wang et al., 2021). However,
those methods are notoriously unstable, and were shown by
Elazar and Goldberg (2018) to be non-exhaustive: residual
bias often still remains after apparent convergence. Linear
information removal method was pioneered by Bolukbasi
et al. (2016), who used PCA to identify “gender subspace”
spanned by a few presupposed “gender directions”. Follow-
ing the criticism of Gonen and Goldberg (2019), several
works have proposed alternative linear formulations (He

"Modern vision architecture relies o deep models. We focus on
linear classification in order to see the direct effect on the input.
Extending it for deep architectures is left for a future work.

"n contrast to regular style transfer, we prevent classification of
the concept. At times (e.g. the “sunglasses” case), we converged
to a solution which always adds the concept; but this need not
generally be the case.

Figure 4. Application of R-LACE on the raw pixels of image data,
from top to bottom we present the original images and the same
images after a rank-1 projection, for the concepts “smile” and
“glasses”.

et al., 2020; Dev and Phillips, 2019; Ravfogel et al., 2020;
Dev et al., 2021; Kaneko and Bollegala, 2021).

Concurrent to this work, spectral removal of information (a
special case of the Rayleigh-quotient loss, § 2) was studied
in Shao et al. (2022), who projected out the directions that
explain most of the covariance between the representations
and the protected attribute, and also proposed a kernaliza-
tion of the Rayleigh-quotient objective. Closest to our work
are Sadeghi et al. (2019); Sadeghi and Boddeti (2021), who
studied a different linear adversarial formulation and quan-
tified the inherent trade-offs between information removal
and main-task performance. Their analysis is focused on
the special case of linear regression, and they considered
a general linear adversary (which is not constrained to an
orthogonal projection — making it more expressive, but less
interpetable). Finally, Haghighatkhah et al. (2021) provide
a thorough theoretical analysis of the problem of preventing
classification through an orthogonal projection, and provide
a constructive proof for optimality against SVM adversaries.

Beyond bias mitigation, concept subspaces have been used
as an interpretability tool (Kim et al., 2018), for causal anal-
ysis of NNs (Elazar et al., 2021; Ravfogel et al., 2021),
and for studying the geometry of their representations (Ce-
likkanat et al., 2020; Gonen et al., 2020; Hernandez and
Andreas, 2021). Our linear concept removal objective is
different from subspace clustering (Parsons et al., 2004),
as we focus on hindering the ability to linearly classify the
concept, and do not assume that the data lives in a linear
subspace.

7. Conclusion

We have formulated the task of erasing concepts from the
representation space as a constrained version of a general
minimax game. In the constrained game, the adversary is
limited to a fixed-rank orthogonal projection. This con-
strained formulation allows us to derive closed-form solu-
tions to this problems for certain objectives, and propose a
convex relaxation which works well in practice for others.



Linear Adversarial Concept Erasure

We empirically show that the relaxed optimization recovers
a single dimensional subspace whose removal is enough to
mitigate linearly-present gender concepts.

The method proposed in this work protects against linear
adversaries. Effectively removing non-linear information
while maintaing the advantages of the constrained, linear
approach remains an open challenge.
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A. Pseudocode

Algorithm 1 Relaxed Linear Adversarial Concept Erasure (R-LACE)
Input:
data X € RVxP
labels y
Loss £
Projection rank &
outer loops T’
inner loops M
Output:
A projection matrix P that neutralizes a rank-k subspace
Initialization:
Initialize predictor @ € R” randomly.
Initialize adversary P € RP*P randomly.
Run adversarial game:
for: =1to T do
for j = 1to M do
/* Gradient descent on 6
6 +SGDUpdate ( 250X Pw))
end for
for j = 1to M do
/* Projected gradient ascent on P
P +SGDUpdate( w )
P« 3(P+P")//Ensure P is symmetric
P + FantopeProjection(P, k) //Project on the Fantope using Lemma B.1
end for
end for
/* Perform SVD to get a proper orthogonal projection matrix that reduces the rank by k
U, D = spectralDecomposition(P)
P« Ul —k,:]"U[: —k, ]
return P

B. Appendices
B.1. Ethical Considerations

The empirical experiments in this work involve the removal of binary gender information from a pre-trained representation.
Beyond the fact that gender a non-binary concept, this task may have real-world applications, in particular such that relate to
fairness. We would thus like remind the readers to take the results with a grain of salt and be extra careful when attempting to
deploy methods such as the one discussed here. Regardless of any proofs, care should be taken to measure the effectiveness
of the approach in the context in which it is to be deployed, considering, among other things, the exact data to be used,
the exact fairness metrics under consideration, the overall application, and so on. We urge practitioners not to regard this
method as a “solution” to the problem of bias in neural models, but rather as a preliminary research effort towards mitigating
certain aspects of the problem. Unavoidably, we make use a limited set of datasets in our experiments, and they do not
reflect all the subtle and implicit ways in which gender bias is manifested. As such, it is likely that different forms of bias
still exist in the representations following the application of our method. We hope that followup works would illuminate
some of these shortcomings.

Furthermore, our method targets a very specific technical definition of bias, quantified by the ability to linearly predict the
sensitive information. The method is not expected to be robust to nonlinear adversaries, or generally other ways to quantify
bias.
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B.2. Rayleigh-quotient

In this appendix, we provide a derivation of the equilibrium point of the linear adversarial game for objectives that can be
cast as Rayleigh quotient maximization (§ 3.2). We prove that these objective, the optimal projection of rank k neutralizes
the subsapce spanned by the k-best 01, ..., 0 — i.e., the first k directions that maximize the Rayleigh quotient.

Lemma 3.2. Let A € RP*P be a symmetric matrix. Let A = V' T AV be the eigendecomposition of A. We order the
orthonormal eigenbasis {v1, . ..,vp} such that the corresponding eigenvalues are ordered: Ay > Ay -+ > Ap. Then the
following saddle point problem
. 0'PTAPO o
S05%5 BUB IPal 2 ©)
where the constraint enforces that P is an orthogonal projection matrix of rank k, has the solution

0" = Vi+1 (10)

D—k
P =71— Zvdv; (11)
d=1
Moreover, the value of (9) is A\jy1.

Proof. First, we manipulate the objective

(0P)TAOP) (0P)TVTAV(6P)

(6P)T(6P) —  (6P)T(6P) (18)
_ (0P)TVTAV(6P) o
~ (6P)TVTV(6P) (19)

_ (VeP)TA(VOP)
~ (VOP)T(VeP) (20)
Define 6 = V. @1
_ @r)TA@P) o

(6P)T(6P)

_ i M (0P)F .

D apy2
>_a=1(0P)g
Since (23) is scale-invariant, we may assume 0P is a unit vector.

Upper Bound. We first argue for an upper bound on the objective. For any orthogonal projection matrix Py of rank k, we
have

D
max min Aa - (OP)2 24
max min ; a-(OP); 24)

st. P?=p=pPT "7

D
< max ) M- (0P)3 (25)
éeRDdE::l 2" (6P

subject to the constraint that ||@FP,||2 = 1. To solve the max, let d* be the smallest value in {1,..., D} such that

eq+ € range(P,) where we use e; to denote the 7™ natural basis vector. Thus, we have

D

D
max Y Ag- (0P)] =D i (eq)] (26)
d=1

~ e 27)
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Minimizing over Py, we find that the smallest value is achieved by 0P = er+1 and the value of the objective is Ag41. To
backsolve for 8, we note that
ep+1 =VOP (28)

. . * D—k T
which is true when " = vy and P* =1 -5 " vqv,.

Lower Bound. Now, for any éo, we have the following lower bound:

D
max min ;- (OP)2 29
OcRD  pPeRPXP ; d( )d @9)
st. P2P=p=pT &

D
> min g - (0o P)> 30
_PERDXD;d(o)d (30)
st. P2=p=pT T

Now, we consider minimizing P when 6 can only take values from the finite subset {e, ..., er+1}. This is equivalent to
minimizing over P when we have 8y € {v1,...,Vk11}. The P* that minimizes over this collection is

D—k
Pr=1- Z vavy (31)
d=1

This is true as null (P) = span ({v1, ..., vy }) which zeros out the elements of the collection that achieve the highest values
of the objective in this collection, i.e. {vy,...,v}. Plugging in P*, we get 8 = v, 1 and the value of the objective is
Akt

Putting it Together. Given that we have upper and lower bounded the problem with A\, we conclude the solution is as
stated in the theorem. O

B.3. Linear Regression

In this appendix, we provide a derivation of the equilibrium point of the linear adversarial game in the linear regression case
(§ 3.1). We show that the optimal projection is of rank 1, and that it neutralizes the covariance direction Xy.

Proposition 3.1. The equilibrium point of the objective below

N
2
min max [y — 07 Pa,y|| (7
O€RD PEPy
n=1
=) min ma — XPo|? 8
(=) min, max |ly | ®)

XTyyX

is achieved when P = I — TNy

. At this point, the objective is equal to the variance of y.

-
Proof. Let P = I — 23— be an arbitrary orthogonal projection matrix, where span(v) is the rank-1 concept subspace

—1 —
that is neutralized. For every choice of v, the optimal 8 is @ = ((XP)'XP) X'y = (PX'XP) 'PXTy =
CX Ty, where C is the inverse matrix. Consider the choice v := X Ty. For this choice, the objective is evaluated to

_ 2 -
iy — XP(PX T X Pw) "PXTy||. Since, by definition, P projects to the nullspace of X 3, we have PX Ty = 0 and

the objective is then evaluated to %Hy\ |2. Thus, the objective is the variance of y, regardless or the value of 8. Note also that
the adversary cannot improve over this choice for P, since regardless of the choice of P, the predictor can always choose
6 = 0 and get an objective value of Var(y) — so this is an upper bound for the objective.

O

B.4. Optimizing the Relaxed Objective

In this appendix, we describe the optimization of the relaxed objective § 3.4.
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B.4.1. ALTERNATE OPTIMIZATION WITH PROJECTED GRADIENT DESCENT

To optimize the relaxed objective (17), we perform alternate minimization and maximization over 8 and P, respectively. 8
is updated with a regular gradient descent:

N
Bi1 < 6~ aVo > Lyag ' (67 Pay)

n=1

While P is updated with projected gradient ascent:

N
Pt+1 — ka(Pf =+ OLtVP Zf(yn,gil(QTPmn))

n=1

where o, is the learning rate, and Iz, is the projection to the Fantope, given in Vu et al. (2013). The following lemma
describes how to calculate that projection:

Lemma B.1 (Restated from Vu et al. (2013)). Let Fj. be the k-dimensional fantope; see (16), and let P = chz)=1 )\dvdvdT
be the eigendecomposition of P where \q is P’s d™ eigenvalue and v is its corresponding eigenvector. The projection of P
onto the fantope is given by Iz, (P) = ZdD:1 A () - vav,, where AT (v) = min (max(Aq — 7,0), 1) and 7 satisfies the

equation 25:1 M (y) = k.

The lemma specifies that finding the projection entails performing an eigendecomposition of P and finding -y that satisfies
a set of monotonous, piece-wise linear equations. Since we can easily find v where Z(Ii):l )\z{(v) > k and v where

ZdD:1 AF(7) < k, we can solve the system of equations using the bisection method.

Upon termination of the optimization process, we perform spectral decomposition of P, and return a projection matrix
Prinai to the space spanned by the first D — k eigenvectors (to ensure a proper orthogonal projection matrix that neutralizes
a rank-k subspace). The process is summarized in Alg. 1. The matrix Py;,q can then be used to mitigate bias in the dataset
X by projecting X <— X Ppipq,.

Convergence Concave—convex adversarial problems have a unique Nash equilibrium under mild conditions (Pang and
Razaviyayn, 2016), and there is a rich literature on efficient solution to these problems. However, Even for the concave—
convex case, alternate optimization—as we employ—is not guaranteed to find that equilibrium, and is prone to problems such
as rotational behavior (Nouiehed et al., 2019). Indeed, in our experiments, we witness such behavior: the objective does not
converge smoothly. However, in all cases, when we run the algorithm for enough iterations and continuously evaluate the
projection P by fixing it, training 6 to convergence and evaluating it on the development set, we converge to an optimal P
(in the sense of @ achieving majority-accuracy) at certain point. We then terminate the optimization and take that optimal P.
Because of these positive results we opted for using vanilla alternate optimization, although more sophisticated algorithms,
that do guarantee convergence to the equilibrium point, have also been developed for convex—concave games (Wang and Li
(2020); ?, inter alia).

Also, note that due to the implicit function theorem and the concave—convex nature of the problem, for every fixed P,
argming £ is an implicit function h(P) of P for some h(-), making 17 equivalent to the concave, non-adversarial problem
argmax pe 7, L(h(P)), which is an “easy” and conventional concave problem. Calculating the function h(-) explicitly is
computationally intensive, as it involves Hessian calculations, and efficiently optimizing it is an active area of research
(Blondel et al., 2021).

B.S. The INLP Algorithm

In this appendix, we provide an overview of the INLP algorithm (Ravfogel et al., 2020), analyzed in § 4. The INLP algorithm
constructs the linear bias subspace B iteratively, by finding directions @ that minimize (3) and neutralizing them by projecting
the representation to their nullspace. On each iteration 4, the next predictor 8; is trained on the representations which were
projected to the nullspace of the previous predictors 6+, ...,0;_1, i.e., is optimized to identify residual information on y
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which was not captured by previous directions. This iterative procedure relies on the intuition that if one wants to find a
subspace whose neutralization hinders the ability to predict some concept, one can first identify directions that encode that
concept, and neutralize them.

For simplicity, we assume a binary property that has to be neutralized.

Consider a linear classifier ¢ trained to predict y from X. ¢; is parameterized by a vector §; € R, and can be interpreted
as defining a separating plane that aims to partition the representation space—as well as possible—according to the labels
y. Recall that the nullspace of 6, is defined as N(6,) = {x € R” | 276, = 0}. Let Py g,) be an orthogonal projection
matrix to the N(601). By transforming the data X <+ X Pn(6,), we can make sure X Py (g, w1 = 6, i.e, the classifier
61 is no longer relevant, as all the features it uses are neutralized from the representations once they are projected on the
separating plane.

Concretely, INLP initializes Xy = X, and on the i iteration, it performs the following two steps:

1) Identify ; that minimizes the following objective 8; = argming ¢(X;_1,y; 0)

a7
2) Neutralize it by projecting the data X; + X; (I — Z’A’Teé/‘ ).
The process repeats k times, resulting in a subspace B C RP = span(81, s, ..., 0}). The neutralizing projection is then

calculated as the orthogonal projection to the complement subspace B+.

B.6. Experimental Setting: Static Word Vectors
In this appendix, we describe the experimental setting in the static word vectors experiments § 5.1.

We conduct experiments on 300-dimensional uncased GloVe VEStOI‘S. Following (Ravfogel et al., 2020), to approximate the
gender labels for the vocabulary, we project all vectors on the he — she direction, and take the 7, 500 most male-biased and
female-biased words. Note that unlike (Bolukbasi et al., 2016), we use the he — she direction only to induce approximate
gender labels, but then proceed to measure the bias in various ways, that go beyond neutralizing just the he — she direction.

We use the same train—dev—test split of Ravfogel et al. (2020), but discard the gender-neutral words (i.e., we cast the
problem as a binary classification). We end up with a training set, evaluation set and test set of sizes 7,350, 3,150 and 4,500,
respectively.

We run Alg. 1 for 50,000 iterations with the cross entropy loss, alternating between an update to the adversary and to the
classifier after each iteration (7" = 50,000, M = 1 in Alg. 1).

The inner optimization problem entailed in the Fantope projection operation is solved with the bisection method. We train
with a simple SGD, with a learning rate of 0.005, chosen by experimenting with the development set. We use a batch size of
128. After each 1000 batches, we freeze the adversary, train the classifier to convergence, and record its loss. Finally, we
return the adversary which yielded the highest classification loss. In test time, we evaluate the ability to predict gender using
logistic regression classifiers trained in Sklearn. For the dimensionality of the neutralized subspace, we experiment with the
values k = 1...20 for INLP and R-LACE: We perform 5 runs and report mean =+ standard deviation.

B.7. Experimental Setting: Deep Classifiers
In this appendix, we describe the experimental setting in the deep classification experiments § 3.3.

We use the same train—dev—test split of the biographies dataset used by Ravfogel et al. (2020), resulting in training, evaluation
and test sets of sizes 255,710, 39,369, and 98,344, respectively. We reduce the dimensionality of the representations to 300
using PCA, and for efficiency reasons, we run Alg. 1 on the first 100,000 training examples only (but test on all the test data).

We run Alg. 1 with a simple SGD optimization, with a learning rate of 0.005 and a weight decay of 1le~*, chosen by
experimenting with the development set. We use a batch size of 256, and again choose the adversary which yielded highest
classification loss. For the dimensionality of the neutralized subspace, we run R-LACE and INLP with £ = 1...100. We
perform 5 runs of the entire experimental pipeline (classifier training, INLP and R-LACE

) and report mean =+ standard deviation.
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Classifier training We experiment with several deep profession classifiers, as detailed in § 3.3. For BERT-freezed, we
use the HuggingFace implementation (Wolf et al., 2020). For BERT-finetuned we finetune the pre-trained BERT on the
profession classification task, using a SGD optimizer with a learning rate of 0.0005, weight decay of 1e~® and momentum
of 0.9. We train for 30,000 batches of size 10 and choose the model which achieved lowest loss on the development set. For
BERT-adv, we perform the same training procedure, but add an additional classification head which is trained to predict
gender, and whose gradient is reversed (Ganin and Lempitsky, 2015). This procedure should create an encoder which
generates hidden representations which are predictive of the main task, but are not predictive of gender. The adversary
always converged to a low gender classification accuracy (below 55%), which is commonly interpreted as a success of the
removal process.

Fairness Measure: TPR-GAP We formally describe the fairness measures used in § 5.2.

The TPR-GAP is tightly related to the notion of fairness by equal opportunity (Hardt et al., 2016): a fair binary classifier is
expected to show similar success in predicting the task label y for the two populations, when conditioned on the true class.
Formally, let Z is a random variable denoting binary protected attribute, z and 2’ denote its two values, and let Y denote a
random variable describing the main-task label, and similarly let Y be a random variable denoting the model’s prediction
on the main task (e.g. profession). TPR between a main-task label y and a protected group z, and the gap in the TPR, are
defined as follows (De-Arteaga et al., 2019):

-~

TPR.y =p(Y =y | Z=2Y =y) (32)
GAPI'® =TPR., — TPR., (33)

TPR
Pz,y

GAPTPRRMS _ \/ ﬁ S (GAPTER)2 (34)
yeC

We also consider the root-mean square of GA over all main-class labels, to get a single per-gender bias score:

where C'is the set of all labels (in our case, professions).

B.8. V-Measure

To quantify the effect of our intervention on the GloVe representation sapce in § 5.1, we perform K-means clustering
with different values of K, and use ¥V —measure (Rosenberg and Hirschberg, 2007) to quantify the association between
cluster identity and the gender labels, after a projection that removes rank-1 subspace. The results are presented in Fig. 5.
V-measure for the original representations is 1.0, indicating a very high alignment between cluster identity and gender
label. The score drastically drops after a rank-1 relaxed projection, while INLP projection and the PCA-based method of
(Bolukbasi et al., 2016) have a smaller effect.

B.9. Influence on Neighbors in Embedding Space

In § 5.1, we showed that the SimLex999 test does not find evidence to damage that our intervention causes to the GloVe
embedding space. To qualitatively demonstrate this, we provide in Tab. 3 the closest-neighbors to 15 randomly-sampled
words from the vocabulary, before and after our intervention.
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Figure 5. V-measure between gender labels and cluster identity, for different numbers of clusters on the X axis (lower values are better).
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Error bars are standard deviations from 10 random runs.

Word Neighbors before Neighbors after

history literature, histories, historical literature, histories, historical
1989 1991, 1987, 1988 1991, 1987, 1988

afternoon  saturday, evening, morning sunday, evening, morning
consumers buyers, customers, consumer  buyers, customers, consumer
allowed allowing, allow, permitted allowing, allow, permitted
leg thigh, knee, legs thigh, knee, legs

manner therefore, regard, thus means, regard, thus

vinyl metal, Ip, pve metal, Ip, pve

injury injured, accident, injuries injured, accident, injuries
worried afraid, concerned, worry afraid, concerned, worry
dishes cooking, cuisine, dish meals, cuisine, dish

thursday monday, tuesday, wednesday =~ monday, tuesday, wednesday
sisters brothers, daughters, sister daughters, brothers, sister
wants decides, thinks, knows decides, thinks, knows
covering cover, covered, covers cover, covered, covers

Table 3. Neighbors to random words in GloVe space before and other rank-1 R-LACE projection.

30
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B.10. Additional results on the CelebsA dataset

99 < CEINNTS

We present here randomly-sampled outputs for the 6 concepts we experimented with: “glasses”, “smile”, “mustache”,
“beard”, “bald” and “hat” (Experiment § 5.3).

Figure 7. Smile

Figure 8. Mustache
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Figure 9. Beard

Figure 10. Bald

Figure 11. Hat
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B.11. Relaxation Quality
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Figure 12. Eigenvalues spectrum of the output of the relaxed optimization when running Alg. 1 with k = 6.

To what extent the optimization of the relaxed objective (17) results in a matrix P that is a valid a rank-k orthogonal
projection matrix? recall that orthogonal projection matrix have binary eigenvalues: all eigenvalues are either zeros or ones,
and their sum is the rank of the matrix. In Fig. 12, we present the eigenvalues spectrum of P when we run Alg. 1 with k = 6
on the static word-embeddings dataset (§ 5.1). We find that the top 6 eigenvalues are indeed close to 1, and the rest are close
to 0—suggesting the approximation is tight: the resulting matrix is close to a valid rank-k orthogonal projection matrix.



