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Abstract

3D perception, especially point cloud classifica-
tion, has achieved substantial progress. However,
in real-world deployment, point cloud corrup-
tions are inevitable due to the scene complex-
ity, sensor inaccuracy, and processing impreci-
sion. In this work, we aim to rigorously bench-
mark and analyze point cloud classification under
corruptions. To conduct a systematic investiga-
tion, we first provide a taxonomy of common 3D
corruptions and identify the atomic corruptions.
Then, we perform a comprehensive evaluation
on a wide range of representative point cloud
models to understand their robustness and gen-
eralizability. Our benchmark results show that
although point cloud classification performance
improves over time, the state-of-the-art methods
are on the verge of being less robust. Based on the
obtained observations, we propose several effec-
tive techniques to enhance point cloud classifier
robustness. We hope our comprehensive bench-
mark, in-depth analysis, and proposed techniques
could spark future research in robust 3D percep-
tion. Code is available at https://github.
com/jiawei-ren/modelnetc.

1. Introduction
Robustness to common corruptions is crucial to point cloud
classification. Compared to 2D images, point cloud data suf-
fer more severe corruptions in real-world deployment due to
the inaccuracy in 3D sensors and complexity in real-world
3D scenes (Wu et al., 2019; Yan et al., 2020). Furthermore,
point cloud is widely employed in safety-critical applica-
tions such as autonomous driving. Therefore, robustness to
out-of-distribution (OOD) point cloud data caused by cor-
ruptions becomes an important part of the test suite since the
beginning of learning-based point cloud classification (Qi
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Figure 1. Upper. Blue curve shows overall accuracy (OA) on
ModelNet40. Red curve shows mean Corruption Error (mCE)
on proposed ModelNet-C. Methods are sorted in chronological
order. OA gradually saturates but mCE is at the risk of increasing
due to the lack of a standard test suite. Lower. Point cloud clas-
sifer’s robustness to various corruptions in a radar chart. Proposed
ModelNet-C allows fine-grained corruption analysis. Different
architectures have diverse strengths and weaknesses to corruptions.
”-G”: -Global. ”-L”: -Local.

et al., 2017b; Simonovsky & Komodakis, 2017).

Ideally, robustness should be measured in a standard way
like how classification accuracy and computational cost are
measured. However, prior research evaluates point cloud
classifier robustness in many different protocols:

https://github.com/jiawei-ren/modelnetc
https://github.com/jiawei-ren/modelnetc
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Table 1. Corruptions studied in existing robustness analysis. Prior works evaluate point cloud classification robustness on different sets of
corruptions, and hence their evaluations can be partial and unfair. To standardize the corruption evaluation, our test suite ModelNet-C
includes all previously studied corruptions, including “Jitter”, “Drop Global/Local”, “Add Global/Local”, “Scale” and “Rotate”.

Jitter Drop Global Drop Local Add Global Add Local Scale Rotate
PointNet (Qi et al., 2017b) ✓ ✓ ✓
ECC (Simonovsky & Komodakis, 2017) ✓ ✓
PointNet++ (Qi et al., 2017a) ✓
DGCNN (Wang et al., 2019) ✓
RSCNN (Liu et al., 2019) ✓ ✓
PointASNL (Yan et al., 2020) ✓ ✓
Orderly Disorder (Ghahremani et al., 2020) ✓
PointAugment (Li et al., 2020) ✓ ✓ ✓ ✓
PointMixup (Chen et al., 2020) ✓ ✓ ✓ ✓
PAConv (Xu et al., 2021a) ✓ ✓ ✓
OcCo (Wang et al., 2021) ✓
Triangle-Net (Xiao & Wachs, 2021) ✓ ✓ ✓ ✓
Curve-Net (Xiang et al., 2021) ✓ ✓
RSMix (Lee et al., 2021) ✓ ✓ ✓ ✓
PointWolf (Kim et al., 2021) ✓ ✓ ✓ ✓
GDANet (Xu et al., 2021b) ✓ ✓

Our Benchmark (ModelNet-C) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Protocol-1. Evaluate the robustness to a selected set of cor-
ruptions (Qi et al., 2017b;a; Wang et al., 2019; Chen et al.,
2020; Kim et al., 2021), e.g., random point dropping and
random jittering. This evaluation method is popular in point
cloud research, as summarized in Table 1. However, the
freedom to select corruptions brings both positive and neg-
ative effects to the evaluation. On the upside, customized
selection allows the evaluation to focus on the most char-
acteristic corruptions. On the downside, a selected set of
corruptions cannot provide a comprehensive evaluation of a
model’s robustness. In addition, different corruption selec-
tions and training protocols in implementation also make it
difficult to compare across methods.

Protocol-2. Evaluate the robustness to the sim-to-real
gap (Reizenstein et al., 2021; Ahmadyan et al., 2021), e.g.,
train on ModelNet40 (Wu et al., 2015) and test on ScanOb-
jectNN (Uy et al., 2019). To exploit the naturally occurred
corruptions in real-world point cloud object datasets, robust-
ness is formulated as the generalizability from a synthetic
training set to a real test set. However, real-world corrup-
tions always come in a composite way, e.g., self-occlusion
and scanner noise, making it hard to analyze each corruption
independently. Besides, the sim-to-real performance gap
couples with the domain gap within each category, e.g., a
chair in ModelNet40 and ScanObjectNN may have different
styles, which obfuscates the evaluation results.

Protocol-3. Evaluate the robustness to adversarial at-
tack (Zhou et al., 2019; Dong et al., 2020; Sun et al., 2021),
e.g., adversarial point shifting and dropping. Different from
real-world scenarios where corruptions are drawn from nat-
ural distributions, adversarial attacks corrupt point clouds
for the purpose to deceive a classifier while keeping the
attacked point cloud similar to the input. Therefore, adver-
sarial robustness is a good measure of a model’s worst-case

performance but can not reflect a point cloud classifier’s
robustness to common corruptions in the natural world.

Despite various ways to evaluate a point cloud classifier’s
robustness, there lacks a standard, comprehensive bench-
mark for point cloud classification under corruptions. In this
work, we present a full corruption test suite to close this gap.
First, we break down real-world corruptions in Protocol-2
into 7 fundamental atomic corruptions ( Figure 2), which
also forms a superset of the ad-hoc corruption selections in
Protocol-1. As we aim to measure real-world robustness,
adversarial attacks in Protocol-3 are excluded. Then, we
apply the atomic corruptions to the validation set of Mod-
elNet40 as our corruption test suite dubbed ModelNet-C.
Inspired by the 2D image classification robustness bench-
mark (Hendrycks & Dietterich, 2019), we further create
5 severity levels for each atomic corruption and use the
mean Corruption Error (mCE) metric for evaluation. Fi-
nally, based on the test suite, we benchmark 14 point cloud
classification methods, including 9 architectures, 3 augmen-
tations, and 2 pretrains. As shown in Figure 1, our bench-
mark results show that although point cloud classification
performance on the clean ModelNet40 improves by time,
state-of-the-art (SoTA) methods are on the verge of being
less robust.

To remedy the issue, we conduct an in-depth analysis of the
benchmark results and summarize two effective techniques
to enhance point cloud classifier robustness. Strictly follow-
ing the best design choice summarized from the benchmark
results, we present Robust Point cloud Classifier (RPC), a
robust network architecture for point cloud classification,
which achieves the least mCE on ModelNet-C benchmark,
and comparable overall accuracy on the clean ModelNet40
with the SoTAs. In particular, we present WOLFMix, a
strong augmentation baseline that exploits both deformation-
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Figure 2. Corruption taxonomy. We break down common corruptions into detailed corruption sources on object-, senor- and processing
levels, which are further simplified into a combination of seven atomic corruptions for a more controllable empirical analysis.

based augmentation and mix-based augmentation to provide
a stronger regularization. Empirically, WOLFMix achieves
the best robustness results compared to existing augmenta-
tion techniques. According to our experiments, the perfor-
mance gain by augmentations does not equally transfer to
all model architectures. We identify the best combination
from existing methods, and call for model design that fully
exploits the augmentation power.

Our contributions are summarized as: 1) We present the
first systematically-designed test-suite ModelNet-C for point
cloud classifier under corruptions. 2) We comprehensively
benchmark existing methods on their robustness to corrup-
tions. 3) We summarize several effective techniques, such as
RPC and WOLFMix, to enhance point cloud classifier’s ro-
bustness and identify that the synergy between architecture
and augmentation should be considered in future research.

2. Related Works
Point Cloud Classification. Point cloud classification
serves as an fundamental task for 3D understanding from
raw hardware inputs. Point cloud classifier has diverse
architectural designs. There are MLP-based models (Qi
et al., 2017b;a), convolution-based models (Liu et al., 2019;
Xu et al., 2021a), graph-based models (Simonovsky & Ko-
modakis, 2017; Wang et al., 2019) and recently proposed
transformer-based models (Guo et al., 2020; Zhao et al.,
2021; Mazur & Lempitsky, 2021). Besides, there is a
rising discussion on point cloud augmentation, including
mix-based augmentations (Chen et al., 2020; Lee et al.,
2021), deformation-based augmentations (Kim et al., 2021)
and auto-augmentations (Li et al., 2020). Moreover, self-
supervised pre-train has drawn much research attention re-
cently. Pre-trains obtained from pre-text tasks like occlusion
reconstruction (Wang et al., 2021) and mask inpainting (Yu
et al., 2021) provide better classification performance than
random initialization.

Robustness in Point Cloud. Several attempts are made
to improve point cloud classifier’s robustness. Triangle-
Net (Xiao & Wachs, 2021) designs feature extraction that is
invariant to positional, rotational, and scaling disturbances.
Although Triangle-Net achieves exceptional robustness un-

der extreme corruptions, its performance on clean data is not
on par with SoTA. PointASNL (Yan et al., 2020) introduces
adaptive sampling and local-nonlocal modules to improve
robustness. However, PointASNL takes a fixed number of
points in implementation. Other works improve a model’s
adversarial robustness by denoising and upsampling (Zhou
et al., 2019), voting on subsampled point clouds (Liu et al.,
2021), exploiting local feature’s relative position (Dong
et al., 2020) and self-supervision (Sun et al., 2021). Robust-
PointSet (Taghanaki et al., 2020) evaluates the robustness
of point cloud classifiers under different corruptions, and
shows that basic data augmentations poorly generalize to
“unseen” corruptions. However, our work shows that more
advanced augmentation techniques, e.g., mixing and local
deformation, can substantially improve the robustness.

Robustness Benchmarks in Image Classification. Com-
prehensive robustness benchmark has been built for 2D
image classification recently. ImageNet-C (Hendrycks & Di-
etterich, 2019) corrupts the ImageNet (Deng et al., 2009)’s
test set with simulated corruptions like compression loss and
motion blur. ObjectNet (Barbu et al., 2019) collects a test set
with rich variations in rotation, background and viewpoint.
ImageNetV2 (Recht et al., 2019) re-collects a test set follow-
ing ImageNet’s protocal and evaluates the performance gap
due to the natural distribution shift. Moreover, ImageNet-
A (Hendrycks et al., 2021b) and ImageNet-R (Hendrycks
et al., 2021a) benchmark classifier’s robustness to natural
adversarial examples and abstract visual renditions.

3. Corruptions Taxonomy and Test Suite
3.1. Corruptions Taxonomy

Real-world corruptions come from a wide range of sources,
based on which we provide a taxonomy of the corruptions
in Figure 2. Common corruptions are categorized into three
levels: object-level, sensor-level, and processing-level cor-
ruptions. Object-level corruptions come inherently in com-
plex 3D scenes, where an object can be occluded by other
objects or parts of itself. Different viewpoints also intro-
duce variations to the point cloud data in terms of rota-
tion. Note that viewpoint variation also leads to a change
in self-occlusion. Sensor-level corruptions happen when
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Figure 3. Examples of our proposed ModelNet-C. We corrupt the
clean test set of ModelNet-C using seven types of corruptions
with five levels of severity to provide a comprehensive robust-
ness evaluation. Listed examples are from severity level 2. More
visualizations on different severity levels can be found in the sup-
plementary material.

perceiving with 3D sensors like LiDAR. As discussed in
prior works (Wu et al., 2019; Berger et al., 2014), sensor-
level corruptions can be summarized as 1) dropout noise,
where points are missing due to sensor limitations; 2) spatial
inaccuracy, where point positions, object scale, and angle
can be wrongly measured; 3) outliers, which are caused
by the structural artifacts in the acquisition process. More
corruptions could be introduced during postprocessing. For
example, inaccurate point cloud registration leads to mis-
alignment. Background remain and imperfect bounding box
are two common corruptions during 3D object scanning.

However, it is challenging to directly simulate real-world
corruptions for the following reasons. 1) Real-world cor-
ruptions have a rich variation, e.g., different hardware may
have different sensor-level corruptions. 2) The combination
of inter-object occlusion or background remains can be in-
exhaustive. 3) Moreover, a few corruptions lead to the same
kind of operations to point clouds, e.g., self-occlusion, inter-
object occlusion, and cropping error all lead to the missing
of a local part of the object. To this end, we simplify the
corruption taxonomy into seven fundamental atomic corrup-
tions: “Add Global”, “Add Local”, “Drop Global”, “Drop
Local”, “Rotate”, “Scale” and “Jitter”. Consequently, each
real-world corruption is broken down into a combination
of the atomic corruptions, e.g., background remain can be
viewed as a combination of “Add Local” and “Add Global”.

Although the atomic corruptions cannot seamlessly simu-
late real-world corruptions, they provide a practical solution
to achieve controllable empirical study on fundamentally
analyzing point cloud classification robustness. Note that
noisy translation and random permutation are not consid-
ered in this work, because point cloud normalization and
permutation-invariance are two basic properties of recent
point cloud classification approaches.

3.2. ModelNet-C: A Robustness Test Suite

ModelNet40 is one of the most commonly used benchmarks
in point cloud classification, and it collects 12,311 CAD
models in 40 categories (9,843 for training and 2,468 for
testing). Most recent point cloud classification methods
follow the settings of PointNet (Qi et al., 2017b), which
samples 1024 points from each aligned CAD model and then
normalizes them into a unit sphere. Based on ModelNet40
and the settings by (Qi et al., 2017b), we further corrupt
the ModelNet40 test set with the aforementioned seven
atomic corruptions to establish a comprehensive test-suite
ModelNet-C. To achieve fair comparisons and meanwhile
following the OOD evaluation principle, we use the same
training set with ModelNet40. Similar corruption operations
are strictly not allowed during training.

The seven atomic corruptions are implemented as follows:
“Scale” applies a random anisotropic scaling to the point
cloud; “Rotate” rotates the point cloud by a small angle;
“Jitter” adds a Gaussian noise to point coordinates; “Drop
Global” randomly drops points from the point cloud; “Drop
Local” randomly drops several k-NN clusters from the point
cloud; “Add Global” adds random points sampled inside
a unit sphere; “Add Local” expand random points on the
point cloud into normally distributed clusters. The exam-
ple corrupted point clouds from ModelNet-C are shown in
Figure 3. In addition, we set different five severity levels
for each corruption, based on which we randomly sample
from the atomic operations to form a composite corruption
test set. The detailed description and implementation can
be found in the appendix. Note that we restrict the rotation
to small angle variations, as in real-world applications we
mostly observe objects from common viewpoints with small
variations. Robustness to arbitrary SO(3) rotations is a spe-
cific challenging research topic (Zhang et al., 2019; Chen
et al., 2019), which is out of the scope of this work.

3.3. Evaluation Metrics

To normalize the severity of different corruptions, we choose
DGCNN, a classic point cloud classification method, as the
baseline. Inspired by the 2D robustness evaluation met-
rics (Hendrycks & Dietterich, 2019), we use mean CE
(mCE), as the primary metric. To compute mCE, we first
compute CE:

CEi =

∑5
l=1(1− OAi,l)∑5

l=1(1− OADGCNN
i,l )

, (1)

where OAi,l is the overall accuracy on a corrupted test set i
at corruption level l, OADGCNN

i,l is baseline’s overall accuracy
mCE is the average of CE over all seven corruptions:

mCE =
1

N

N∑
i=1

CEi, (2)
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Figure 4. Robust point cloud classification paradigm. Point cloud
classification robustness to various corruptions largely depends
on three main components, including architecture design, self-
supervised pretraining and augmentation methods.

where N = 7 is the number of corruptions. We also com-
pute Relative mCE (RmCE), which measures performance
drop compared to a clean test set as:

RCEi =

∑5
l=1(OAClean − OAi,l)∑5

l=1(OADGCNN
Clean − OADGCNN

i,l )
, (3)

RmCE =
1

N

N∑
i=1

RCEi, (4)

where OAClean is the overall accuracy on the clean test set.

3.4. Evaluation Protocol

Because most SoTA methods adopt the DGCNN proto-
col (Goyal et al., 2021), we also use it as the consistent
protocol for the benchmark. Two conventional augmenta-
tions are used during training: 1) random anisotropic scaling
in the range [2/3, 3/2]; 2) random translation in the range
[-0.2, +0.2]. Note that the random scaling ranges for train-
ing and testing are not overlapped. Point cloud sampling is
fixed during training, and no voting is used in the inference
stage. For each method, we select the model that performs
the best on the clean ModelNet40 test set during evalua-
tion. We highlight that the same corruptions are not allowed
during training to reflect model OOD generalizability. Fol-
lowing works are recommended to specify augmentations
in training when reporting results on ModelNet-C.

4. Systematic Benchmarking
Implementation Details. We benchmark 14 methods in
total, covering three key components for robust point cloud
classification as shown in Figure 4. Architectures: Point-
Net, PointNet++, DGCNN, RSCNN, SimpleView, GDANet,
CurveNet, PAConv, PCT. Pretrains: OcCo, Point-BERT.
Augmentation: PointMixup, RSMix, PointWOLF. For
PointNet, PointNet++, DGCNN, RSCNN, and SimpleView,
we use the pretrained models provided by Goyal et al.
(2021). For CurveNet, GDANet, and PAConv, we use their
official pretrained models. The rest of the models are trained
using their official codes.

Table 2. Systematic study for architecture design.

Representation Local
Operations

Advanced
Grouping Featurizer mCE(↓)

PointNet 3D No No Conventional 1.422
PointNet++ 3D Ball-query No Conventional 1.072
DGCNN 3D k-NN No Conventional 1.000
RSCNN 3D Ball-query No Adaptive 1.130
PAConv 3D k-NN No Adaptive 1.104
CurveNet 3D k-NN Curve Conventional 0.927
GDANet 3D k-NN Frequency Conventional 0.892
PCT 3D k-NN No Self-attention 0.925
SimpleView 2D - - - 1.047

RPC (Ours) 3D k-NN Frequency Self-attention 0.863

PCD Featurizer PredictionLocal Ops

Advanced 
Grouping

2D
Projection CNN

Repeat

Figure 5. Key components in the architecture design. Point cloud
data (PCD) repeatedly goes through local operations, advanced
grouping, and featurization before being classified. Alternatively,
PCD may be projected into multi-view images and processed by
traditional CNN-based backbones. This figure means to show how
the key components are usually connected, but not to faithfully
show every detailed architecture design.

Main Results. Benchmark results (mCE) are reported in
Table 3, Table 4 and Table 5 for architechtures, pretrains
and augmentations, respectively. RmCE and Overall Ac-
curacy are reported in the appendix. In Figure 1, we sort
benchmarked architectures in chronological order and vi-
sualize a second-order polynomial fitting results with 50%
confidence interval. We observe that although new architec-
ture’s performance are constantly progressing and saturates
around 0.94, their mCE performance shows a large variance.
We also observe that self-supervised pretraining is able to
transfer the pretrain signal to the downstream model, but has
a mixed effect on the overall performance. Moreover, recent
point cloud augmentations can substantially improvement
robustness.

5. Comprehensive Analysis
5.1. Architecture Design

We analyze four key components of point cloud classifier
architectures: local operations, advanced grouping, featur-
izer, and representation dimension, as illustrated in Figure 5.
The design choices of recent classifier architectures are sum-
marized in Table 2. When analyzing a specific component,
we group all methods that utilize the component. Since
design choices are not rigorously controlled variables in
the analysis, we visualize the 95% confidence interval to-
gether with the mean value in the bar charts, and only low
variance results are considered in our conclusion. Further-
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Table 3. Architectures. Bold: best in column. Underline: second best in column. Blue: best in row. Red: worst in row.
OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN (Wang et al., 2019) 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PointNet (Qi et al., 2017b) 0.907 1.422 1.266 0.642 0.500 1.072 2.980 1.593 1.902
PointNet++ (Qi et al., 2017a) 0.930 1.072 0.872 1.177 0.641 1.802 0.614 0.993 1.405
RSCNN (Liu et al., 2019) 0.923 1.130 1.074 1.171 0.806 1.517 0.712 1.153 1.479
SimpleView (Goyal et al., 2021) 0.939 1.047 0.872 0.715 1.242 1.357 0.983 0.844 1.316
GDANet (Xu et al., 2021b) 0.934 0.892 0.830 0.839 0.794 0.894 0.871 1.036 0.981
CurveNet (Xiang et al., 2021) 0.938 0.927 0.872 0.725 0.710 1.024 1.346 1.000 0.809
PAConv (Xu et al., 2021a) 0.936 1.104 0.904 1.465 1.000 1.005 1.085 1.298 0.967
PCT (Guo et al., 2020) 0.930 0.925 0.872 0.870 0.528 1.000 0.780 1.385 1.042

RPC (Ours) 0.930 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079

Table 4. Pretrain. †: randomly initialized. Bold: best in column. Underline: second best in column. Blue: best in row. Red: worst in row.
OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN (Wang et al., 2019) 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+OcCo (Wang et al., 2021) 0.922 1.047 1.606 0.652 0.903 1.039 1.444 0.847 0.837

Point-BERT† 0.919 1.317 0.936 0.987 0.899 1.295 2.336 1.360 1.409
+Point-BERT (Yu et al., 2021) 0.922 1.248 0.936 1.259 0.690 1.150 1.932 1.440 1.326

more, to empirically verify our conclusion, we build a new
architecture, RPC, strictly following the conclusions.

Local Operations. We compare the robustness of different
local aggregations, including no local operations, k-NN,
and ball-query. As shown in Figure 6a, the exploitation of
the point cloud locality is a key component to robustness.
Without local aggregations, PointNet (shown as “No Local
Ops.”) has the highest mCE. Considering each corruption
individually, PointNet is on the two extremes: it shows the
best robustness to “Jitter” and “Drop-G”, meanwhile being
one of the worst methods for the rest corruptions. Local
operations target to encode informative representations by
exploiting local geometric features. Ball-query randomly
samples neighboring points in a predefined radius, while k-
NN focuses on nearest neighboring points. Generally, k-NN
performs better than ball-query in the benchmark, especially
for “Drop-L”. The reason is that points surrounding the
dropped local part will lose its neighbors in ball-query due
to its fixed searching radius, but k-NN will choose neighbors
from the remaining points. However, ball-query shows the
advantage over k-NN in “Add-G”, since, for a point on the
object, outliers are less likely to fall in the query ball than
to be its nearest neighbors.

Advanced Grouping. Recent methods design advanced
grouping techniques, such as Frequency Grouping (Xu
et al., 2021b) and Curve Grouping (Xiang et al., 2021),
to introduce structural prior into architecture design. Fre-
quency grouping uses a graph high-pass filter (Sandryhaila
& Moura, 2014; Ortega et al., 2018) to group point features
in the frequency domain. Curve grouping forms a curve-
like point set {P1, P2, ...PN} by walking from Pi to Pi+1

following a learnable policy π. As shown in Figure 6b,
we observe that both grouping techniques improve model
robustness by a clear margin. The idea of frequency group-

ing aligns with the observations in (Yin et al., 2019): there
is a trade-off between model robustness to low-frequency
corruptions and high-frequency corruptions. By viewing
local-grouped features as low-frequency features and curve-
grouped feature as high-frequency features, the robustness
gain can be again interpreted from a frequency perspective.
Nonetheless, it is noteworthy that advanced grouping is
more time-consuming during both training and testing.

Featurizer. We refer conventional operators to shared
MLPs and convolutional layers, which are common building
blocks for point cloud models. Recent works explore vari-
ous advanced feature processing methods, such as adaptive
kernels and self-attention operations. RSCNN (Liu et al.,
2019) and PAConv (Xu et al., 2021a) design adaptive kernels
whose weights change with low-level features like spatial
coordinates and surface normals. Based on self-attention,
PCT (Guo et al., 2020) proposes the offset-attention op-
eration, which achieves impressive performance for point
cloud analysis. Despite the success of RSCNN and PAConv
on clean point cloud classifications, they tend to be more
sensitive to corruptions than conventional operators in our
experiments shown in Figure 6c. Data corruption exacer-
bates through data-dependent kernels. Compared to conven-
tional operators, self-attention operations improve classifier
robustness in several aspects, particularly in “Drop-G”. We
speculate that its robustness gains to “Drop-G” come from
its ability to understand non-local relations from the global
perspective. Note that Point-BERT (Yu et al., 2021) also
introduces an self-attention-based architecture. However,
it includes a fixed tokenizer that is trained on pretext tasks,
which could be the bottleneck for its robustness performance.
Therefore, we do not include the randomly initialized Point-
BERT result in the architecture analysis.

2D vs. 3D Representation. A few methods (Qi et al., 2016;
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Figure 6. Analysis on different architecture designs, pretrain strategies and augmentation strategies’ effect to classifier’s performance
under different corruptions. ”-G”: Global. ”-L”: Local.

Goyal et al., 2021) first project 3D shapes to 2D frames from
different viewpoints, and then use 2D classifiers for recog-
nizing 3D points. The recently proposed projection-based
method, SimpleView (Goyal et al., 2021) performs surpris-
ingly well on clean 3D point clouds. In our experiments
shown in Figure 6d, projecting 3D points to 2D images
brought mixed effects to classification. The projection sig-
nificantly reduces the effect of “Jitter” and “Add-L”, but
suffers a lot from point scarcity, particularly “Drop-G”. This
is consistent with human visual perception, as it is chal-
lenging for human vision to recognize the shape from point
projections, especially for sparse and noisy points without
texture information. Adding more observations from dif-
ferent perspectives might improve 2D perception accuracy,
while extra efforts are required. In a nutshell, we think 3D
cues are more straight-forward and preferable for building a
robust point cloud classifier.

5.2. Self-supervised Pretraining

Recently, various self-supervised pretrain methods have
been proposed for point cloud classification models, such
as Point-BERT (Yu et al., 2021) and OcCo (Wang et al.,
2021). We study their robustness against corruptions in Fig-
ure 6e, which reveals that pretrain signals can be trans-
ferred, and hence benefiting classification under specific
corruptions. During self-supervised pretrain, Point-BERT
first drops points using the block-wise masking strategy
and then reconstructs the missing points based on the rest
points. Interestingly, models finetuned on Point-BERT pre-

train show better classification robustness when local part
is missing. OcCo employs a similar reconstruction pretrain
task, but with a different masking strategy. By observing
from different camera viewpoints, OcCo masks the points
that are self-occluded. Meanwhile, point clouds are also
rotated with different camera angles. Consequently, the
OcCo pretrained models are significantly more robust to
rotation perturbations. Moreover, OcCo also improves the
robustness to “Jitter” and “Add-L”.

5.3. Augmentation Method

Following the principle of OOD evaluation, the corruptions
should not be used as augmentations during training, and
therefore we choose mixing and deformation augmentations.
As shown in Figure 6f, mixing and deformation augmenta-
tions can bring significant improvements to model robust-
ness. PointMixUp (Chen et al., 2020) and RSMix (Lee et al.,
2021) are two mix strategies. Similar to MixUp (Zhang
et al., 2018) in 2D augmentation, PointMixup mixes two
point clouds using shortest-path interpolation. Similar to
CutMix (Yun et al., 2019) in 2D augmentation, RSMix
mixes two point clouds using rigid transformation. Both
mix strategies substantially reduce CE on corruptions includ-
ing “Add-G”, “Add-L”, “Rotate” and “Jitter”. However, an
unexpected side effect of the mix strategies is that classifiers
become more vulnerable to scaling effects. By non-rigidly
deforming local parts of an object, PointWOLF (Kim et al.,
2021) enrich the data variation, which constantly improves
classifier robustness on all evaluated corruptions.
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Table 5. Augmentation. Bold: best in column. Underline: second best in column. Blue: best in row. Red: worst in row.
OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN (Wang et al., 2019) 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+PointWOLF (Kim et al., 2021) 0.926 0.814 0.926 0.864 0.988 0.874 0.807 0.764 0.479
+RSMix (Lee et al., 2021) 0.930 0.745 1.319 0.873 0.653 0.589 0.281 0.629 0.870
+WOLFMix (Ours) 0.932 0.590 0.989 0.715 0.698 0.575 0.285 0.415 0.451

PointNet++ (Qi et al., 2017a) 0.930 1.072 0.872 1.177 0.641 1.802 0.614 0.993 1.405
+PointMixUp (Chen et al., 2020) 0.915 1.028 1.670 0.712 0.802 1.812 0.458 0.615 1.130

Table 6. Results of combining WOLFMix with different architectures. Bold: best in column. Underline: second best in column. Blue:
best in row. Red: worst in row.

OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN (Wang et al., 2019) 0.926 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
+WOLFMix 0.932 0.590 0.989 0.715 0.698 0.575 0.285 0.415 0.451

PointNet (Qi et al., 2017b) 0.907 1.422 1.266 0.642 0.500 1.072 2.980 1.593 1.902
+WOLFMix 0.884 1.180 2.117 0.475 0.577 1.082 2.227 0.702 1.079

PCT (Guo et al., 2020) 0.930 0.925 0.872 0.870 0.528 1.000 0.780 1.385 1.042
+WOLFMix 0.934 0.574 1.000 0.854 0.379 0.493 0.298 0.505 0.488

GDANet (Xu et al., 2021b) 0.934 0.892 0.830 0.839 0.794 0.894 0.871 1.036 0.981
+WOLFMix 0.934 0.571 0.904 0.883 0.532 0.551 0.305 0.415 0.409

RPC 0.930 0.863 0.840 0.892 0.492 0.797 0.929 1.011 1.079
+WOLFMix 0.933 0.601 1.011 0.968 0.423 0.512 0.332 0.480 0.479

6. Boosting Corruption Robustness
Based on the above observations, we propose to improve
point cloud classifier robustness in the following ways.

RPC: A Robust Point Cloud Classifier. Following the
conclusions in the architecture analysis, we construct RPC
using 3D representation, k-NN, frequency grouping and self-
attention. The detailed architecture is shown in the appendix.
As reported in Table 3, RPC achieves the best mCE com-
pared to all SoTA methods. The success of RPC empirically
verifies our conclusions on the architecture design choices,
and it could serve as a strong baseline for future robustness
research. The implementation details are provided in the
appendix.

WOLFMix: A Strong Augmentation Strategy. We de-
sign WOLFMix upon two powerful augmentation strategies,
PointWOLF and RSMix. During training, WOLFMix first
deforms the object, and then rigidly mixes the two deformed
objects together. Ground-truth labels are mixed accordingly.
We show an illustration of WOLFMix in Figure 7. By
taking advantage of both rigid and non-rigid transforma-
tions, WOLFMix brings substantial robustness gain over
standalone PointWOLF and RSMix in Table 5. Implemen-
tation details can be found in the appendix.

Synergy between Architecture and Augmentation. We
observe that augmentation techniques do not equally transfer
to different architectures. Table 6 shows that the improve-
ment by WOLFMix on corruption robustness varies with
different models. Although RPC achieves the lowest stan-
dalone mCE, its improvements by WOLFMix are less than

desk chair RSMix

desk+PointWOLF chair+PointWOLF WOLFMix

Figure 7. Illustration of the proposed WOLFMix augmentation.
Point clouds are first locally deformed and then rigidly mixed.
Ground truth labels are mixed accordingly.

WOLFMix for DGCNN, PCT and GDANet. PointNet en-
joys limited robustness gain as well. Hence, we speculate
that there is a capacity upper bound to corruptions for each
architecture. Future classification robustness research is sug-
gested to study: 1) standalone robustness for architecture
and augmentations independently; and 2) their synergy in
between. Furthermore, we identify that training GDANet
with WOLFMix achieves the best robustness in all existing
methods, with an impressive 0.571 mCE.



Benchmarking and Analyzing Point Cloud Classification under Corruptions

7. Conclusion
In this work, we establish a comprehensive test suite
ModelNet-C for robust point cloud classification under cor-
ruptions. We systematically benchmarked and analyzed
representative point cloud classification methods. By ana-
lyzing benchmark results, we propose two effective strate-
gies, RPC and WOLFMix, for improving robustness. As
the SoTA methods for point cloud classification on clean
data are becoming less robust to random real-world cor-
ruptions, we highly encourage future research to focus on
classification robustness so as to benefit real applications.
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A. Corruptions and Severity Level Settings
We elaborate on the implementation of corruptions and severity level settings in this section. A visualization is shown in
Figure 8.

A.1. Jitter

We add a Gaussian noise ϵ ∈ N (0, σ2) to each of a point’s X, Y, and Z coordinates, where σ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}
for the five levels.

A.2. Scale

We apply random scaling to the X, Y, and Z axis respectively. The scaling coefficient for each axis are independently
sampled as s ∼ U(1/S, S), where S ∈ {1.6, 1.7, 1.8, 1.9, 2.0} for the five levels. Point clouds are re-normalized to a unit
sphere after scaling.

A.3. Rotate

We randomly apply a rotation described by an X-Y-Z Euler angle (α, β, γ), where α, β, γ ∼ U(−θ, θ) and θ ∈
{π/30, π/15, π/10, π/7.5, π/6} for the five levels. Note that the sampling method does not guarantee a uniform SO(3)
rotation sampling, but sufficient to cover a range of rotation variations.

A.4. Drop Global

We randomly shuffle all points and drop the last N ∗ ρ points, where N = 1024 is the number of points in the point cloud
and ρ ∈ {0.25, 0.375, 0.5, 0.675, 0.75} for all five levels.

A.5. Drop Local

We drop K points in total, where K ∈ {100, 200, 300, 400, 500} for the five levels. We randomly choose C, the number of
local parts to drop, by C ∈ U{1, 8}. We further randomly assign i-th local part a cluster size Ni so that K =

∑C
i=1 Ni.

Then we repeat the following steps for C times: we randomly select a point as the i-th local center, and drop its Ni-nearest
neighbour points (including itself) from the point cloud.

A.6. Add Global

We uniformly sample K points inside a unit sphere and add them to the point cloud, where K ∈ {10, 20, 30, 40, 50} for the
five levels.

A.7. Add Local

We add K points in total, where K ∈ {100, 200, 300, 400, 500} for the five levels. We randomly shuffle the points, and
select the first C ∈ U{1, 8} points as the local centers. We further randomly assign i-th local part a cluster size Ni so that
K =

∑C
i=1 Ni. Neighbouring point’s X-Y-Z coordinates are generated from a Normal distribution N (µi, σ

2
i I), where µi is

the i-th local center’s X-Y-Z coordinate and σi ∈ U(0.075, 0.125). We then add each local part to the point cloud one by
one.

B. Implementation Details
We elaborate on implementation details for RPC and WOLFMix in this section.

B.1. RPC

B.1.1. DETAILED ARCHITECTURE

We show a detailed architecture of RPC in Figure 9.
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Figure 8. Corruptions on all levels. The severity of corruptions increases with the level. We average model’s error on all levels for a
comprehensive evaluation.
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Figure 9. Detailed architecture of RPC. We design RPC following the conclusions we draw from the benchmark. It optimizes the use of
existing building blocks in point cloud classifiers and serves as a strong baseline for corruption robustness.

B.1.2. HYPER-PARAMETERS

For local operation, we use k=30 for the number of neighbors in k-NN. For, frequency grouping, we follow the default
hyper-parameters in GDANet (Xu et al., 2021b). The number of points in each frequency component is set to 256.

B.1.3. TRAINING

We train the model for 250 epochs with a batch size of 32. We use SGD with momentum 0.9 for optimization. We use a
cosine annealing scheduler to gradually decay the learning rate from 1e-2 to 1e-4.

B.2. WOLFMix

For the deformation step, we use the default hyper-parameters in PointWOLF (Kim et al., 2021). We set the number of
anchors to 4, sampling method to farthest point sampling, kernel bandwidth to 0.5, maximum local rotation range to 10
degrees, maximum local scaling to 3, and maximum local translation to 0.25. AugTune proposed along with PointWOLF is
not used in training. For the mixing step, we use the default hyper-parameters in RSMix (Lee et al., 2021). We set RSMix
probability to 0.5, β to 1.0, and the maximum number of point modifications to 512. For training, the number of neighbors
in k-NN is reduced to 20 and the number of epochs is increased to 500 for all methods.

C. Additional Discussions
C.1. Correlation between ModelNet-C mCE and ScanObjectNN OA

We additionally evaluate all models on ScanObjectNN (Uy et al., 2019), and we use the OBJ BG PB T25 variant to include
both background remains and bounding box inaccuracy. The results are shown in Figure 10, and ModelNet-C mCE strongly
correlates to ScanObjectNN OA, while ModelNet40 OA has nearly no correlations. Note that the results we report are lower
than the results originally reported in Uy et al. (2019) due to different training protocols. Uy et al. (2019) uses random
rotation and per-point jitter in training while we follow the DGCNN protocol (Goyal et al., 2021).

Table 7. Additional results of WolfMix.
OA mCE

PointNet++ (Qi et al., 2017a) 0.931 0.641
RSCNN (Liu et al., 2019) 0.918 0.601
SimpleView (Goyal et al., 2021) 0.922 0.676

C.2. More results of Wolfmix

We report additional results on RSCNN, SimpleView and PointNet++ with WolfMix in Table 7. The unequal benefits from
augmentations motivate future research to explore the synergy between architecture and augmentation.
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Figure 10. Correlation between ModelNet-C mCE and ScanObjectNN OA.

Table 8. More techniques.
OA mCE Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

PointASNL (Yan et al., 2020) 0.918 0.959 1.191 0.687 0.944 0.826 0.959 0.953 1.153
Vector Neuron (Deng et al., 2021) 0.908 1.345 1.287 1.601 1.875 1.754 0.902 1.567 0.428

C.3. Evaluation on specific techniques proposed for enhancing robustness

There are a few methods for robustness enhancement. TriangleNet (Xiao & Wachs, 2021)’s clean performance is not
comparable to SoTA and PointASNL (Yan et al., 2020) requires a fixed number of points. Nonetheless, we manage
to evaluate PointASNL with additional manual efforts and show the results in Table 8. PoinASNL shows outstanding
performance to noisy jittering and achieves a competitive overall mCE result.

C.4. Evaluation on works designed for rotation robustness

Robustness to arbitrary SO(3) rotations is out of the scope of our benchmark where we examine common corruptions like
small view angle variation. Nevertheless, we evaluate Vector Neurons (Deng et al., 2021), a rotation-invariant model, and
show the results in Table 8. Vector Neuron achieves impressive robustness to rotational corruption, but under-performs to
other types of corruption.

D. Full Results
We show full results for the OA metric and the RmCE metric in Table 9 and Table 10.
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Table 9. Full results for Overall Accuracy (OA). †: randomly initialized. Bold: best in column. Underline: second best in column. Blue:
best in row. Red: worst in row. mOA: average OA over all corruptions.

Clean ↑ mOA↑ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN (Wang et al., 2019) 0.926 0.764 0.906 0.684 0.752 0.793 0.705 0.725 0.785
PointNet (Qi et al., 2017b) 0.907 0.658 0.881 0.797 0.876 0.778 0.121 0.562 0.591
PointNet++ (Qi et al., 2017a) 0.930 0.751 0.918 0.628 0.841 0.627 0.819 0.727 0.698
RSCNN (Liu et al., 2019) 0.923 0.739 0.899 0.630 0.800 0.686 0.790 0.683 0.682
SimpleView (Goyal et al., 2021) 0.939 0.757 0.918 0.774 0.692 0.719 0.710 0.768 0.717
GDANet (Xu et al., 2021b) 0.934 0.789 0.922 0.735 0.803 0.815 0.743 0.715 0.789
CurveNet (Xiang et al., 2021) 0.938 0.779 0.918 0.771 0.824 0.788 0.603 0.725 0.826
PAConv (Xu et al., 2021a) 0.936 0.730 0.915 0.537 0.752 0.792 0.680 0.643 0.792
PCT (Guo et al., 2020) 0.930 0.781 0.918 0.725 0.869 0.793 0.770 0.619 0.776
RPC (Ours) 0.930 0.795 0.921 0.718 0.878 0.835 0.726 0.722 0.768

DGCNN+OcCo (Wang et al., 2021) 0.922 0.766 0.849 0.794 0.776 0.785 0.574 0.767 0.820
Point-BERT† 0.919 0.678 0.912 0.688 0.777 0.732 0.311 0.626 0.697
Point-BERT (Yu et al., 2021) 0.922 0.693 0.912 0.602 0.829 0.762 0.430 0.604 0.715

PN2+PointMixUp (Chen et al., 2020) 0.915 0.785 0.843 0.775 0.801 0.625 0.865 0.831 0.757
DGCNN+PW (Kim et al., 2021) 0.926 0.809 0.913 0.727 0.755 0.819 0.762 0.790 0.897
DGCNN+RSMix (Lee et al., 2021) 0.930 0.839 0.876 0.724 0.838 0.878 0.917 0.827 0.813
DGCNN+WOLFMix (Ours) 0.932 0.871 0.907 0.774 0.827 0.881 0.916 0.886 0.903

PointNet+WOLFMix 0.884 0.743 0.801 0.850 0.857 0.776 0.343 0.807 0.768
PCT+WOLFMix 0.934 0.873 0.906 0.730 0.906 0.898 0.912 0.861 0.895
GDANet+WOLFMix 0.934 0.871 0.915 0.721 0.868 0.886 0.910 0.886 0.912
RPC+WOLFMix 0.933 0.865 0.905 0.694 0.895 0.894 0.902 0.868 0.897

Table 10. Full results for Relative mCE. †: random initialized. Bold: best in column. Underline: second best in column. Blue: best in row.
Red: worst in row.

RmCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN (Wang et al., 2019) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PointNet (Qi et al., 2017b) 1.488 1.300 0.455 0.178 0.970 3.557 1.716 2.241
PointNet++ (Qi et al., 2017a) 1.114 0.600 1.248 0.511 2.278 0.502 1.010 1.645
RSCNN (Liu et al., 2019) 1.201 1.200 1.211 0.707 1.782 0.602 1.194 1.709
SimpleView (Goyal et al., 2021) 1.181 1.050 0.682 1.420 1.654 1.036 0.851 1.574
GDANet (Xu et al., 2021b) 0.865 0.600 0.822 0.753 0.895 0.864 1.090 1.028
CurveNet (Xiang et al., 2021) 0.978 1.000 0.690 0.655 1.128 1.516 1.060 0.794
PAConv (Xu et al., 2021a) 1.211 1.050 1.649 1.057 1.083 1.158 1.458 1.021
PCT (Guo et al., 2020) 0.884 0.600 0.847 0.351 1.030 0.724 1.547 1.092
RPC (Ours) 0.778 0.450 0.876 0.299 0.714 0.923 1.035 1.149

DGCNN+OcCo (Wang et al., 2021) 1.302 3.650 0.529 0.839 1.030 1.575 0.771 0.723
Point-BERT† 1.330 0.350 0.955 0.816 1.406 2.751 1.458 1.574
Point-BERT (Yu et al., 2021) 1.262 0.500 1.322 0.534 1.203 2.226 1.582 1.468

PN2+PointMixUp (Chen et al., 2020) 1.254 3.600 0.579 0.655 2.180 0.226 0.418 1.121
DGCNN+PointWOLF (Kim et al., 2021) 0.698 0.650 0.822 0.983 0.805 0.742 0.677 0.206
DGCNN+RSMix (Lee et al., 2021) 0.839 2.700 0.851 0.529 0.391 0.059 0.512 0.830
DGCNN+WOLFMix (Ours) 0.485 1.250 0.653 0.603 0.383 0.072 0.229 0.206

PCT+WOLFMix 0.488 1.400 0.843 0.161 0.271 0.100 0.363 0.277
GDANet+WOLFMix 0.439 0.950 0.880 0.379 0.361 0.109 0.239 0.156
RPC+WOLFMix 0.517 1.400 0.988 0.218 0.293 0.140 0.323 0.255


