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Abstract
Many papers have addressed the problem of learn-
ing the behavior (i.e., the local interaction func-
tion at each node) of a networked system through
active queries, assuming that the network topol-
ogy is known. We address the problem of infer-
ring both the network topology and the behavior
of such a system through active queries. Our re-
sults are for systems where the state of each node
is from {0, 1} and the local functions are Boolean.
We present inference algorithms under both batch
and adaptive query models for dynamical systems
with symmetric local functions. These algorithms
show that the structure and behavior of such dy-
namical systems can be learnt using only a poly-
nomial number of queries. Further, we establish
a lower bound on the number of queries needed
to learn such dynamical systems. We also present
experimental results obtained by running our al-
gorithms on synthetic and real-world networks.

1. Introduction
Many practical problems in social, behavioral and bi-
ological sciences can be modeled using networked dy-
namical systems (also known as graphical dynamical sys-
tems) (Laubenbacher & Stigler, 2009; Eubank et al., 2004;
Lum et al., 2014; Kauffman et al., 2003; Macy & Willer,
2002; Granovetter, 1978). Such systems also occur nat-
urally in the study of agent-based modeling and analysis
(Bonabeau, 2002; Namatame & Chen, 2016), and graphical
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games (Kearns & Vazirani, 1994; Abouheaf et al., 2014). A
networked dynamical system has three components: (i) a
set of agents, (ii) a network that specifies how the agents
interact and (iii) a local interaction function (behavior) asso-
ciated with each node. Starting from an initial value (state)
for each node, the system evolves in time as each node up-
dates its state based on its own state and the states of its
neighbors. The vector consisting of the states of all the
nodes at a time t is called the system’s configuration at
time t. The temporal evolution can occur synchronously or
asynchronously. For a configuration C at time t, the configu-
ration C′ at time t+1 is the successor of C. Our focus is on
networked systems where the system evolves synchronously
and each local function is Boolean. We refer to these as
synchronous dynamical systems (SyDSs).

The problem of learning one or more components of a SyDS
has been recently studied under various query and obser-
vation models. Here, we consider the active query model,
where the user queries the unknown system, and based on
the responses from the system, attempts to infer its proper-
ties. This is similar in form to the teacher model (Goldman
& Kearns, 1995; Dasgupta et al., 2019) in the context of
concept learning, where a teacher selects instances so that
a student can learn the target concept from a concept class.
Also, this query model is a more general version of the
model used in the literature for learning a Boolean func-
tion f (Abasi et al., 2014; Angluin & Slonim, 1994), where
each query specifies an input α to f and an oracle returns
the value f(α). In all these cases (including ours), the ob-
jective is to find a minimum set of queries that is sufficient
to learn the object. Several papers have used active querying
of networked dynamical systems to learn classes of local
functions (e.g., (Adiga et al., 2018; 2020)). In these works, a
user provides as input a set Q of configurations. The system
(or an oracle which has a complete description of the system
to be inferred) returns the successor of each configuration
in Q. The user tries to infer the SyDS from the responses
to the queries. Similar work has also been conducted under
other query models such as passive observation and proba-
bly approximately correct (PAC) model (Adiga et al., 2017;
2019; Narasimhan et al., 2015; Kempe et al., 2003).
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The learning frameworks used in the above references as-
sume full knowledge of the network topology. The bounds
and algorithms developed in these works rely heavily on the
network structure. The focus of our work is on simultane-
ously learning the network topology and the individual local
functions using active queries. This is particularly chal-
lenging considering that the only available information to a
user is the number of nodes in the network and the model
class for the local functions. In this work, our focus is on
SyDSs where the local functions are (Boolean) threshold
and symmetric functions. These function classes are defined
in Section 2.

1.1. Contributions

(1) Learning Threshold- and Symmetric-SyDSs with Ar-
bitrary Topologies: For symmetric-SyDSs (i.e., SyDSs
where each local function is symmetric), we present an
inference method with no restrictions on the network topol-
ogy. For any symmetric-SyDS with n nodes, our method
uses O(n2) queries under the batch mode. Under the adap-
tive mode, we present inference methods for threshold- and
symmetric-SyDSs using O(n+m log n) queries, where m
is the number of edges. Thus, if the network is known to
be sparse (e.g., m = O(n)), the inference algorithm under
the adaptive model uses asymptotically fewer queries. The
adaptive inference algorithm does not assume that the value
of m is known; the parameter m in the upper bound results
from the analysis.

(2) A randomized algorithm: For a threshold-SyDS with
maximum node degree ∆, we present a randomized algo-
rithm1 that infers the topology and local functions with
high probability using O(n∆ log n) queries. This algo-
rithm works in the batch mode. When ∆ is a constant
(i.e., m = O(n)), the number of queries (O(n log n)) used
by this algorithm is asymptotically the same as our algo-
rithm for threshold-SyDSs under the adaptive mode. Thus,
this algorithm points out that randomization can provide the
same benefit as an adaptive algorithm.

(3) A lower bound on the query size under the batch
mode: We show that any query set under the batch mode
which can correctly infer the topology of any threshold-
SyDS with n nodes must be of size Ω(n log n). This is
done by showing that for any smaller query set Q, one
can create two SyDSs S and S ′ with different topologies
such that the responses to each query in Q from the two
SyDSs are identical. In other words, such a query set cannot
distinguish between the two SyDSs. Since threshold-SyDSs
are a subclass of symmetric-SyDSs, this lower bound also
applies to Symmetric-SyDSs.

1This algorithm needs an estimate of ∆ as one of the inputs.
The closer the estimate is to the actual value of ∆, the smaller is
the number of queries used by the algorithm.

(4) Experimental results: We evaluate the performance of
our inference algorithms on threshold-SyDSs using several
synthetic as well as real-world networks. In these experi-
ments, we measure the performance of algorithms under the
adaptive mode with respect to the number of queries used by
the batch query algorithm. We also study how the network
density, structure, and threshold assignments influence the
number of queries generated by our algorithms.

1.2. Related Work

Learning the components of unknown objects or systems
has been an active area of research. For example, many
researchers have considered problems related to learning ob-
jects such as finite automata (e.g., (Murphy, 1996)), Boolean
functions (e.g., (Kearns & Vazirani, 1994; Abasi et al., 2014;
Hellerstein & Servedio, 2007; Angluin & Slonim, 1994;
Berestovsky & Nakhleh, 2013; Liśkiewicz et al., 2017)) and
distributions (e.g., (Kearns et al., 1994)). Active querying to
predict users’ choices from a known set of options is studied
in (Kleinberg et al., 2017). In the context of networked
interaction systems, work on inferring behaviors (such as
thresholds, polynomial or other influence functions used by
nodes) has also been reported (e.g., (González-Bailón et al.,
2011; Romero et al., 2011; Laubenbacher & Stigler, 2009;
He et al., 2016; Narasimhan et al., 2015)). Abrahao et al.
(2013), Gomez-Rodriguez et al. (2010) and Soundarajan
& Hopcroft (2010) consider the problem of inferring the
network structure given the contagion propagation model.

Algorithms for learning the local functions of discrete dy-
namical systems from observed data were presented in
(Adiga et al., 2017). The (passive) observation model used
in that paper does not permit users to actively interact with
the system. The active query model for discrete dynami-
cal systems used in our paper has also been used in other
papers (e.g., (Adiga et al., 2018; 2019; 2020)). The focus
of these papers is on inferring the local functions assuming
that the network topology is known. In contrast, our work
shows how the queries can be used to learn both the network
topology and the local functions. Moreover, the number of
queries used by our algorithms is polynomial in the size of
the dynamical system.

2. Preliminaries
2.1. Synchronous Dynamical Systems

In presenting the definitions associated with our system
model, we follow the notation used in (Adiga et al., 2018).
We use B to denote the Boolean domain {0,1}. A Syn-
chronous Dynamical System (SyDS) S over B is a pair
S = (G,F), where (i) G(V,E), an undirected2 graph with

2We will indicate the necessary modifications for directed
graphs later in this section.
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|V | = n, represents the underlying graph of the SyDS, with
node set V and edge set E, and (ii) F = {f1, f2, . . . , fn}
is a collection of functions in the system, with fi denoting
the local function associated with node vi, 1 ≤ i ≤ n. At
any time, each node of G has a state value from B. Each
function fi specifies the interaction between node vi and its
neighbors in G, 1 ≤ i ≤ n. The inputs to function fi are the
state of vi and those of the neighbors of vi in G; for each
input, the function fi outputs a value in B, and this value
is the next state of vi. In a SyDS, all nodes compute and
update their next state synchronously. Other update disci-
plines (e.g., sequential updates) have also been considered
in the literature (Mortveit & Reidys, 2007). At any time t,
if sti ∈ B is the state of node vi (1 ≤ i ≤ n), the configu-
ration C of the SyDS is the n-vector (st1, s

t
2, . . . , s

t
n). If a

SyDS has a one step transition from configuration C to C′,
then C′ is the successor of C. Since our local functions are
deterministic, the successor of each configuration is unique.

Our focus is on two classes of local (Boolean) func-
tions, namely threshold functions and symmetric functions
(Crama & Hammer, 2011). For each integer k ≥ 0, a k-
threshold function has the value 1 iff at least k inputs are 1.
A symmetric function depends only on the number of 1’s in
the input. Thus, a symmetric function with q inputs can be
specified by a table T with q+1 elements, where T [i] is the
value of the function when the number of 1’s in the input is
i, 0 ≤ i ≤ q. The class of threshold functions is (properly)
contained in the class of symmetric functions. Following
(Adiga et al., 2018), we use the term symmetric-SyDS
(threshold-SyDS) to denote a SyDS whose local functions
are all symmetric (threshold) functions. We now present an
example of a threshold-SyDS.

Example: An example of a SyDS with 4 nodes is shown in
Figure 1. The threshold value for each node is indicated in
blue. The left panel shows the configuration C at a certain
time step, where green and red indicate nodes in state 0 and
1 respectively. The right panel shows the successor of C.
For example, the state of node v3 in the successor is 0 since
its threshold is 3, and in C, only two of its inputs (namely,
the states of v1 and v3) are 1. □

v3

v1 v2

v3v4

v1 v2
(2) (1)

(2) (3)

v4

Figure 1. An example of a SyDS where each node has a threshold
function. The threshold value for each node is indicated in blue.
Green and Red indicate state values of 0 and 1 respectively. The
left panel shows the configuration C at a certain time step and the
right panel shows the successor of C.

SyDSs on directed graphs. SyDSs over {0, 1} whose un-
derlying graphs are directed are known as Synchronous
Boolean Networks in the literature (e.g., (Ogihara &
Uchizawa, 2017; 2020)), and they have been used to model
certain biological phenomena (Kauffman et al., 2003). For
any SyDS over a directed graph, the set of inputs to the
local function at a node v consists of the state of v and those
of its in-neighbors (i.e.. nodes from which v has incoming
edges). Except for this, there is no difference between the
definitions for SyDSs over undirected and directed graphs.

2.2. Query Model

In general, the input to any of the learning algorithms con-
sidered in our work is the set V = {v1, v2, . . . , vn} of the
n nodes of the SyDS to be learnt. The algorithm may have
additional information regarding the class of local functions
and/or restrictions on the network topology. The algorithm
must learn both the topology of the underlying network and
the local function at each node using suitable queries. The
query model used in our work was used in previous work
for learning local functions of a SyDS when the topology of
the underlying network is known (Adiga et al., 2018; 2019;
2020). Each query Q specifies a configuration of the SyDS
S for which the underlying network and the local functions
must be inferred. An oracle (which has a complete descrip-
tion of S) returns the successor Q′ of Q. For a SyDS S, a
query Q specifies the input to each of the local functions
of S, and the successor Q′ specifies the value of each lo-
cal function for the specified input. We consider two well
known query modes, namely batch and adaptive modes
(Adiga et al., 2018). In the batch mode, the entire query set
Q must be given to the oracle, and the oracle returns the set
R of responses. In the adaptive mode, queries are specified
in multiple stages, and a query at a certain stage may be
based on the responses to the queries in previous stages.

2.3. Assumptions, Notation and Terminology

We assume that for any SyDS, the underlying graph is sim-
ple (i.e., it has no self loops or multi-edges). We are given
the set V = {v1, v2, . . . , vn} of n nodes. However, in gen-
eral, we don’t know either the number or the set E of edges.

For SyDSs on undirected graphs, we use d(v) to denote the
degree of node v and davg to denote the average degree of
the graph. The (closed) neighborhood of a node v, denoted
by N [v], consists of v and all its neighbors. For SyDSs on
directed graphs, we use N [v] to denote the set consisting
of v and its in-neighbors and d(v) to denote its in-degree.
When considering threshold-SyDSs, we use τ(v) to denote
the threshold of node v. Given any configuration C and node
v, we use C[v] to denote the state of v in C.

Recall that each query Q is a configuration of the SyDS S to
be inferred. For any node v, we use Q[v] to denote the {0,1}
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value assigned to v by Q. Note that Q specifies the inputs
to each local function of S. Given a query Q and a node
v, we use score[Q, v] to denote the number of 1’s in the
input specified by Q for the local function fv at v. Since our
focus is on symmetric functions, we note that score[Q, v]
determines the value of fv for the input specified by Q.

Limitations on learning the topology due to constant
functions. A constant-0 (constant-1) Boolean function
has the value 0 (1) for all inputs. When a SyDS on an
undirected graph has two nodes u and v such that both the
local functions fu and fv are constant functions, the query
model cannot be used to identify whether or not the edge
{u, v} is in the underlying graph. To see why, let S and
S ′ denote two SyDSs which are identical except that S has
the edge {u, v} while S ′ does not have that edge. It can
be verified that for any query Q, the responses for S and
S ′ are identical. So, learning algorithms under the model
where each query Q is a configuration and the response is
the successor of Q, cannot distinguish between S and S ′.
Likewise, for SyDSs on directed graphs, if the local function
at a node v is a constant function, then none of the incoming
edges to v can be identified using the query model.

A note about constant functions for threshold-
SyDSs. For any node v with degree d(v), the number of
inputs to the local function fv is d(v) + 1. For a threshold-
SyDS, if the local function at a node v is the constant-0
function, its threshold is assumed to be d(v)+2. Likewise, if
the local function at v is the constant-1 function, the thresh-
old of v is assumed to be 0. Thus, the threshold τ(v) of any
node v satisfies the condition 0 ≤ τ(v) ≤ d(v) + 2.

3. Anchor Nodes and Their Role in Inference
Several of our algorithms for learning the topology rely on
identifying for each node vi, an anchor node vj . We will
first explain this idea in the context of threshold-SyDSs. We
also describe a simple inference algorithm called ANCHOR-
LINEARSEARCH that makes use of this idea. The idea of
using anchor nodes and sequential search to identify the
neighbors of nodes can also be used for symmetric-SyDSs,
as will be shown in Section 4.1. For simplicity, we assume
in this section that there no nodes with constant functions.

Consider a given ordering ⟨v1, v2, . . . , vn⟩ of the nodes and
the following set Q = {Q1

1, Q
1
2, . . . , Q

1
n} of n queries,

where Q1
j sets nodes v1 through vj to 1 and the remaining

nodes (if any) to 0, 1 ≤ j ≤ n. Let R = {R1
1, R

1
2, . . . , R

1
n}

denote the responses produced for the query set Q. For
a node vi with threshold τ(vi), suppose j is the smallest
index such that R1

j [vi] = 1; thus, the state of vi is 1 for
the first time (in the chosen ordering) when the response
to Q1

j is obtained. We refer to vj as the anchor node for
vi. Given the definition of threshold, we have the following

observation regarding the anchor node.
Observation 3.1. Consider a threshold-SyDS S with no con-
stant local functions. Given the ordering ⟨v1, v2, . . . , vn⟩ of
the nodes of S , let vj be the anchor node for vi. The subset
{v1, v2, . . . , vj} includes exactly τ(vi) nodes in the closed
neighborhood N [vi] of vi. Further, vj ∈ N [vi].

If vi ̸= vj , we conclude that the edge {vi, vj} is in the
underlying graph. Given the anchor node vj for vi, a simple
method to identify the other neighbors of vi is as follows.

(1) First, consider the nodes v1, v2, . . ., vj−1 to the left of
vj . For each k, 1 ≤ k ≤ j − 1, consider the query Qik

which sets all the nodes in {v1, v2, . . . , vj} − {vk} to 1 and
all the other nodes to 0. Let Rik be the response to Qik.
Using Observation 3.1, it can be verified that vk ∈ N [vi] iff
Rik[vi] = 0. Thus, using j − 1 queries of the form Qik, the
set NL[vi] of all the neighbors of vi in {v1, v2, . . . , vj} can
be found. Also, |NL[vi]| gives the threshold of vi.

(2) Now, consider the nodes vj+1, vj+2, . . ., vn to the right
of vj . To find the neighbors of vi among these nodes, we do
the following. For each k, j + 1 ≤ k ≤ n, we use the query
Qik, in which each node in (NL[vi]−{vj})∪{vk} is set to
1, and all the other nodes are set to 0. it can be verified that
vk ∈ N [vi] iff Rik[vi] = 1. Thus, using n− j queries, the
set NR[vi] of all the neighbors of vi in {vj+1, vj+2, . . . , vn}
can be found.

Thus, once we have an anchor for a node vi, all the neighbors
of vi and τ(vi) can be found. The above method uses O(n)
queries for each node vi using a simple sequential search
based on the anchor for vi.

Inference algorithm ANCHORLINEARSEARCH. It can
also be seen from the above discussion that if all the nodes
in a subset W have the same anchor node vj , the n queries
used in the sequential search method can be used to find
all the neighbors of each node in W . Hence, if the number
of distinct anchor nodes identified by the query set Q is k,
then all the edges of the underlying graph and the thresholds
of all the nodes can be found using O(kn) queries. In our
experiments, we refer to this as ANCHORLINEARSEARCH.
Instead of sequential search, one can use binary search.
The corresponding algorithm ANCHORBINARYSEARCH is
described in Section 4.2.

A lower bound on the number of anchor nodes: Suppose
S is a SyDS whose underlying undirected graph G(V,E)
has n nodes and maximum node degree ∆. From the defini-
tion of an anchor node, it is seen that each node v can be the
anchor for only the nodes in its closed neighborhood N [v].
Since the maximum node degree is ∆, for each v ∈ V ,
|N [v]| ≤ ∆+ 1. Thus, we have:
Observation 3.2. For any SyDS S on an undirected graph
G(V,E) with n nodes and maximum node degree ∆, the
number of anchor nodes needed for G is ≥ ⌈n/(∆+ 1)⌉.
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4. Deterministic Learning Algorithms
We present two learning algorithms in this section. The first
algorithm is for learning symmetric-SyDSs under the batch
mode while the second algorithm is for learning threshold-
SyDSs under the adaptive mode. A generalization of the
adaptive mode algorithm to symmetric-SyDSs is given in
Section A.2 of the supplement.

4.1. Learning Symmetric-SyDSs Under the Batch Mode

Here, we show that the topology and local functions of any
symmetric-SyDS on n nodes can be learnt under the batch
mode using O(n2) queries. We first present our algorithm
for directed graphs and then indicate the necessary mod-
ifications for undirected graphs. The pseudocode for our
learning algorithm, called ALG-DIR-SYM-BATCH, appears
in Figure 2. Step 1 constructs the query set Q, and it can be
seen that |Q| = O(n2). Step 3(a) identifies the anchor node
for each node vp using the response to the query set3 Q1 (as
discussed in Section 3). Steps 3(b), (c) and (d) identify the
incoming edges to each node vp using the responses to the
queries in Q2 ∪Q3. Thus, Step 4 can compute the indegree
and the (closed) in-neighborhood of each node vp. Finally,
Step 5 computes the symmetric function for each node using
the responses for the queries in Q1. The following theorem
(whose proof appears in Section A.1 of the supplement)
establishes the correctness of the algorithm.

Theorem 4.1. Let S be a symmetric-SyDS on a directed
graph with node set V = {v1. . . . , vn}. Then in polyno-
mial time, a batch query set Q with O(n2) queries can be
constructed, such that Q can be used to identify the local
functions of S , and for each node v whose local function is
not a constant function, the set of edges entering v.

Modifications for undirected graphs. If the graph of S is
undirected, then the identification of S can be simplified as
follows. The query set Q is still used, and the responses to
the queries in Q1 are processed in the same way. We then
process the nodes whose local function is not a constant
function, in increasing order of their indices. Consider the
processing of a given node vp such that fp is not a constant
function. At this point, we have already processed all nodes
vj where j < p and fj is not a constant function. So, if
j < p and fj is not a constant function, whether or not there
is an edge between vj and vp has already been determined.
Let vr be the anchor node for vp. If j < p and fj is a
constant function, we use the value of R2

r,j [vp] to determine
whether of not there is an edge between vj and vp. If j > p,
we use the value of R3

r,j [vp] to determine whether of not
there is an edge between vj and vp.

3The query set Q1 includes the query in which every node has
the value 0 since we need to find the value of each symmetric
function when the number of 1’s in the input is zero.

1. Construct the following query sets Q1, Q2 and Q3:
(a) Q1 has n + 1 queries denoted by Q1

i , 0 ≤ i ≤ n.
In query Q1

0, all the n bits are 0. For 1 ≤ i ≤ n, in
query Q1

i , the first i bits are 1 and the rest (if any)
are 0.

(b) Q2 has n(n− 1)/2 queries denoted by Q2
i,j , where

2 ≤ i ≤ n and 1 ≤ j ≤ i − 1. In query Q2
i,j , the

first i bits, except for bit j, are 1; bit j and all the
remaining bits are 0.

(c) Q3 has n(n− 1)/2 queries denoted by Q3
i,j , where

1 ≤ i ≤ n−1 and i+1 ≤ j ≤ n. In query Q3
i,j , the

first i− 1 bits and the bit j are 1; all the remaining
bits are 0.

2. Submit the query set Q = Q1 ∪ Q2 ∪ Q3 to the sys-
tem and obtain the response set R = R1 ∪ R2 ∪ R3.
Initialize E = ∅.

3. for p = 1 to n do
(a) Let r = Min {k ≥ 1 : R1

0[vp] ̸= R1
k[vp]}. (Note:

vr is the anchor node for vp.)
(b) if (p ̸= r) then E = E ∪ {(vr, vp)}.
(c) for j = 1 to r − 1 do

(Note: Finds all the incoming edges to vp from
{v1, . . . , vr−1}.)

if ((p ̸= j) and (R2
r,j [vp] = R1

0[vp]))
then E = E ∪ {(vj , vp)}.

(d) for j = r + 1 to n do
(Note: Finds all the incoming edges to vp from
{vr+1, . . . , vn}.)

if ((p ̸= j) and (R3
r,j [vp] ̸= R1

0[vp]))
then E = E ∪ {(vj , vp)}.

4. Find the indegree d(vp) and the closed in-neighborhood
N [vp] of each node vp in G(V,E).

5. for p = 1 to n do (Note: Constructs the symmetric
function table Tp for each node vp.)

(a) for j = 0 to d(vp) + 1 do
(i) Let k be the smallest integer such that in Q1

k,
exactly j nodes from Np are set to 1.

(ii) Tp[j] = R1
k[vp].

Figure 2. Description of Algorithm ALG-DIR-SYM-BATCH for
learning Symmetric-SyDSs on directed graphs

4.2. Adaptive Inference for Threshold-SyDSs

In Section 3, we presented ANCHORLINEARSEARCH. The
batch mode algorithm in Section 4.1 for symmetric-SyDSs
essentially implements that sequential search strategy. We
now discuss how one can derive an inference algorithm
under the adaptive mode by replacing sequential search by
binary search to find the neighbors of a node. For sparse
graphs, this adaptive strategy uses asymptotically fewer
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queries. We refer to this as ANCHORBINARYSEARCH and
present its details for undirected graphs.

Consider a threshold-SyDS, where the ordered node set is
⟨v1, v2, . . . , vn⟩. We first use the query set Q1 (defined in
Figure 2) and get the response set R1. Note that query Q0

1 ∈
Q1 sets all the nodes to 0 and that query Qn

1 ∈ Q1 sets all
the nodes to 1. For any node v for which R0

1[v] = 1, the
local function fv is the constant-1 function (i.e., τ(v) = 0).
Likewise, for any node v for which Rn

1 [v] = 0, the local
function fv is the constant-0 function (i.e., τ(v) = n+ 1).
Thus, we can identify all the nodes with constant functions.
All the remaining nodes have non-constant local functions.

As in Section 3, query set Q1 will also find the anchor
for each node. Let vj be the anchor for vi. Thus, from
Observation 3.1, the subset {v1, . . . , vj} contains exactly
τ(vi) nodes of N [vi] and vj ∈ N [vi]. We want to find the
members of N [vi] in V L

j = {v1, . . . , vj−1} (i.e., nodes to
the left of vj) and those in V R

j = {vj+1, . . . , vn} (which
are to the right of vj). We will discuss the binary search
method for V L

j ; a similar method can be used for V R
j .

Initially, the search range is ⟨v1, . . . , vj−1⟩. We will find the
leftmost node (i.e., the smallest a such that 1 ≤ a ≤ j − 1
and node va in N [vi]) in this range. To do this, let b = ⌈j/2⌉
(i.e., a midpoint of the current range). Construct the query Q
which sets the nodes in {vb+1, . . . , vj} to 1 and all the other
nodes to 0. (In particular, in this query set all the nodes in
{v1, . . . , vb} to 0.) In the response R to this query, it can be
seen that the range {v1, . . . , vb} contains a member of N [vi]
iff R[vi] = 0. Therefore, depending on the response to Q,
the search range for the next query is either ⟨v1, . . . vb⟩ or
⟨vb+1, . . . vj−1⟩. This reduces the size of the search range
by a factor of 2. Applying this method recursively, it follows
that with O(log n) queries, we can find the leftmost element
of N [vi] in V L

j . By repeating this process, we can find each
member of N [vi] ∩ V L

j . A similar process can be used to
identify each member of N [vi] ∩ V R

j .

We can analyze the algorithm in two ways yielding two
different bounds on the number of queries. The first
bound of O(n + m log n) is as follows. Note that for
node vi, O(log n) queries are used to find each node in
N [vi]. Thus, the total number of queries for each node vi =
O(d(vi) log n). Therefore, the total number of queries used
for binary search over all the nodes is O(

∑
vi∈V d(vi) log n)

= O(m log n), since the sum of the node degrees is 2m,
where m is number of edges in the graph. With the ini-
tial set Q1 of n+ 1 queries used to find the anchor nodes,
the total number of queries used in this adaptive inference
method is O(n + m log n). When m = O(n), the num-
ber of queries used by this algorithm is asymptotically
less than that used by ANCHORLINEARSEARCH. How-
ever, when m = Θ(n2), it can do worse than ALG-DIR-
SYM-BATCH by a factor of log n. The second bound

is O(kn log n), which follows by noting that for each an-
chor node at most n binary searches are performed. The
following theorem summarizes the above discussion.

Theorem 4.2. Let S be a threshold-SyDS. Algo-
rithm ANCHORBINARYSEARCH infers the threshold val-
ues of all the nodes, and each edge {u, v} where at least
one of fu and fv is a non-constant local function. The fol-
lowing are the upper bounds for the number of queries used
by the algorithm: (i) O(n+m log n) and (ii) O(kn log n).

The above binary search method for threshold-SyDSs can
also be extended to symmetric-SyDSs. The extended algo-
rithm appears in Section A.2 of the supplement.

5. A Randomized Algorithm
We briefly describe how the idea of anchor nodes can be
used to design a randomized algorithm to solve the inference
problem for threshold-SyDSs under the batch mode. This
improves on the deterministic Θ(n2) bound (Section 4.1).

We assume that the maximum degree ∆ (or an upper
bound on it) is known. The algorithm involves the fol-
lowing steps: we run the first step of the algorithm for
finding anchor nodes in Section 3 using multiple ran-
dom permutations of nodes. Specifically, for a permu-
tation πℓ = ⟨vπℓ(1), vπℓ(2), . . . , vπℓ(n)⟩, for ℓ = 1 to
N = 3(∆ + 1) log n, we run the n queries given by
Qℓ = {Qℓ

1, Q
ℓ
2, . . . , Q

ℓ
n}, where Qℓ

j sets nodes vπℓ(1)

through vπℓ(j) to 1 and the remaining nodes (if any) to
0, 1 ≤ j ≤ n. For each permutation ℓ and each node vi, we
identify an anchor node vj for the query set Qℓ; if vj ̸= vi,
we infer the edge {vi, vj}. Let G denote the graph inferred
after all the N permutations. Finally, we run the algorithm
of (Adiga et al., 2018) to infer the node threshold values in
G; this step uses n queries.

Theorem 5.1. The above algorithm correctly infers the
graph and all threshold functions in a SyDS, with probability
at least 1− 1/n, using O(n∆ log n) batch queries.

Proof: The number of queries stated in the theorem follows
immediately. The algorithm can make a mistake in inferring
the graph, if there exists a node vi with a neighbor vj , which
never becomes an anchor for vi in any permutation. We
show below that this probability is very small.

Observe that a node vj will be an anchor node in a per-
mutation πℓ if it is in position τ(vi) (relative to the other
neighbors of vi). The probability of this happening is
1/(d(v) + 1). Therefore, the probability that node vj
will not be an anchor in any of the N permutations is(
1− 1

d(v)+1

)N

≤
(
1− 1

∆+1

)N

≤ e−3 logn = 1
n3 , since

N = 3(∆+1) log n. By a union bound, the probability that
there exists a node vi for which a neighbor vj does not be-
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come an anchor in any permutation is at most n2/n3 = 1/n,
and the theorem follows.

6. A Lower Bound for Batch Mode
In this section, we establish a lower bound on the number
of queries needed to learn threshold-SyDSs. Since the class
of threshold functions is a subclass of symmetric functions,
this lower bound also applies to symmetric-SyDSs.

Theorem 6.1. Under the batch mode, any query set that can
correctly learn the network topology of any threshold-SyDS
with n nodes must contain Ω(n log n) queries.

Proof: Let Q be a query set for threshold SyDSs over a
node set V with n nodes. Let {Q0, Q1, Q2, . . ., Qn} be a
partition of Q, where Qi denotes the set of queries in which
exactly i nodes are in state 1. We will show that for Q
to correctly infer the network topology of any threshold-
SyDS with n nodes, Qt must contain at least n/t queries,
for each t, 1 ≤ t ≤ n. This will allow us to conclude that
|Q| = Ω(n log n).

For the sake of contradiction, suppose |Qt| < n/t for
some t, 1 ≤ t ≤ n. Let Vt = {v ∈ V | ∃Q ∈
Qt such that Q[v] = 1}; that is, a node v is in Vt only
if there is at least one query Q ∈ Qt such that Q[v] = 1.
Since |Qt| < n/t and each query in Qt contributes at most t
nodes to Vt, we have |Vt| < n. Hence, there is at least one
node v∗ for which Q[v∗] = 0, ∀Q ∈ Qt. Let vc be any node
other than v∗. Let S be a threshold-SyDS where G(V,E) is
a star graph with vc as the center node that is adjacent to all
other nodes. Let S ′ be another threshold SyDS where the
underlying graph G′ is the same as G except that vc is not
adjacent to v∗. In both SyDSs, the threshold of vc is t while
the thresholds of the other nodes are 0. We now show that S
and S ′ produce the same response to the queries in Q and
therefore, cannot be distinguished from one another.

Let Q<t =
⋃

i<t Q
i denote the set of queries in Q in

which at most t− 1 nodes are state 1. Similarly, let Q>t =⋃
i>t Q

i. For a query Q, let R denote its successor. Also,
let Q[v] and R[v] denote the states of node v in Q and R
respectively. Note that for any query Q, the response of
any v ∈ V \ {vc} is 1; i.e., R[v] = 1 in both S and S ′ as its
threshold is 0 in both SyDSs. Therefore, we focus on vc.

First, consider S . Let d(v) and N [v] denote the degree and
the closed neighborhood of node v respectively. Let Q ∈
Q<t. Since τ(vc) = t and Q has at most t − 1 nodes
of B in state 1, R[vc] = 0. Now let Q ∈ Qt ∪ Q>t.
Since τ(vc) = t, N [vc] = V , and at least t nodes are in
state 1, it follows that R[vc] = 1.

Now consider S ′. For Q ∈ Q<t, using the same argu-
ment as before, it follows that R[vc] = 0. Let Q ∈ Q>t.
Since τ(vc) = t, N [vc] = V \{v∗}, and at least t+1 nodes

are in state 1, it follows that at least t nodes from N [vc]
are in state 1. Therefore, R[vc] = 1. Finally, let Q ∈ Qt.
We recall that Q[v∗] = 0. Therefore, all the t nodes that
are in state 1 belong to V \ {v∗}, which is same as N [vc].
Therefore, R[vc] = 1.

From the above arguments, it follows that the responses
of S and S ′ are identical for each query in Q. In other
words, the query set Q cannot correctly infer whether the
edge {vc, v∗} is in the underlying graph of the SyDS. This
contradicts the assumption that Q correctly infers the topol-
ogy of any threshold-SyDS whose underlying graph has n
nodes. Therefore, |Qt| ≥ n/t for any t, 1 ≤ t ≤ n.

Now, |Q| =
∑n

t=0 |Q
t| ≥

∑n
t=1 n/t. It is well known

that the Harmonic sum
∑n

t=1 1/t = Ω(lnn) (Cormen et al.,
2009). Hence, |Q| = Ω(n log n).

7. Experimental Results
In this section, we investigate the performance of the pro-
posed inference algorithms for threshold-SyDSs with re-
spect to the structure of the underlying network and thresh-
old assignments. The main algorithms used for experimen-
tation are ANCHORLINEARSEARCH and ANCHORBINA-
RYSEARCH. Since the number of queries required by ALG-
DIR-SYM-BATCH is fixed for a given network, we use it as
a reference to evaluate other algorithms. When comparing
networks with same number of nodes we use query ratio
γ = a/b to evaluate a target adaptive inference algorithm
A, where a and b are the numbers of queries used by A and
ALG-DIR-SYM-BATCH respectively. In all experiments, we
use the method of Adiga et al. (2018) to assign node thresh-
olds. Given a parameter θ ∈ [0, 1], each node v is assigned
an integer threshold uniformly at random from the interval
[(d(v) + 2)(1− θ)/2, (d(v) + 2)(1+ θ)/2]. For θ = 0, the
threshold is ⌊(d(v) + 2)/2⌋ (majority rule) while for θ = 1,
a threshold is picked uniformly at random from the inter-
val [0, d(v) + 2]. The parameter θ controls the deviation of
the threshold function from the majority rule; larger the θ,
the greater the range of values from which the threshold is
picked around (d(v) + 2)/2.

Datasets, computing and reproducibility. We selected
the set of real world networks (shown in Table 1) based on
their domains and sizes. Further, we evaluated the pro-
posed algorithms on two classes of synthetic networks:
(i) Erdős-Rényi (ER) networks and (ii) Barabási-Albert (BA)
networks. Experiments were performed on Intel Xeon(R)
machines with 64GB of RAM. The source code and se-
lected datasets can be found at https://github.com/
bridgelessqiu/Inference-ICML.

Experiments. We performed four sets of experiments. In
all these cases, we considered three values of threshold
parameter θ, namely 0, 0.5, and 0.9. First, we experimented
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Table 1. List of networks
Dataset Type n m Max deg Average deg
lastfm Social 7,624 27,806 216 7.29
gnutella Peer-to-Peer 10,876 39,994 103 7.35
astroph Coauthor 17,903 196,972 504 22
facebook Social 22,470 170,823 709 15.2
Deezer Social 28,281 92,752 172 6.55

with Erdős-Rényi graphs. The number of nodes n was fixed
at 1000 and the edge probability p was increased. The
second set of experiments correspond to random power-
law networks generated using the Barabási–Albert model.
Specifically, we studied how a network property such as
degree distribution affects k, the number of anchor nodes.
We varied the average degree by varying the number of
edges that can be incident on the new node added to the
network in each iteration. The third set of experiments is
on real-world networks. In all these experiments, for each
network we chose a random order of nodes and used it for
every θ value for fair comparison. Finally, we performed
experiments on how the number of anchor nodes varies for
random orderings of the nodes of chosen networks.
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Figure 3. Results for ER graphs: The results are for n = 1000,
with the average degree varied from 10 to 999 by increasing the
edge probability p. For each instance, we used 10 replicates. The
average number of anchor nodes and the query ratio are plot-
ted with respect to average degree in the first and second plots
respectively. The maximum standard deviations of query ratio
for ANCHORLINEARSEARCH and ANCHORBINARYSEARCH are
0.0132 and 0.0998, respectively. The maximum standard devia-
tion of anchor node ratio is 0.013.

Number of anchor nodes, network density, and thresh-
olds. Recall that the number of anchor nodes k influ-
ences the number of queries used by both ANCHORLIN-
EARSEARCH and ANCHORBINARYSEARCH. Here, we
study how it varies with the number of edges in the network
and threshold assignments through two studies. The results
for Erdős-Rényi graphs in Figure 3 (left panel) show the
influence of average degree and threshold parameter θ. We
note that for θ = 0, k decreases rapidly with increasing
average degree. This decrease can be partially explained by
Observation 3.2; as the edge probability increases, the aver-

age node degree also increases. For higher θ, even though k
decreases with average degree, the rate of decrease is much
smaller. We can draw insight from the following extreme
example. Consider the complete graph on n nodes, where
each node is assigned a distinct threshold. If the nodes are
in increasing order of threshold, then k = n. Therefore,
greater the variation in threshold, the larger is the value
of k. Similar observations for BA networks are shown in
Figure 4.
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Figure 4. Results for BA networks: The results are for n = 1000,
with the average degree varied from 10 to 200. For each instance,
we used 10 replicates. The average number of anchor nodes and
the query ratio are plotted with respect to average degree in the first
and second plots respectively. The maximum standard deviations
of query ratio for ANCHORLINEARSEARCH and ANCHORBINA-
RYSEARCH are 0.016 and 0.023, respectively. The maximum
standard deviation for anchor node ratio is 0.013.

Comparison between ANCHORLINEARSEARCH and
ANCHORBINARYSEARCH. The number of queries in
ANCHORLINEARSEARCH directly depends on k (number
of queries is O(kn)). We observe in Figure 3 (right panel)
that the query ratio is strongly correlated with k. Also,
since k ≤ n, it follows that the query ratio will always be
less than 1. In contrast, the number of queries in the case of
ANCHORBINARYSEARCH depends not only on k but also
the number of edges m (see Theorem 4.2). Hence, there
is a regime (average degree ≤ 50) where the number of
queries required is much less when compared to ANCHOR-
LINEARSEARCH. However, as m increases, the number
of queries increases quickly due to the additional factor
of log n contributed by the binary search (first bound in
Theorem 4.2). Therefore, we observe that for very high
average degree, the number of queries required can exceed
that for ALG-DIR-SYM-BATCH. (When m is comparable
to n2, the number of queries will be of the order of n2 log n.)
However, we note for θ = 0, that there is a point where the
number of queries starts decreasing. This is because of the
fact that k is decreasing (second bound in Theorem 4.2).

Querying real-world networks. Since all the real-world
networks considered here (Table 1) have low average degree



Efficiently Learning Topology and Behavior

(< 25), ANCHORBINARYSEARCH outperforms ANCHOR-
LINEARSEARCH. Hence, in Figure 5, we present only the
results for ANCHORBINARYSEARCH. We note that the an-
chor node ratio increases with average degree generally, but
is more pronounced for lower θ (left panel). This is in line
with the experiments with synthetic networks. For the query
set size (right panel), we used a factor of n+ 2m log n for
normalization, motivated by the first upper bound in The-
orem 4.2. (The factor 2 corresponds to an implementation
detail.) Also, since k is comparable to n for the regime
considered, the second upper bound in the theorem is much
larger than the first. We did not use the query ratio since we
are comparing networks of different sizes; larger the n, the
lower is the query ratio. We observe that for some networks
such as astroph and facebook, the number of queries
is much better than the bound compared to other networks.
Even among the three networks with comparable average de-
grees, we see that lastfm has a smaller normalized query
set size compared to the other two networks. If two nodes
share the same anchor node as well as a neighbor, then in a
single query, this neighbor can be discovered for both nodes.
This is partially captured by the clustering coefficient (CC)
of the graph; larger the CC, higher is the number of such
instances as we note in the result.
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Figure 5. Experiments with real-world networks: The first two
plots correspond to the anchor node ratio and the query ratio of
ALG-DIR-SYM-BATCH on the considered real-world networks
under random threshold assignment with varying θ values. In the
second plot, the normalization factor is n+2m logn. In the plots,
davg is average degree, while cc is the clustering coefficient.

Ordering of nodes and the number of anchor nodes. In
all the experiments discussed above, we used one random
node ordering per network. A natural question that arises
is that how much is k dependent on this ordering. Since we
do not assume any knowledge of the network other than the
fact that it has n nodes, we studied how k varies across ran-
dom permutations. In our experiments, we considered 100
random permutations for each network-θ instance. The re-
sults are in Figure 6. Our results show that the variance is
generally small. In particular, it is much smaller in the case
of the considered real-world networks than for the ER and
BA networks. Our results indicate that simple extensions of

our adaptive algorithms such as sampling ℓ node permuta-
tions randomly and using the permutation that leads to the
smallest k might not be useful, as for each permutation, we
will have to use n additional queries.
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Figure 6. Random permutations of nodes and k: The variation
in the number of anchor nodes k across 100 permutations. Two
values of the threshold parameter are considered: θ = 0, 0.9. All
networks have comparable average degree.

8. Summary and Future Work
We considered the problem of inferring the topology and
the local functions of a SyDS using active queries. We
examined both batch and adaptive query modes. We showed
that for certain classes of local functions, this inference can
be carried out efficiently. Further, we established a lower
bound on the size of any batch query set for inferring the
topology and the local functions of threshold-SyDSs. We
experimented with our algorithms using both synthetic and
real-world social networks.

There are many directions for future work. One direction is
to develop learning algorithms for SyDSs whose local func-
tions are from other classes of Boolean functions. A second
direction to devise learning algorithms that can reduce the
number of queries when additional information about the
underlying graph (e.g., degrees of all the nodes, properties
such as acyclicity) is available. Finally, it will also be of in-
terest to improve the lower bounds on the number of queries
for various restricted classes of SyDSs.
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Paper title: Efficiently Learning the Topology and Behav-
ior of Networked Dynamical Systems via Active Queries

A. Additional Material for Section 4

A.1. Statement and Proof of Theorem 4.1:

Statement of Theorem 4.1: Let S be a symmetric-SyDS
on a directed graph with node set V = {v1. . . . , vn}. Then
in polynomial time, a batch query set Q with O(n2) queries
can be constructed, such that Q can be used to identify
the local functions of S and for each node v whose local
function is not a constant function, the set of edges entering
v.

Proof: We recall from Figure 2 that the query set Q =
Q1 ∪Q2 ∪Q3 is constructed as follows.

1. Q1 has n + 1 queries denoted by Q1
i , 0 ≤ i ≤ n. In

query Q1
0, all the n bits are 0. For 1 ≤ i ≤ n, in query

Q1
i , the first i bits are 1 and the rest (if any) are 0.

2. Q2 has n(n − 1)/2 queries denoted by Q2
i,j , where

2 ≤ i ≤ n and 1 ≤ j ≤ i− 1. In query Q2
i,j , the first i

bits, except for bit j, are 1; bit j and all the remaining
bits are 0.

3. Q3 has n(n − 1)/2 queries denoted by Q3
i,j , where

1 ≤ i ≤ n− 1 and i+ 1 ≤ j ≤ n. In query Q3
i,j , the

first i− 1 bits and the bit j are 1; all the remaining bits
are 0.

Let R = R1∪R2∪R3 denote the responses obtained from
the system.

First note that for any node vp, since fp is a symmetric
function, fp is a constant function iff the responses to all
queries in Q1 have the same value of node vp. So, if for all
i, 0 < i ≤ n, R1

i [vp] = R1
0[vp], fp is the constant function

with value R1
0[vp], and the incoming edges to vp cannot be

identified (as discussed in Section 2.3).

Otherwise, let r be the smallest integer such that R1
r [vp] ̸=

R1
0[vp]. As discussed in Section 3, node vr is the anchor

node for vp. Since R1
r [vp] ̸= R1

0[vp] and configurations
Q1

r−1 and Q1
r differ only in the value of node vr, vr is one of

the variables of the function fp. Thus vr ∈ N [vp], the closed
neighborhood of vp, and score[Q1

r, vp] = score[Q1
r−1, vp] +

1. Further, if r ̸= p, then there is an incoming edge from vr
to vp. This establishes the correctness of Step 3(b) of the
algorithm in Figure 2.

Those queries in Q2 that are of the form Q2
r,j are used to

identify those nodes vj with j < r such that there is an
incoming edge from vj to vp. Those queries in Q3 that are
of the form Q3

r,j are used to identify those nodes vj with
j > r such that there is an incoming edge from vj to vp.
We now show that the algorithm correctly identifies these
edges.

For each node vj , where j < r and j ̸= p, consider
the query Q2

r,j . Configurations Q1
r and Q2

r,j differ only
in the value of node vj . If there is an edge from vj to
vp, then score[Q2

r,j , vp] = score[Q1
r−1, vp], so R2

r,j [vp] =

R1
r−1[vp] = R1

0[vp]. If there is no edge from vj to vp, then
score[Q2

r,j , vp] = score[Q1
r, vp], so R2

r,j [vp] = R1
r [vp] ̸=

R1
0[vp]. Thus, the value of R2

r,j [vp] indicates whether of not
there is an incoming edge from vj to vp. This establishes
the correctness of Step 3(c) of the algorithm in Figure 2.

For each node vj , where j > r and j ̸= p, consider the
query Q3

r,j . Configurations Q1
r−1 and Q3

r,j differ only
in the value of node vj . If there is no edge from vj to
vp, then score[Q3

r,j , vp] = score[Q1
r−1, vp], so R3

r,j [vp] =

R1
r−1[vp] = R1

0[vp]. If there is an edge from vj to vp, then
score[Q3

r,j , vp] = score[Q1
r, vp], so R3

r,j [vp] = R1
r [vp] ̸=

R1
0[vp]. Thus, the value of R3

r,j [vp] indicates whether of not
there is an incoming edge from vj to vp. This establishes
the correctness of Step 3(d) of the algorithm in Figure 2.

We now argue that the responses to the queries in Q1 can
be used to identify the local (symmetric) functions of nodes
whose local function is not a constant function. Consider
a given node vp whose local function fp is not a constant
function. We now describe how to construct the table Tp

that specifies symmetric function fp. Let d(p) denote the
indegree of node vp. Table Tp has an entry, Tp[j], for each j
such that 0 ≤ j ≤ d(p) + 1. For each j, 0 ≤ j ≤ d(p) + 1,
let k be the minimum value such that Q1

k has exactly j nodes
from N [vp]. Thus, the value R1

k[vp] gives the value of the
function fp when the input has exactly j ones. In other
words, Tp[j] = R1

k[vp]. This establishes the correctness of
Step 5 of the algorithm in Figure 2.

A.2. An Adaptive Inference Algorithm for
Symmetric-SyDSs

Here, we present our algorithm for inferring symmetric-
SyDSs under the adaptive query mode. We present the
discussion for directed graphs. The modifications needed
for undirected graphs are similar to those discussed at the
end of Section 4.1.

Theorem A.1. There is an algorithm under the adap-
tive query mode that can learn the local functions of any
symmetric-SyDS whose underlying graphs are directed. For
those nodes whose local functions are not constant func-
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tions, the algorithm identifies the incoming edges. If the
SyDS has n nodes and m edges, the number of queries used
by the algorithm is O(n+m log(n)).

Proof: Let V = {v1, . . . , vn} be the given node set of S .

The adaptive scheme begins with the set of n + 1 queries
Q1 from Algorithm ALG-DIR-SYM-BATCH of Figure 2:

Q1 = {Q1
i , 0 ≤ i ≤ n, where for each k, 1 ≤ k ≤ n,

Q1
i [vk] = 1 iff k ≤ i}.

For each node vp ∈ V , the algorithm identifies node func-
tion fp, and, when fp is not a constant function, the incom-
ing edges of vp, as follows.

Suppose that the value of vp in the responses to the all the
queries in Q1 is the same, i.e., for all i, 0 < i ≤ n, R1

i [vp] =
R1

0[vp]. Then fp is the constant function with value R1
0[vp],

and the incoming edges to vp cannot be identified.

Otherwise, we generalize the concept of an anchor node to
a set of anchor nodes, as follows. We call each node vr such
that R1

r [vp] ̸= R1
r−1[vp] a anchor node for vp. For each

anchor node vr for vp, configurations Q1
r−1 and Q1

r differ
only in the value of node vr; thus, vr is one of the variables
of function fp. Hence, vr ∈ N [vp], the closed neighborhood
of vp, and score[Q1

r, vp] = score[Q1
r−1, vp] + 1. If

r ̸= p, then there is an incoming edge from vr to vp.

We define a run for vp to be the sequence of nodes before
the the first anchor node for vp, between two consecutive
anchor nodes, or after the last anchor node. Thus, if there
are k anchor nodes for vp, then there are k + 1 runs. Each
node in a run is potentially a member of N [vp].

Let W denote a nonempty sequence of consecutive nodes
within some run. We will define a query Qp

W that we will
show can be used to determine whether W contains a mem-
ber of N [vp].

Suppose W occurs in the first run, i.e., before the first anchor
node for vp. Let vr denote this first anchor node. Then Qp

W

is constructed as follows.

For each k, 1 ≤ k ≤ n, Qp
W [vk] = 1 iff k ≤ r and k /∈ W .

Note that configurations Q1
r and Qp

W differ only in the
value of the nodes in W . If W contains at least one mem-
ber of N [vp], then score[Qp

W , vp] < score[Q1
r, vp], so

Qp
W [vp] = R1

0[vp]. If W contains no member of N [vp],
then score[Qp

W , vp] = score[Q1
r, vp], so Qp

W [vp] =
R1

r [vp] ̸= R1
0[vp]. Thus, Qp

W [vp] = R1
0[vp] iff W contains

at least one member of N [vp].

Suppose W occurs in a later run, i.e., after at least one an-
chor node for vp. Let vr denote the anchor node immediately
preceding the run containing W . Then Qp

W is constructed
as follows.

For each k, 1 ≤ k ≤ n, Qp
W [vk] = 1 iff k < r or k ∈ W .

Note that configurations Q1
r and Qp

W differ only in the value
of vr and the nodes in W . Suppose that W contains no mem-
ber of N [vp], then score[Qp

W , vp] = score[Q1
r−1, vp],

so Qp
W [vp] = R1

r−1[vp] ̸= R1
r [vp]. However, suppose that

W contains at least one member of N [vp]. Let vr′ be the
last node in the run containing W . Then score[Q1

r, vp] ≤
score[Qp

W , vp] < score[Q1
r′ , vp], so Qp

W [vp] = R1
r [vp].

Thus, Qp
W [vp] = R1

r [vp] iff W contains at least one member
of N [vp].

In summary, query Qp
W can be used to determine whether

W contains a member of N [vp].

The adaptive query algorithm searches each run, finding all
the members of N [vp] in the run, as follows. Consider a
given run. The algorithm executes a loop, each iteration
of which searches for the next member of N [vp] in the run.
In each iteration of this loop, we let W denote a set of
candidate nodes in the run, which are potentially members
of N [vp]. Initially, W is the set of all nodes in the run.

Now consider a given iteration of the loop. If W is empty,
it contains no members of N [vp], so the loop terminates.
So suppose that W is nonempty. The algorithm constructs
the query Qp

W . If the response to this query indicates that
W contains no members of N [vp], then the loop terminates.
Otherwise, the algorithm performs a binary search on W to
identify the leftmost member of W that is in N [vp]. Once
this node has been found, this node and all the candidate
nodes to its left are deleted from W , and the remaining
members of W constitute a modified set of candidate nodes.
The next iteration proceeds with this new value of W .


