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Abstract
We study the problem of K-armed dueling bandit
for both stochastic and adversarial environments,
where the goal of the learner is to aggregate in-
formation through relative preferences of pair of
decision points queried in an online sequential
manner. We first propose a novel reduction from
any (general) dueling bandits to multi-armed ban-
dits which allows us to improve many existing
results in dueling bandits. In particular, we give
the first best-of-both world result for the dueling
bandits regret minimization problem—a unified
framework that is guaranteed to perform optimally
for both stochastic and adversarial preferences si-
multaneously. Moreover, our algorithm is also
the first to achieve an optimal O(

∑K
i=1

log T
∆i

) re-
gret bound against the Condorcet-winner bench-
mark, which scales optimally both in terms of
the arm-size K and the instance-specific subop-
timality gaps {∆i}Ki=1. This resolves the long
standing problem of designing an instancewise
gap-dependent order optimal regret algorithm for
dueling bandits (with matching lower bounds up
to small constant factors). We further justify the
robustness of our proposed algorithm by prov-
ing its optimal regret rate under adversarially cor-
rupted preferences—this outperforms the exist-
ing state-of-the-art corrupted dueling results by
a large margin. In summary, we believe our re-
duction idea will find a broader scope in solving a
diverse class of dueling bandits setting, which are
otherwise studied separately from multi-armed
bandits with often more complex solutions and
worse guarantees. The efficacy of our proposed
algorithms are empirically corroborated against
state-of-the-art dueling bandit methods.
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1. Introduction
Studies have shown that it is often easier, faster and less
expensive to collect feedback on a relative scale rather than
asking ratings on an absolute scale. E.g., to understand the
liking for a given pair of items, say (A,B), it is easier for
the users to answer preference-based queries like: “Do you
prefer Item A over B?”, rather than their absolute counter-
parts: “How much do you score items A and B in a scale of
[0-10]?”. From a system designer’s point of view, exploit-
ing such user preference information could greatly aid in
improving systems performances, especially when data can
be collected on a relative scale and online fashion; such as
recommendation systems, crowd-sourcing platforms, train-
ing bots, multi-player games, search-engine optimization,
online retail, just to name a few. In many real world prob-
lems, especially where human preferences are elicited in an
online fashion, e.g., design of surveys and expert reviews,
assortment selection, search engine optimization, recom-
mender systems, ranking in multiplayer games, etc, or even
more general reinforcement learning problems where re-
wards shaping is often a challenging problem (e.g. if multi-
objective rewards etc.), and instead, a preference feedback
is much easier to elicit.

Due to the widespread applicability and ease of data collec-
tion with relative feedback, learning from preferences has
gained much popularity in the machine learning commu-
nity and widely studied as the problem of Dueling-Bandits
(DB) over last decade (Yue et al., 2012; Ailon et al., 2014;
Zoghi et al., 2014a;b; 2015a), which is an online learning
framework that generalizes the standard multiarmed bandit
(MAB) (Auer et al., 2002a) setting for identifying a set of
‘good’ arms from a fixed decision-space (set of items) by
querying preference feedback of actively chosen item-pairs.

Dueling Bandits Problem (DB) More formally, in clas-
sical dueling bandits with K arms, the learning proceeds
in rounds, where at each time step t ∈ {1, 2, . . . , T}, the
learner selects a pair of arms (k+1,t, k−1,t) and receives the
winner of the duel in terms of a binary preference feedback
ot(k+1,t, k−1,t) ∼ Ber(Pt(k+1,t, k−1,t)), sampled accord-
ing to an underlying preference matrix Pt ∈ [0, 1]K×K

(chosen adversarially in the most general setup). The objec-
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tive of the learner is to minimize the regret with respect to a
(or set of) ‘best’ arm(s) in hindsight.

Related Works Over the years, the problem of Dueling
Bandits has been studied with various objectives and gener-
alizations. This includes analyzing the learning rate under
various preference structures, such as total ordering, transi-
tivity, stochastic triangle inequality (Falahatgar et al., 2017;
Yue & Joachims, 2011), utility based preference structure
(Ailon et al., 2014; Szorenyi et al., 2015; Saha & Gopalan,
2018a; Chen et al., 2018), or under any general pairwise
preference matrices (Dudı́k et al., 2015; Jamieson et al.,
2015; Komiyama et al., 2016). Consequently, depending
on the underlying preference structure, the learner’s per-
formance has been evaluated w.r.t. different benchmarks
including among other promising generalizations. The prob-
lem of stochastic dueling bandits has been studied for both
PAC (Falahatgar et al., 2018; Szorenyi et al., 2015; Sui et al.,
2018) as well as regret minimization setting (Zoghi et al.,
2014a; Yue & Joachims, 2009; Chen & Frazier, 2017; Zoghi
et al., 2015a) under several notions of benchmarks includ-
ing best arm identification (Saha & Gopalan, 2019b; Busa-
Fekete et al., 2014; Falahatgar et al., 2017), top-set detection
(Busa-Fekete et al., 2013; Saha & Gopalan, 2019a), ranking
(Ren et al., 2018; Saha & Gopalan, 2018b), amongst many.
Some recent works have also looked into the problem for
adversarial sequence of preference matrices (Saha & Gupta,
2022; Gajane et al., 2015; Saha et al., 2021), robustness to
corruptions (Agarwal et al., 2021), or extending dueling ban-
dits to potentially infinite arm sets (Saha, 2021; Kumagai,
2017) and contextual scenarios (Dudı́k et al., 2015; Saha
& Krishnamurthy, 2021). Another interesting line of work
along dueling bandits is to study the implications for its
subsetwise generalization (Ren et al., 2018; Sui et al., 2018;
Brost et al., 2016; Chen et al., 2018), also studied as battling
bandits (Saha & Gopalan, 2018a; 2019a; Bengs et al., 2021).

Despite widespread surge of interest along this line of re-
search and multiple attempts there are some fundamental
long standing open questions in dueling bandits which are
(surprisingly!) yet unresolved.

Unresolved Question #1 One of the longest and most
widely studied objective in stochastic dueling bandit is
to measure regret w.r.t. the Condorcet winner (CW) arm:
Given a preference matrix P, an arm k(cw) ∈ [K] is termed
as the CW of P if P (k(cw), k) > 0.5 ∀k ∈ [K] \ {k(cw)}
(Zoghi et al., 2014a). AssumingP contains a CW, there have
been several attempts to design an optimal regret dueling
bandit algorithm against the CW arm k(cw) (see Eq. (2) for
details) (Zoghi et al., 2014a; Wu & Liu, 2016; Komiyama
et al., 2015; Bengs et al., 2021). Without loss of generality,
assuming k(cw) = 1 and by denoting ∆i = P (1, i) − 0.5
to be the suboptimality gap of item i w.r.t. the CW, it is well
known that the dueling bandit regret lower bound (w.r.t. the

CW arm) is Ω
(∑K

i=2
log T
∆i

)
(Yue et al., 2012; Komiyama

et al., 2015). However, despite several attempts, it is still
unknown how to design an order optimal dueling bandit
algorithm for the CW regret. Existing upper-bounds suffer
all suboptimal ∆−2

min and/or K2 dependencies.

Notably, under more restricted structures, e.g. total order-
ing (Yue & Joachims, 2011), or utility based preferences
(Szorenyi et al., 2015; Saha & Gopalan, 2020), or even spe-
cial preference structures where the suboptimality gaps of
all items (∆i, i ∈ [K] \ {1}) are equal, the problem is
easier to solve and tight regret guarantees are available with
matching upper and lower bound analysis. However, for the
case of any general preference matrix with CW, none of the
existing attempts were able to close this regret analysis gap
successfully (Zoghi et al., 2014a; Wu & Liu, 2016; Chen
& Frazier, 2017; Komiyama et al., 2015; Saha & Gaillard,
2021). Subsequently, the natural questions to ask are:

(1). Is the lower bound tight? (2). How to close the gap
between the upper and lower bound for CW regret?

Unresolved Question #2 Till date, all the proposed algo-
rithms of dueling bandits need to know underlying prefer-
ence structure ahead of time in order to yield optimal regret
bounds. In fact, different algorithms have been proposed
based on the nature/structures of the underlying preference
matrices, e.g. (Yue & Joachims, 2011) for preferences with
total orderings in terms of (relaxed) stochastic transitiv-
ity and stochastic triange inequality; (Ailon et al., 2014;
Gajane et al., 2015) for linear-utility based preferences,
(Szorenyi et al., 2015) for BTL models, (Zoghi et al., 2014a;
Komiyama et al., 2015; Wu & Liu, 2016) for stochastic pref-
erences in presence of CW, (Saha et al., 2021; Gajane et al.,
2015) for adversarial sequence of preferences, etc. How-
ever, it might not always be realistic to assume complete
knowledge of the properties underlying preference matrices.
Thus the daunting question to ask in this regard is

Is it possible to design an order optimal
‘best-of-both-world’ algorithm for dueling bandits?

That is, an algorithm that can adapt itself to the underlying
structures of the preference environments and give optimal
regret for both stochastic and adversarial settings? There
has been a series of work on this line for the MAB frame-
work (e.g., Bubeck & Slivkins, 2012; Auer & Chiang, 2016;
Zimmert & Seldin, 2021), but unfortunately there has not
been any existing ‘best-of-both-world’ attempt for general
dueling bandits.

Unresolved Question #3 In any real world situation, the
true feedback are often corrupted with some form of system
noise. Undoubtedly, the binary 0/1 bit dueling preferences
are extremely prone to such noises when the learner might
get to observe a flipped bit (adversarially corrupted) instead
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of the true dueling feedback.

Can we design an efficient dueling bandit algorithm which
is robust to adversarial corruptions and provably optimal?

Our Contributions In this paper, we answer all of the
above three questions affirmatively. The list of our specific
contributions can be summarized as follows:

1. A novel insight on the reduction from DB to MAB.
Ailon et al. (2014) proposed a reduction from utility-
based dueling bandits (which is a special class of DB)
to standard MAB. We show that the latter can easily
be extended to any general dueling bandit problems
(including CW), with significant consequences on the
state of the art results in dueling bandits theory, as
discussed in the points below. We believe that the re-
duction will find wider application in solving a diverse
class of dueling bandit settings, using analyses of their
MAB counterparts, which are otherwise studied sepa-
rately from MAB with often more complex solutions
and worse guarantees (Sec. 4).

2. First Best-of-Both World regret for DB. Applying
the above reduction to a Best-of-Both world algorithm
from MAB, we provide an algorithm that simultane-
ously guarantees a pseudo-regret bound O(

√
KT ) in

the adversarial setting and O(K log(T )/∆min) in the
stochastic one. This leads to the first best-of-both world
results for dueling bandits (Sec. 5).

3. Optimal stochastic gap-dependent Regret. Our al-
gorithm also provides the first optimal Condorcet re-
gret, which suffers neither from a suboptimal depen-
dence on ∆−2

min nor from a quadratic dependence on
the number of arms (Sec. 6.1).

4. Robustness to adversarial corruptions. Our algo-
rithm is robust to adversarial corruptions and signifi-
cantly improves existing results in DB (Agarwal et al.,
2021) (Sec. 6.2).

5. Another easy algorithm for stochastic DB. We also
propose a new elimination based algorithm with
O(
∑K
i=2

K log T
∆i

) Condorcet regret which is regret op-
timal upto a factor of K (Sec. 3).

6. Experimental evaluations. Finally we corroborate
our theoretical results with extensive empirical evalua-
tions (Sec. 7).

2. Problem Formulation
Notations. Decision space (or item/arm set) [K] :=
{1, 2, . . . ,K}. For any matrix M ∈ RK×K , we define
mij := M(i, j), ∀i, j ∈ [K]. 1(·) denotes the indicator
random variable which takes value 1 if the predicate is true
and 0 otherwise and . a rough inequality which holds up
to universal constants. For any two items x, y ∈ [K], we
use the symbol x � y to denote x is preferred over y. By
convention, we set 0

0 := 0.5. For any closed and convex set

S, we denote by IS(x) := 0, if x ∈ S, and IS(x) := ∞
otherwise; for any x ∈ R+ (notation used in Alg. 3).

Consider any function f : RK 7→ R. ∇f(x) denotes the
gradient of function f at point x ∈ RK . The convex conju-
gate (a.k.a. Fenchel conjugate) of f is defined by:

f∗(y) := sup
x∈Rk

(
〈x,y〉 − f(x)

)
.

Thus we have for any any closed and convex set S, (f +
IS)∗(y) = maxx∈S

(
〈x,y〉 − f(x)

)
. Further, as claimed

in (Zimmert & Seldin, 2019), differentiable and convex f
with invertible gradient (∇f)−1, it holds that

∇(f + IS)∗(y) = arg max
x∈S

(
〈x,y〉 − f(x)

)
.

Setup. We assume a decision space of K arms denoted by
A := [K]. At each round t, the task of the learner is to select
a pair of actions (k+1,t, k−1,t) ∈ [K]× [K], upon which a
preference feedback ot ∼ Ber(Pt(k+1,t, k−1,t)) is revealed
to the learner according to the underlying preference ma-
trix Pt ∈ [0, 1]K×K (chosen adversarially), such that the
probability of k+1,t being preferred over k−1,t is given by
Pr(ot = 1) := Pr(k+1,t � k−1,t) = Pt(k+1,t, k−1,t),
and hence Pr(ot = 0) := Pr(k−1,t � k+1,t) = 1 −
Pt(k+1,t, k−1,t).

Objective. Assuming the learner selects the duel
(k+1,t, k−1,t) at round t, one can measure its performance
w.r.t. a single fixed arm k∗ ∈ [K]1 in hindsight by calculat-
ing the regret w.r.t. k∗ ∈ [K]

RT (k∗) :=

T∑
t=1

1

2
(Pt(k

∗, k+1,t) + Pt(k
∗, k−1,t)− 1) .

(1)

For the stochastic setting where Pts are fixed across all
time steps t ∈ [T ], we denote Pt = P ∀t ∈ [T ]. Further
assuming there exists a Condorcet winner for P , i.e. fixed
arm k(cw) ∈ [K] such that P (k(cw), k) > 0.5 ∀k ∈ [K] \
{k(cw)}, the above notion of regret boils down to the regret
with respect to the Condorcet winner for the choice of k∗ =
k(cw), as widely studied in many dueling bandit literature
(Zoghi et al., 2014a; Wu & Liu, 2016; Komiyama et al.,
2015; Bengs et al., 2021), defined as:

R(cw)
T :=

T∑
t=1

1

2

(
∆(k(cw), k+1,t) + ∆(k(cw), k−1,t)

)
,

(2)
where ∆(i, j) := P (i, j)−1/2 being the suboptimality gap
of item i and j in terms of their relative preferences. Without

1Note that this is equivalent to maximizing the expected regret
w.r.t. any fixed distribution π∗ ∈ ∆K , i.e. when k∗ ∼ π∗. This
is because the regret objective is linear in the entries of π∗, so the
maximizer π∗ is always one hot.
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loss of generality we will assume k(cw) = 1 throughout the
rest of this paper (whenever relevant).

3. Warm-Up: Near-Optimal Algorithm
In this section, we propose an efficient UCB based algo-
rithm for stochastic dueling bandit, which has a nearly
optimal gap-dependent Condorcet regret of R(cw)

T =

O
(∑K

i=2 i∆(k(cw), i)−1 log T
)

(assuming k(cw) = 1 is
the Condorcet Winner). Note that existing dueling bandit
algorithms, that satisfy a non-asymptotic Condorcet regret
bound, suffer an additional constant of order ∆−2

min (Bengs
et al., 2021), which implies a worst-case regret of order
O(T 2/3) when ∆min → 0. The simple elimination algo-
rithm below solves this drawback and depends only on ∆−1

min

but at the cost of a suboptimal quadratic dependence in the
number of arms K. Despite our efforts, we could not avoid
this suboptimal factor by following the classical stochas-
tic dual bandit analysis. In the following sections, we will
show how to easily reach the optimal dependence in both
∆min and K connecting the dueling bandit (DB) problem
to standard MAB.

Main Ideas: Algorithm RR-DB The high-level idea of
Algorithm 1 is to sequentially compare arms in a round-
robin fashion and eliminate arms when they are significantly
suboptimal compared to any other arm. Typically, after
t rounds, a suboptimal arm k has been compared at least
t/K times with the Condorcet winner. Denoting by ∆k

its suboptimality gap, the arm is eliminated after at most
tk rounds, where (tk/K)−1/2 ≈ ∆k. At that time the
arm has been played tk/K times, yielding a regret of order
(tk/K)×∆k ≈ (K/∆2

k)×∆k = K/∆k. Summing over
the arms yields a final regret of order O(K2/∆min).

Algorithm 1 RR-DB (Near Optimal DB)
1: input: Arm set: [K], Confidence parameter δ ∈ (0, 1)
2: init: Active arms: A1 := [K], nij(t)← 0, ∀i, j ∈ [K]

3: for t = 1, 2, . . . , T do
4: Play (k+1,t, k−1,t) ∈ argmini,j∈At{nij(t− 1)}
5: Observe ot(k+1,t, k−1,t) = 1− ot(k+1,t, k−1,t)
6: for i, j ∈ At do
7: Define 1t(i, j) := 1

{
{i, j} = {k−1,t, k+1,t}

}
and

nij(t) :=
∑t
s=1 1t(i, j)

p̂ij(t) := 1
nij(t)

∑t
s=1 ot(i, j)1t(i, j)

uij(t) := p̂ij(t) +
√

log(Kt/δ)
nij(t)

where we assume x/0 = +∞.
8: end for
9: At+1 := At\

{
i ∈ At : ∃j ∈ At s.t. uij(t) <

1
2

}
.

10: end for

Without loss of generality assume the Condorcet winner
k(cw) = 1, and denote ∆i = ∆(1, i), ∀i ∈ [K] \ {1}.
Theorem 1 (Regret analysis of RR-DB (Alg. 1) for Stochas-
tic Preferences against Condorcet Winner). Assume any in-
stance of stochastic dueling bandit problem with Condorcet
Winner k(cw) = 1. Let δ ∈ (0, 1/2), for any T ≥ 1, the
regret of Algorithm 1 is upper-bounded with probability at
least 1− δ as

R(cw)
T ≤ K2

2
+ 4

K∑
i=2

(i− 1) log(KT/δ)

∆i
.

Further, when T ≥ K2, in the worst case (over the problem
instance, i.e. ∆2, . . . ,∆K), the regret of Algorithm 1 can
be upper bounded as:

R(cw)
T ≤ 2K

√
T log(KT/δ).

Remark 1. In particular, our regret analysis shows that, ex-
cept a logarithmic factor, the regret bound of RR-DB (Alg. 1)
is off only by a multiplicative factor of K, as follows from
the known Ω(

∑K
k=1

log T
∆k

) Condorcet winner regret lower
bound (Yue et al., 2012; Komiyama et al., 2015).

The proof is postponed to Appendix A.

4. Key Idea: Reducing DB to MAB
We now present a simple reduction from a multi-armed
bandit algorithm to a dueling bandit one. The latter was
already proposed by Saha & Gupta (2022) to show worst-
case guarantees and by Ailon et al. (2014) for utility based
dueling bandits only. We recall it here since it is central to
our analysis and we believe that it is of important interest
for the dueling bandit community that usually uses signifi-
cantly different algorithms and analysis than the ones from
standard multi-armed bandits.

The main idea is to apply a multi-armed bandit algorithm
independently to two players i ∈ {−1,+1} respectively
with losses defined for any k ∈ [K] and t ∈ [T ], by

`i,t(k) := ot(k−i,t, k) ,

where ot(k, k′) = 1 − ot(k
′, k) for 1 < k′ ≤ K fol-

lows a Bernoulli with parameter Pt(k, k′) (and we assume
ot(k, k) = 1/2).

We show below that any MAB regret upper-bound satisfied
byMi can be transformed into a DB regret upper-bound.

Theorem 2 (DB Regret analysis of Alg. 2 in terms of the
regret of the underlying MAB instances (M−1,M+1)).
Define for i ∈ {−1, 1} and k ∈ [K] by

Ri,T (k) :=

T∑
t=1

`i,t(ki,t)− `i,t(k)
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Algorithm 2 Reduction from DB to MAB
1: input: Arm set: [K], two instancesMi of an algorithm

for MAB, i ∈ {−1,+1}.
2: for t = 1, 2, . . . , T do
3: for i ∈ {+1,−1} do
4: receive pi,t as suggested byMi

5: sample ki,t from the distribution pi,t
6: end for
7: Play duel (k+1,t, k−1,t).
8: Observe preference feedback ot(k+1,t, k−1,t) and set

ot(k−1,t, k+1,t) = 1− ot(k+1,t, k−1,t).
9: FeedMi with loss `i,t(k) := ot(k−i,t, ki,t) for i ∈

{−1,+1}.
10: end for

the regret achieved by algorithmMi. Then, the expected
regret (1) of Algorithm 2 for dueling bandits can be decom-
posed as

E
[
RT (k)

]
=

1

2
E
[
R−1,T (k) +R+1,T (k)

]
.

Proof. The proof follows from

E
[
`−1,t(k) + `+1,t(k)

]
= E

[
ot(k+1,t, k) + ot(k−1,t, k)

]
= E

[
Pt(k+1,t, k) + Pt(k−1,t, k)

]
= 2−E

[
Pt(k, k+1,t) + Pt(k, k−1,t)

]
and

E
[
`−1,t(k+1,t) + `+1,t(k−1,t)

]
= E

[
ot(k+1,t, k−1,t) + ot(k+1,t, k−1,t)

]
= 1 .

We conclude by summing over t = 1, . . . , T both equations
and by substituting them into the definition of the regret
RT (k) in (1).

Note that such a reduction can also be used to bound RT (k)
directly rather than its expectation. Saha & Gupta (2022) in-
deed use this reduction to show aO(

√
KT ) high-probability

regret upper-bound for adversarial dueling bandit. They also
obtain non-stationary regret bounds.

The main message of this paper is that this reduction can be
used to transpose many results from standard multi-armed
bandit to general dueling bandits. For instance, applying
a subroutine Mi which is robust to delays (Thune et al.,
2019; Zimmert & Seldin, 2020, e.g.,), one directly obtains a
dueling bandit with the same robustness guarantees.

As we said, this reduction is not new. However, to date,
it has only been considered in two specific contexts: the
adversarial setting with worst-case regret bounds of order
O(
√
KT ) and the utility-based setting. Since the losses

`i,t = ot(k−i,t, k) are not i.i.d. but depend on an adaptive
adversary which chooses k−i,t, one cannot use stochas-
tic bandit algorithms. And the dueling bandit community
usually needs to resort to more sophisticated algorithms
and arguments to obtain logarithmic regret bounds for Con-
dorcet stochastic dueling bandits. The only stochastic du-
eling bandit for which such a reduction was considered
(Ailon et al., 2014; Zimmert & Seldin, 2021, e.g.,) was the
utility based-dueling bandits, which is overly restrictive in
practice. That is, when the preference matrix if of the form
Pt(k, k

′) : (1+ut(k)+ut(k
′))/2 for some sequence of util-

ity vectors (ut)t≥1. Utility based dueling bandit are known
to be easily be reduced to two independent multi-armed
bandit problems (Ailon et al., 2014).

Our main contribution is to show that this reduction can
in fact be easily extended to the much weaker Condorcet
winner hypothesis. To do this, as we show in the next
sections, we simply apply the reduction with a best-of-both-
worlds multi-armed bandit algorithm. As we will see, this
recovers and improves the best existing upper bounds on the
Condorcet regret for dueling bandits.

5. Best-of-Both Dueling: Optimal Algorithm
for Stochastic and Adversarial DB

This section contains our main result, which extends the
best-of-both-worlds result from Zimmert & Seldin (2021)
to dueling bandits.Moreover, it allows us to improve the
best existing upper bound on the regret for stochastic and
corrupted dueling bandits. The main idea is to apply the
“reduction idea” of Algorithm 2 with the multi-armed bandit
algorithm (Online Mirror Descent with Tsallis regularizer)
of Zimmert & Seldin (2021).

Online Mirror Descent (or famously abbreviated as OMD)
is essentially a follow the regularized leader (FTRL) type al-
gorithm, for any general choice of regularizer (Srebro et al.,
2011; Lattimore & Szepesvári, 2020). The famous expone-
tial weight algorithm in online learning (Cesa-Bianchi &
Lugosi, 2006; Arora et al., 2012) (or EXP3 algorithm in
MAB (Auer et al., 2002b)) is a special instance of OMD
algorithm for (-ve) entropy based regularizer.

It is important to note that, our reduction analysis of Algo-
rithm 3 (see proof of Theorem 3) indicates that we could
have used any best-of-both algorithm of MAB as the un-
derlying blackbox algorithm, instead of OMD with Tsallis
regularizer (Zimmert & Seldin, 2021). For example, the
EXP3 based approach of Bubeck & Slivkins (2012) could
have been a potential MAB blackbox algorithm as well, but
they do not give optimal regret guarantees due to the use
of ‘entropic-regularizers’ which is not ideal for obtaining
the optimal instance (gap)-dependent stochastic regret for
MAB. Hence Zimmert & Seldin (2021) motivated the use
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of OMD based Tsallis-Inf algorithm for the best-of-both
MAB algorithm and our analysis of Theorem 3 shows that
the same works for the best-of-both DB analysis as well.

Of course, as for the classical adversarial multi-armed ban-
dits, the losses `i,t(k) = ot(k−i,t, k) cannot be observed for
all k ∈ [K]. Therefore, they are estimated in the algorithm
with the importance weight estimators

̂̀
i,t(k) =

{
`i,t(k)/pi,t(k) if k = ki,t

0 otherwise
. (3)

The resulted algorithm is described in Algorithm 3.

Algorithm 3 Versatile-DB (Best-of-Both DB)
1: input: Arm set: [K], Regularizers: (Ψt)t=1,2,...

2: init: L̂i,0 ← 0K for i ∈ {+1,−1}
3: for t = 1, 2, . . . do
4: choose pi,t = ∇(Ψt + I∆)∗(−L̂i,t−1),

(here ∆ denotes the K-simplex. Refer to Sec. 2 for
other notations)

5: For i ∈ {+1,−1}, sample ki,t from the distribution
(pi,t(1), . . . , pi,t(K))

6: Observe preference feedback ot(k+1,t, k−1,t)

7: Compute ̂̀i,t(k) for i ∈ {+1,−1} and k ∈ [K]
using (3)

8: update L̂i,t = L̂i,t−1 + ̂̀i,t
9: end for

Theorem 3 (Regret analysis of Versatile-DB (Alg. 3)
for Adversarial and Stochastic Preferences). For any se-
quence of preference matrices Pt, the pseudo-regret of Algo-
rithm 3 with Ψt(w) =

√
t
∑K
k=1(
√
wk −wk/2)/8 satisfies

for any T ≥ 1

RT := max
k∈[K]

E
[
RT (k)] ≤ 4

√
KT + 1.

Furthermore, if there exists a gap vector ∆ ∈ [0, 1]K with a
unique zero coordinate k∗ ∈ [K] and C ≥ 0 such that

RT ≥
1

2
E

[ T∑
t=1

∑
k 6=k∗

(
p+1,t(k)+p−1,t(k)

)
∆k

]
−C , (4)

the pseudo regret also satisfies

RT ≤
∑
k 6=k∗

4 log T + 12

∆k
+ 4 log T +

1

∆min

+
3

2

√
K + 8 + C.

where ∆min = mink 6=k∗ ∆k.

The proof is postponed to Appendix B. Note that the the-
orem largely follows from (and is itself highly similar to)

the best-of-both worlds regret-bound of Zimmert & Seldin
(2021, Theorem 1) for MAB. The proof is just a clever
combination of their MAB analysis with our black box re-
duction (Theorem 2). But we believe that the simplicity of
our approach is its strength that can benefit the community
of dueling bandits. As we will see, several state-of-the-art
results of dueling bandits can be simultaneously improved
as a direct consequence of this theorem, including the order
optimal regret bounds for stochastic DB against condorcet
winner or DB with adversarial corruption, as discussed in
Sec. 6.1 and 6.2 respectively.

Note that for simplicity, we restricted ourselves to impor-
tance weighted estimators (3). By using more sophisticated
variance reduced estimators, as in Zimmert & Seldin (2021),
the multiplicative constants can be reduced. Furthermore,
similar to Zimmert & Seldin (2021), the result holds only for
the pseudo-regret and not for the true regret. Auer & Chiang
(2016) have indeed proven that no optimal adversarial and
stochastic high probability regret bounds can be obtained
simultaneously for standard stochastic bandits. The learner
must pay suboptimal logarithmic factors. The result can be
extended to dueling bandits.

It is worth to emphasize that this is the first best-of-both
worlds regret bound for general dueling bandits (the stochas-
tic bound follows from the choice C = 0, see Sec 6.1).
Zimmert & Seldin (2021, Cor. 10) obtain a similar result for
the very same algorithm but for utility based dueling bandits
only.

Remark 2. Note that a single sub-routine of OMD to opti-
mize the weights is actually enough to get the same regret
guarantee. To do so, one samples both k−1,t and k+1,t

independently from the same distribution pt = ∇(ψt +

I∆)∗(−L̂t−1). Here, L̂t =
∑t
s=1

̂̀
s ∈ RK+ and the impor-

tance weight estimator are defined for all k ∈ [K] by

̂̀
t(k) =

1

2

(̂̀−1,t(k) + ̂̀+1,t(k)
)
.

Noting that E[̂̀t(k)] = E
[
Pt(k−1,t, k) + Pt(k+1,t, k)

]
/2

and E
[∑K

k=1 pt(k)̂̀t(k)
]

= E
[
Pt(k−1,t, k+1,t) +

Pt(k+1,t, k−1,t)
]
/2 = 1/2, the proof follows similarly to

the other one. Though the regret upper-bound is exactly
the same, we believe that this version might lead to better
performance because the two players share information.

6. Improvements Over Existing Dueling
Bandit Results

Also our approach and analysis is rather simple, it allows to
outperform the best existing regret-upper bounds for stochas-
tic dueling bandits with or without corruption. We believe
that the dueling bandit community will benefit from this
reduction and that it may be applied to a wider scope such
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as to deal with non-stationarity, delays, or non-standard
feedbacks (graphs) for which many results already exist in
standard multi-armed bandits.

6.1. Stochastic dueling bandits with Condorcet winner

In stochastic dueling bandits, the preference matrices Pt
are fixed over time Pt = P for all t ≥ 1. Under the
Condorcet winner assumption there exists k(cw) ∈ [K]
such that P (k(cw), k) > 1

2 for all k 6= k(cw). Then, the
suboptimality gaps of all actions k ∈ [K] are defined as
∆k := P (k(cw), k) − 1

2 . Remarking that in this case the
self-bounding assumption (4) is satisfied with C = 0, since

RT =
1

2

T∑
t=1

E
[
Pt(k

(cw), k+1,t) + Pt(k
(cw), k−1,t)− 1

]
=

1

2

T∑
t=1

E
[
∆k+1,t + ∆k−1,t

]
=

1

2

T∑
t=1

E
[ ∑
k 6=k(cw)

(p−1,t + p+1,t)∆k

]
,

we get the following corollary from Theorem 3.

Corollary 1 (Regret analysis of Versatile-DB (Alg.
3) for Stochastic Preferences against Condorcet Winner).
For stochastic dueling bandits with Condorcet winner, the
pseudo-regret of Algorithm 3 with well-chosen parameters
satisfies

RT ≤
∑

k 6=k(cw)

4 log T + 12

∆k
+4 log T+

1

∆min
+

3

2

√
K+8 .

Note that the above bound is the first pseudo-regret upper-
bound for stochastic dueling bandit that does not suffer from
a ∆−2

min dependence under the Condorcet winner assumption,
without a quadratic dependence on the number of arms, K,
which is a concern when it comes to dealing with large-
scale problems. For instance, RUCB (Zoghi et al., 2014a)
satisfies a regret bound of order O(K log(T )∆−2

min +K2),
MergeRUCB (Zoghi et al., 2015b) has linear dependence
on K but suffers O(K log(T )∆−2

min). Finally, RMED from
(Komiyama et al., 2015) is asymptotically optimal when
T →∞ but also suffers from large constant terms (K2 and
∆−2

min) and is only valid for K →∞. We refer the reader to
(Bengs et al., 2021) for existing results on stochastic dueling
bandits.

6.2. Corrupted regime

Here, we consider the stochastic dueling bandit problem
in the presence of adversarial corruptions. The robustness
to adversarial corruption has known recent progress in the
MAB setting (Gupta et al., 2019; Lykouris et al., 2018;

Zimmert & Seldin, 2021) and has recently been extended to
the DB framework (Agarwal et al., 2021). The preference
matrices are fixed Pt = P for all t ≥ 1 and we assume
the existence of a Condorcet winner k(cw). Furthermore,
an adversary may corrupt the outcomes of some duels by
replacing the results of the duels ot(k, k′) with corrupted
ones õt(k, k′). At the end of each round, the player only
observes õt(k+1,t, k−1,t). The objective of the player is
to minimize the pseudo-regret R̄T under a bounded total
amount of corruption

C :=

T∑
t=1

∑
k 6=k(cw)

∣∣ot(k(cw), k)− õt(k(cw), k)
∣∣.

We show here that similarly to what happens for standard
Multi-armed bandits in Zimmert & Seldin (2021), this cor-
rupted setting is a special case of the self-bounding assump-
tion (4). Indeed, defining P̃t the corrupted preference matri-
ces by P̃t(k, k′) = E

[
õt(k, k

′)
]

and the corrupted pseudo-
regret

R̃T (k) =
1

2
E

[ T∑
t=1

P̃t(k, k+1,t) + Pt(k, k−1,t)− 1

]
,

we have

R̃T (k(cw))

=
1

2
E

[ T∑
t=1

õt(k
(cw), k+1,t) + õt(k

(cw), k−1,t)− 1

]

≥ 1

2
E

[ T∑
t=1

ot(k
(cw), k+1,t) + ot(k

(cw), k−1,t)− 1

]
− C

= RT − C

=
1

2

T∑
t=1

E
[ ∑
k 6=k(cw)

(p−1,t + p+1,t)∆k

]
− C .

Therefore, the corrupted regime satisfies the self-bounding
assumption (4). Applying Theorem 3 on the corrupted
regime and using that we also have RT (k(cw)) ≤
R̃T (k(cw)) + C, we get the following corollary.

Corollary 2 ([Regret analysis of Versatile-DB (Alg. 3)
for Stochastic Preferences against Condorcet Winner with a
maximum adversarial CorruptionC). For stochastic dueling
bandits with Condorcet winner and adversarial corruptions
(bounded by C), the pseudo-regret RT Algorithm 3 is upper-
bounded as

RT ≤
∑

k 6=k(cw)

4 log T + 12

∆k
+ 4 log T

+
1

∆min
+

3

2

√
K + 8 + 2C.
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Although Corollary 2 easily follows from Theorem 3 which
itself easily follows from Theorem 1 of Zimmert & Seldin
(2021), the latter result significantly improves upon the re-
cent results on dueling bandit with corruptions obtained by
Agarwal et al. (2021). Indeed, the latter provide for the same
setting and a significantly more sophisticated procedure a
high-probability regret bound of order

O

K2C

∆min
+

∑
k 6=k(cw)

K2

∆2
k

log
( K

∆k

)
+

∑
k 6=k(cw)

log T

∆k

 .

As often in the dueling bandit literature, it suffers from both
a quadratic dependence on the number of actions and ∆−1

min.
Furthermore, our regret bound is sublinear in T as soon as
the corruption level is o(T ) while Agarwal et al. (2021) can
only afford o(∆minT/K

2).

Moreover, Zimmert & Seldin (2021) also provide an
upper-bound for stochastic bandits with adversarial cor-

ruption. The latter is of order O

(∑
k 6=k(cw)

log T
∆k

+√
C
∑
k 6=k(cw)

log T
∆k

)
, which seems to outperform our

bound when C is large. The difference is since they upper-
bound the corrupted regret R̃T (k(cw)) and not R̄T .

7. Experiments
Algorithms. We compared the performances of the follow-
ing algorithms: 1. VDB: Our proposed Versatile-DB
(Alg. 3) algorithm. 2. RUCB: The algorithm proposed in
Zoghi et al. (2014a) for K-armed stochastic dueling bandits
for CW regret. (We set the algorithm parameter α = 0.6).
3. RMED: Another algorithm for CW regret as proposed in
Komiyama et al. (2015). (We set the algorithm parameter
f(K) = 0.3K1.01 as suggested in their experimental evalu-
ation). 4.DTS: The double thompson sampling algorithm of
Wu & Liu (2016). (Here again we set the similar algorithm
parameter α = 0.5 as used in the experiments of Wu & Liu
(2016)). 5. REX3: As introduced in Gajane et al. (2015).
Note that their suggested optimal tuning parameters, i.e. the
uniform exploration rate γ as well as the learning rate η
requires the knowledge of problem dependent parameters τ
(see Thm. 1 of Gajane et al. (2015)) which are unknown to
the learner. We used T in place of τ henceforth.

Performance Measures. We report the average cumulative
regret (Eqn. (1)) of the algorithms averaged over 20 runs.

7.1. Stochastic Preferences

We compared their regret performance across the following
stochastic environments:

Constructing Preference Matrices (P). We use four dif-
ferent utility parameter θ = (θ1, . . . , θK) based preference

models where the underlying preference model is defined as
P (i, j) := θi

θi+θj
∀i, j ∈ [K]. The model is famously stud-

ied as BTL model or more generally Plackett-Luce model
(Saha & Gopalan, 2019b; Chen et al., 2018; Negahban et al.,
2017). Note this ensures P to have total-ordering (Yue &
Joachims, 2011; Falahatgar et al., 2017).

In particular we consider the following choices of θ: 1.
Trivial 2. Easy 3. Medium, and 4. Hard with their respective
θ parameters are given by: 1. Trivial: θ(1) = 1, θ(2 :
K) = 0.5. 2. Easy: θ(1 : bK/2c) = 1, θ(bK/2c + 1 :
K) = 0.5. 3. Medium: θ(1 : bK/3c) = 1, θ(bK/3c+ 1 :
b2K/3c) = 0.7, θ(b2K/3c + 1 : K) = 0.4. 4. Hard:
θ(i) = 1− (i−1)/K, ∀i ∈ [K]. Note for each instance the
best-arm is arm-1 and the optimal ordering on the arms is
(1 > 2 > . . .K). For the purpose of our experiments we set
K = 10. We also evaluated the algorithms on two general
10× 10 preference matrices Car and Hurdy as also used in
Niranjan & Rajkumar (2017); Saha & Gopalan (2018a).

Figure 1. Averaged cumulative regret over time

Regret vs Time. Fig. 1 shows the relative performances of
different algorithms with time. As follows from the plots, in
general VDB (Versatile-DB) outperforms the rest in all
instances, with DTS being closely competitive in some cases.
In terms of the problem hardness, as their names suggest too,
the Trivial and Easy instances are easiest to learn as the best-
vs-worst item preferences are well separated in these cases
and the diversity of the item preferences across different
groups are least. Consequently the algorithms yield slightly
more regret on instance-Medium due to higher preference
diversity, and the hardest instance being Hard where the
algorithms require maximum time to converge, though VDB
reaching the convergence fastest still.

7.2. Corrupted Preferences

We also evaluated the performances of algorithms in pres-
ence of corruption (Sec. 6.2). In particular, Fig. 2 and 3 re-
spectively shows the relative performances of the algorithms
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Figure 2. Averaged cumulative regret (20% corrupted feedback)

Figure 3. Averaged cumulative regret (40% corrupted feedback)

with 20% and 40% corrupted feedback (at each round, we
flip the winner feedback with that certain probability) re-
spectively on Medium and Hard Plackett-Luce instances.
As expected, the performances of all the algorithms decay
significantly with increasing degree of feedback-corruption,
however as before, VDB consistently performed best over
all the baselines and tend to converge the fastest among all.

7.3. Adversarial Preferences

In Fig. 4, we also studied the case of adversarial pref-
erences setup (as discussed in Thm. 3 or Sec. 5). The
following two plots show the superior performance of VDB
on two sequences of adversarial preferences for K = 10.
(1). Switching Best-Arm [Switch(500)]: Here we tweaked
Pts such that the best-arm changes after every 500 rounds,
and Random-Walk [RW(0.01)]: Here we generated the se-
quences of preferences Pt(i, j) for all pairs of arms (i, j) as
random walks with increment parameter±0.01. Any values
that fall outside [0, 1] are truncated back to [0, 1]. Both
these settings were considered in (Neu & Valko, 2014; Saha
et al., 2020; 2021) for generating adversarial sequences (of
rewards or preferences).

Figure 4. Avg. Regret for Adversarial preferences (K = 10)

8. Discussions
We studied the problem of Versatile Dueling
Bandits, which gives the first ‘best-of-both’ world result
for the problem of Dueling Bandits. The crux of our analy-
ses relies on a novel idea of decomposing the dueling bandit
regret into multiarmed bandit (MAB) regret by interpreting
the dueling preference feedback as a certain realization of
adversarial reward sequence. An important byproduct of
our best-of-both dueling analysis is, this gives the first order

optimal gap-dependent regret bound forK-armed stochastic
dueling bandits, closing the decade-long open problem of
tightness of ‘Condorcet dueling bandit regret’. Further we
also analyze the robustness of our algorithm under corrupted
preference feedback setting, which provably improves over
the state-of-the art corrupted dueling bandits algorithms.

Future Works. Proving the first best-of-both world result
for dueling bandits using our novel reduction idea is just a
first step towards exploring the possibility of understand-
ing how far this idea can be extended to apply existing
multiarmed bandits results to dueling bandits frameworks,
instead of putting individual and isolated efforts in devel-
oping dueling bandit algorithms, taking inspirations from
existing MAB generalizations. Some such extensions could
be to analyze dynamic dueling bandit regret under non-
stationary preferences (Wei & Luo, 2021; Chen et al., 2019;
Besbes et al., 2015), item non-availability (Neu & Valko,
2014; Kanade et al., 2009), delayed feedback (Vernade et al.,
2018; Pike-Burke et al., 2018; Thune et al., 2019), budget
constraints (Immorlica et al., 2019; Zhou & Tomlin, 2018;
Ding et al., 2013), or even the more general reinforcement
learning (RL) scenarios (Auer et al., 2009; Talebi & Mail-
lard, 2018; Ng et al., 2006), for which there are already well
established theory of works with MAB framework. Also
under what settings of Dueling Bandits, its corresponding
MAB counterpart based reductions are bound to fail?

Finally it is worth mentioning that, an ambitious (and broad)
objective along these line of thoughts is to understand the
connection between different learning scenarios to dueling
bandits, e.g. feedback graphs (Alon et al., 2015; 2017),
partial monitoring problems (Lattimore & Szepesvári, 2019;
Mannor et al., 2014; Lin et al., 2014), markov games (Xie
et al., 2020; Bai et al., 2020; Bai & Jin, 2020), etc. The
obvious motivation being to understand how far we can re-
engineer the existing results from related learning literature
to solve the online preference bandits problems.
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Hüllermeier, E. Preference-based online learning with
dueling bandits: A survey. J. Mach. Learn. Res., 22:7–1,
2021.

Besbes, O., Gur, Y., and Zeevi, A. Non-stationary stochastic
optimization. Operations research, 63(5):1227–1244,
2015.

Brost, B., Seldin, Y., Cox, I. J., and Lioma, C. Multi-dueling
bandits and their application to online ranker evaluation.
CoRR, abs/1608.06253, 2016.

Bubeck, S. and Slivkins, A. The best of both worlds:
Stochastic and adversarial bandits. In Conference on
Learning Theory, pp. 42–1. JMLR Workshop and Confer-
ence Proceedings, 2012.

Busa-Fekete, R., Szorenyi, B., Cheng, W., Weng, P., and
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Supplementary: Versatile Dueling Bandits: Best-of-both World
Analyses for Online Learning from Relative Preferences

A. Regret analysis of Algorithm 1
Theorem 1 (Regret analysis of RR-DB (Alg. 1) for Stochastic Preferences against Condorcet Winner). Assume any instance
of stochastic dueling bandit problem with Condorcet Winner k(cw) = 1. Let δ ∈ (0, 1/2), for any T ≥ 1, the regret of
Algorithm 1 is upper-bounded with probability at least 1− δ as

R(cw)
T ≤ K2

2
+ 4

K∑
i=2

(i− 1) log(KT/δ)

∆i
.

Further, when T ≥ K2, in the worst case (over the problem instance, i.e. ∆2, . . . ,∆K), the regret of Algorithm 1 can be
upper bounded as:

R(cw)
T ≤ 2K

√
T log(KT/δ).

Proof of Theorem 1. Let us denote by
uij(t) := p̂ij(t) + cij(t)

for any pair (i, j) and time t, where

cij(t) :=

√
log(Kt/δ)

nij(t)
,

and assume ∆2 ≤ ∆3 ≤ · · · ≤ ∆K without loss of generality. We will also assume the confidence bounds of Lem. 4 holds
good for all t ∈ [T ] and all pairs (i, j), which is shown to hold good with probability at least 1− δ. In particular, this implies
that the best arm cannot be eliminated, i.e., 1 ∈ At for all t ≥ 1.

We start by noting that if the worst arm K (since ∆K = maxKi=2 ∆i, arm-K gets maximally beaten by the CW) is played at
time t, it means uK1(t) ≥ 1

2 . However we also have,

uK1(t) = p̂K1(t) + cK1(t)

≤ pK1 + 2cK1(t) = 1/2−∆K + 2cK1(t),

where the inequality holds due to Lem. 4 and the last equality holds by noting pK1 = 1−p1K = 1−(1/2+∆K) = 1/2−∆K .

So uK1(t) > 1/2 can only hold good if cK1(t) > ∆K/2 which implies,

nK1(t) ≤ 4 log(Kt/δ)

∆2
K

. (5)

But by the our algorithm design since all the pairs are drawn in a round robin fashion, at any round t ∈ [T ], for any two
distinct pairs (i, j) and (i′, j′) that are in At note that

|nij(t)− ni′j′(t)| ≤ 1 . (6)

Thus the total regret incurred by Alg. 1 at rounds where K ∈ {k+1,t, k−1,t}, can be upper bounded as:

T∑
t=1

∑
k<K

1({k+1,t, k−1,t} = {k,K})∆K + ∆k

2

≤
K−1∑
k=1

nkK(T )∆K ≤ (K − 1)(1 + nK1(T ))∆K
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≤ (K − 1)
(

1 +
4 log(Kt/δ)

∆2
K

)
∆K

= (K − 1)
(

∆k +
4 log(Kt/δ)

∆K

)
.

Similarly, note for any i ∈ {2, 3, . . .K − 1}, we can upper bound the regret of rounds where i was played in the duel as:

T∑
t=1

∑
k<i

1({k+1,t, k−1,t} = {k, i})∆i + ∆k

2

≤
i−1∑
k=1

nki(T )∆i ≤ (i− 1)(1 + n1i(T ))∆i

≤ (i− 1)
(

∆i +
4 log(Kt/δ)

∆i

)
.

Thus we can bound the total regret of Algorithm 1 as:

T∑
t=1

K∑
i=2

i−1∑
k=1

1({k+1,t, k−1,t} = {k, i})∆i + ∆k

2

≤
K∑
i=2

(i− 1)
(

∆i +
4 log(Kt/δ)

∆i

)
(∆i≤1/2)

≤ K2

4
+ 4

K∑
i=2

(i− 1)
log(Kt/δ)

∆i

which concludes the first half of the proof. Further, to show the second part of the claim (analyzing worst-case gap-
independent regret bound of Algorithm 1), note that Eqn. (5) equivalently implies for any i ∈ [K] \ {1} and for any
t ∈ [T ]:

∆i ≤

√
4 log(Kt/δ)

ni1(t)
.

Hence we can alternatively upper bound the regret as:

RT =

K∑
i=2

i−1∑
k=1

nik(T )
∆i + ∆k

2
≤

K∑
i=2

i−1∑
k=1

nik(T )∆i

≤
K∑
i=2

i−1∑
k=1

nik(T )

√
4 log(KT/δ)

ni1(T )

(a)

≤ 2

K∑
i=2

i−1∑
k=1

√
nik(T ) log(KT/δ)

(b)

≤ 2

√√√√K2

K∑
i=2

i−1∑
k=1

nik(T ) log(KT/δ)

≤ 2K
√
T log(KT/δ) ,

where (a) follows from the observation of Eqn. (6) which implies ni1(T ) ≥ nik(T ) when T ≥ K2 and (b) from Jensen’s
inequality and

∑K
i=2(i− 1) ≤ K2/2.
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Lemma 4. For any δ ∈ (0, 1/2). Then, with probability at least 1− δ, for any pair i, j ∈ [K] and any time t ∈ [T ]

p̂ij(t)− cij(t) ≤ pij ≤ p̂ij(t) + cij(t), ∀t ∈ [T ],

where cij(t) :=
√

log(Kt/δ)
nij(t)

.

Proof. Let us denote by uij(t) := p̂ij(t) + cij(t) and `ij(t) := p̂ij(t)− cij(t). Note the inequality holds trivially at round
t, for any pair (i, j) for which nij(t) = 0 since in these cases `ij(t) ≤ 0 and uij(t) ≥ 1.

Now consider any pair (i, j) and round t ∈ [T ] such that nij(t) > 0. Note in this case by Hoeffding’s Inequality:

Pr

(
|pij − p̂ij(t)| >

√
ln(Kt/δ)

nij(t)

)
≤ 2e

−2nij(t)
ln(Kt/δ)
nij(t) =

2δ2

K2t2
≤ δ

K2t2
.

Taking union bound over all
(
K
2

)
pairs and time t ∈ [T ] we get:

Pr

(
∃i, j ∈ [K], t ∈ [T ] s.t. |pij − p̂ij(t)| >

√
ln(Kt/δ)

nij(t)

)

≤
T∑
t=1

K∑
i=2

i∑
j=1

δ

K2t2
≤
∞∑
t=1

δ

2t2
≤ δπ2

12
≤ δ,

where in the second last inequality we used
∑∞
t=1

1
t2 <

π2

6 . This concludes the claim.

B. Regret Analysis of Alg. 3
Theorem 3 (Regret analysis of Versatile-DB (Alg. 3) for Adversarial and Stochastic Preferences). For any sequence
of preference matrices Pt, the pseudo-regret of Algorithm 3 with Ψt(w) =

√
t
∑K
k=1(
√
wk − wk/2)/8 satisfies for any

T ≥ 1
RT := max

k∈[K]
E
[
RT (k)] ≤ 4

√
KT + 1.

Furthermore, if there exists a gap vector ∆ ∈ [0, 1]K with a unique zero coordinate k∗ ∈ [K] and C ≥ 0 such that

RT ≥
1

2
E

[ T∑
t=1

∑
k 6=k∗

(
p+1,t(k) + p−1,t(k)

)
∆k

]
− C , (4)

the pseudo regret also satisfies

RT ≤
∑
k 6=k∗

4 log T + 12

∆k
+ 4 log T +

1

∆min

+
3

2

√
K + 8 + C.

where ∆min = mink 6=k∗ ∆k.

Proof of Theorem 3. The analysis follows from carefully combining our reduction (Theorem 2) with Theorem 1 of (Zimmert
& Seldin, 2021) for MAB to both of the players. Indeed, for each player i ∈ {−1, 1}, Algorithm 3 chooses ki,t by following
the decisions of Tsallis-INF (Zimmert & Seldin, 2021, Alg. 1) with α = 1/2, symmetric regularization, learning rate
ηt = 4/

√
t and losses `i,t estimated in (3) with standard importance sampling (IW).

Adversarial regime A direct application of Theorem 1 of (Zimmert & Seldin, 2021), upper-bounds the pseudo-regret for
each player i ∈ {−1, 1} as

max
k∈[K]

E
[
Ri,T (k)

]
≤ 4
√
KT + 1 .

Combining the about bounds with the reduction from MAB to DB (Theorem 2) yields the adversarial pseudo-regret
upper-bound

E
[
RT (k)

]
=

1

2
E
[
R−1,T (k) +R+1,T (k)

]
≤ 4
√
KT + 1.
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Adversarial regime with a self-bounding constraint Our self-bounding constraint is slightly different from that of
(Zimmert & Seldin, 2021), since it involves both players simultaneously. This is necessary so that our gap vector ∆ can
recover the standard suboptimality gaps used in stochastic dueling bandits. Thus, we cannot directly combine their result
with our black-box reduction in this case. However, the proof largely follows their analysis, except that the upper-bounds
on the regret of both players must be combined in the middle of their analysis, just before they apply their self-bounding
constraint assumption. Thus, we give here only the modification to the proof of their Theorem 1.

Following their proof of Thm. 1 until their pseudo-regret bound at the top of p. 23, we get for each player i ∈ I := {−1,+1}:

E
[
Ri,T (k)] ≤

∑
k 6=k∗

(
T∑
t=1

√
E[pi,t(k)]
√
t

+

T∑
t=T0+1

E[pi,t(k)]

4
√
t

)
+M ,

where M :=
√
T0 + 3

4

√
K + 15 + 14K log(T ) and T0 := d∆−2

min/4e. Together with Theorem 2 and taking the max over k,
RT is thus upper-bounded by

1

2

∑
i∈I

∑
k 6=k∗

(
T∑
t=1

√
E[pi,t(k)]√

t
+

T∑
t=T0+1

E[pi,t(k)]

4
√
t

)
+M .

Now, applying the self-bounding property (4) we get for any λ ∈ [0, 1]

RT ≤ RT + λ

(
RT −

1

2
E

[ T∑
t=1

∑
k 6=k∗

(
p+1,t(k) + p−1,t(k)

)
∆k

]
+ C

)
Thus, combined with the previous bound using 1 + λ ≤ 2

RT ≤
1

2

∑
i∈I

∑
k 6=k∗

(
T∑
t=1

(
2
√
E[pi,t(k)]
√
t

− λ∆kE[pi,t]

)
+

T∑
t=T0+1

E[pi,t(k)]

2
√
t

)
+ 2M + λC .

≤
∑
k 6=k∗

(
T0∑
t=1

max
z≥0

{2
√
z√
t
− λ∆kz

} T∑
t=T0+1

max
z≥0

{2
√
z + 1

2z√
t

− λ∆iz
})

+ 2M + λC

Now, we are back with the same upper-bound (Zimmert & Seldin, 2021) have in the middle of their page 23. Following
their analysis by solving the optimization problems, summing over t, and optimizing λ concludes.


