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Abstract
We study the problem of dynamic regret mini-
mization in K-armed Dueling Bandits under non-
stationary or time-varying preferences. This is an
online learning setup where the agent chooses a
pair of items at each round and observes only a
relative binary ‘win-loss’ feedback for this pair
sampled from an underlying preference matrix
at that round. We first study the problem of
static-regret minimization for adversarial pref-
erence sequences and design an efficient algo-
rithm with Õ(

√
KT ) regret bound. We next

use similar algorithmic ideas to propose an effi-
cient and provably optimal algorithm for dynamic-
regret minimization under two notions of non-
stationarities. In particular, we show Õ(

√
SKT )

and Õ(V
1/3
T K1/3T 2/3) dynamic-regret guaran-

tees, respectively, with S being the total num-
ber of ‘effective-switches’ in the underlying pref-
erence relations and VT being a measure of
‘continuous-variation’ non-stationarity. These
rates are provably optimal as justified with match-
ing lower bound guarantees. Moreover, our pro-
posed algorithms are flexible as they can be easily
‘blackboxed’ to yield dynamic regret guarantees
for other notions of dueling bandits regret, includ-
ing condorcet regret, best-response bounds, and
Borda regret. The complexity of these problems
have not been studied prior to this work despite
the practicality of non-stationary environments.
Extensive simulations corroborate our results.

1. Introduction
The problem of Dueling-Bandits has gained much attention
in the machine learning community (Yue et al., 2012; Zoghi
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et al., 2014b; 2015). This is an online learning framework
that generalizes the standard multi-armed bandit (MAB) set-
ting (Auer et al., 2002a; Agrawal & Goyal, 2012; Lattimore
& Szepesvári, 2018; Audibert & Bubeck, 2010; Kalyanakr-
ishnan et al., 2012) by querying relative preference feedback
of actively chosen item pairs instead of an absolute feed-
back for a single item. More formally, in dueling bandits,
the learning proceeds in rounds: At each round, the learner
selects a pair of arms and observes stochastic preference
feedback of the winner of a comparison (duel) between the
selected arms. The objective of the learner is to minimize the
regret with respect to a (or a set of) ‘best’ arm(s) in hindsight.
Towards this, several algorithms have been proposed (Ailon
et al., 2014; Zoghi et al., 2014a; Komiyama et al., 2015;
Gajane et al., 2015). Due to the inherent exploration-vs-
exploitation tradeoff of the learning framework and several
advantages of preference feedback (Bengs et al., 2021; Yue
& Joachims, 2009), many real-world applications can be
modeled as dueling bandits, including movie recommenda-
tions, retail management, search engine optimization, and
job scheduling, etc.

While most existing works have studied the dueling ban-
dit problem in a stochastic setting where the underlying
preferences are assumed to be fixed over time, it is often
unjustified in reality. Specifically, depending on the time,
season, demographics, occasions, etc., the underlying prefer-
ences may often change over time. E.g., a recommendation
system must consider that a user’s preferred list of items
(videos) depends on factors such as the time of the day and
seasonal needs. Similarly, the relevance of a search query
changes with the location and market influence. It is there-
fore more reasonable to assume adversarial feedback models
for dueling bandits where, unlike the stochastic setting, the
underlying preference matrices can vary over time. This
naturally leads to the following question.

Q.1: Can we design an efficient algorithm that is competi-
tive under adversarial changes in the preference model?

Unfortunately, except for some handful of attempts (Ailon
et al., 2014; Gajane et al., 2015), which are restricted to
a very special class of linear-score based preference struc-
tures (see details in Sec. 1.1), none of the existing dueling
bandits algorithms can guarantee an order optimal O(

√
T )
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regret rate against any fixed benchmark (competitor) for any
arbitrary adversarial sequence of preference matrices.

More importantly, drawing inspiration from the necessity
of analyzing non-stationary preference models, a more am-
bitious and practical regret objective is to evaluate the per-
formance of learning algorithms in terms of how quickly
they adapt to a new environment, i.e., where they are actu-
ally compared against a dynamic benchmark based on the
underlying preferences instead of a single fixed benchmark
considered above (see Q.1). This problem is often studied
as dynamic regret minimization in standard multiarmed ban-
dits (MAB) literature (Besbes et al., 2014; 2015; Auer et al.,
2002b; Luo et al., 2018; Chen et al., 2019; Wei & Luo, 2021;
Cheung et al., 2019a;b), where the learner gets to observe
the absolute reward upon pulling an arm. The next, and
perhaps a daunting, question to ask is

Q.2: How can we design efficient and optimal dynamic
regret algorithms for the dueling bandits setup?

Surprisingly, despite dueling bandits being a significantly
well studied extension of MAB, existing literature still lacks
efficient algorithms for dynamic regret minimization in this
framework. To the best of our knowledge, we are the first to
extend the stochastic K-armed dueling bandit problem to
non-stationary preferences (a.k.a. NSt-DB).

Parameters. Item set: [K]
For t = 1, 2, . . . , T , the learner:

Chooses (k+1,t, k−1,t) ∈ [K]× [K]
Observes ot := I{k+1,t � k−1,t} ∼ Ber(Pt(k+1,t, k−1,t))
Incurs rt := 1

2 (Pt(i
∗
t , k+1,t) + Pt(i

∗
t , k−1,t)− 1); i∗t ∈ [K]

Figure 1: Setting of Non-Stationary DB (NSt-DB)

Problem definition (informal). Let [K] be the item (ac-
tion) set and Pt ∈ [0, 1]K×K denote the underlying prefer-
ence matrix at time t. The learner is allowed to choose two
actions {k+1,t, k−1,t} ⊆ [K] at time t, upon which it ob-
serves an outcome ot ∼ Ber(Pt(k+1,t, k−1,t)) and incurs a
regret rt := 1

2 (Pt(i
∗
t , k+1,t) + Pt(i

∗
t , k−1,t)− 1) w.r.t. any

‘good arm’ i∗t ∈ [K] (see Fig. 1). The goal is to provide op-
timal dynamic-regret algorithms under different ‘measures
of non-stationarity’ (see details in Sec. 2).

Contributions. Our specific contributions are:

• As motivated in Q.1, we first study the ‘static dueling
bandit regret’ (see Sec. 2 for definition) w.r.t. any
fixed arm i∗ ∈ [K] (or more generally any distribu-
tion π∗ ∈ ∆K) for adversarially chosen preferences.
Our algorithm (Alg. 1) guarantees an Õ(

√
KT ) high

probability regret bound (Thm. 3.3, Rem. 3.4, Sec. 3).
This is one of our primary contributions that shows how
techniques from standard EXP3 algorithm (Auer et al.,

2002b) can be borrowed to establish high-probability
Õ(
√
KT ) regret bounds for dueling bandits against

any fixed benchmark. Sec. 3.2 details the main ideas
behind the analysis. The result is not only useful on its
own but also serves as the basic building block for our
subsequent non-stationary algorithms.

• Towards addressing the NSt-DB problem (see Q.2),
our second (and main) contribution lies in analyzing
Non-Stationary Dueling Bandits. We design an algo-
rithm (Alg. 2) with high probability dynamic-regret
guarantees for two measures of non-stationarities:
‘Switching-Variation’ S and ‘Continuous-Variation’
VT (Definitions in Sec. 2). More precisely, the upper
bound on the dynamic regret of our proposed algorithm
are shown to be O(

√
SKT ) and O(V

1/3
T K1/3T 2/3),

respectively (see Thm. 4.1, 4.4, Sec. 4).
• The regret optimality of our algorithms is justified by

proving matching lower bound guarantees for dynamic-
regret under both the notions of non-stationarities
(Thm. 5.1, 5.2, Sec. 5).

• We further show the versatility of the proposed al-
gorithm, which can be modularized and applied as a
blackbox recipe to more general forms of dynamic re-
grets, including one that we analyzed above as well as
Borda score based dynamic regret (Sec. 6).

• Finally, our theoretical analysis is corroborated with
detailed empirical evaluations to compare the perfor-
mance of the proposed techniques over state-of-the-art
dueling bandit algorithms (Sec. 7).

1.1. Related Works

The problem of regret minimization in stochastic multi-
armed bandits (MAB) is very well-studied in the on-
line learning literature (Auer et al., 2002b; Lattimore &
Szepesvári, 2018; Audibert & Bubeck, 2010) where the
learner pulls a single arm per round and sees a noisy sam-
ple of the absolute reward feedback for this arm. A well-
motivated generalization of MAB framework is extending
it to non-stationary environments where the underlying re-
ward model changes with time (Besbes et al., 2015; Auer
et al., 2002b) and the goal of the learner is to minimize
the dynamic regret w.r.t. the ‘best-performing’ benchmark
(arm) at each round. This problem is well-studied in the
online learning community for the standard K-item MAB
(Besbes et al., 2014; 2015; Auer et al., 2002b), and the non-
stationary contextual bandits (Chen et al., 2019; Wei & Luo,
2021) under different non-stationarities (Luo et al., 2018).

On the other hand, the relative feedback variants of the
stochastic MAB problem have seen a widespread resur-
gence in the form of Dueling Bandits over the last two
decades. Several algorithms have been proposed to address
regret minimization in dueling bandits for different notions
of ‘best performing’ arms depending on the underlying pref-
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erence models, e.g. Condorcet, Borda, and Copeland winner
(Yue et al., 2012; Szörényi et al., 2015; Zoghi et al., 2014b;
2015; Wu & Liu, 2016; Dudı́k et al., 2015; Saha & Gopalan,
2019a; 2020). Recent works have also extended the pairwise
preference feedback model to include subset-wise prefer-
ences (Sui et al., 2017; Brost et al., 2016; Saha & Gopalan,
2018; 2019b; Ren et al., 2018).

Ailon et al. (2014) first studied the dueling bandit problem
for adversarial setup and introduced the famous sparring
EXP3 idea (without regret guarantees) which was later used
in many follow-up works for proving regret guarantees on
dueling bandits in adversarial environments (Gajane et al.,
2015; Saha et al., 2021; Sui et al., 2017). However, un-
like us, they do not consider the dynamic regret objective
w.r.t. a time-varying benchmark i∗t . The settings in Ailon
et al. (2014) and (Gajane et al., 2015) are restricted to only
utility based preferences where each item has a scalar util-
ity at each time. This entails a complete ordering between
the items at each step, which only covers a small subclass
of the general [K] × [K] preference matrices. Addition-
ally, Gajane et al. (2015) assume that the feedback includes
not only the winner but also the difference in the utilities
between the winning and losing item, which is more simi-
lar to MAB feedback and far from our 0/1 one bit prefer-
ence feedback. Saha et al. (2021) did consider the dueling
bandit setup for general adversarial preferences, but they
measure (static) regret in terms of Borda-scores for which
the fundamental regret performance limit is shown to be
Ω(K1/3T 2/3). This measure of regret is very different from
our preference-based regret objective (see Sec. 2). Dudik
et al. (2015) adapted sparring-EXP3 to the contextual duel-
ing bandit setup where the learner competes against the best
policy from a given policy class Π. Their proposed sparring-
EXP4 algorithm is shown to give a Õ(

√
KT log |Π|) rate,

however the algorithm is computationally intractable for
arbitrary context sets. To the best of our knowledge, we
are the first to design efficient and optimal dynamic regret
algorithms for ‘non-stationary dueling bandits’.

2. Problem Formulation
Notations. Let [n] := {1, 2, . . . n} for any n ∈ N. Given
a set A, for any a, b ∈ A, we denote by a � b the event that
a is preferred over b. ∆K := {p ∈ [0, 1]K | ∑K

i=1 pi =
1, pi ≥ 0,∀i ∈ [K]} denotes the K-simplex.

Setting. We assume a decision space of K arms denoted by
A := [K]. At each round t, the task of the learner is to select
a pair of actions (k+1,t, k−1,t) ∈ [K] × [K], upon which
a preference feedback ot ∼ Ber(Pt(k+1,t, k−1,t)) is re-
vealed to the learner according to the underlying preference
matrix Pt ∈ [0, 1]K×K (chosen adversarially), such that
the probability of k+1,t being preferred over k−1,t is given
by P (ot = 1) := P (k+1,t � k−1,t) = Pt(k+1,t, k−1,t),

and hence P (ot = 0) := P (k−1,t � k+1,t) = 1 −
Pt(k+1,t, k−1,t).

Measures of Non-Stationarities. We measure the dynamic
regret w.r.t. the following notions of non-stationarity:

1. Switching-Variation S :=
∑T
t=2 1[Pt 6= Pt−1].

2. Continuous-Variation:

VT :=

T∑
t=2

max
(a,b)∈[K]×[K]

|Pt(a, b)− Pt−1(a, b)|.

Objective (Static and Dynamic Regret). Assuming the
learner selects the duel (k+1,t, k−1,t) at round t, one can
measure its performance w.r.t. a single fixed arm i∗ ∈ [K]1

in hindsight by calculating the Static Regret:

SRT := max
i∗∈[K]

T∑
t=1

1

2
(Pt(i

∗, k+1,t) + Pt(i
∗, k−1,t)− 1) . (1)

We further study a stronger notion of dynamic regret with
respect to a time varying benchmark sequence jT =
(j1, j2, . . . , jT ), defined as:

DRT (jT ) :=

T∑
t=1

1

2
(Pt(jt, k+1,t) + Pt(jt, k−1,t)− 1) . (2)

Let rt(j) = 1
2 (Pt(j, k+1,t) +Pt(j, k−1,t)−1). The learner

competes against the ‘best-response’ of (k+1,t, k−1,t) at
time t if jt = j∗t = argmaxj∈[K] rt(j). On the other
hand, it is easy to see that if we set j∗t = j∗ =

argmaxj∈[K]

∑T
t=1 rt(j), we have DRT (jT ) = SRT . We

now proceed to describe our algorithms for Static and Dy-
namic regret minimization.

3. DEX3.P and Static Regret
This section describes our base algorithm DEX3.P and a
high-probability Static Regret upper bound on its regret with
respect to any fixed benchmark i∗ ∈ [K] (see SRT , Sec. 2).

3.1. DEX3.P Algorithm

Algorithm 1 presents the pseudocode for DEX3.P. It pits
two players against each other, each parallely running its
own copy of the standard EXP3 algorithm (Auer et al.,
2002b). This idea was introduced as the sparring technique

1Note that this is equivalent to maximizing the expected regret
w.r.t. any fixed distribution π∗ ∈ ∆K , i.e. when i∗ ∼ π∗. This
is because the regret objective is linear in the entries of π∗, so the
maximizer π∗ is always one hot.
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Algorithm 1 DEX3.P
1: Input: η > 0, γ, β ∈ (0, 1)
2: Set W+1,1(k) = W−1,1(k) = 1 for all k ∈ [K]
3: for t = 1, . . . , T do
4: for k ∈ [K] and i ∈ {+1,−1} do
5: pi,t(k) = (1− γ)

Wi,t(k)∑K
j=1Wi,t(j)

+ γ
K

6: end for
7: For i ∈ {+1,−1}, sample ki,t from the distribution

(pi,t(1), . . . , pi,t(K))
8: Observe preference feedback ot(k+1,t, k−1,t)
9: Compute ĝi,t(k) for i ∈ {+1,−1} and k ∈ [K]

using (3)
10: for k ∈ [K] and i ∈ {+1,−1} do
11: Wi,t+1(k) = Wi,t(k)eηĝi,t(k)

12: end for
13: end for

by Ailon et al. (2014), but without any regret guarantees
(see Sec. 1.1). We refer to these players as the row player
and the column player, and denote them by +1 and −1,
respectively.

As in EXP3, these players use weights, {W+1,t(k)}Kk=1

and {W−1,t(k)}Kk=1, to compute distributions over K
arms, p+1,t = (p+1,t(1), . . . , p+1,t(K)) and p−1,t =
(p−1,t(1), . . . , p−1,t(K)) (Line 5), from which their actions
are sampled (Line 7). We use k+1,t and k−1,t to denote the
arms chosen by the row and column player at time t. The
players then update their weights using the observed prefer-
ence feedback ot(k+1,t, k−1,t) that identifies the winner of
a duel between the chosen arms.

The row player considers r+1,t = ot(k+1,t, k−1,t) as its
reward at time t whereas the column player uses r−1,t =
1− ot(k+1,t, k−1,t). The weight update for each player is
similar to EXP3 (Line 11) and uses the following expression
as an importance-weighted estimate of the rewards. For
i ∈ {+1,−1},

ĝi,t(k) =

{
(ri,t + β)/pi,t(k) if k = ki,t

β/pi,t(k) otherwise.
(3)

The quantity β ∈ (0, 1) in the expression above prevents
ĝi,t(k) from becoming too large when pi,t(k)’s are small.
This is crucial for obtaining a high-probability regret guar-
antee (see proof of Lemma 3.1 in Appendix A.1).

As both players try to maximize their cumulative rewards,
they start putting a higher weight on arms that are more
likely to win against the choice made by the opponent. An
equilibrium is reached when both players choose the optimal
arm. The quantity γ ∈ (0, 1) in Line 5 ensures a minimum
exploration of all arms and encourages the players to reach
the optimal equilibrium strategy. Next, we establish a high-

probability static regret guarantee for DEX3.P.

3.2. Analysis: Static Regret Guarantee

Given the actions {k+1,t, k−1,t}Tt=1 taken by the players,
the total regret with respect to fixed action j ∈ [K] is defined
as:

SRT (j) =

T∑
t=1

Pt(j, k+1,t) + Pt(j, k−1,t)− 1

2
.

The central idea in our analysis is to decompose the total
regret into the regret incurred by the row (SR+1

T (j)) and the
column (SR−1

T (j)) player, defined as

SR+1
T (j) =

T∑
t=1

Pt(j, k−1,t)− Pt(k+1,t, k−1,t)

SR−1
T (j) =

T∑
t=1

Pt(j, k+1,t)− Pt(k−1,t, k+1,t).

It is easy to see that SRT (j) = 1
2

(
SR+1

T (j) + SR−1
T (j)

)
.

The next two lemmas establish high-probability upper
bounds on SR+1

T := maxj∈[K] SR+1
T (j) and SR−1

T :=

maxj∈[K] SR−1
T (j).

Lemma 3.1. Let η = 1
2

√
lnK
KT , β =

√
lnK
KT , and γ =

2ηK ≥ (1 + β)ηK. With probability at least 1− δ,

SR+1
T := max

j∈[K]
SR+1

T (j) = O(
√
KT ln(K/δ)).

Lemma 3.2. Let η, β, and γ be set as in Lemma 3.1. With
probability at least 1− δ,

SR−1
T := max

j∈[K]
SR−1

T (j) = O(
√
KT ln(K/δ))

The following regret bound on maxj∈[K] SRT (j) is now a
straightforward consequence of the two lemmas above.

Theorem 3.3 (Static-Regret of DEX3.P). Set η, β, γ as in
Lem. 3.1. Then with probability at least 1− 2δ

max
j∈[K]

SRT (j)[DEX3.P] = O

(√
KT ln

(
K

δ

))

Lemmas 3.1 and 3.2 have been proved in Appendix A. From
the perspective of each agent, the actions of other agents,
and hence their own rewards, are adaptively chosen by an
adversary. With this insight, one can borrow techniques
from the analysis of the standard EXP3 algorithm to estab-
lish the high-probability regret bound in Thm. 4.1.
Remark 3.4. The regret guarantee above has been written
in terms of any fixed (pure) action j ∈ [K] in hindsight.
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Algorithm 2 DEX3.S
1: Input: η > 0, α, γ, β ∈ (0, 1)
2: Set W+1,1(k) = W−1,1(k) = 1 for all k ∈ [K]
3: for t = 1, . . . , T do
4: for k ∈ [K] and i ∈ {+1,−1} do
5: pi,t(k) = (1− γ)

Wi,t(k)∑K
j=1Wi,t(j)

+ γ
K

6: end for
7: For i ∈ {+1,−1}, sample ki,t from the distribution

(pi,t(1), . . . , pi,t(K))
8: Observe preference feedback ot(k+1,t, k−1,t)
9: Compute ĝi,t(k) for i ∈ {+1,−1} and k ∈ [K]

using (3)
10: for k ∈ [K] and i ∈ {+1,−1} do
11: Wi,t+1(k) = Wi,t(k)eηĝi,t(k) + eα

∑K
j=1Wi,t(j)

12: end for
13: end for

However, the adversary can also play any fixed distribu-
tion over actions π∗ ∈ ∆K , and the same regret guarantee
will be valid against π∗. Consequently, this implies that
our algorithm achieves an Õ(

√
KT ) regret w.r.t. the Nash-

Equilibrium (a.k.a the Von-Neumann winner 2) of the aggre-
gated matrix 1

T

∑T
t=1 Pt, or even against the best response

π∗ := arg maxπ∈∆K
SRT (π)[DEX3.P].

With the base algorithm in place, we now modify DEX3.P
to obtain DEX3.S and derive high-probability dynamic re-
gret guarantees for this algorithm.

4. DEX3.S and Dynamic Regret
Competing against a fixed action in hindsight is an inter-
esting but modest goal. In this section, we consider the
dynamic regret objective DRT (jT ) defined with respect to
any sequence of actions jT = (j1, . . . , jT ) (see Section
2). It is clear that DRT (jT ) can be O(T ) in the worst
case unless one imposes further assumptions. Sections 4.1
and 4.2 respectively assume the ‘Switching-Variation’ and
‘Continuous-Variation’ model of non-stationarity (see Sec-
tion 2) to derive sub-linear dynamic regret guarantees.

To achieve these bounds, we propose DEX3.S, a variant
of DEX3.P. This algorithm uses the same procedure as
DEX3.P, except at Line 11, where it instead uses the fol-
lowing weight update rule:

Wi,t+1(k) = Wi,t(k)eηĝi,t(k) + eαWi,t.

Here, α ∈ (0, 1) is a user-specified hyper-parameter and
Wi,t :=

∑K
j=1Wi,t(j). Algorithm 2 presents this proce-

2Given a preference matrix P, a Von-Neumann winner of P ∈
[0, 1]K×K is defined to be a probability distribution π ∈ ∆K , such
that

∑n
i=1 π(i)P (i, b) ≥ 1/2, ∀b ∈ [K]. (see Eqn. 1, (Dudik

et al., 2015))

dure. We next move to the analysis of DEX3.S under the
two non-stationarity models.

4.1. Dynamic Regret Analysis of DEX3.S under
Switching-Variation S

As before, we write DRT (jT ) as DRT (jT ) =
1
2 (DR+1

T (jT ) + DR−1
T (jT )), where DR+1

T (jT ) and
DR−1

T (jT ) are the dynamic regret incurred by the row and
column player with respect to the sequence jT :

DR+1
T (jT ) =

T∑
t=1

Pt(jt, k−1,t)− Pt(k+1,t, k−1,t)

DR−1
T (jT ) =

T∑
t=1

Pt(jt, k+1,t)− Pt(k−1,t, k+1,t).

We assume that the sequence jT has at most S switches,
i.e., 1 + |{1 ≤ ` < T : j` 6= j`+1}| ≤ S. The result be-
low bounds DRT (jT ) under two conditions, first where S
is known to the algorithm apriori and second where it is
unknown.

Theorem 4.1 (DEX3.S regret under Switching-Variation).
Let jT = (j1, . . . , jT ) be any arbitrary sequence of ac-
tions with S switches. Then the following bounds hold for
DEX3.S with probability at least 1− 2δ when α = 1

T and
γ = 2ηK:

(1) DRT (jT )[DEX3.S] = O
(√

SKT ln KT
δ

)
, and

(2) DRT (jT )[DEX3.S] = O
(
S
√
KT ln KT

δ

)
, by respec-

tively setting β = η =
√

S
KT , and β = η = 1√

KT
.

In the first case above, S is known apriori to the algorithm
and is used for setting β and η. If S is unknown, the regret
grows linearly with S.
Remark 4.2. Theorem 4.1 is valid for any sequence jT

with S switches. In particular, jT can be constructed
as follows. (i) Divide the time horizon T into S sub-
intervals [T1, . . . , T2), [T2, . . . , T3), . . . , [TS , . . . , TS+1),
where T1 = 1 and TS+1 = T + 1. (ii) Assume Pt(i, j) =
P s(i, j) for all t ∈ [Ts, Ts+1), s ∈ [S], and i, j ∈ [K]. (iii)
Set jTs = jTs+1 = · · · = jTs+1−1 = js, where

js = argmax
j∈[K]

Ts+1−1∑
t=Ts

Ps(j, k+1,t) + Ps(j, k−1,t)− 1

2
.

In other words, if the winner probabilities remain constant
within sub-intervals [Ts, Ts+1), then jTs , . . . , jTs+1−1 can
be set to the best action within this sub-interval in hindsight
for each s ∈ [S]. Theorem 4.1 will be valid for such a
sequence jT . Therefore, if preferences P1, . . . ,PT have
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Switching-Variation S, then, with probability at least 1−2δ,

DRT (j1, . . . , jS)[DEX3.S] =

O
(√

SKT ln KT
δ

)
,

O
(
S
√
KT ln KT

δ

)
,

for known and unknown S respectively.
Remark 4.3. As in DEX3.P, a similar regret guarantee as
Theorem 4.1 would still hold for DEX3.S even when the
adversary plays a fixed distribution over actions in each of
the sub-intervals [Ts, Ts+1) instead of playing a single fixed
action, as explained in Rem. 3.4.

The proof of Theorem 4.1 uses the same regret decompo-
sition strategy as was used in Theorem 3.3. Lemmas B.1
and B.2 in Appendix B.1 establish high-probability upper
bounds on DR+1

T (jT ) and DR−1
T (jT ). Theorem 4.1 then

follows by combining the two lemmas.

4.2. Dynamic Regret Analysis of DEX3.S under
Continuous-Variation VT

One can decompose the dynamic regret along the same lines
as in Section 4.1 to establish a dynamic regret guarantee
for DEX3.S under the Continuous-Variation model of non-
stationarity (Sec. 2).

Theorem 4.4 (DEX3.S regret under Continuous-Varia-
tion). Consider any preference sequence P1, . . . ,PT with
Continuous-Variation VT . Then, setting α, γ same as de-

fined in Thm. 4.1 and β = η =
V

1/3
T

4K2/3T 1/3 , for any
time-variant benchmark jT = (j1, . . . , jT ), with probabil-
ity at least 1 − δ, the dynamic regret bound of DEX3.S
satisfies DRT (jT )[DEX3.S] = O

((
V

1/3
T K1/3T 2/3 +

4K2/3T 1/3V
−1/3
T

)
ln KT

δ

)
.

The proof of Theorem 4.4 relies on the observation that
for any sub-interval I ⊆ [T ] with limited Continuous-
Variation budget, the performance difference between any
fixed benchmark j∗ ∈ [K] vs a time-varying benchmark
(say a sequence of arms {j∗τ}τ∈I) is bounded. Hence, one
can divide the full time horizon [T ] into small sub-intervals
I1, . . . , IS , each of length say ∆ (a tuning parameter to
be chosen appropriately), thus S = dT/∆e, and apply the
results from Thm. 4.1 to bound the learner’s regret within
each sub-interval against a fixed benchmark. The bound in
Thm. 4.4 now follows by combining both these factors and
by properly adjusting ∆ along with the algorithm parame-
ters α, β, η, and γ. The complete proof is given in Appendix
B.2.
Remark 4.5. Theorems 4.1 and 4.4, together with Theorems
5.1 and 5.2 respectively, immediately justify the optimality
of DEX3.S and tightness of our regret analysis in terms of
Switching and Continuous Variation.

Remark 4.6. The regret guarantees in Theorems 3.3, 4.1,
and 4.4 hold with high probability. The corresponding
expected regret guarantees of the same order can be de-
rived by setting δ = 1/T . For example, against any se-
quence jT with Switching-Variation S, Thm. 4.1 gives
SRT [DEX3.P] = O(

√
KT lnKT ) with probability 1− δ,

and SRT [DEX3.P] ≤ T with probability δ. Thus choos-
ing δ = 1

T one may conclude that E [SRT [DEX3.P]] =

O(
√
KT lnKT ).

5. Lower Bound
In this section, we derive a lower bound on the expected
dynamic regret of any algorithm for the NSt-DB problem.
The high-level idea is to construct a class of problem in-
stances V and argue that there exists an instance ν ∈ V and
a sequence jT = (j1, . . . , jT ) for which E

[
DRT (jT )

]
is

sufficiently large (see Theorems 5.1 and 5.2) for any algo-
rithm. V is defined such that for all instances ν ∈ V:

1. The time horizon [T ] is divided into S sub-intervals
[T1, . . . , T2), . . . , [TS , . . . , TS+1), where T1 = 1 and
TS+1 = T + 1. For all s ∈ [S] and i, j ∈ [K], the
winner probabilities satisfy

t1, t2 ∈ [Ts, Ts+1)⇒ Pt1(i, j) = Pt2(i, j).

2. For all s ∈ [S], an arm js 6= 1 is chosen uniformly at
random as the condorcet winner 3, i.e., Pt(js, j) > 0.5
for all j 6= js and for all t ∈ [Ts, Ts+1).

3. With ε > 0 as a small constant, for all s ∈ [S], t ∈
[Ts, Ts+1), and i < j, the winner probabilities are:

Pt(i, j) =


1
2 + ε if i = js ∨ (i = 1 ∧ j 6= js) ,
1
2 − ε if j ∈ {1, js},
1
2 otherwise.

(4)

In other words, an instance ν ∈ V is created by choosing
a condorcet winner js ∈ [K]\{1} for each sub-interval
[Ts, Ts+1). In sub-interval [Ts, Ts+1), arm js beats every
arm with probability 0.5 + ε, arm 1 beats every arm except
js with probability 0.5 + ε, and all other arms beat each
other with equal probability.

For an instance ν ∈ V , define the sequence of actions jT (ν)
such that jt(ν) = js for all t ∈ [Ts, Ts+1). Here, jt(ν)
is the tth element of jT (ν) and js is the condorcet win-
ner in ν during the sub-interval [Ts, Ts+1). The results
below establish lower bounds on E

[
DRT (jT (ν))

]
under

Switching-Variation and Continuous-Variation model of
non-stationarity.

3Any preference matrix P ∈ [0, 1]K×K is said to have a con-
dorcer winner i∗ ∈ [K], if there exists an arm i∗ ∈ [K] s.t.
P (i∗, j) > 0.5 for all j ∈ [K] \ {i∗} (Bengs et al., 2021).
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Algorithm 3 Borda-DEX3.S
1: Input: η > 0, α, γ, β ∈ (0, 1)
2: Set W+1,1(k) = W−1,1(k) = 1 for all k ∈ [K]
3: for t = 1, . . . , T do
4: for k ∈ [K] and i ∈ {+1,−1} do
5: pi,t(k) = (1− γ)

Wi,t(k)∑K
j=1Wi,t(j)

+ γ
K

6: end for
7: For i ∈ {+1,−1}, sample ki,t from the distribution

(pi,t(1), . . . , pi,t(K))
8: Observe preference feedback ot(k+1,t, k−1,t)
9: Compute s′i,t(k) for i ∈ {+1,−1} and k ∈ [K] as:

s
′
i,t(k) =

1(ki,t = k)

Kpi,t(k)

∑
j∈[K]

1(k−i,t = j)ot(k, j)

p−i,t(j)
+

β

pi,t(k)

10: for k ∈ [K] and i ∈ {+1,−1} do
11: Wi,t+1(k) = Wi,t(k)eηs

′
i,t(k) + eα

∑K
j=1Wi,t(j)

12: end for
13: end for

Theorem 5.1 (Dynamic Regret Lower Bound for Switch-
ing-Variation). Assume that K ≥ 3 and ε ∈ (0, 1/4) in (4).
With V and jT (ν) defined above, there exists an instance
ν ∈ V such that:

E
[
DRT (jT (ν))

]
= Ω(

√
SKT ),

for any non-stationary dueling bandits algorithm.

Given a change budget VT and the number of switches S, ε
can be set to ensure that the total change in Pt’s across T
steps is at most VT (see Appendix C.2). Using this value of
ε yields the following result:

Theorem 5.2 (Dynamic Regret Lower Bound for Contin-
uous-Variation). Assume that K ≥ 3. With V and jT (ν)
defined above, there exists an instance ν ∈ V such that:

E
[
DRT (jT (ν))

]
= Ω((KVT )1/3T 2/3),

for any non-stationary dueling bandits algorithm.

The proofs of Theorems 5.1 and 5.2 are given in Appendix C.
The key idea is to establish a lower bound on the cumulative
regret within each sub-interval [Ts, Ts+1). This can be done
by upper-bounding the number of times arms 1 and js (these
arms are more likely to win against others) are pulled in
expectation within each sub-interval [Ts, Ts+1).

6. Dynamic Regret with Borda Scores
In this section, we briefly switch to a different regret mea-
sure that uses the so-called Borda scores. The Borda score
of an arm i ∈ [K] with respect to the preference matrix Pt
at time t measures the average probability of arm i winning

against a randomly chosen opponent j ∈ [K]\{i} at time t:

bt(i) :=
1

K − 1

∑
j 6=i

Pt(i, j).

While the ideas presented here apply equally well to the
static Borda regret objective (regret with respect to the arm
with highest cumulative Borda score) that was already ad-
dressed in (Saha et al., 2021), we only focus on the more
challenging dynamic Borda regret objective:

DBRT (jT ) :=

T∑
t=1

2bt(jt)− bt(k+1,t)− bt(k−1,t)

2
, (5)

where, as before, jT = (j1, . . . , jT ) is an arbitrary sequence
of arms, and k+1,t and k−1,t, respectively, are the arms
chosen by the row and column player at time t.

Algorithm 3 describes a variant of DEX3.S that uses
a different arm rewards estimate instead of ĝi,t(k),
but is otherwise same as DEX3.S. We call this
algorithm Borda-DEX3.S. The reward estimate in
Borda-DEX3.S was also used in Saha et al. (2021) where
the authors studied only the static Borda regret objective.
The result below establishes an upper bound on the more
challenging dynamic regret DBRT (jT ) of Alg. 3 under the
switching variation model of non-stationarity. The proof
uses the same regret-decomposition idea as Theorem 4.1,
but differs in technical details to accommodate the change
in the reward estimate. See Appendix D for details.

Theorem 6.1 (Borda-DEX3.S regret under Switching–
Variation). Let jT = (j1, . . . , jT ) be any sequence of ac-
tions with S switches. Then, with probability at least 1 −
δ, DBRT (jT )[Borda-DEX3.S] = Õ(S1/6K−1/3T 5/6 +

S1/2K1/3T 2/3), when η =
(
S lnK
T
√

2K

)2/3

, β =

S1/3
√

ln(2K/δ)

(2η)1/4K3/4
√
T

, γ =
√

2ηK, and α = 1
KT .

It is worth noting that, as in Sec. 4.2, one can also extend
Thm. 6.1 to analyze the continuous variation dynamic Borda
regret of Alg. 3 using similar arguments as in the proof of
Thm. 4.4. We skip this analysis to avoid redundancy.

7. Experiments
We now present numerical results to complement our theo-
retical findings and compare with baselines. Section 7.1
studies static regret for DEX3.P against the best fixed
action in hindsight. Section 7.2 studies dynamic regret
for DEX3.S under Switching-Variation and Continuous-
Variation models of non-stationarity.

Baseline algorithms: We compare our algorithms against
two baselines: RAND and REX3. RAND independently sam-
ples arms k+1,t and k−1,t from a uniform distribution over
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Figure 2: Comparison between DEX3.P, RAND, and REX3
in terms of static regret with respect to the best fixed ac-
tion in hindsight. The shaded region represents standard
deviation across 10 independent runs.

K arms at each time t. REX3 (Gajane et al., 2015) uses
a time-varying distribution pt ∈ ∆K and independently
samples k+1,t, k−1,t ∼ pt.

The values of parameters α, β, η, and γ for DEX3.P and
DEX3.S were set in accordance with Theorems 3.3 and
4.1 (or 4.4 as appropriate from the context), respectively.
REX3 uses a single parameter γ and we set its value to

γ =
√

2K lnK
eT , as recommended in Gajane et al. (2015).

7.1. DEX3.P: Static Regret

Recall that Pt(i, j) is the probability with which arm i beats
arm j at time t. We simulate an environment where these
values follow a Gaussian random walk. That is, for every
t ∈ [T ] and i < j,

Pt+1(i, j) = Pt(i, j) + εt(i, j),

where εt(i, j) ∼ N (0, 0.002)4. We ensure that Pt(i, i) =
0.5, Pt(j, i) = 1−Pt(i, j), and clip the entries of Pt in the
range [0, 1] so that they represent valid probabilities. The
initial values P1(i, j) ∼ Uniform(0, 1).

Let j∗ = argmaxj∈[K]

∑T
t=1(Pt(j, k+1,t)+Pt(j, k−1,t)−

1)/2 be the best fixed action in hindsight. Figure 2a sets
K = 10 and plots the static regret SRT (with respect to
fixed arm j∗) incurred by DEX3.P, RAND, and REX3 for
different values of T in the range 104 and 106. The dotted
line in the plot representsO(

√
T ) growth. It can be seen that

SRT grows as O(
√
T ) for DEX3.P and REX3. Moreover,

DEX3.P outperforms REX3 when T is large. Note that
SRT can indeed be negative as Pt changes over time and
no fixed benchmark (arm) could be competitive against the
learner’s dueling sequence {(k+1,t, k−1,t)}t∈[T ].

Figure 2b similarly fixes T = 106 and plots SRT for dif-
ferent values of K. The dotted line in this plot represents

4N (µ, σ) denotes a Gaussian distribution with mean µ ∈ R
and standard deviation σ > 0.
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Figure 3: Dynamic regret under Switching-Variation non-
stationarity with respect to sequence jT defined in Remark
4.2. The shared region represents standard deviation across
10 independent runs.

O(
√
K) growth and shows that SRT grows as O(

√
K) for

DEX3.P and REX3. AsK increases, RAND’s regret slightly
decreases as it becomes harder to have a fixed action that per-
forms well across time. Moreover, as expected, the gap be-
tween the performance of DEX3.P (and REX3) and RAND
decreases as K becomes large (recall that T is fixed).

7.2. DEX3.S: Dynamic Regret

Next, we turn to DEX3.S and focus on dynamic regret
under the two notions of non-stationarity (see Sec. 2).

Switching-Variation non-stationarity: For these experi-
ments, we use a similar Gaussian random walk model for
the probabilities Pt(i, j) as in Section 7.1, but change the
values only after every ∆ = T/(S − 1) steps. That is,

Pt+1(i, j) =

{
Pt(i, j) + εt(i, j) if ∃c ∈ N : t = ∆c

Pt(i, j) otherwise.

Here, N is the set of all natural numbers. We sample
εt(i, j) ∼ N (0, 0.05) where we use a higher standard devi-
ation as compared to Section 7.1 as the changes in Pt(i, j)
happen less frequently. As before, we set Pt(i, i) = 0.5,
Pt(j, i) = 1−Pt(i, j), and clip all values in the range [0, 1].

The dynamic regret is measured with respect to the sequence
jT defined in Remark 4.2. This sequence considers the best
fixed action in hindsight for each of the sub-intervals of
length ∆ in which the probability values remain unchanged.
See Remark 4.2 for details.

Figure 3a fixes K = S = 10 and plots DRT (jT ) as a func-
tion of T . It can be verified that the growth of DRT (jT )
is O(

√
T ) for DEX3.S, as established in Theorem 4.1.

Moreover, DEX3.S slightly outperforms both DEX3.P and
REX3 for large T . Figure 3b fixes S = 10, T = 106,
and plots DRT (jT ) as a function of K, confirming that
DRT (jT ) indeed grows as O(

√
K).
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Figure 4: Dynamic regret under Continuous-Variation non-
stationarity w.r.t. sequence jT (Eqn. (6)). The shared region
represents standard deviation across 10 independent runs.

Continuous-Variation non-stationarity: Recall that
∆T denotes a T -simplex and let µ ∈ ∆T . Given
Continuous-Variation VT , we construct a sequence of
probability values Pt(i, j) such that for all t ∈ [T ]

max
i,j∈[K]

|Pt+1(i, j)− Pt(i, j)| = µtVT .

Here µt denotes the tth element of µ. As before, we sample
P1(i, j) ∼ Uniform(0, 1) and ensure that Pt(i, i) = 0.5,
Pt(j, i) = 1 − Pt(i, j), and Pt(i, j) ∈ [0, 1] for all t. For
the plots in Figure 4, we sample µ ∼ Dirichlet(1, . . . , 1).
The dynamic regret is measured with respect to the best
action at each time step, i.e., jT = (j1, . . . , jT ) is such that

jt = argmax
j∈[K]

1

2
(Pt(j, k+1,t) + Pt(j, k−1,t)− 1). (6)

Figures 4a and 4b show that DRT (jT ) grows as O(T 2/3)
and O(K1/3), respectively, as established in Theorem 4.4.
Figure 4a uses K = VT = 10 and Figure 4b uses VT = 10
and T = 106. Finally, we would like to emphasize that
while the dynamic regret for REX3 is close to DEX3.S
in our experiments, theoretically REX3 only comes with a
static regret guarantee, whereas we have worst-case dynamic
regret guarantees for DEX3.S.

8. Discussions
We analyzed the complexity of regret minimization in non-
stationary dueling bandits. We first proposed an Õ(

√
KT )

adversarial dueling bandit algorithm which is shown to be
provably competitive against any fixed benchmark (arm-
distribution). This algorithm was further extended to
yield Õ(

√
SKT ) and Õ(V

1/3
T K1/3T 2/3) dynamic-regret

algorithms for Switching-Variation (S) and Continuous-
Variation (VT ) non-stationarities. The optimality and effec-
tiveness of our proposed techniques were justified through
matching lower bound analysis and extensive empirical eval-
uations. It was also demonstrated that the ideas in the pro-
posed algorithm apply to a different, Borda score based,

regret objective. To the best of our knowledge, we are the
first to analyze dynamic regret guarantees for dueling ban-
dits in non-stationary environments.

Future Works. The potential future scope of this work is
enormous, this being a nearly unexplored direction in prefer-
ence bandits literature. An obvious next step is to formulate
and study the NSt-DB problem complexity for other mean-
ingful definitions of non-stationarities. Extending the results
to contextual scenarios and subsetwise preference feedback
setup would also be of much practical importance. Another
useful generalization could be to make the algorithms delay
tolerant where the preference feedback are revealed only
after a certain unknown delay (Grover et al., 2018; Segal
et al., 2021) or analyzing the dynamic regret with paid ob-
servations (Seldin et al., 2014).

Acknowledgement
We thank the anonymous reviewers for their insightful sug-
gestions to improve the paper.

References
Agrawal, S. and Goyal, N. Analysis of Thompson sampling

for the multi-armed bandit problem. In Conference on
Learning Theory, pp. 39–1, 2012.

Ailon, N., Karnin, Z. S., and Joachims, T. Reducing dueling
bandits to cardinal bandits. In ICML, volume 32, pp.
856–864, 2014.

Audibert, J.-Y. and Bubeck, S. Best arm identification
in multi-armed bandits. In COLT-23th Conference on
Learning Theory-2010, pp. 13–p, 2010.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM
Journal of Computing, 32(1):48–77, 2002b.

Bengs, V., Busa-Fekete, R., El Mesaoudi-Paul, A., and
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Supplementary Material:
Optimal and Efficient Dynamic Regret Algorithms for

Non-Stationary Dueling Bandits

A. Missing details from the Static Regret Analysis of DEX3.P (Section 4)
The proof of Lemmas 3.1 and 3.2 use similar arguments. Therefore, we only present the proof of Lemma 3.1 in Section A.1.
Let us begin with a technical result.

Lemma A.1. For any δ > 0, β ∈ (0, 1), with probability at least 1− δ/2,

∀k ∈ [K],

T∑
t=1

ĝ+1,t(k) ≥
T∑
t=1

Pt(k, k−1,t)−
ln(2K/δ)

β
.

Proof. Let F+1
t−1 = σ

(
{pi,s, ki,s, os}s<t,i∈{+1,−1} ∪ {p+1,t,p−1,t, k−1,t}

)
be the σ-algebra generated by using all infor-

mation till time t, except the choice of the row player’s action k+1,t and the feedback from the environment ot(k+1,t, k−1,t)
at time t. Note that

E
[
ĝ+1,t(k)|F+1

t−1

]
= Pt(k, k−1,t) +

β

p+1,t(k)
. (7)

By Markov’s inequality,

P

(
e−β

∑T
t=1(ĝ+1,t(k)−Pt(k,k−1,t)) ≤ 2

δ

)
≥ 1− P

(
e−β

∑T
t=1(ĝ+1,t(k)−Pt(k,k−1,t)) ≥ 2

δ

)
≥ 1− δ

2
E

[
exp

(
β

T∑
t=1

(Pt(k, k−1,t)− ĝ+1,t(k))

)]
.

We only need to show that E
[
exp

(
β
∑T
t=1 (Pt(k, k−1,t)− ĝ+1,t(k))

)]
≤ 1 to finish the proof. Consider the quantity

E
[
exp (β(Pt(k, k−1,t)− ĝ+1,t(k))) |F+1

t−1

]
.

E
[
eβ(Pt(k,k−1,t)−ĝ+1,t(k))|F+1

t−1

]
= E

[
eβ(Pt(k,k−1,t)−ĝ+1,t(k)+β/p+1,t(k))

∣∣∣∣∣F+1
t−1

]
e
− β2

p+1,t(k)

(a)

≤ E

[
1 + β

(
Pt(k, k−1,t)− ĝ+1,t(k) +

β

p+1,t(k)

)
+

β2

(
Pt(k, k−1,t)− ĝ+1,t(k) +

β

p+1,t(k)

)2
∣∣∣∣∣F+1
t−1

]
e
− β2

p+1,t(k)

(b)
=

[
1 + β2E

[(
Pt(k, k−1,t)− ĝ+1,t(k) +

β

p+1,t(k)

)2
∣∣∣∣∣F+1
t−1

]]
e
− β2

p+1,t(k)

(c)
=
[
1 + β2Var

(
ĝ+1,t(k)|F+1

t−1

)]
e
− β2

p+1,t(k)

=

[
1 + β2Var

(
ot(k, k−1,t)1 {k+1,t = k}

p+1,t(k)

∣∣∣∣∣F+1
t−1

)]
e
− β2

p+1,t(k)

≤
[

1 + β2E

[(
ot(k, k−1,t)1 {k+1,t = k}

p+1,t(k)

)2
∣∣∣∣∣F+1
t−1

]]
e
− β2

p+1,t(k)
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=

[
1 +

β2

p2
+1,t(k)

E
[
ot(k, k−1,t)1 {k+1,t = k} |F+1

t−1

]]
e
− β2

p+1,t(k)

(d)

≤
[
1 +

β2

p+1,t(k)

]
e
− β2

p+1,t(k)

(e)

≤ 1.

Here, (a) follows as β(Pt(k, k−1,t)− ĝ+1,t(k) + β/p+1,t(k)) ≤ 1 because ĝ+1,t(k) ≥ β/p+1,t(k) by (3). Thus, we can
use the identity ex ≤ 1 + x+ x2 for x ≤ 1. (b) and (c) follow from (7), (d) uses the fact that ot(i, j) ≤ 1, and (e) follows
as 1 + x ≤ ex. Now, by induction,

E
[
eβ

∑T
t=1(Pt(k,k−1,t)−ĝ+1,t(k))

]
= E

[
E
[
eβ(PT (k,k−1,T )−ĝ+1,T (k))

∣∣∣F+1
T−1

]
eβ

∑T−1
t=1 (Pt(k,k−1,t)−ĝ+1,t(k))

]
≤ E

[
eβ

∑T−1
t=1 (Pt(k,k−1,t)−ĝ+1,t(k))

]
≤ . . . ≤ 1.

Setting δ = δ/K and taking a union bound over all k ∈ [K] finishes the proof.

A.1. Proof of Lemma 3.1

Lemma 3.1. Let η = 1
2

√
lnK
KT , β =

√
lnK
KT , and γ = 2ηK ≥ (1 + β)ηK. With probability at least 1− δ,

SR+1
T := max

j∈[K]
SR+1

T (j) = O(
√
KT ln(K/δ)).

Proof. Recall from Algorithm 1 that W+1,t(k) = exp(η
∑t−1
s=1 ĝ+1,s(k)) and define W+1,t =

∑K
k=1W+1,t(k). Then,

W+1,t+1 =

K∑
k=1

W+1,t+1(k)

=

K∑
k=1

W+1,t(k) exp(ηĝ+1,t(k))

= W+1,t

K∑
k=1

W+1,t(k)

W+1,t
exp(ηĝ+1,t(k))

(a)
= W+1,t

K∑
k=1

p+1,t(k)− γ/K
1− γ exp(ηĝ+1,t(k))

(b)

≤ W+1,t

K∑
k=1

p+1,t(k)− γ/K
1− γ (1 + ηĝ+1,t(k) + η2ĝ2

+1,t(k))

≤W+1,t

(
1 +

η

1− γ
K∑
k=1

p+1,t(k)ĝ+1,t(k) +
η2

1− γ
K∑
k=1

p+1,t(k)ĝ2
+1,t(k)

)
(c)

≤ W+1,t exp

(
η

1− γ
K∑
k=1

p+1,t(k)ĝ+1,t(k) +
η2

1− γ
K∑
k=1

p+1,t(k)ĝ2
+1,t(k)

)

Here, (a) follows from the definition of p+1,t(k) in Algorithm 1. Note that, by assumption on η, β, γ, and K

ηĝ+1,t(k) ≤ η 1 + β

p+1,t(k)
≤ ηK 1 + β

γ
≤ 1.
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Thus, (b) follows from the inequality ex ≤ 1 + x+ x2 if x ≤ 1. (c) follows from the inequality 1 + x ≤ ex. We now have,

ln
W+1,t+1

W+1,t
≤ η

1− γ
K∑
k=1

p+1,t(k)ĝ+1,t(k) +
η2

1− γ
K∑
k=1

p+1,t(k)ĝ2
+1,t(k).

Summing over t = 1, 2, . . . , T , we get

ln
W+1,T+1

W+1,1
≤ η

1− γ
T∑
t=1

K∑
k=1

p+1,t(k)ĝ+1,t(k) +
η2

1− γ
T∑
t=1

K∑
k=1

p+1,t(k)ĝ2
+1,t(k). (8)

Note that, W+1,1 = K (see Algorithm 1). For any action j ∈ [K],

ln
W+1,T+1

W+1,1
≥ lnW+1,T+1(j)− lnK = η

T∑
t=1

ĝ+1,t(j)− lnK (9)

Combining (8) and (9) gives
T∑
t=1

ĝ+1,t(j) ≤
1

1− γ
T∑
t=1

K∑
k=1

p+1,t(k)ĝ+1,t(k) +
η

1− γ
T∑
t=1

K∑
k=1

p+1,t(k)ĝ2
+1,t(k) +

lnK

η
.

Now consider the sum
∑K
k=1 p+1,t(k)ĝ+1,t(k).

K∑
k=1

p+1,t(k)ĝ+1,t(k) =

K∑
k=1

p+1,t(k)
ot(k, k−1,t)1 {k+1,t = k}+ β

p+1,t(k)
= ot(k+1,t, k−1,t) +Kβ. (10)

As p+1,t(k)ĝ+1,t(k) ≤ 1 + β, we get

(1− γ)

T∑
t=1

ĝ+1,t(j) ≤ βKT +

T∑
t=1

ot(k+1,t, k−1,t) + η(1 + β)

T∑
t=1

K∑
k=1

ĝ+1,t(k) +
lnK

η

≤ βKT +

T∑
t=1

ot(k+1,t, k−1,t) + η(1 + β)K max
k∈[K]

T∑
t=1

ĝ+1,t(k) +
lnK

η

≤ βKT +

T∑
t=1

ot(k+1,t, k−1,t) + γ max
k∈[K]

T∑
t=1

ĝ+1,t(k) +
lnK

η

The last inequality uses the fact that γ ≥ η(1 + β)K by assumption. As the inequality holds for any arbitrary j ∈ [K], we
can take a max over j ∈ [K] on the left hand side. Simplifying this further yields:

(1− 2γ) max
j∈[K]

T∑
t=1

ĝ+1,t(j) ≤ βKT +

T∑
t=1

ot(k+1,t, k−1,t) +
lnK

η
.

By Azuma-Hoeffding’s inequality, with probability at least 1− δ/2,
T∑
t=1

ot(k+1,t, k−1,t) ≤
T∑
t=1

Pt(k+1,t, k−1,t) + 2
√

2T ln(2/δ).

Combining this with Lemma A.1, we get with probability at least 1− δ,

(1− 2γ) max
j∈[K]

[
T∑
t=1

Pt(j, k−1,t)−
ln(2K/δ)

β

]
≤ βKT +

T∑
t=1

Pt(k+1,t, k−1,t) + 2
√

2T ln(2/δ) +
lnK

η
.

Let γ = 2ηK ≥ η(1 + β)K. Then,

max
j∈[K]

T∑
t=1

Pt(j, k−1,t)−
T∑
t=1

Pt(k+1,t, k−1,t) ≤ βKT + 2
√

2T ln(2/δ) +
lnK

η
+

ln(2K/δ)

β
+ 4ηKT.

Setting η = 1
2

√
lnK
KT and β =

√
lnK
KT finishes the proof.
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B. Missing details from Dynamic Regret Analysis of algs (Section 4)
B.1. Missing Details from Dynamic Regret Analysis in terms of Switching Variation (Section 4.1)

Lemmas B.1 and B.2 bound DR+1
T (jT ) and DR−1

T (jT ), respectively.
Lemma B.1. Let jT = (j1, . . . , jT ) be an arbitrary sequence of actions with S switches. The following bounds hold with
probability at least 1− δ when α = 1

T and γ = 2ηK:

DR+1
T (jT ) = O

(
S
√
KT ln

KT

δ

)
if β = η =

1√
KT

DR+1
T (jT ) = O

(√
SKT ln

KT

δ

)
if β = η =

√
S

KT
.

Proof. Assuming that ηK 1+β
γ ≤ 1, a similar calculation as in the proof of Lemma 3.1 gives

ln
W+1,t+1

W+1,t
≤ η

1− γ
K∑
k=1

p+1,t(k)ĝ+1,t(k) +
η2

1− γ
K∑
k=1

p+1,t(k)ĝ2
+1,t(k) + eα.

Using (10) and noting that p+1,t(k)ĝ+1,t(k) ≤ 1 + β, we get

ln
W+1,t+1

W+1,t
≤ η

1− γ (ot(k+1,t, k−1,t) + βK) + (1 + β)
η2

1− γ
K∑
k=1

ĝ+1,t(k) + eα.

Recall that S = 1 + |{1 ≤ ` < T : j` 6= j`+1}|. Divide the time horizon T into sub-intervals

[T1, . . . , T2), [T2, . . . , T3), . . . , [TS , . . . , TS+1),

where T1 = 1 and TS+1 = T + 1 and jTs = jTs+1 = · · · = jTs+1−1 for all sub-intervals s = 1, . . . , S. Further, define
∆s = Ts+1 − Ts. Summing over t ∈ [Ts, Ts+1) results in

ln
W+1,Ts+1

W+1,Ts

≤ η

1− γ βK∆s +
η

1− γ

Ts+1−1∑
t=Ts

ot(k+1,t, k−1,t) + (1 + β)
η2

1− γ

Ts+1−1∑
t=Ts

K∑
k=1

ĝ+1,t(k) + eα∆s.

For any action js ∈ [K],

W+1,Ts+1
(js) ≥W+1,Ts+1(js) exp

η Ts+1−1∑
t=Ts+1

ĝ+1,t(j
s)


≥ eαW+1,Ts exp

η Ts+1−1∑
t=Ts+1

ĝ+1,t(j
s)


≥ αW+1,Ts exp

η Ts+1−1∑
t=Ts

ĝ+1,t(j
s)

 ,

where the last step uses ηĝ+1,t(j
s) ≤ η 1+β

p+1,t(js)
≤ ηK 1+β

γ ≤ 1. We have

ln
W+1,Ts+1

W+1,Ts

≥ ln
W+1,Ts+1(js)

W+1,Ts

≥ lnα+ η

Ts+1−1∑
t=Ts

ĝ+1,t(j
s).

Combining the upper-bound and lower-bound on ln
W+1,Ts+1

W+1,Ts
results in

Ts+1−1∑
t=Ts

ot(k+1,t, k−1,t) ≥ (1− γ)

Ts+1−1∑
t=Ts

ĝ+1,t(j
s)− η(1 + β)

Ts+1−1∑
t=Ts

K∑
k=1

ĝ+1,t(k)−
(
eα

η
− βK

)
∆s − 1

η
ln 1/α.
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Using Azuma-Hoeffding inequality, with probability at least 1− δ/2,

Ts+1−1∑
t=Ts

Pt(k+1,t, k−1,t) + 2
√

2∆s ln(2/δ) ≥
Ts+1−1∑
t=Ts

ot(k+1,t, k−1,t)

≥ (1− γ)

Ts+1−1∑
t=Ts

ĝ+1,t(j
s)− η(1 + β)

Ts+1−1∑
t=Ts

K∑
k=1

ĝ+1,t(k)−
(
eα

η
− βK

)
∆s − 1

η
ln 1/α

≥ (1− γ)

Ts+1−1∑
t=Ts

ĝ+1,t(j
s)− γ max

k∈[K]

Ts+1−1∑
t=Ts

ĝ+1,t(k)−
(
eα

η
− βK

)
∆s − 1

η
ln 1/α

≥ (1− 2γ) max
k∈[K]

Ts+1−1∑
t=Ts

ĝ+1,t(k)−
(
eα

η
− βK

)
∆s − 1

η
ln 1/α.

The last inequality holds as the expression above it is valid for all choices of js ∈ [K], and hence we can take a maximum
over all such choices. A calculation similar to the one in the proof of Lemma A.1 implies that

∑Ts+1−1
t=Ts

ĝ+1,t(k) ≥∑Ts+1−1
t=Ts

Pt(k, k−1,t)− ln(2K/δ)
β for all k ∈ [K] with probability at least 1− δ/2. Therefore, with probability at least 1− δ,

Ts+1−1∑
t=Ts

Pt(k+1,t, k−1,t)+2
√

2∆s ln(2/δ) ≥ (1−2γ) max
k∈[K]

Ts+1−1∑
t=Ts

Pt(k, k−1,t)−
(
eα

η
− βK

)
∆s− 1

η
ln

1

α
− ln(2K/δ)

β
.

(11)

Setting γ = 2ηK ≥ η(1 + β)K, rearranging, and summing over s = 1, . . . , S, we get

S∑
s=1

max
k∈[K]

Ts+1−1∑
t=Ts

Pt(k, k−1,t)−
T∑
t=1

Pt(k+1,t, k−1,t) ≤
S∑
s=1

2
√

2∆s ln(2/δ) +

(
eα

η
− βK

)
T +

S

η
ln

1

α

+
S

β
ln

2K

δ
+ 4ηKT.

In particular, we can use the sequence jT on the left side above as this sequence uses a constant action within intervals
[Ts, Ts+1).

T∑
t=1

Pt(jt, k−1,t)−
T∑
t=1

Pt(k+1,t, k−1,t) ≤
S∑
s=1

2
√

2∆s ln(2/δ) +

(
eα

η
− βK

)
T +

S

η
ln

1

α
+
S

β
ln

2K

δ
+ 4ηKT

Using α = 1
T and η = β =

√
1
KT results in:

T∑
t=1

Pt(jt, k−1,t)−
T∑
t=1

Pt(k+1,t, k−1,t) ≤ 2
√

2ST ln(2/δ) + (e− 1)
√
KT + S

√
KT ln

2KT

δ
+ 4
√
KT

= O

(
S
√
KT ln

KT

δ

)
.

On the other hand, if α = 1
T and β = η =

√
S
KT (i.e., S is used for setting β and η), we get

T∑
t=1

Pt(jt, k−1,t)−
T∑
t=1

Pt(k+1,t, k−1,t) ≤ 2
√

2ST ln(2/δ) + e

√
KT

S
−
√
SKT +

√
SKT ln

2KT

δ
+ 4
√
SKT

= O

(√
SKT ln

KT

δ

)
,

which concludes the claim.
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Lemma B.2. Assume the same setup as Lemma B.1. With probability at least 1− δ, when α = 1
T and γ = 2ηK:

DR−1
T (jT ) = O

(
S
√
KT ln

KT

δ

)
if β = η =

1√
KT

DR−1
T (jT ) = O

(√
SKT ln

KT

δ

)
if β = η =

√
S

KT
.

Proof. The proof uses similar arguments as Lemma B.1 and has been omitted.

B.2. Missing Details of Dynamic Regret Analysis in Terms of Continuous Variation (Section 4.2)

Theorem 4.4 (DEX3.S regret under Continuous-Variation). Consider any preference sequence P1, . . . ,PT with

Continuous-Variation VT . Then, setting α, γ same as defined in Thm. 4.1 and β = η =
V

1/3
T

4K2/3T 1/3 , for any time-
variant benchmark jT = (j1, . . . , jT ), with probability at least 1 − δ, the dynamic regret bound of DEX3.S satisfies

DRT (jT )[DEX3.S] = O
((
V

1/3
T K1/3T 2/3 + 4K2/3T 1/3V

−1/3
T

)
ln KT

δ

)
.

Proof. Lem. B.3 builds the key result which shows for any arbitrary sequence of preference matrices P1, . . . ,PT with
Continuous-Variation VT , the dynamic regret is upper bounded by Õ(V

1/3
T K1/3T 2/3). The proof now follows recalling

that by construction DRT (jT ) := DR+1
T (jT ) + DR−1

T (jT ) and DRT (DEX3.S) = maxjT∈[K]T DRT (jT ).

Lemma B.3. Let jT = (j1, . . . , jT ) be an arbitrary sequence of T actions and P1, . . . ,PT be the underlying sequence of

preference matrices with Continuous-Variation VT . Then setting α = 1
T , γ = 2ηK, β = η =

V
1/3
T

4K2/3T 1/3 , with probability
at least 1− δ:

DR+1
T (jT ) = O

((
V

1/3
T K1/3T 2/3 + 4K2/3T 1/3V

−1/3
T

)
ln
KT

δ

)
DR−1

T (jT ) = O
((
V

1/3
T K1/3T 2/3 + 4K2/3T 1/3V

−1/3
T

)
ln
KT

δ

)
.

Proof. Drawing ideas from the proof analyses of (Besbes et al., 2014), let us first divide the time interval [T ] into sub-intervals
T1, . . . , TS , each of size at most ∆ (hence S := dT/∆e), such that

Tj := {t | (j − 1)∆ + 1 ≤ t ≤ min{j∆, T}}.

Recall at each time t we may break the instantaneous regret w.r.t. any arm jt ∈ [K] as, rt(jt) := [Pt(jt, k−1,t) +
Pt(jt, k+1,t)] = r+1

t (jt) + r−1
t (jt).

r+1
t (jt) = [Pt(jt, k−1,t)− Pt(k+1,t, k−1,t)]

r−1
t (jt) = [Pt(jt, k+1,t)− Pt(k−1,t, k+1,t)]

For any phase i ∈ [ T∆ ], note we can break the total regret of the left-arm at sub-interval i w.r.t any arm-sequence {jt}t∈Ti as:

R+1
Ti ({jt}t∈Ti) :=

∑
t∈Ti

[Pt(jt, k−1,t)− Pt(k+1,t, k−1,t)]

=
∑
t∈Ti

[Pt(jt, k−1,t)− Pt(i∗, k−1,t) + Pt(i
∗, k−1,t)− Pt(k+1,t, k−1,t)]

=
∑
t∈Ti

[Pt(jt, k−1,t)− Pt(i∗, k−1,t)] +
∑
t∈Ti

[Pt(i
∗, k−1,t)− Pt(k+1,t, k−1,t)]

≤ 2VTi∆ +
∑
t∈Ti

[Pt(i
∗, k−1,t)− Pt(k+1,t, k−1,t)]
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≤ 2VTi∆ +

[
2
√

2|Ti| ln(2/δ) +

(
eα

η
− βK

)
|Ti|+

1

η
ln

1

α
+

1

β
ln

2K

δ
+ 4ηK|Ti|

]
,

here i∗ is any representative arm of sub-interval i. Then summing over all sub-intervals T1, . . . , TS , the total regret of the
left-arm w.r.t any arm-sequence jT is:

DR+1
T (jT ) :=

S∑
s=1

R+1
Ti ({jt}t∈Ti)

≤
S∑
s=1

[
2VTi∆ +

[
2
√

2|Ti| ln(2/δ) +

(
eα

η
− βK

)
|Ti|+

1

η
ln

1

α
+

1

β
ln

2K

δ
+ 4ηK|Ti|

]]
= 2VT∆ + 2

√
2T ln(2/δ) +

(
eαT

η
− βKT

)
+

T

η∆
ln

1

α
+

1

η
ln

1

α
+

T

β∆
ln

2K

δ
+

1

β
ln

2K

δ
+ 8ηKT

(a)
= 2VT∆ + 2

√
2T ln(2/δ) +

(
e

η
−
√
KT

)
+

T

η∆
lnT +

1

η
lnT +

T

β∆
ln

2K

δ
+

1

β
ln

2K

δ
+ 8ηKT

(b)
= 6V

1/3
T K1/3T 2/3 + 2

√
2V

1/3
T K1/3T 2/3

(
lnT + ln(2K/δ)

)
+ 4K2/3T 1/3V

−1/3
T

(
lnT + ln(2K/δ)

)
= O

((
V

1/3
T K1/3T 2/3 + 4K2/3T 1/3V

−1/3
T

)(
lnT + ln(2K/δ)

))
,

where (a) holds by setting α = 1/T , (b) holds by setting ∆ = T 2/3K1/3
√

2
V 2/3 , and β = η =

V
1/3
T

4K2/3T 1/3 .

Following a similar analysis also yields

DR−1
T (jT ) = O

((
V

1/3
T K1/3T 2/3 + 4K2/3T 1/3V

−1/3
T

)(
lnT + ln(2K/δ)

))
,

combining which with the earlier concludes the proof.

C. Missing details from the Lower Bound (Section 5)
C.1. Proof of Theorem 5.1

In what follows, we consider only deterministic algorithms. An execution of a randomized algorithm corresponds to a
particular choice from the set of all deterministic algorithms. As the changes in the environment are not affected by the
algorithm’s decisions, it is enough to show the lower bound for all deterministic algorithms (Auer et al., 2002b).

Let Ht = {(k+1,t′ , k−1,t′ , ot′)}t′≤t be the history of observations upto time t, where ot′ := ot′(k+1,t′ , k−1,t′) is the
feedback returned by the environment at time t′. We use Psj to denote the probability distribution over histories induced
by assuming that arm j ∈ [K]\{1} is the condorcet winner in the sub-interval [Ts, Ts+1). Similarly, Ps1 is the probability
distribution assuming that arm 1 is the condorcet winner in the sub-interval [Ts, Ts+1) with probability of winning 0.5 + ε
against all arms and Pt(i, j) = 0.5 for all i, j ∈ [K]\{1}. The corresponding expectations are denoted by Esj [·] and Es1 [·],
respectively.

The following technical lemma assumes a simpler case where Pt(i, j) remains constant for all t ∈ [T ]. One can think of this
as the case when S = 1. We omit the superscript in Psj , Ps1, Esj [·], Es1 [·], and js in the lemma below to simplify the notation.

Lemma C.1. LetHT be the set of all possible histories HT and let f : HT → [0,M ] be a measurable function that maps
a history HT to a number in the interval [0,M ]. Then,

Ej [f(HT )] ≤ E1 [f(HT )] +M

√
ε ln

(
1 + 2ε

1− 2ε

)
E1 [N1j +Nj ],

where, N1j is the number of times the algorithm chooses to duel between arms 1 and j and Nj is the number of times arm j
is compared with an arm other than itself and arm 1.
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Proof. For any two probability distributions p and q, let TV (p, q) and KL (p, q), respectively, denote the total variation
distance and KL-divergence between p and q. Note that,

Ej [f(HT )]− E1 [f(HT )] =
∑

HT∈HT

f(HT ) (Pj(HT )− P1(HT ))

≤
∑

HT :Pj(HT )≥P1(HT )

f(HT ) (Pj(HT )− P1(HT ))

≤M
∑

HT :Pj(HT )≥P1(HT )

(Pj(HT )− P1(HT ))

(a)
= M TV (Pj ,P1)

(b)

≤ M

√
ln 2

2
KL (P1,Pj). (12)

Here, (a) follows from the definition of the total-variation distance and (b) follows from Pinsker’s inequality. Let ht =
(k+1,t, k−1,t, ot) be the tth element of HT . Using the chain-rule for KL-divergence, we get

KL (P1,Pj) =

T∑
t=1

KL (P1 (ht|Ht−1) ,Pj (ht|Ht−1))

=

T∑
t=1

P1((k+1,t = k−1,t) ∨ (k+1,t /∈ {1, j} ∧ k−1,t /∈ {1, j})) KL

(
1

2
,

1

2

)
+

P1((k+1,t = 1 ∧ k−1,t = j) ∨ (k+1,t = j ∧ k−1,t = 1)) 2ε log2

(
1 + 2ε

1− 2ε

)
−

P1((k+1,t = j ∧ k−1,t /∈ {1, j}) ∨ (k+1,t /∈ {1, j} ∧ k−1,t = j))
1

2
log2

(
1− 4ε2

)
= 2E1[N1j ]ε log2

(
1 + 2ε

1− 2ε

)
− 1

2
E1[Nj ] log2

(
1− 4ε2

)
≤ 2ε log2

(
1 + 2ε

1− 2ε

)
E1 [N1j +Nj ] .

The last line follows from the fact that − 1
2 log2(1− 4x2) ≤ 2x log2

1+2x
1−2x for all x ∈ (0, 0.5). We have abused the notation

and used KL (α, β) to represent KL (p, q) where p = Bernoulli(α) and q = Bernoulli(β) for α, β ∈ [0, 1]. Combining
this inequality with (12) yields the desired result.

Theorem 5.1 has been reproduced verbatim from Section 5 below. See Section 5 for the definition of V and jT (ν).

Theorem 5.1 (Dynamic Regret Lower Bound for Switching-Variation). Assume that K ≥ 3 and ε ∈ (0, 1/4) in (4). With V
and jT (ν) defined above, there exists an instance ν ∈ V such that:

E
[
DRT (jT (ν))

]
= Ω(

√
SKT ),

for any non-stationary dueling bandits algorithm.

Proof. Let t ∈ [Ts, Ts+1) and define the following events at time t:

1. Eta = {(k+1,t = 1 ∧ k−1,t = js) ∨ (k+1,t = js ∧ k−1,t = 1)}

2. Etb = {(k+1,t = js ∧ k−1,t /∈ {1, js}) ∨ (k+1,t /∈ {1, js} ∧ k−1,t = js)}

3. Etc = {k+1,t 6= js ∧ k−1,t 6= js}

4. Etd = {k+1,t = js ∧ k−1,t = js}
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For t ∈ [Ts, Ts+1), let rt = Pt(j
s, k+1,t) + Pt(j

s, k−1,t)− 1)/2. Now consider the expected regret at time t ∈ [Ts, Ts+1)
under the distribution Psjs .

Esjs [rt] =
ε

2
Psjs

(
Eta
)

+
ε

2
Psjs

(
Etb
)

+ ε Psjs
(
Etc
)

=
ε

2
Psjs

(
Eta
)

+
ε

2
Psjs

(
Etb
)

+ ε
(
1− Psjs

(
Eta
)
− Psjs

(
Etb
)
− Psjs

(
Etd
))

= ε− εPsjs
(
Etd
)
− ε

2

(
Psjs

(
Eta
)

+ Psjs
(
Etb
))
.

Define Ns
1js =

∑Ts+1−1
t=Ts

1 {Eta}, Ns
js =

∑Ts+1−1
t=Ts

1 {Etb}, N̄s
js =

∑Ts+1−1
t=Ts

1 {Etd}, and ∆s = Ts+1 − Ts. We have,

Esjs

Ts+1−1∑
t=Ts

rt

 = ε∆s − εEsjs
[
N̄s
js
]
− ε

2

(
Esjs

[
Ns

1js
]

+ Esjs
[
Ns
js
])

= ε∆s − ε

2
Esjs

[
2N̄s

js +Ns
1js +Ns

js
]
.

We bound the expectation on the right hand side above using Lemma C.1. As the learner only uses the history Ht to choose
the arms at time t, N̄s

js , Ns
1js , Ns

js , and hence 2N̄s
js +Ns

1js +Ns
js is a measurable function of the history. Applying Lemma

C.1 and noting that the maximum value of 2N̄s
js +Ns

1js +Ns
js is 2∆s results in

Esjs
[
2N̄s

js +Ns
1js +Ns

js
]
≤ Es1

[
2N̄s

js +Ns
1js +Ns

js
]

+ 2∆s

√
ε ln

(
1 + 2ε

1− 2ε

)
E1

[
Ns

1j +Ns
j

]
.

Therefore, using Cauchy-Schwarz inequality,

K∑
js=2

Esjs
[
2N̄s

js +Ns
1js +Ns

js
]
≤ Es1

 K∑
js=2

2N̄s
js +Ns

1js +Ns
js

+ 2∆s

√√√√ε ln

(
1 + 2ε

1− 2ε

)
(K − 1)

K∑
js=2

E1

[
Ns

1j +Ns
j

]
≤ 2∆s + 2∆s

√
2∆s(K − 1)ε ln

(
1 + 2ε

1− 2ε

)
.

This results in the following bound:

K∑
js=2

Esjs

Ts+1−1∑
t=Ts

rt

 ≥ ε∆s

(
K − 1− 1−

√
2∆s(K − 1)ε ln

(
1 + 2ε

1− 2ε

))

≥ ε∆s
(
K − 1− 1− 8ε

√
∆s(K − 1) ln(4/3)

)
.

The last line uses the inequality 2x ln 1+2x
1−2x ≤ 32x2 ln(4/3) for all x ∈ [0, 1/4].

Recall that DRT (jT (ν)) =
∑S
s=1

∑Ts+1−1
t=Ts

rt. The expected value of DRT (jT (ν)) under a randomly sampled environment
ν from V is given by:

E
[
DRT (jT (ν))

]
=

S∑
s=1

1

K − 1

K∑
js=2

Esjs

Ts+1−1∑
t=Ts

rt


≥

S∑
s=1

(
ε∆s − ε

K − 1
∆s − 8ε2

K − 1
∆s
√

∆s(K − 1) ln(4/3)

)

≥
S∑
s=1

(
ε∆s − ε

K − 1
∆s − 8ε2

K − 1
∆s

√
T (K − 1)

S
ln(4/3)

)

= εT − ε T

K − 1
− 8ε2

√
T (K − 1)

S
ln(4/3)

T

K − 1
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= ε
K − 2

K − 1
T − 8ε2

√
T (K − 1)

S
ln(4/3)

T

K − 1

(a)

≥ ε
T

2
− 8ε2

√
T (K − 1)

S
ln(4/3)

T

K − 1
.

Here, (a) follows by assuming that K ≥ 3. Choosing the value of ε = 1
2

√
S(K−1)
T ln(4/3) to maximize the expression on the right

hand side results in

E
[
DRT (jT (ν))

]
≥ 1

4
√

ln(4/3)

√
S(K − 1)T − 2√

ln(4/3)

√
S(K − 1)T

= Ω
(√

SKT
)
.

As the expected value of DRT (jT (ν)) under a random choice of environment ν ∈ V is Ω
(√

SKT
)

, there is at least one

environment in V for which E
[
DRT (jT (ν))

]
= Ω

(√
SKT

)
.

C.2. Proof of Theorem 5.2

As before, the theorem below has been reproduced verbatim from Section 5. Please refer to Section 5 for the definition of V
and jT (ν).

Theorem 5.2 (Dynamic Regret Lower Bound for Continuous-Variation). Assume that K ≥ 3. With V and jT (ν) defined
above, there exists an instance ν ∈ V such that:

E
[
DRT (jT (ν))

]
= Ω((KVT )1/3T 2/3),

for any non-stationary dueling bandits algorithm.

Proof. Let us define V ′ ⊆ V such that for all ν ∈ V ′, ∆1 = ∆2 = · · · = ∆S−1 = ∆ and ∆S < ∆, where recall that
∆s = Ts+1 − Ts. As maxi,j∈[K] |Pt+1(i, j)− Pt(i, j)| ≤ 2ε for all t > 0, for any environment ν ∈ V ′,

T−1∑
t=1

max
i,j∈[K]

|Pt+1(i, j)− Pt(i, j)| =
S∑
s=2

max
i,j∈[K]

|PTs(i, j)− PTs−1(i, j)| ≤ 2ε

⌈
T

∆

⌉
≤ VT .

The last inequality above assumes that ε ≤ VT
2dT/∆e .

Proceeding as in the proof of Theorem 5.1, and noting that S =
⌈
T
∆

⌉
we get:

E
[
DRT (jT (ν))

]
≥ εT − ε

K − 1
T − 8ε2

K − 1
T

√
T (K − 1)

dT/∆e ln(4/3),

where the expectation this time includes a random choice of environment from V ′. Further assuming that ε =

min

{
VT

2dT/∆e ,
1

16
√

∆K ln(4/3)

}
results in

E
[
DRT (jT (ν))

]
≥ εK − 2

K − 1
T − 8ε2

K − 1
T

√
T (K − 1)

dT/∆e ln(4/3)

≥ ε

2
T − 8ε2

2
T
√

∆(K − 1) ln(4/3)

≥ εT
(

1

2
− 4ε

√
∆K ln(4/3)

)
≥ T

64
√

∆K ln(4/3)
.

Setting ∆ = 1
K5/3

(
T
VT

)2/3

yields the desired result.
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D. Missing details from Dynamic Regret Analysis under Borda Scores (Section 6)
Algorithm 3 details the procedure for Borda-DEX3.S and defines the reward estimate s′i,t(k) for i ∈ {+1,−1} and
k ∈ [K] in L9. Before we prove the high-probability dynamic regret guarantee from Theorem 6.1, we reproduce Lemma
10 from Saha et al. (2021), which serves the same purpose as Lemma A.1 for the Borda score estimate s′i,t(k) defined in
Algorithm 3.

Lemma D.1. For any δ > 0, β, γ ∈ (0, 1), i ∈ {+1,−1}, with probability at least 1− δ/2,

∀k ∈ [K],

T∑
t=1

s′i,t(k) ≥
T∑
t=1

st(k)− 1

γβ
ln

(
2K

δ

)
,

where st(k) = 1
K

∑
j∈[K] Pt(k, j) is the shifted Borda score of arm k at time t.

The basic regret decomposition idea that was used in Appendix B to bound the regret of DEX3.S can be used for
Borda-DEX3.S as well. We define DBR+

T (jT ) and DBR−T (jT ) as:

DBR+
T (jT ) =

T∑
t=1

bt(jt)− bt(k+1,t) =
K

K − 1

T∑
t=1

st(jt)− st(k+1,t)

DBR−T (jT ) =

T∑
t=1

bt(jt)− bt(k−1,t) =
K

K − 1

T∑
t=1

st(jt)− st(k−1,t).

As before, DBRT (jT ) = 1
2

(
DBR+

T (jT ) + DBR−T (jT )
)
. We only show the bound on DBR+

T (jT ) below. The bound on
DBR−T (jT ), and hence on DBRT (jT ), follows along the lines of Appendix B. We begin with a simple lemma.

Lemma D.2. With probability at least 1− δ/2,

T∑
t=1

K∑
k=1

p+1,t(k)s′+1,t(k) ≤
T∑
t=1

(st(k+1,t) + βK) +
γ + 1

γ

√
2T ln(2/δ).

Proof. Let Xn =
∑n
t=1

[∑K
k=1 p+1,t(k)s′+1,t(k)− (st(k+1,t) + βK)

]
. One can easily show that the sequence

X1, X2, . . . is a martingale. Using Azuma’s inequality,

P (XT ≥ ε) ≤ exp

(
− ε2

2
∑T
t=1 c

2
t

)
, (13)

where ct = bt − at where at ≤ Xt −Xt−1 ≤ bt almost surely. We next derive such a ct.

Xt −Xt−1 =

K∑
k=1

p+1,t(k)s′+1,t(k)− (st(k+1,t) + βK)

=

K∑
k=1

 I{k+1,t = k}
K

K∑
j=1

I{k−1,t = j}ot(k, j)
p−1,t(j)

+ β

− 1

K

K∑
j=1

Pt(k+1,t, j)− βK

≤ 1

γ
+ βK − βK =

1

γ
= bt.

Similarly,

Xt −Xt−1 =

K∑
k=1

p+1,t(k)s′+1,t(k)− (st(k+1,t) + βK) ≥ βK − 1− βK = −1 = at.

Therefore, ct = bt − at = γ+1
γ . Using this value of ct in (13) and setting exp

(
− ε2

2
∑T
t=1 c

2
t

)
≤ δ

2 gives ε = γ+1
γ

√
2T ln 2

δ

finishing the proof.
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We now show a high probability regret bound on DBR+
T (jT ).

Lemma D.3. Let jT = (j1, . . . , jT ) be an arbitrary sequence of T actions with S switches. The following bound holds

with probability at least 1− δ when η =
(
S lnK
T
√

2K

)2/3

, β =
S1/3
√

ln(2K/δ)

(2η)1/4K3/4
√
T

, γ =
√

2ηK ≥
√
ηK(1 + β), and α = 1

KT :

DBR+
T (jT ) = Õ(S1/6K−1/3T 5/6 + S1/2K1/3T 2/3).

Proof. Divide the time horizon into sub-intervals [T1, T2), [T2, T3), . . . , [TS , TS+1) as in Appendix B. Using Lemma D.2
and the condition ηK

γ2 (1 + γβ) ≤ 1, and performing a similar calculation as in Appendix B yields for any action js, with
probability at least 1− δ/2,

− ln
1

α
+ η

Ts+1−1∑
t=Ts

s′+1,t(j
s) ≤ ln

W+1,Ts+1

W+1,Ts

≤ η

1− γ βK∆s +
η

1− γ

Ts+1−1∑
t=Ts

st(k+1,t) +
η(1 + γ)

γ(1− γ)

√
2∆s ln

2

δ

η2(1 + γβ)

γ(1− γ)

Ts+1−1∑
t=Ts

K∑
k=1

s′+1,t(k) + eαK∆s,

where ∆s = Ts+1 − Ts is the length of the sth sub-interval. Simplifying as in Appendix B, we get with probability at least
1− δ/2,

Ts+1−1∑
t=Ts

st(k+1,t) +
1 + γ

γ

√
2∆s ln(2/δ) ≥ (1− 2γ) max

k∈[K]

Ts+1−1∑
t=Ts

s′+1,t(k)−
(
eα

η
+ β

)
K∆s − 1

η
ln

1

α
.

Using Lemma D.1, we get with probability at least 1− δ
Ts+1−1∑
t=Ts

st(k+1,t) +
1 + γ

γ

√
2∆s ln(2/δ) ≥ (1− 2γ) max

k∈[K]

Ts+1−1∑
t=Ts

st(k)−
(
eα

η
+ β

)
K∆s − 1

η
ln

1

α
− 1

γβ
ln

2K

δ

≥ (1− 2γ)

Ts+1−1∑
t=Ts

st(j
s)−

(
eα

η
+ β

)
K∆s − 1

η
ln

1

α
− 1

γβ
ln

2K

δ
.

Here, recall that js is the constant arm in the sequence jT = (j1, j2, . . . , jT ) in the sub-interval [Ts, Ts+1). Noting that
st(k) ≤ 1 for any arm k, summing over s = 1, . . . , S, and rearranging, we get,

T∑
t=1

(st(jt)− st(k+1,t)) ≤ 2γT +
1 + γ

γ

√
2ST ln(2/δ) +

(
eα

η
+ β

)
KT +

S

η
ln

1

α
+

S

γβ
ln

2K

δ
.

Setting η =
(
S lnK
T
√

2K

)2/3

, β =
S1/3
√

ln(2K/δ)

(2η)1/4K3/4
√
T

, γ =
√

2ηK ≥
√
ηK(1 + β), and α = 1

KT finishes the proof.


