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Abstract
Stein Variational Gradient Descent (SVGD) is
an algorithm for sampling from a target density
which is known up to a multiplicative constant.
Although SVGD is a popular algorithm in prac-
tice, its theoretical study is limited to a few recent
works. We study the convergence of SVGD in the
population limit, (i.e., with an infinite number of
particles) to sample from a non-logconcave tar-
get distribution satisfying Talagrand’s inequality
T1. We first establish the convergence of the algo-
rithm. Then, we establish a dimension-dependent
complexity bound in terms of the Kernelized Stein
Discrepancy (KSD). Unlike existing works, we
do not assume that the KSD is bounded along the
trajectory of the algorithm. Our approach relies
on interpreting SVGD as a gradient descent over
a space of probability measures.

1. Introduction
Sampling from a given target distribution π is a fundamental
task of many Machine Learning procedures. In Bayesian
Machine Learning, the target distribution π is typically
known up to a multiplicative factor and often takes the form

π(x) ∝ exp(−F (x)), (1)

where F : X → R is a L-smooth nonconvex function
defined on X := Rd, and satisfying∫

exp(−F (x))dx <∞.

As sampling algorithms are intended to be applied to large
scale problems, it has become increasingly important to

1Microsoft Research, Redmond, USA 2King Abdullah Univer-
sity of Science and Technology, Thuwal, Saudi Arabia. Correspon-
dence to: Adil Salim <adilsalim@microsoft.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

understand their theoretical properties, such as their com-
plexity, as a function of the dimension of the problem d, and
the desired accuracy ε. In this regard, most of the Machine
Learning literature on sampling has concentrated on under-
standing the complexity (in terms of d and ε) of (variants
of) the Langevin algorithm, see Durmus et al. (2019); Bern-
ton (2018); Wibisono (2018); Cheng et al. (2018); Salim &
Richtárik (2020); Hsieh et al. (2018); Dalalyan (2017); Dur-
mus & Moulines (2017); Rolland et al. (2020); Vempala &
Wibisono (2019); Zou et al. (2019); Şimşekli (2017); Shen
& Lee (2019); Bubeck et al. (2018); Durmus et al. (2018);
Ma et al. (2019); Foster et al. (2021); Li et al. (2021).

1.1. Stein Variational Gradient Descent (SVGD)

Stein Variational Gradient Descent (SVGD) (Liu & Wang,
2016; Liu, 2017) is an alternative to the Langevin algo-
rithm that has been applied in several contexts in Machine
Learning, including Reinforcement Learning (Liu et al.,
2017), sequential decision making (Zhang et al., 2018;
2019), Generative Adversarial Networks (Tao et al., 2019),
Variational Auto Encoders (Pu et al., 2017), and Federated
Learning (Kassab & Simeone, 2020).

The literature on theoretical properties of SVGD is scarce
compared to that of Langevin algorithm, and limited to a few
recent works (Korba et al., 2020; Lu et al., 2019; Duncan
et al., 2019; Liu, 2017; Chewi et al., 2020; Gorham et al.,
2020; Nüsken & Renger, 2021; Shi et al., 2021). In this
paper, our goal is to provide a clean convergence theory for
SVGD in the population limit, i.e., with an infinite number
of particles.

1.2. Related works

The Machine Learning literature on the complexity of sam-
pling from a non-logconcave target distribution has mainly
focused on the Langevin algorithm. For instance,1 Vempala
& Wibisono (2019) showed that Langevin algorithm reaches
ε accuracy in terms of the Kullback-Leibler divergence after
Ω̃(L

2d
λ2ε ) iterations, assuming that the target distribution satis-

1The example of Vempala & Wibisono (2019) is taken only
for illustration purpose. Many other results were obtained for
Langevin algorithm, even in nonconvex cases, see above.
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fies the logarithmic-Sobolev inequality (LSI) with constant
λ. In this work, we will assume Talagrand’s inequality T1
with constant λ, which is milder than LSI with constant λ,
and we will prove a complexity result in terms of another
discrepancy called Kernelized Stein Discrepancy (KSD).
Besides, a very recent work studies Langevin algorithm
for a non-logconcave target distribution without assuming
LSI and provides guarantees in terms of the Fisher informa-
tion (Balasubramanian et al., 2022).

Most existing results on SVGD deal with the continuous
time approximation of SVGD in the population limit, a Par-
tial Differential Equation (PDE) representing SVGD with a
vanishing step size and an infinite number of particles (Lu
et al., 2019; Duncan et al., 2019; Liu, 2017; Nüsken &
Renger, 2021; Chewi et al., 2020). In particular, Duncan
et al. (2019) propose a Stein logarithmic Sobolev inequality
that implies the linear convergence of this PDE. However,
it is not yet understood when Stein logarithmic Sobolev
inequality holds. Besides, Chewi et al. (2020) showed that
the Wasserstein gradient flow of the chi-squared divergence
can be seen as an approximation of that PDE, and showed
linear convergence of the Wasserstein gradient flow of the
chi-squared under Poincaré inequality. Other results, such
as those of Lu et al. (2019); Liu (2017); Nüsken & Renger
(2021), include asymptotic convergence properties of the
PDE, but do not include convergence rates. In this paper,
we will prove convergence rates for SVGD in discrete time.

1.2.1. COMPARISON TO KORBA ET AL. (2020)

The closest work to ours is Korba et al. (2020). To our
knowledge, Korba et al. (2020) showed the first complexity
result for SVGD in discrete time. This result is proven in
the population limit and in terms of the Kernelized Stein
Discrepancy (KSD), similarly to our main complexity result.

However, their complexity result relies on the assumption
that the KSD is uniformly bounded along the iterations of
SVGD, an assumption that cannot be checked prior to run-
ning the algorithm. Moreover, their complexity bound does
not express the dependence in the dimension d explicitly.
This is because the uniform bound on the KSD appears in
their complexity bound. On the contrary, one of our con-
tributions is to present a dimension-dependent complexity
result under verifiable assumptions.

Besides, Korba et al. (2020) provide a bound on the distance
between SVGD in the finite number of particles regime and
SVGD in the population limit. This bound cannot be used
to study the complexity or convergence rate of SVGD in
the finite number of particles regime, see Korba et al. (2020,
Proposition 7).

1.3. Contributions

We consider SVGD in the population limit, similarly to
concurrent works such as Liu (2017); Korba et al. (2020);
Gorham et al. (2020). Our paper intends to provide a clean
analysis of SVGD, a problem stated in Liu (2017, Conclu-
sion). To this end, we do not make any assumptions on the
trajectory of the algorithm. Instead, our key assumption
is that the target distribution π satisfies T1, the mildest of
the Talagrand’s inequalities, which holds under a mild as-
sumption on the tails of the distribution; see Villani (2008,
Theorem 22.10). Moreover, T1 is implied, for example, by
the logarithmic Sobolev inequality (Villani, 2008, Theorem
22.17), with the same constant λ.

Although sampling algorithms are meant to be applied on
high-dimensional problems, the question of the dependence
of the complexity of SVGD in d has not been studied in
concurrent works, nor has been studied the generic weak
convergence of SVGD under verifiable assumptions, to our
knowledge. Assuming that the T1 inequality holds, we
provide

• a generic weak convergence result for SVGD (actually
our result is a bit stronger: convergence holds in 1-
Wasserstein distance),

• a complexity bound for SVGD in terms of the dimen-
sion d and the desired accuracy ε, under verifiable
assumptions (i.e., assumptions that do not depend on
the trajectory of the algorithm): Ω̃

Ä
Ld3/2

λ1/2ε

ä
iterations

suffice to obtain a sample µ such that KSD2(µ|π) < ε,
where L is the smoothness constant of F and λ the
constant in T1 inequality.

Note that these results hold without assuming F convex. In
particular, in the population limit, SVGD applied to non-
logconcave target distributions satisfying T1 converges to
the target distribution.

1.4. Paper structure

The remainder of the paper is organized as follows. In
Section 2 we introduce the necessary mathematical and
notational background on optimal transport, reproducing
kernel Hilbert spaces and SVGD in order to be able to
describe and explain our results. Section 3 is devoted to
the development of our theory. Finally, in Section 4 we
formulate three corollaries of our key result, capturing weak
convergence and complexity estimates for SVGD. Technical
proofs are postponed to the Appendix.
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2. Background and Notation
2.1. Notation

For any Hilbert space H , we denote by ⟨·, ·⟩H the inner
product of H and by ∥ · ∥H its norm.

We denote by C0(X ) the set of continuous functions from
X to R vanishing at infinity and by C1(X ,Y) the set of
continuously differentiable functions from X to a Hilbert
space Y . Given ϕ ∈ C1(X ,R), its gradient is denoted by
∇ϕ, and if ϕ ∈ C1(X ,X ), the Jacobian of ϕ is denoted by
Jϕ. For every x ∈ X , Jϕ(x) can be seen as a d× d matrix.
The trace of the Jacobian, also called divergence, is denoted
by div ϕ.

For any d×d matrix A, ∥A∥HS denotes the Hilbert Schmidt
norm of A and ∥A∥op the operator norm of A viewed as a
linear operator A : X → X (where X is endowed with the
standard Euclidean inner product). Finally, δx is the Dirac
measure at x ∈ X .

2.2. Optimal transport

Consider p ≥ 1. We denote by Pp(X ) the set of Borel
probability measures µ over X with finite pth moment:∫
∥x∥pdµ(x) < ∞. We denote by Lp(µ) the set of mea-

surable functions f : X → X such that
∫
∥f∥pdµ < ∞.

Note that the identity map I of X satisfies I ∈ Lp(µ) if
µ ∈ Pp(X ). Moreover, denoting the image (or pushfor-
ward) measure of µ by a map T as T#µ, we have that if
µ ∈ Pp(X ) and T ∈ Lp(µ) then T#µ ∈ Pp(X ) using the
transfer lemma.

For every µ, ν ∈ Pp(X ), the p-Wasserstein distance be-
tween µ and ν is defined by

W p
p (µ, ν) = inf

s∈S(µ,ν)

∫
∥x− y∥pds(x, y), (2)

where S(µ, ν) is the set of couplings between µ and ν,
i.e., the set of nonnegative measures over X 2 such that
P#s = µ (resp. Q#s = ν) where P : (x, y) 7→ x (resp.
Q : (x, y) 7→ y) denotes the projection onto the first (resp.
the second) component. The p-Wasserstein distance is a
metric over Pp(X ). The metric space (P2(X ),W2) is called
the Wasserstein space.

In this paper, we consider a target probability distribution π
proportional to exp(−F ), where F satisfies the following.

Assumption 2.1. The Hessian HF is well-defined and
∃L ≥ 0 such that ∥HF ∥op ≤ L.

Moreover, using
∫
exp(−F (x))dx < ∞, F admits a sta-

tionary point.

Proposition 2.2. Under Assumptions 2.1 , there exists x⋆ ∈
X for which ∇F (x⋆) = 0, i.e., F admits a stationary point.

To specify the dependence in the dimension of our complex-
ity bounds, we will initialize the algorithm from a Gaussian
distribution centered at a stationary point. Such a stationary
point can be found by gradient descent on F for instance.

The task of sampling from π can be formalized as an op-
timization problem. Indeed, define the Kullback-Leibler
(KL) divergence as

KL(µ|π) :=
∫

log

Å
dµ

dπ
(x)

ã
dµ(x), (3)

if µ admits the density dµ
dπ with respect to π, and

KL(µ|π) := +∞ else. Then, KL(µ|π) ≥ 0 and
KL(µ|π) = 0 if and only if µ = π. Therefore, assum-
ing π ∈ P2(X ), the optimization problem

min
µ∈P2(X )

F(µ), (4)

where
F(µ) := KL(µ|π),

admits a unique solution: the distribution π. We will see
in Section 3 that SVGD can be seen as a gradient descent
algorithm to solve (4).

Indeed, the Wasserstein space can be endowed with a
differential structure. In particular, when it is well de-
fined, the Wasserstein gradient of the functional F de-
noted by ∇WF(µ) is an element of L2(µ) and satisfies
∇WF(µ) = ∇ log

Ä
dµ
dπ

ä
.

2.2.1. FUNCTIONAL INEQUALITIES

The analysis of sampling algorithm in the case where F is
nonconvex often goes through functional inequalities.

Definition 2.3 (Logarithmic Sobolev Inequality (LSI)). The
distribution π satisfies the Logarithmic Sobolev Inequality
if there exists λ > 0 such that for all µ ∈ P2(X ),

F(µ) ≤ 2

λ
∥∇WF(µ)∥2L2(µ).

LSI is a popular assumption in the analysis of Langevin
algorithm in the case when F is not convex see e.g. Vempala
& Wibisono (2019).

Definition 2.4 (Talagrand’s Inequality Tp). Let p ≥ 1.
The distribution π satisfies the Talagrand’s Inequality Tp if
there exists λ > 0 such that for all µ ∈ Pp(X ), we have

Wp(µ, π) ≤
»

2F(µ)
λ .

We now claim that T1 is milder than LSI. Indeed, using
W1(µ, π) ≤ W2(µ, π), T2 implies T1 with the same con-
stant λ. Moreover, using Villani (2008, Theorem 22.17),
LSI implies T2 with the same constant λ. In conclusion,
LSI ⇒ T2 ⇒ T1, with the same constant λ.
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Besides, if F is λ-strongly convex, then π satisfies LSI with
constant λ. A bounded perturbation of π in the latter case
would also satisfies LSI with a constant independent of the
dimension (Villani, 2008, Remark 21.5).

Finally, to get the exponential convergence of SVGD in
continuous time, another inequality called Stein-LSI was
proposed in Duncan et al. (2019). Stein-LSI is an assump-
tion on both the kernel and the target distribution, and it
implies LSI. Obtaining reasonable sufficient conditions for
Stein-LSI to hold is an open problem, but there are simple
cases where it cannot hold (Duncan et al., 2019, Lemma 36).
In particular, Stein-LSI never holds under the assumptions
that we will make in this paper to study SVGD in discrete
time, see Korba et al. (2020, Section 11.3).

Our key assumption on π is that it satisfies the Talagrand’s
inequality T1 (Villani, 2008, Definition 22.1).

Assumption 2.5. The target distribution π satisfies T1.

We will use Assumption 2.5 to recursively control the KSD
by the KL divergence along the iterations of the algorithm.

The target distribution π satisfies T1 if and only if there
exist a ∈ X and β > 0 such that∫

exp(β∥x− a∥2)dπ(x) <∞, (5)

see Villani (2008, Theorem 22.10). Therefore, Assump-
tion 2.5 is essentially an assumption on the tails of π. In
particular, π ∈ P2(X ).

2.3. Reproducing Kernel Hilbert Space

We consider a kernel k associated to a Reproducing Kernel
Hilbert Space (RKHS) denoted by H0. We denote by Φ :
X → H0 the so-called feature map Φ : x 7→ k(·, x). The
product space Hd

0 is also a Hilbert space denoted H := Hd
0 .

We make the following assumption on the kernel k.

Assumption 2.6. There exists B > 0 such that the inequal-
ities

∥Φ(x)∥H0 ≤ B,

and

∥∇Φ(x)∥2H =

d∑
i=1

∥∂iΦ(x)∥2H0
≤ B2

hold for all x ∈ X . Moreover, ∇Φ : X → H is continuous.

Assumption 2.6 is satisfied by the Gaussian kernel for exam-
ple, with B independent of d using a scaling argument.
Assumption 2.6 states that Φ : X → H0 is bounded,
Lipschitz and C1. This is satisfied by many classical ker-
nels used in practice. Note that k(x, x) = ∥Φ(x)∥2H0

and
that div1 ∇2k(x, a) = ⟨∇Φ(x),∇Φ(a)⟩H (in particular,
div1 ∇2k(x, x) = ∥∇Φ(x)∥2H). Hence, ∇Φ is continuous

iff x 7→ div1 ∇2k(x, x) and x 7→ div1 ∇2k(x, a) are con-
tinuous for every a ∈ X .

Under Assumption 2.6, H ⊂ L2(µ) for every probability
distribution on X , and the inclusion map ιµ : H → L2(µ)
is continuous. We denote by Pµ : L2(µ) → H its adjoint
defined by the relation: for every f ∈ L2(µ), g ∈ H,

⟨f, ιµg⟩L2(µ) = ⟨Pµf, g⟩H. (6)

Then, Pµ can be expressed as a convolution with k (Carmeli
et al., 2010, Proposition 3):

Pµf(x) =

∫
k(x, y)f(y)dµ(y), (7)

or Pµf =
∫
Φ(y)f(y)dµ(y) where the integral converges

in norm.

2.4. Stein Variational Gradient Descent

2.4.1. THE POPULATION LIMIT

Stein Variational Gradient Descent (SVGD) is an algorithm
to sample from π ∝ exp(−F ). SVGD proceeds by main-
taining a set of N particles over Rd, whose empirical dis-
tribution µN

n at time n aims to approximate π as n → ∞,
see Liu & Wang (2016). The SVGD algorithm is presented
above.

Algorithm 1 Stein Variational Gradient Descent (Liu &
Wang, 2016)

Initialization: a set x10, . . . , x
N
0 ∈ X of N particles, a

kernel k, a step size γ > 0.
for n = 0, 1, 2, . . . do

for i = 1, 2, . . . , N do

xin+1 = xin − γ

N

N∑
j=1

k(xin, x
j
n)∇F (xjn)−∇2k(x

i
n, x

j
n)

end for
end for

Denoting by µN
n the empirical distribution of x1n, . . . , x

N
n ,

i.e.,

µN
n :=

1

N

N∑
i=1

δxi
n
,

the SVGD update can be written

xin+1 =xin − γ

∫
k(xin, y)∇F (y)−∇2k(x

i
n, y)dµ

N
n (y)

=

Å
I − γ

∫
k(·, y)∇F (y)−∇2k(·, y)dµN

n (y)

ã
(xin).
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Therefore, SVGD performs the update

µN
n+1 =

Å
I − γ

∫
Φ(y)∇F (y)−∇Φ(y)dµN

n (y)

ã
#µN

n ,

at the level of measures. We call population limit the regime
where, formally, N = ∞. Mathematically, this corresponds
to the assumption that µ0 has a density (which can be seen
as intuitively seen E limN→∞ µN

0 ) which belongs toC0(X ).
In this case, we shall see in our analysis that µn has a density
for every n. To summarize, in the population limit, SVGD
performs the same update:

µn+1 = (I − γhµn)#µn, (8)

where

hµ(x) :=

∫
k(x, y)∇F (y)−∇yk(x, y)dµ(y)

or
hµ :=

∫
Φ(y)∇F (y)−∇Φ(y)dµ(y),

and where µn has a density.

Finally, note that the SVGD algorithm was originally de-
rived in Liu & Wang (2016) from its population limit. The
authors first introduced the SVGD update in the popula-
tion limit, and then, the SVGD algorithm (Algorithm 1) is
obtained from the population limit by approximating the
expectations by empirical means.

Our point of view on SVGD in the population limit. We
now provide the intuition behind our results on SVGD.

In the population limit, SVGD can be seen as a
Riemannian gradient descent, thanks to the fol-
lowing two reasons.

First, in a Riemannian interpretation of the Wasserstein
space (Villani, 2008), for every µ ∈ P2(X ), the map expµ :
ϕ 7→ (I + ϕ)#µ can be seen as the exponential map at µ.
In the population limit, SVGD (8) can be rewritten as

µn+1 = expµn
(−γhµn).

Second, −hµ can be seen as the negative gradient of F at µ
under a certain metric. Indeed, using integration by parts,
hµ = Pµ∇WF(µ), see e.g. Korba et al. (2020); Duncan
et al. (2019). Therefore, for every g ∈ H, ⟨hµ, g⟩H =
⟨∇WF(µ), g⟩L2(µ), hence hµ can be seen as a Wasserstein
gradient of F under the inner product of H.

The Kernelized Stein Discrepancy (KSD) is a natural dis-
crepancy between probability distributions that was intro-
duced prior to SVGD (Liu et al., 2016; Chwialkowski et al.,
2016) to compare probablity measures. Indeed, if the RKHS

H is rich enough (Liu et al., 2016; Chwialkowski et al.,
2016; Oates et al., 2019), an assumption that we shall al-
ways make in this paper, then

KSD(µ|π) = 0 =⇒ µ = π.

The KSD is intimately related to SVGD, and the KSD nat-
urally appears in the original derivation of SVGD (Liu &
Wang, 2016). The KSD is defined as the square root of the
Stein Fisher Information (Duncan et al., 2019) IStein:

IStein(µ|π) := ∥hµ∥2H, KSD(µ|π) := ∥hµ∥2H. (9)

In this paper, we study the complexity of SVGD in terms of
the KSD. To understand better the topology of the KSD and
compare it to common topologies in the space of probability
measures, we refer to Gorham & Mackey (2017).

3. Analysis of SVGD
In this section, we analyze SVGD in the infinite number of
particles regime. Recall that in this regime, SVGD is given
by µ0 ∈ C0(X ) and

µn+1 = (I − γhµn)#µn,

where

hµ :=

∫
∇F (x)Φ(x)−∇Φ(x)dµ(x).

3.1. A fundamental inequality

We start by stating a fundamental inequality satisfied by F
for any update of the form

µn+1 = (I − γg)#µn, (10)

where g ∈ H.

Proposition 3.1. Let Assumptions 2.1 and 2.6 hold true. Let
α > 1 and choose γ > 0 such that γ∥g∥H ≤ α−1

αB . Then,

F(µn+1) ≤ F(µn)− γ⟨hµn
, g⟩H +

γ2K

2
∥g∥2H, (11)

where K = (α2 + L)B.

Inequality (11) is a property of the functional F , and not
a property of the SVGD algorithm. Inequality (11) plays
the role of a Taylor inequality for the functional F , where
hµn

is the Wasserstein gradient of F at µn under the metric
induced by H. Proposition 3.1 is a slight generalization
of Korba et al. (2020, Proposition 5), and is not our main
contribution, therefore we only sketch its proof in the Ap-
pendix.
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3.2. Main result

Applying recursively the Taylor inequality Proposition 3.1
with g = hµn

, we obtain the following descent property for
SVGD, which is our main theoretical result. The proof of
this result can be found in the Appendix.
Theorem 3.2 (Descent lemma). Let Assumptions 2.1, 2.5
and 2.6 hold true. Let α > 1. If

γ ≤ (α− 1)× (12)(
αB2

(
1 + ∥∇F (0)∥+ L

∫
∥x∥dπ(x) + L

 
2F(µ0)

λ

))−1

or

γ ≤ (α− 1)× (13)(
αB2

(
1 + 2L

 
2F(µ0)

λ
+ L

∫
∥x− x⋆∥dµ0(x))

))−1

then

F(µn+1) ≤ F(µn)−γ
Å
1− γB(α2 + L)

2

ã
KSD2(µn|π).

(14)

If F(µ0) < ∞, then, using Theorem 3.2, (F(µn))n is
nonincreasing and µn has a density w.r.t. Lebesgue measure
for every n (since F(µn) <∞).

In the language of the gradient descent algorithms, Theo-
rem 3.2 is called a descent property. It can be seen as a
discrete time analogue of dissipation properties obtained
for the PDE modeling SVGD in continuous time in the
population limit (Duncan et al., 2019; Korba et al., 2020).

Unlike Korba et al. (2020, Proposition 5) and Liu (2017,
Theorem 3.3), we do not assume that supn KSD(µn|π) <
∞ or that γ ≤ KSD(µn|π)−1 to obtain our descent prop-
erty. The step size γ is bounded by a constant. Iterating
Theorem 3.2, we obtain convergence results as corollaries
in the next section.

4. Convergence and Complexity
4.1. Convergence

We now show that Theorem 3.2 implies weak convergence
and convergence in W1.
Corollary 4.1 (Weak convergence). Let Assumptions 2.1,
2.5 and 2.6 hold true. Let α > 1. If γ < 2

B(α2+L) , and
γ further satisfies either (12) or (13), then µn →n→+∞ π
weakly and W1(µn, π) → 0.

Proof. Using Theorem 3.2 and iterating,

F(µn) ≤ F(µ0)−γ
Å
1− γB(α2 + L)

2

ã n−1∑
k=0

KSD2(µk|π).

Therefore, F(µn) is uniformly bounded. For every n ≥ 1,

γ

Å
1− γB(α2 + L)

2

ã n−1∑
k=0

KSD2(µk|π) ≤ F(µ0).

Consequently,
∑+∞

n=0 KSD2(µn|π) < ∞. Therefore
KSD(µn|π) →n→+∞ 0.

Moreover, using Assumption 2.5 and (5), for every a ∈
X ,
∫
exp(⟨a, x⟩)dπ(x) < ∞. Therefore, using Dupuis &

Ellis (2011, Lemma 1.4.3), (µn) is both tight and uniformly
integrable. Consider a subsequence of (µϕ(n)) converging
weakly to some µ⋆. We shall prove that µ⋆ = π.

First, using Assumption 2.1 and Assumption 2.6, x 7→
∇F (x)Φ(x)−∇Φ(x) ∈ H is continuous and

∥∇F (x)Φ(x)−∇Φ(x)∥H
∥∇F (x)Φ(x)∥H + ∥∇Φ(x)∥H

= ∥∇F (x)∥ ∥Φ(x)∥H0
+ ∥∇Φ(x)∥H

≤B (∥∇F (x)∥+ 1)

≤B (∥∇F (0)∥+ L∥x∥+ 1) .

Moreover, as a subsequence, (µϕ(n)) is also uni-
formly integrable and also converges weakly to µ⋆.
Therefore, using Villani (2003, Theorem 7.12) with
p = 1, Ex∼µϕ(n)

(∇F (x)Φ(x)−∇Φ(x)) converges to
Ex∼µ⋆ (∇F (x)Φ(x)−∇Φ(x)) in H. In other words,
hµϕ(n)

converges to hµ⋆ in H. Taking the norm,
KSD(µϕ(n)|π) → KSD(µ⋆|π) along the subsequence. Re-
calling that KSD(µn|π) → 0 we obtain KSD(µ⋆|π) = 0,
which implies µ⋆ = π.

In conclusion, µn →n→+∞ π weakly. Moreover, the con-
vergence also happens in W1 because (µn) is uniformly
integrable, see (Villani, 2003, Theorem 7.12).

In summary, under T1 and some smoothness assumptions
but without convexity of the potential, SVGD in the popula-
tion limit converges to the target distribution.

One can be surprised to see that SVGD converges without
convexity assumption on F , but this is actually natural if one
thinks about the gradient descent interpretation of SVGD.
Indeed, SVGD in the population limit is a gradient descent
on the KL divergence, which is

• "smooth" if we restrict the descent directions to a
RKHS (i.e., it satisfies a Taylor inequality Proposi-
tion 3.1),

• coercive (i.e., sublevel sets are tight) Dupuis & Ellis
(2011, Lemma 1.4.3),

• and has a single stationary point which is its global
minimizer (the KSD is the norm of the gradient of KL
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in our interpretation, and the KSD is equal to zero only
at the optimum).

One can show that, over Rd, gradient descent applied to
a smooth coercive function with a single stationary point
converges to the global minimizer. The situation here is
similar.

4.2. Complexity

Next, we provide a O(1/n) convergence rate for the empiri-
cal mean of the iterates µn in terms of the squared KSD. This
result is obtained from our descent lemma (Theorem 3.2).

Corollary 4.2 (Convergence rate). Let Assumptions 2.1, 2.5
and 2.6 hold true. Let α > 1. If γ < 2

B(α2+L) , and γ
further satisfies either (12) or (13), then

IStein(µ̄n|π) ≤
2F(µ0)

nγ
, (15)

where µ̄n = 1
n

∑n−1
k=0 µk.

Note that this convergence rate is given in terms of the
uniform mixture of µ0, . . . , µn−1. Similar mixtures appear
in the analysis of Langevin algorithm (see e.g. Durmus et al.
(2019)). Note also that the convergence rate in Corollary 4.2
is similar to the convergence rate of the squared norm of
the gradient in the gradient descent algorithm applied to a
smooth function (Nesterov, 2013).

Proof. Using Theorem 3.2, F(µn+1) ≤ F(µn) −
γ
2 KSD2(µn|π), and by iterating, we get

0 ≤ F(µn) ≤ F(µ0)−
γ

2

n−1∑
k=0

∥hµk
∥2.

Rearranging the terms, and using the convexity of the
squared norm,

∥hµ̄n
∥2 =

∥∥∥∥∥ 1n
n−1∑
k=0

hµk

∥∥∥∥∥
2

≤ 1

n

n−1∑
k=0

∥hµk
∥2 ≤ 2F(µ0)

nγ
.

From the last result, we can characterize the iteration com-
plexity of SVGD.

Corollary 4.3 (Complexity). Let Assumptions 2.1, 2.5 and
2.6 hold true. Let α > 1. If γ ≤ min( 2

B(α2+L) ,
α−1
αK ),

where

K := B2

Ç
1 + 2L

…
2

λ

 
F (x⋆) +

d

2
log

Å
L

2π

ã
+

√
Ld

å
,

and if µ0 = N (x⋆,
1
LI), then

n = Ω̃

Ç
Ld3/2

λ1/2ε

å
iterations of SVGD suffice to output µ := µ̄n such that
IStein(µ|π) ≤ ε.

To our knowledge, Corollary 4.3 provides the first
dimension-dependent complexity result for SVGD. Its proof
can be found in the appendix. The dependence of the T1
constant λ in the dimension d is subject to active research in
optimal transport theory (Villani, 2008, Remark 22.11) and
is out of the scope of this paper. Yet, using Villani (2008,
Theorem 22.10, Equation 22.16), λ can be taken as

1/λ = min
a∈X ,β>0

1

β2

Å
1 + log

∫
exp(β∥x− a∥2)dπ(x)

ã
.

Note that the output µ of the algorithm is a mixture of the
iterates: µ = µ̄n. Besides, optimizing the complexity over α
leads to involved calculations that do not change the overall
complexity. To see this, note that the larger the step size
γ, the smaller the complexity. But, even if the step size
γ = min( 2

BL , 1/K) were allowed, the overall complexity
would be the same.

5. Conclusion
We proved that under T1 inequality and some smoothness
assumptions on the kernel and the potential of the target
distribution but without convexity, SVGD in the population
limit converges weakly and in 1-Wasserstein distance to
the target distribution. Moreover, we showed that SVGD
reaches ε accuracy in terms of the squared Kernelized Stein
Discrepancy after Ω̃

Ä
d3/2

ε

ä
iterations.

A possible extension of our work is to study SVGD under
functional inequalities other than T1, such as (Bolley &
Villani, 2005, Corollary 2.6 (i)) (which is weaker than T1)
or the Poincaré inequality (in the form of Villani (2008,
Theorem 22.25 (iii))). We claim that our approach can be
extended to study SVGD in these settings.

Finally, an important and difficult open problem in the anal-
ysis of SVGD is to characterize its complexity with a finite
number of particles, i.e. with discrete measures. In this
regime, we lose the interpretation of SVGD as a gradient
descent in the space of probability measures, because the
KL divergence w.r.t. the target distribution is infinite. How-
ever, we believe that our clean analysis in the population
limit makes a first step towards this open problem.
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Şimşekli, U. Fractional Langevin Monte Carlo: Exploring
Lévy driven stochastic differential equations for Markov
Chain Monte Carlo. In International Conference on Ma-
chine Learning (ICML), pp. 3200–3209, 2017.

Tao, C., Dai, S., Chen, L., Bai, K., Chen, J., Liu, C., Zhang,
R., Bobashev, G., and Carin, L. Variational annealing of
GANs: A Langevin perspective. In International Con-
ference on Machine Learning (ICML), pp. 6176–6185,
2019.

Vempala, S. and Wibisono, A. Rapid convergence of the
unadjusted Langevin algorithm: Isoperimetry suffices.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 8092–8104, 2019.

Villani, C. Topics in optimal transportation. Number 58 in
Graduate Studies in Mathematics. American Mathemati-
cal Society, 2003.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Wibisono, A. Sampling as optimization in the space of
measures: The Langevin dynamics as a composite opti-
mization problem. In Conference on Learning Theory
(COLT), pp. 2093–3027, 2018.

Zhang, R., Li, C., Chen, C., and Carin, L. Learning struc-
tural weight uncertainty for sequential decision-making.
In International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 1137–1146, 2018.

Zhang, R., Wen, Z., Chen, C., Fang, C., Yu, T., and Carin,
L. Scalable Thompson sampling via optimal transport.
In International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 87–96, 2019.

Zou, D., Xu, P., and Gu, Q. Sampling from non-log-concave
distributions via variance-reduced gradient Langevin dy-
namics. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pp. 2936–2945, 2019.



Convergence of SVGD in the Population Limit under T1

Appendix
A. Proof of Proposition 2.2
First, we prove that F is coercive, i.e., for every C > 0, the set S = {x ∈ X : F (x) ≤ C} is compact. Since F is
continuous, S is closed. It remains to prove that S is bounded. Assume, by contradiction, that S is unbounded. Then, there
exists a sequence (xn) of points in X such that F (xn) ≤ C, ∥xn∥ → +∞ and B(xn) ∩ B(xm) = ∅ for every n ̸= m,
where B(x) denotes the unit ball centered at x.

Let n ≥ 0. Using the smoothness of F (Assumption 2.1), for every x ∈ B(xn),

F (x) ≤ F (xn) + ⟨∇F (xn), x− xn⟩+
L

2
.

Denote by V the volume of the unit ball centered at x, i.e. its Lebesgue measure. The positive number V does not depend
on x. Then

∫
B(xn)

exp(−F (x))dx ≥
∫
B(xn)

exp

Å
−F (xn)− ⟨∇F (xn), x− xn⟩ −

L

2

ã
dx

= V exp

Å
−F (xn)−

L

2

ã∫
B(xn)

exp (⟨∇F (xn), xn − x⟩) dx
V

= V exp

Å
−F (xn)−

L

2

ã∫
B(0)

exp (⟨∇F (xn), u⟩)
du

V

≥ V exp

Å
−F (xn)−

L

2

ã
exp

Ç∫
B(0)

⟨∇F (xn), u⟩
du

V

å
= V exp

Å
−F (xn)−

L

2

ã
≥ V exp

Å
−C − L

2

ã
,

where we used Jensen’s inequality for the uniform distribution over B(0), thanks to the convexity of t 7→ exp(t). Finally,

∫
exp(−F (x))dx ≥

∞∑
n=0

∫
B(xn)

exp(−F (x))dx ≥
∞∑

n=0

V exp

Å
−C − L

2

ã
= +∞,

which means that exp(−F ) is not integrable. This contradicts the definition of F and therefore, S is bounded.

Next, since the set S is compact, F is coercive, and hence F admits a stationary point. Indeed, F is continuous over the
compact set {x ∈ X : F (x) ≤ 1}, and therefore, F admits a minimizer, x⋆, over this set. Moreover, this point x⋆ is a
stationary point i.e., ∇F (x⋆) = 0 (note that the point x⋆ is actually a global minimizer of F ).

B. Proof of Proposition 3.1
Let ϕt = I − tg for t ∈ [0, γ] and ρt = (ϕt)#µn. Note that ρ0 = µn and ργ = µn+1. First, for every x ∈ X ,

∥g(x)∥2 =

d∑
i=1

⟨k(x, .), gi⟩2H0
≤ ∥k(x, .)∥2H0

∥g∥2H ≤ B2∥g∥2H, (16)
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and

∥Jg(x)∥2HS =

d∑
i,j=1

∣∣∣∣∂gi(x)∂xj

∣∣∣∣2

=

d∑
i,j=1

⟨∂xj
k(x, .), gi⟩2H0

≤
d∑

i,j=1

∥∂xj
k(x, .)∥2H0

∥gi∥2H0

= ∥∇k(x, .)∥2H∥g∥2H
≤ B2∥g∥2H. (17)

Hence,

∥tJg(x)∥op ≤ ∥tJg(x)∥HS ≤ γB∥g∥H ≤ α− 1

α
< 1, (18)

using our assumption on the step size γ. Inequality (18) proves that ϕt is a diffeomorphism for every t ∈ [0, γ]. Moreover,

∥(Jϕt(x))−1∥op ≤
∞∑
k=0

∥tJg(x)∥kop ≤
∞∑
k=0

Å
α− 1

α

ãk
= α. (19)

Using the density of the pushforward formula,

ρt(x) =
∣∣det((Jϕt)−1)µn

∣∣ ◦ ϕ−1
t .

Moreover, det(Jϕt(x))−1 ≤ αd for every x ∈ X using (19). Besides, if µn ∈ C0(X ) then µn ◦ ϕ−1
t ∈ C0(X ) using that

ϕt is a diffeomorphism. Therefore, ρt ∈ C0(X ) as the product of a C0(X ) function with a bounded function. In particular,
µn+1 ∈ C0(X ). By induction, µk ∈ C0(X ) for every k.

Using Villani (2003, Theorem 5.34), the velocity field ruling the time evolution of ρt is wt ∈ L2(ρt) defined by wt(x) =
−g(ϕ−1

t (x)). Denote φ(t) = F(ρt). Using a Taylor expansion,

φ(γ) = φ(0) + γφ′(0) +

∫ γ

0

(γ − t)φ′′(t)dt. (20)

We now identify each term. First, φ(0) = F(µn) and φ(γ) = F(µn+1). Using the reproducing property, one can show that

φ′(0) = −⟨hµn
, g⟩H. (21)

Moreover, one can show that φ′′(t) = ψ1(t) + ψ2(t), where

ψ1(t) = Ex∼ρt
[⟨wt(x), HF (x)wt(x)⟩] and ψ2(t) = Ex∼ρt

[
∥Jwt(x)∥2HS

]
. (22)

Recall that wt = −g ◦(ϕt)−1. The first term ψ1(t) is bounded using the transfer lemma, Assumption 2.1 and Inequality (16):

ψ1(t) = Ex∼µn
[⟨g(x), HV (ϕt(x))g(x)⟩] ≤ L∥g∥2L2(µn)

≤ LB2∥g∥2H.

For the second term ψ2(t), using the chain rule, −Jwt ◦ ϕt = Jg(Jϕt)
−1. Therefore,

∥Jwt ◦ ϕt(x)∥2HS ≤ ∥Jg(x)∥2HS∥(Jϕt)−1(x)∥2op ≤ α2B2∥g∥2H,

using (17) and (19). Combining each of the quantity in the Taylor expansion (20) gives the desired result.
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C. Proof of Theorem 3.2
We start with a Lemma.
Lemma C.1. Let Assumptions 2.1, 2.5 and 2.6 hold true. Then, for every µ ∈ P2(X ), we have

∥hµ∥H ≤ B

Å
1 + ∥∇F (0)∥+ L

∫
∥x∥dπ(x)

ã
+BL

 
2F(µ)

λ

and

∥hµ∥H ≤ B

(
1 + L

 
2F(µ0)

λ
+ L

 
2F(µ)

λ
+ L

∫
∥x− x⋆∥dµ0(x)

)
.

Proof. Using Assumption 2.6

∥hµ∥H = ∥Ex∼µ (∇F (x)Φ(x)−∇Φ(x))∥H
≤ Ex∼µ ∥∇F (x)Φ(x)−∇Φ(x)∥H
≤ Ex∼µ ∥∇F (x)Φ(x)∥H + Ex∼µ ∥∇Φ(x)∥H
= Ex∼µ ∥∇F (x)∥ ∥Φ(x)∥H + Ex∼µ ∥∇Φ(x)∥H
≤ B (Ex∼µ ∥∇F (x)∥+ 1) .

Using Assumption 2.1 and Proposition 2.2, ∥∇F (x)∥ ≤ ∥∇F (0)∥+ L∥x∥. Therefore, using the triangle inequality for the
metric W1,

∥hµ∥H ≤ B

Å
1 + ∥∇F (0)∥+ L

∫
∥x∥dµ(x)

ã
= B (1 + ∥∇F (0)∥+ LW1(µ, δ0))

≤ B (1 + ∥∇F (0)∥+ LW1(π, δ0)) +BLW1(µ, π).

We obtain the first inequality using Assumption 2.5: W1(µ, π) ≤
»

2F(µ)
λ .

To prove the second inequality, recall that ∥hµ∥H ≤ B (Ex∼µ ∥∇F (x)∥+ 1) . Using Assumption 2.1 and Proposition 2.2,
∥∇F (x)∥ = ∥∇F (x)−∇F (x⋆)∥ ≤ L∥x− x⋆∥. Therefore, using the triangle inequality for the metric W1,∫

∥x− x⋆∥dµ(x) =W1(µ, δx⋆
) ≤W1(µ, π) +W1(π, µ0) +W1(µ0, δx⋆

)

≤

 
2F(µ0)

λ
+

 
2F(µ)

λ
+W1(µ0, δx⋆

).

Therefore,

∥hµ∥H ≤ B

Å
1 + L

∫
∥x− x⋆∥dµ(x)

ã
≤ B

(
1 + L

 
2F(µ0)

λ
+ L

 
2F(µ)

λ
+ LW1(µ0, δx⋆

)

)
. (23)

Besides, Proposition 3.1 can be applied to SVGD by setting g = hµn
∈ H. In this case, we obtain the following descent

property if the step size is small enough.
Lemma C.2. Let Assumptions 2.1 and 2.6 hold true. Let α > 1 and choose γ > 0 such that γ∥hµn

∥H ≤ α−1
αB . Then,

F(µn+1) ≤ F(µn)− γ

Å
1− γK

2

ã
∥hµn

∥2H, (24)

where K = (α2 + L)B.
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Contrary to Inequality (11), Inequality (24) is a property of the SVGD algorithm.

Having established Proposition 3.1 and Lemmas C.2 and C.1, we are now ready to formulate and prove our main Theorem 3.2.

Proof. We now prove by induction the first implication of Theorem 3.2: (12) ⇒ (14). First, if γ > 0 satisfies (12), then,
using Lemma C.1, γ∥hµ0

∥H ≤ α−1
αB . Therefore, using Lemma C.2,

F(µ1) ≤ F(µ0)− γ

Å
1− γK

2

ã
∥hµ0

∥2H,

i.e., Inequality (14) holds with n = 0. Now, assume that the condition (12) implies Inequality (14) for every n ∈
{0, . . . , N − 1} and let us prove it for n = N . First, F(µN ) ≤ F(µ0). Letting A := B

(
1 + ∥∇F (0)∥+ L

∫
∥x∥dπ(x)

)
,

this implies

A+BL

 
2F(µN )

λ
≤ A+BL

 
2F(µ0)

λ
.

Therefore, if γ > 0 satisfies (12), then γ∥hµN
∥H ≤ α−1

αB . To see this, using Lemma C.1 we obtain

γ∥hµN
∥H ≤ γ

(
A+BL

 
2F(µN )

λ

)
≤ γ

(
A+BL

 
2F(µ0)

λ

)
≤ α− 1

αB
.

Therefore, using Lemma C.2, the condition (12) implies Inequality (14) at step n = N :

F(µN+1) ≤ F(µN )− γ

Å
1− γK

2

ã
∥hµN

∥2H.

Finally, it remains to recall that ∥hµN
∥2H = KSD2(µN |π). The proof of the second implication of Theorem 3.2, (13) ⇒

(14), is similar.

D. Proof of Corollary 4.3
Using Corollary 4.2, if

γ ≤ min

Ñ
(α− 1)

(
αB2

(
1 + 2L

 
2F(µ0)

λ
+ L

∫
∥x− x⋆∥dµ0(x))

))−1

,
2

B(α2 + L)

é
,

then,

KSD2(µ̄n|π) ≤
2F(µ0)

nγ
.

Using Vempala & Wibisono (2019, Lemma 1), F(µ0) ≤ F (x⋆) +
d
2 log

(
L
2π

)
. Besides,∫

∥x− x⋆∥dµ0(x) = EX∼µ0
∥X − x⋆∥ =

1√
L
EX∼µ0

∥
√
L(X − x⋆)∥,

and using the transfer lemma and Cauchy-Schwartz inequality,

∫
∥x− x⋆∥dµ0(x) =

1√
L
EY∼N (0,I)∥Y ∥ ≤ 1√

L

(
EY∼N (0,I)∥Y ∥2

)1/2
=

…
d

L
.
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Therefore,

(α− 1)

(
αB2

(
1 + 2L

 
2F(µ0)

λ
+ L

∫
∥x− x⋆∥dµ0(x))

))−1

≥(α− 1)

Ç
αB2

Ç
1 + 2L

…
2

λ

 
F (x⋆) +

d

2
log

Å
L

2π

ã
+

√
Ld

åå−1

=Ω̃

Ñ
1

L
√
d√
λ

+
√
Ld

é
,

and

γ−1 = Õ
Ç
L
√
d√
λ

+
√
Ld+ L

å
= Õ

Ç
L
√
d√
λ

å
.

Since F(µ0) = Õ(d),
F(µ0)

γ
= Õ

Ç
Ld3/2√

λ

å
.

Let ε > 0. To output the mixture µ̄n such that KSD2(µ̄n|π) < ε, it suffices to ensure that 2F(µ0)
nγ < ε. Therefore,

n = 2F(µ0)
γε = Ω̃

Ä
Ld3/2

ε
√
λ

ä
iterations suffice.


