
FITNESS: (Fine Tune on New and Similar Samples) to detect anomalies in
streams with drift and outliers

Abishek Sankararaman 1 Balakrishnan (Murali) Narayanaswamy 1 Vikramank Singh * 1 Zhao Song * 1

Abstract
Technology improvements have made it easier
than ever to collect diverse telemetry at high res-
olution from any cyber or physical system, for
both monitoring and control. In the domain of
monitoring, anomaly detection has become an im-
portant problem in many research areas ranging
from IoT and sensor networks to devOps. These
systems operate in real, noisy and non-stationary
environments. A fundamental question is then,
‘How to quickly spot anomalies in a data-stream,
and differentiate them from either sudden or grad-
ual drifts in the normal behaviour?’ Although
several heuristics have been proposed for detect-
ing anomalies on streams, no known method has
formalized the desiderata and rigorously proven
that they can be achieved. We begin by formal-
izing the problem as a sequential estimation task.
We propose FITNESS, (Fine Tune on New and
Similar Samples), a flexible framework for de-
tecting anomalies on data streams. We show that
in the case when the data stream has a gaussian
distribution, FITNESS is provably both robust
and adaptive. The core of our method is to fine-
tune the anomaly detection system only on recent,
similar examples, before predicting an anomaly
score. We prove that this is sufficient for robust-
ness and adaptivity. We further experimentally
demonstrate that FITNESS is flexible in practice,
i.e., it can convert existing offline AD algorithms
in to robust and adaptive online ones.

1. Introduction
Anomaly detection (AD) on streaming high-dimensional
data has become increasingly important to a variety of ap-

*Equal contribution 1Amazon AWS AI Labs, Santa
Clara, CA. Correspondence to: Abishek Sankararaman
<abisanka@amazon.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

plications ranging from real-time monitoring of industrial
and sensor systems (Hill and Minsker, 2010), or software
security (Ahmed et al., 2016). Roughly speaking, the task
of AD is to identify which if any of a given set of data points
are surprising or inconsistent (Chandola et al., 2009). This
is typically achieved by algorithms that output a real valued
score for each input data point, where larger the score, the
more anomalous the input point is.

We study the online version of AD, where the data arrives se-
quentially, and the AD algorithm must produce an anomaly
score for a data point before it can see the next one. The
online version has attracted study recently due to its wide ap-
plicability - including e.g. in infrastructure monitoring (Xu
et al., 2018; Audibert et al., 2020) and security applications
(Bhatia et al., 2021a;b). We define and study a theoretical
framework that captures commonly encountered challenges
in design of AD algorithms — drift and noise — that make
anomalies hard to detect and model.

Drift typically manifests as a change in the distribution of
observed data over time. A comprehensive classification
of drifts is in (Gama et al., 2014). In an AD system, the
drift can either be gradual, but continuously occurring - for
example due to wear and tear of machines in an industrial
monitoring system (Martı́ et al., 2015), or it can be rare,
but abrupt for example due to seasonal variations or ex-
ternal interventions on the sensor (Hill and Minsker, 2010;
Saurav et al., 2018). Thus the first desideratum of a practical
anomaly detection system is that it be adaptive (Definition
3.5) to drifts in the data stream.

Being adaptive in an online setting however, requires us
to trade off adaptivity with robustness (Gama et al., 2014).
Roughly speaking, an online algorithm is said to be robust
(Definition 3.6), if it can tolerate a small number of ad-
versarially corrupted data points. The trade-off is inherent
since drifts, when they occur, are hard to distinguish from
data corruptions. This trade-off is exacerbated in anomaly
detection systems, as anomalies are usually defined to be
those data-points that differ from the baseline, i.e., appear
like potential corruptions. On the other hand, being adap-
tive to changes is critical in practical anomaly detection
systems, since otherwise they will raise a large number of
false positives after a change. In practical AD systems, false

Online anomaly detection in streams with drift and outliers

positives are the key performance drivers, since alert fatigue
will cause users to turn off a system, and thus it is important
to quickly learn the “new normal” when a drift occurs (Ruff
et al., 2021).

1.1. Desiderata of online AD algorithms

Most online AD systems aim to incorporate and trade-off
the following (Togbe et al., 2021).

1. Limited Supervision: No feedback on the detections
are assumed to be available online

2. Streaming: Anomaly score for a given input to be
produced before processing the next.

3. Competitive in Stationary case: If all non-
anomalous points are sampled i.i.d., the performance
improves over time.

4. Adaptive to Shifts: In the case the data-stream ex-
hibits distribution shifts —either a sudden shift, or
slowly varying drifts, the model must be adapt.

5. Robust: The algorithm can tolerate a small number of
data corruptions in the stream.

1.2. Main Contributions

• A statistical formulation of the desiderata of practical
streaming AD systems, with lower bounds on achiev-
able performance that define the complexity parameters
of data streams for AD.

• We show our desiderata to be reasonable and non-
trivial target benchmarks that are not achieved with
obvious algorithms.

• In the case of sub-Gaussian distributions and L2

loss, we propose FITNESS :GAUSSIAN that provably
achieves the desiderata. We empirically validate the su-
periority of FITNESS :GAUSSIAN thereby showing
that the gains evidenced by theory are fundamental and
not artefacts of mathematical bounding techniques.

• We propose FITNESS :GENERAL and demonstrate
that it is flexible in practice, in that it can convert any
batch AD algorithm into an adaptive and online one.

2. Related Work
Online AD Surveys and taxonomies of AD algorithms are
in (Chandola et al., 2009; Ruff et al., 2021; Togbe et al.,
2021). We focus on unsupervised online algorithms for AD
here. We classify online AD algorithms as memory based
or sliding window based. MEMSTREAM (Bhatia et al.,
2021b), is made adaptive by keeping a dynamic memory
buffer to estimate statistics. MEMSTREAM discards a sam-
ple if it is predicted as an anomaly at the time of scoring
the data point. This form of adaptation was also proposed
in SketchDetect (Huang and Kasiviswanathan, 2015). We
show (Section 5.3), that such techniques can fail to distin-

guish between anomalies and abrupt changes. StreamIF
(Ding and Fei, 2013), xStream (Manzoor et al., 2018) and
(Raab et al., 2020; Zhang et al., 2016) propose sliding win-
dow algorithms to adapt to drifts. However, the window size
is an input that must be supplied. We show in Section 5.2
that the optimal window size depends on the data statistics
which may be unknown apriori, and thus these algorithms
are not truly adaptive. DiLOF (Na et al., 2018) proposes a
fast heuristic to trade-off not retraining on seemingly anoma-
lous points, and being adaptive to abrupt changes. RSForest,
(Wu et al., 2014), RSHash (Sathe and Aggarwal, 2016)
LODA (Pevnỳ, 2016) Adaptive Trees (Heigl et al., 2021)
HSTrees (Tan et al., 2011) and iLOF (Pokrajac et al., 2007)
incrementally train on every input point, i.e., they neither
keep a reference window, nor discard anomalous points We
show empirically that our algorithms outperform these on
real datasets.

Continual Learning Reviews of handling concept drifts
in stream learning are in (Lu et al., 2018; Gupta et al.,
2013). (Bifet and Gavalda, 2007; Bifet Figuerol and
Gavaldà Mestre, 2009) study the problem of when to dis-
card samples and when to fine-tune in the one-dimensional
setting. Their algorithms have a change point detector inter-
leaved with an estimator. Our setting generalizes theirs by
considering multi-dimensional data with drifts and adver-
sarial corruptions. (Miyaguchi and Kajino, 2019) proposed
an adaptation technique to tune learning rates of SGD in
a drifting stream. Time-series AD with drifts have been
studied in (Liu et al., 2016; Laxhammar and Falkman, 2013;
Saurav et al., 2018) and references therein.

Online supervised learning: The adaptivity robustness
trade-off was studied in the supervised setting in (Chu et al.,
2004). Streaming SVRG (Frostig et al., 2015) and its vari-
ants, such as SAGA (Defazio et al., 2014), DYNASAGA
(Daneshmand et al., 2016) and DriftSurf (Tahmasbi et al.,
2021) were proposed as improvements in the online su-
pervised learning setting. In contrast to our unsupervised
setting, these algorithms have unambiguous information as
to how well they are performing, since they can explicitly
compute the loss in the supervised setting.

Robust Learning in the presence of adversarially corrupted
data has attracted renewed attention (Diakonikolas et al.,
2017; 2018; Cheng et al., 2020; 2019; Diakonikolas and
Kane, 2019a). These are limited to the offline setting and
do not consider drift.

3. Problem Setting
3.1. Notations and Definitions

Definition 3.1 (Benign Data Stream with distribution D).
A sequence of T , d dimensional random vectors X̃ :=
{X̃1, · · · , X̃T } is said to be a benign data stream from dis-

Online anomaly detection in streams with drift and outliers

tribution D := (Di)Ti=1, if (Xi)
T
i=1 are independent with

Xi ∼ Di, where every Di ∈ F belongs to a known class of
distributions F .
Definition 3.2 (Υ Corrupted data stream). A data stream
X := {X1, · · · , XT } is said to be Υ corrupt, if there exists
a set of T vectors c := (ct)

T
t=1, with each ct ∈ Rd and

cardinality |{t : ct 6= 0}| ≤ Υ, such that for all t ∈ [T],
Xt := X̃t + ct, where X̃ ∼ D is a benign data-stream. In
other words, any benign data-stream that is corrupted in
at-most Υ time points is defined as an Υ corrupted data
stream. We term the time points that are corrupted (ct 6= 0)
as anomalous points and the rest as non-anomalous points.
Definition 3.3 (AD Model Class {g(θ, ·)}θ∈Θ). A family
of functions {g(θ, ·)}θ∈Θ is termed an AD model class, if
for every θ ∈ Θ, g(θ, ·) : Rd → R, is a function mapping
Rd to R. For θ ∈ Θ, g(θ, ·) : Rd → R is denoted as AD
model θ and forX ∈ Rd, g(θ,X) ∈ R as the anomaly score
on input X by AD model θ.

We give two examples of AD model class to help parse the
definition. One is the auto-encoder framework (Kim et al.,
2020), where θ denotes the weights of an auto-encoder with
fixed architecture, and g(θ,X) ≥ 0 is the reconstruction
loss. The second one is Extended Isolation Forests (Hariri
et al., 2019), where Θ is the space of all forests, and for a
given forest θ, g(θ,X) ≥ 0 is the score computed by forest
θ, on input X .
Definition 3.4 (Loss function L for an AD model class
{g(θ, ·)}θ∈Θ). A function L : Θ × Θ → R+ is said to
be a loss function for the AD model class {g(θ, ·)}θ∈Θ, if
for every θ1, θ2 ∈ Θ, L(θ1, θ2) measures the difference in
performance between AD models θ1 and θ2.

The value L(θ1, θ2) measures the distance between the two
functions g(θ1, ·) : Rd → R and g(θ2, ·) : Rd → R. For
appropriately chosen L, the value L(θ1, θ2) is a proxy for
the difference in performance of the AD system with mod-
els θ1 and θ2. Throughout this paper, we focus on the case
where L(θ1, θ2) := ‖θ1 − θ2‖ is the Euclidean norm be-
tween the two parameter vectors. This measure is known
to be indicative of the performance difference between two
Lipschitz continuous AD models under the assumption of
realizability (Kim et al., 2020). Realizability is a common
assumption that posits ∃θ∗ ∈ Θ not necessarily unique, and
a model class {g(θ, ·)}θ∈Θ, such that if each point Xi of
a dataset X was given a score Si := g(θ∗, Xi) ∈ R, then
all non-anomalous points in X will receive a lower score
than any anomalous point. Thus, for any input X ∈ Rd
the binary label of whether it is an anomaly or not is de-
clared by thresholding the anomaly scores g(θ,X). So two
AD models θ1 and θ2 will yield similar performance af-
ter thresholding, if the difference |g(θ1, X)− g(θ2, X)| is
small for all X ∈ Rd. In the case when the AD model class
is Lipschitz continuous, ‖θ1 − θ2‖ gives a proxy for how

dis-similar AD models θ1 and θ2 are (Kim et al., 2020).

3.2. A sequential interaction protocol

The AD algorithm is instantiated with (i) an AD model class
{g(θ, ·)}θ∈Θ, and (ii) a corresponding loss function L. At
each time t = 1, ..., the AD algorithm

1. First observesXt ∈ Rd, the t-th entry of a Υ corrupted
stream from a known family F .

2. Estimates θt ∈ Θ, using all observations X1, · · · , Xt

thus far and outputs anomaly score St := g(θt, Xt).
3. Incurs loss rt := inf{L(θt, θ

∗
t) s.t θ∗t ∈

arg minθ∈Θ EX∼DtE[g(θ,X)]}.

However, the loss rt is not observed, as the AD algorithm
does not know Dt and thus cannot compute θ∗t . This is
different from classical online learning (Cesa-Bianchi and
Lugosi, 2006), where at-least for some of the actions, some
form of feedback — complete, partial, or noisy — is ob-
served at some point of time.

3.3. Performance Measure of Online AD

The sequence of functions A is an online AD algorithm,
if for every t ∈ [T], the output estimate is θt :=
A(X1, · · · , Xt) ∈ Θ. The performance of an algorithm
A on a Υ corrupted data-stream with distribution D is mea-
sured by regret defined

RT (D,Υ,A) := sup
c s.t.‖c‖0≤Υ

T∑
t=1

1(ct = 0)rt.

For every algorithm and data stream the regret is a random
variable, measuring the cumulative loss on the uncorrupted
time points, over all valid choices of the adversary. The
regret does not measure loss on the adversarially corrupted
data points, and we do not constrain the underlying distribu-
tion generating the sample before corruption. Minimizing
loss only on non-anomalous points has been used in the past
to optimize AD model classes such as One-Class SVMs
(Schölkopf et al., 2001) and is in line with practical consid-
erations of controlling false positives (Ruff et al., 2021).

3.4. Formalizing the desiderata

We seek AD algorithms with sub-linear regret, if the ‘com-
plexity’ of the problem as defined below, is small. This
complexity definitions are justified based on lower bounds
presented in Sec 4.

The Distribution Change Complexity of a sequence of dis-
tributions D, denoted by Φ(D) :=

∑T
t=2 TV(Dt,Dt−1) -

denotes the cumulative distribution changes over time. Here
TV is the total variation distance between the two probabil-
ity measures. This measure of distribution shift complexity
is analogous to the path length metric used for measuring

Online anomaly detection in streams with drift and outliers

complexity in online optimization (Zinkevich, 2003). We
drop the argument D, and refer to the distribution change
complexity as Φ, whenever it is clear from the context.

The Corruption Complexity Υ :=
∑T
t=1 1(ct 6= 0).

Definition 3.5 (Adaptivity). An algorithm A is said to be
adaptive, if for every ρ < 1, there exists a β < 1, such that

lim sup
T→∞

sup
D s.t.

Di∈F,∀i∈[T],
Φ≤Tρ

E[RT (D, 0,A)]

T β
= 0.

In words, A is adaptive if, when D has sub-linear dis-
tribution shift and no adversarial corruptions, A achieves
sub-linear expected regret.

Definition 3.6 (Adaptive and Robust Algorithms). An algo-
rithm A is said to be both adaptive and robust, if for every
ρ < 1 and c < 1, there exists a β < 1, such that

lim sup
T→∞

sup
D s.t.

Di∈F,∀i∈[T],
Φ≤Tρ,
Υ≤T c

E[RT (D,Υ,A)]

T β
= 0.

This definition stipulates that, under any choice of the ad-
versary, constrained to inserting “few” anomalies and the
system exhibiting “mild” distribution shifts, an Adaptive
and Robust algorithm has sub-linear expected regret.

Definition 3.7 (Competitive in the Normal Stationary Set-
ting). An algorithm A is said to be competitive in the nor-
mal stationary setting, if when Xt ∼ D are i.i.d. from the
standard normal1 , i.e., both Φ = Υ = 0, then for all ε > 0

lim sup
T→∞

sup
D s.t.

Di∈F,∀i∈[T]

E[RT (D, 0,A)]

T
1
2 +ε

= 0.

We propose FITNESS and show that it is simultaneously
adaptive, robust and competitive in the normal stationary
setting.

4. Lower Bounds
We show that sub-linear total regret can only be achieved
when the corruption complexity and the distribution shift
complexity are sub-linear. Thus, the Definitions 3.5 and 3.6
are good benchmarks for practical algorithms to achieve.

Proposition 4.1. Let F be the class of Gaussian distri-
butions on the real line with unit variance. Suppose,
X1, · · · , XT are from a Υ corrupted stream with all Di :=

1One can generalize this to hold for any Gaussian measure

D ∈ F , i.e., all time points having the same distribution,
then there exists an universal constant c, such that

inf
A
RT ≥ c

Υ

T
(T −Υ),

holds2 with probability (over the random draws in the data-
stream) at-least 2/3.

This result shows that sub-linear in T regret is achievable
only if the total corruptions Γ is sub-linear in T .
Proposition 4.2. For every ζ > 0 and T > 0, there exists
a family of distributions F with supDi∈F,∀i∈[T] Φ(D) ≤ ζ,
such that for any algorithm A,

sup
Di∈F,∀i∈[T]

E[RT (D,0,A)] ≥ 1

24
T 2/3ζ1/3

.

In words, the above proposition states that even in the
absence of corruptions, there exists a family of prob-
lem instances where the expected regret scales at-least as
Ω(T 2/3Φ1/3). Thus, in order to expect sub-linear regret, we
require the total distribution shift Φ to be sub-linear in T .

Proofs are given in Section 13, in the Supplementary Mate-
rial. The two propositions reveal that in order to hope for
sub-linear regret, the number of anomalies, and the distribu-
tion shift must be sub-linear in time.

5. Natural Approaches That Fail
We show that two natural approaches to estimating model
parameters θ∗ — (i) using all the data from a fixed sliding
window, and (ii) using a dynamic window consisting of
only points initially marked as non-anomalous, both fail to
achieve the desiderata.

5.1. A Simplified Problem Setting

To glean intuition, we instantiate the problem with Gaus-
sian distributions and L2 loss. In the rest of this section,
we will assume that the class F refers to the set of all
Gaussian distributions with a fixed covariance matrix with
matrix norm bounded by σ. For this family of distribu-
tions, the distribution complexity can be represented by
Φ :=

∑T
t=2 ||µt − µt−1|| without loss of generality (De-

vroye et al., 2018). The set of Gaussian distributions are
also closed under addition, i.e., the entire class F can be
represented by a single Gaussian measure D, such that for
all D′ ∈ F , there exists a deterministic vector v ∈ Rd, such
that if X ∼ D, then X + v ∼ D′ .

In this simplified setting, the action set Θ = Rd and the
AD model class is given by g(θ,X) = ‖θ − X‖. For

2The arguments from RT are dropped whenever clear from
context.

Online anomaly detection in streams with drift and outliers

the L2 loss, it is well known that for any distribution D
with finite mean, the mean vector satisfies EX∼D[X] =
arg minθ∈Θ EX∼D[||θ −X||]. Thus, for this setting, θ∗t =
µt, for all t ∈ {1, · · · , T}. As this model class is Lipschitz,
the AD loss function L(θ1, θ2) = ‖θ1 − θ2‖.

We record here an useful property of the Gaussian distribu-
tion.

Lemma 5.1 (Theorem 3.1.1 (Vershynin, 2018)). There ex-
ists an absolute positive constant C > 0 such that for every
σ > 0, and for all 0 < δ ≤ 1, we have

PX∼D
[
‖X − EX‖ ≥ C

√
σd log

(
1

δ

)]
≤ δ,

where D is any Gaussian measure on Rd with covariance
matrix norm bounded by σ.

5.2. Sliding Window Algorithms with fixed windows

This class of algorithms has two hyper-parameters, B ∈ N
the size of the window which determines the number of
samples over which to compute the empirical mean, and
λ > 1 is a parameter that controls when to declare a data
point as anomalous. Concretely, the output at any time t is
µ̂t, defined as

µ̂t =

{
µ̃

(B)
t if ‖µ̃(B)

t −Xt‖ ≤ λ
√

dσ
B log(T/δ),

Xt otherwise,

where µ̃(B)
t =

(
1

min(B,t)

∑min(t−1,B−1)
s=0 Xt−s

)
. Pseudo

code is provided in Algorithm 6, in the Supplementary Ma-
terial.

Theorem 5.2. If Algorithm 6 is run with parametersB ∈ N,
λ > 1 and δ ∈ (0, 1), then with probability at-least 1 − δ,
the regret after T time-steps satisfies

RT ≤ C
T
√
σd log(T/δ)√

B
+BΦ+

(λ+ 1)BΦ(
λ− 1√

B
− 1
) +BΥ(λ+ 1)C

√
σd log(T/δ),

where C is the absolute constant in Definition 5.1.

5.2.1. WHY IS THIS BOUND UNSATISFACTORY ?

The bound above yields sub-linear regret only when the
window B is small enough such that Bmax(Φ,Γ) is sub-
linear in time.
Remark 5.3. Suppose max(Φ,Υ) = O(Tα), where α < 1.
Then if Algorithm 6 is run with window B = O(T γ) where
γ = 2

3 (1 − α), then the regret scales as Õ(
√
dT

1
3 (2+α)).

In other words, if an upper bound to the maximum drift or

corruptions (the parameter α) is known apriori, then sub-
linear regret is achievable, which matches upto logarithmic
factors, the lower bound in Proposition 4.2.

However, if the parameterB is sub-linear in T , then the slid-
ing window algorithm cannot be competitive with respect
to stationary as shown in this proposition.

Proposition 5.4. For any fixed window B, the regret
of the sliding window algorithm on a sequence of i.i.d.
0 mean, unit variance Gaussians satisfies E[RT] ≥√

2
π

(
T−B√
B

+
√
B
2

)
.

Thus, this algorithm cannot simultaneously achieve all the
three desiderata of being robust to corruptions, drifts and
competitive in a stationary environment.

5.3. Dynamically Growing Window

This class of algorithms produce as output, the empiri-
cal mean of a set of points, whose cardinality is non-
decreasing with time. At any time t, we denote by Bt ⊆
{X1, · · · , Xt−1} as the buffer maintained by this algorithm
at time t. This algorithm has one hyper-parameter λ ≥ 0
which determines when a data point is not anomalous and
thus can be added to the buffer. Concretely, at every time t,
the algorithm outputs µ̂t := 1

|Bt|+1

∑
X∈Bt∪{Xt}X , based

on the buffer contents at time t, Bt. The buffer at time 1 is
assumed to be empty-set. For the next time-step t + 1, a
new buffer Bt+1 is computed as follows

Bt+1 =

{
Bt ∪ {Xt} if ‖µ̂t −Xt‖ ≤ λ,
Bt otherwise,

In short, only points are not marked as anomalies at their
time of arrival are added into the buffer. Thus, once a point
is added to the buffer, it is never discarded. Conversely,
once discarded, a point is never added back into the buffer.

Proposition 5.5. For every λ ≥ 0, there exists a distribution
D ∈ F with Φ(D) = 4λ log(4T 2), such that on the benign
data stream with distribution D, infA E[RT] ≥ T/100.

Proof is in Section 19 of the Supplementary Material.
Remark 5.6. The above proposition shows that even in the
absence of corruptions, it is important to discard past sam-
ples, similar to what the sliding window algorithm does.

6. The FITNESS Algorithm
From the previous discussions, we see that it is critical to
both enlarge the window size in the case of stationary se-
quence to obtain higher statistical certainty, and discard old
samples when they no longer represent the current distri-
bution to improve adaptation. We present FITNESS in
Algorithm 1 which is based on the principle to estimate the

Online anomaly detection in streams with drift and outliers

mean from the largest set of recent samples that are rele-
vant. This algorithm takes three inputs - σ the sub-Gaussian
parameter, T the time horizon, and δ ∈ (0, 1) denoting the
slack parameter which controls the high probability guaran-
tee with which our performance bounds hold.

Algorithm 1 FITNESS: GAUSSIAN

1: input: σ ≥ 0, Slack parameter δ ∈ (0, 1), Time
horizon T , C as given in Definition 5.1

2: for each time t ≥ 1 do
3: Receive Input Xt ∈ Rd
4: j ← 1

5: while
∥∥∥∥ 1
j

∑j−1
s=0 Xt−s − Xt

∥∥∥∥ ≤

C
(

1 + 2√
j

)√
dσ log

(
T 2

δ

)
do

6: j ← j + 1
7: end while
8: Output µ̂t := 1

j

∑j−1
s=0 Xt−s

9: end for

6.1. Regret Guarantee for FITNESS

Definition 6.1. For every t ∈ {1, 2, · · · , T} that is non-
anomalous (i.e., ct = 0), define J∗(t) as

J∗(t) := inf

{
j ∈ {1, 2, · · · , t}, s.t.∥∥∥∥µt − 1

j

j−1∑
s=0

(µt−s+ct−s)

∥∥∥∥ > C

√
dσ

j
log

(
T 2

δ

)}
,

where inf of an empty set is defined as J∗(t) := t+ 1.

The time quantities are random, since the corruptions c
chosen by the adversary can depend on the realization of
the random vectors of the benign data stream X̃. In words,
for every time t that is not corrupted by the adversary, J∗(t)
is the first time instant while scanning backwards from t,
when the mean of the distribution at time t significantly
deviates from the average of the means in the time-window
[J∗(t), t].

Theorem 6.2. If Algorithm 1 is run with slack parameter
δ ∈ (0, 1), then with probability at-least 1−δ, the following
regret bound holds

RT ≤
T∑
t=1

2C

√
dσ

J∗(t)− 1
log

(
T 2

δ

)
.

Proof is in Section 14 of the Supplementary Material. We
now interpret the above result in certain special cases to
demonstrate that it is adaptive and robust. Proofs of these
corollaries are in Section 15 of the Supplementary Material.

6.2. FITNESS is Competitive in the Normal Stationary
setting

Remark 6.3. Suppose, if all the T samples are i.i.d.,
i.e., Φ = 0, then Algorithm 1 when run with slack pa-
rameter δ ∈ (0, 1), achieves regret bounded by RT ≤
8C
√
Tdσ log(T/δ), i.e., RT is Õ(

√
Tdσ log(1/δ))3, with

probability at-least 1− δ. This can be seen since J∗(t) :=
t + 1, for all t in this setting and substituting that in the
formula in Theorem 6.2. Furthermore, in the Appendix in
Lemma 14.5, we show that with probability at-least 1− δ in
this setting, at all times t, Algorithm 1 outputs the average
of all samples till time t, i.e., X1, · · · , Xt.

In particular, when Algorithm 1 is run with slack parameter
δ = 1/T , we get E[RT] = Õ(

√
Tdσ) and thus satisfies the

criterion of Definition 3.7.

6.3. FITNESS is Adaptive in the case of steady drift
and absence of corruptions

Corollary 6.4. Suppose, for all t ∈ {1, · · · , T − 1},
‖µt − µt+1‖ ≤ Φ

T for some Φ > 0, i.e., the sequence
exhibits “smooth” variation. Then Algorithm 1 achieves re-

gret satisfying RT ≤
(
C
√
dσT log

(
T 2

δ

))2/3

Φ1/3, i.e.,

RT = Õ((
√
dT)2/3Φ1/3 log(1/δ)), with probability at-

least 1− δ. This regret matches (upto logarithmic factors),
the minimax lower bound given in Proposition 4.2, without
knowing the drift parameter.

6.4. FITNESS is Robust to Anomalies

Corollary 6.5. Suppose there no drifts, i.e., Φ = 0, and the
corruptions are such that Υ = Tα for some 0 ≤ α < 1.
Suppose further that, if time t is corrupted, then ‖ct‖ >√
dσ log

(
T 2

δ

)
, i.e., the corruptions if they occur are ‘large’.

Then, with probability at-least 1 − δ, the regret satisfies
RT ≤ 16CT

1+α
2

√
dσ log

(
T 2

δ

)
. In particular, the algo-

rithm is robust.

6.5. The key idea in FITNESS

The key novelty in FITNESS is to introduce j in the RHS
of Line 5 in Algorithm 1, which captures the intuition that as
more samples from the past are averaged, the concentration
around the test sample Xt is sharper. On the one hand,
estimating the mean from a larger history is essential for
the estimate to concentrate around the true mean. However,
samples farther past in time could be from a distribution far
from the one generating the current sample. The condition in
Line 5 of Algorithm 1 balances these competing objectives.

3Õ(·) suppresses logarithmic dependence on T

Online anomaly detection in streams with drift and outliers

6.6. Comparison with offline robust mean estimation

The offline robust mean estimation problem consists of es-
timating the mean of a distribution from n i.i.d., samples,
of which at-most εn of them can be adversarially corrupted.
Even in this simpler setup, understanding of computation-
ally efficient estimators is an active area of current research
(c.f. survey (Diakonikolas and Kane, 2019a)). One class of
algorithms for the offline robust mean estimation involve
a careful pruning of potentially corrupted samples based
on the spectrum of the empirical covariance matrix, and
computing the empirical mean on the remaining samples.

The design of FITNESS bears resemblance to this class of
methods, where the samples on which the mean is estimated
are chosen in Line 5 of Algorithm 1. However, the relevant
samples in FITNESS are chosen using a simple empirical
mean test, without resorting to computing spectrum of the
empirical covariance matrix. The algorithm in the online
case is seemingly easier than the offline case because the on-
line problem estimates the mean at a given time point with a
reference sample Xt. Thus, the online algorithm leverages
this given sample Xt to identify other non-corrupted sam-
ples that come from a ‘similar’ distribution and compute the
empirical mean. The computational complexity at time t
is O(td) is linear in t and matches the best known offline
algorithms (Diakonikolas and Kane, 2019a).

6.7. Known σ assumption in FITNESS

FITNESS depends on the knowledge of σ. In practice and
our experiments, we modify the algorithm to estimate σ
from the data (Algorithm 2). From a theoretical perspective,
the problem of adaptive algorithms in the presence of known
σ is already non-trivial. Indeed, the offline robust-mean
estimation algorithms rely on the fact that either σ is known,
or that all the non-corrupted samples are from the same
distribution, i.e., there is no drift (c.f. (Diakonikolas and
Kane, 2019a)). Developing provably low-regret adaptive
algorithms with unknown σ in the presence of drifts and
corruptions is a challenging open problem left to future
work.

6.8. Known time horizon T assumption

This assumption is standard and can be relaxed by incur-
ring an additional log(T) regret by the doubling-trick Sec
2.3 (Cesa-Bianchi and Lugosi, 2006). We include this for
completeness in Algorithm 5 in Appendix Section 15.3.

7. FITNESS: GENERAL Algorithm
FITNESS: GAUSSIAN has two steps - (i) identifying re-
cent similar points, and (ii) estimating θ∗t , based on the
identified samples. We generalize these two steps to cre-

ate FITNESS GENERAL in Algorithm 2. FITNESS:
GENERAL has two main sub-routines given in Algorithms
3 and 4. The main result we will show through experiments,
is that FITNESS: GENERAL can convert a base anomaly
scoring algorithm into a streaming one which is adaptive
and robust.

7.1. Identifying recent similar samples (Algorithm 3)

In the general case, we replace the known variance bound,
by the robust empirical covariance (Rousseeuw, 1984) of
the window in consideration (Line 3 of Algorithm 3). The
intuition is that the estimated covariance from samples is
close to the true covariance, even when there are a few
anomalous/corrupted points.

7.2. Fine-tuning on the identified similar samples
(Algorithm 4)

In the general case, we replace the empirical mean of the
samples with one step of an optimizer OPT or model parame-
ter update mechanism. An effect of FITNESS: GENERAL
not imposing any restrictions on the anomaly scoring models
given as input is that it requires an appropriate incremental
optimization procedure OPT as an input. In the experiments,
we consider two instantiations of FITNESS GENERAL; (i)
is with the class of anomaly scoring models (g(θ, ·))θ∈Θ

being the Lipschitz auto-encoder of (Kim et al., 2020), for
which the optimizer OPT is the Adam (Kingma and Ba,
2014) optimizer with learning rate 2e− 4, and (ii) is with
the class of anomaly scoring models being the Extended
Isolation Forest (Hariri et al., 2019), with the optimizer OPT
as the iForest algorithm from (Hariri et al., 2019).

7.3. Heuristics for Scalability

In the worst-case, it takes O(t) time to complete the scoring
of the sample at time t, which is expensive in some settings.
Our heuristic is to ‘search’ for the correct window sizes from
among a fixed set of choices {W1, · · · ,Wk}, say powers
of 2. For each window, we compute the test (Line 5 of
Algorithm 4) and select the largest window passing the
test. Details in Section 12.3 in Supplementary Material.
Unlike the sliding window method however, FITNESS:
GENERAL uses all historical data - as the estimate θt at time
t is fine-tuned by using the estimate θt−1 at time t − 1 as
a warm-start. Line 4 in Algorithm 2 sends θt−1 as input to
the update. Although we propose heuristics for scalability,
provably achieving O(1) complexity per-time step even in
the Gaussian case is an open problem.

8. Synthetic Experiments
The main result of this Section is in Figure 1, where we ob-
serve that FITNESS: GAUSSIAN is adaptive and robust

Online anomaly detection in streams with drift and outliers

Algorithm 2 FITNESS: GENERAL

1: Input: (g(θ, ·))θ∈Θ, a family of anomaly scoring mod-
els, OPT an optimizer

2: for each time t ≥ 1, receive Xt ∈ Rd and do
3: Bt ←RELEVANT-HISTORY({Ys}s≤t){Algo 3}
4: θt ← UPDATE-MODEL(Bt, θt−1,OPT) {Algo 4}
5: Output Anomaly Score: St ← g(θt, Zt)
6: end for

Algorithm 3 GET-RELEVANT-HISTORY({Ys}s≤t)
1: Input {Ys}s≤t - Input data points ordered by time

Hyper-parameters C1 > 0
2: j ← 1

3: µ̂(j)
t ← 1

j

∑j−1
s=0 Yt−s

4: Σ̂
(j)
t ←COVARIANCE((Yt−s)

j−1
s=0){The robust covari-

ance algorithm of (Rousseeuw, 1984)}
5: while ‖Σ̂− 1

2 (µ̂
(j)
t − Yt)‖ ≤ C1

√
p
(

1 + 1√
j

)
do

6: j ← j + 1

7: Recompute µ̂(j)
t and Σ̂

(j)
t from Lines 3 and 4 above.

8: end while
9: Return {Yt−s}j−1

s=0

and outperforms any fixed sliding window algorithm. This
complements our regret upper bounds we derived theoreti-
cally to demonstrate that the benefits are not just artefacts
of mathematical bounds, but also hold in practice. In Figure
1, the true mean at time t was set equal to

√
t, i.e., the drift

complexity over a time horizon T is
√
T . For corruptions

we randomly selected 2% of the time points and perturbed
them with random values drawn from a 0 mean Gaussian
with variance

√
T , i.e., the perturbations are typically large

positive or negative samples. The plot in Figure 1 plots the
cumulative regret versus the time-horizon. For this fixed set
of means, each different algorithms was run 50 times, and

Algorithm 4 UPDATE-MODEL
1: Input: Dataset B := (Yi)

n
i=1, Θ solution space, loss

function L : Rp × Θ → R+, θ0 ∈ Θ an initial guess,
OPT an optimization algorithm

2: Hyper-parameters maxiter ∈ N
3: θ(0) ← θ0,
4: iter ← 1
5: Initialize OPT
6: while iter < maxiter do
7: θ(iter+1) ←OPT.STEP(θ(iter)) {Optimize starting

at prev model}
8: iter ← iter + 1
9: end while

10: Return θ(maxiter)

Figure 1: Comparision of cumulative regret of Fitness with
sliding windows.

Dataset dim # samples anomalies
Thyroid 6 3772 2.5%
Satellite 36 6435 20.6%
Kitsune 115 764136 16%
Telemetry 300 108400 1.2%

Table 1: Description of benchmark Datasets

the average regret and the resulting 95% confidence interval
are plotted in the solid and shaded regions respectively. The
different runs average over the random samples Xt drawn
from the distribution at time t.

We observe in Figure 1 that FITNESS: GAUSSIAN out-
performs any fixed sliding window algorithm. We also
conduct synthetic experiments on FITNESS: GENERAL
in the Appendix in Section 11, where we show across a
variety of situations, a fixed, common value for C1 (used in
Algorithm 3) works well. We then use this in the real data
experiments.

9. Real Data Experiments
The main result of this section is to show that FITNESS is
flexible in practice. In particular, we show that FITNESS:
GENERAL can be used both with deep-learning based Lips-
chitz Autoencoder AD model (Kim et al., 2020), as well as
non deep-learning based Extended Isolation Forest (Hariri
et al., 2019) as the family of anomaly scoring models fed as
input to in Algorithm 2. This demonstrates that FITNESS
is a flexible framework, that can take as input any exist-
ing anomaly scoring models, and produce an online AD
algorithm. Moreover, we observe on several real datasets
that, the best performance is consistently achieved by either
FITNESS with the Autoencoder as the anomaly scoring
model, or FITNESS with EIF as the anomaly scoring class.
This indicates that FITNESS can convert any anomaly
scoring class into an online AD algorithm that is robust to
distribution shifts.

Online anomaly detection in streams with drift and outliers

Algo/Dataset Thyroid Satellite (rand) Satellite (sort) IoT Attack Telemetry
FITNESS ADAE 0.13± 0.05 0.24± 0.01 0.29± 0.02 0.86± 0.01 0.25 ± 0.05
FITNESS EIF 0.28 ± 0.01 0.53 ± 0.03 0.40 ± 0.02 0.96 ± 0.02 0.01± 0.006
LODA 0.02± 0.001 0.21± 0.001 0.21± 0.001 0.84± 0.001 0.0
xSTream 0.09± 0.04 0.32± 0.02 0.30± 0.04 0.73± 0.03 0.07± 0.01
HS Trees 0.05± 0.02 0.342± 0.007 0.33± 0.001 0.74± 0.06 0.05± 0.01
MStream 0.23± 0.03 0.34± 0.02 0.25± 0.003 0.93± 0.001 0.02± 0.002
RSHash 0.01± 0.001 0.22± 0.04 0.17± 0.03 0.98 ± 0.004 0.2 ± 0.04

RCF [Offline] 0.26 0.29 0.29 0.82 0.09± 0.01
Extended IF [Offline] 0.31± 0.08 0.56± 0.05 0.56± 0.05 0.69 0.02± 0.002

Table 2: Table comparing the APS score. Higher is better. In each column, the best online score is marked in bold.

9.1. Benchmark Datasets

Public Datasets: We consider 3 public datasets, covering
the spectrum in dimensions and number of samples. Satellite
and Thyroid is from (Rayana, 2016) and IoT data is the mirai
attack from (Mirsky et al., 2018).

Multi-server Telemetry Data: We also compared perfor-
mance on multi-variate telemetry dataset from a multi-server
cloud service. Each data-point contains categorical and nu-
merical features. The categorical features were processed by
StreamHash (Manzoor et al., 2018) and each data-point con-
verted into a vector of 300 dimensions. We insert anomalies
into this data and evaluate different algorithms.

Data characteristics are in Table 1 and the pre-processing
details in the Appendix in Section 12.

9.2. Performance Metric

All algorithms we consider are unsupervised, and we only
use the labels for evaluation. Note that every algorithm out-
puts a score for each data point, which must be thresholded
to obtain the final list of anomalies. Different choices of
thresholds lead to different precision and recall. In order to
measure performance of anomaly scoring algorithms, we
use the Averaged-Precision-Score (APS), which measures
the area under the curve of Precision versus Recall obtained
by sweeping over all possible thresholds (Pedregosa et al.,
2011). Consistent with recent work in anomaly detection,
we use APS and not the alternative AUROC since (i) the
area under the ROC is not necessarily equivalent to optimiz-
ing area under the PR curve (Davis and Goadrich, 2006)
and (ii) performance of practical anomaly detection systems
are measured using precision and recall values.

9.3. Benchmark Algorithms

Models used in FITNESS: We instantiate FITNESS with
two AD model classes (g(θ, ·))θ∈Θ fed as input to Algo-
rithm 2 - the Lipschitz Auto-encoder of (Kim et al., 2020)
termed as FITNESS ADAE, and isolation forest (Hariri
et al., 2019) termed as FITNESS EIF. In both cases, we
choose the same set of hyper-parameters and do not tune per

data-set. This value is chosen by experimenting on synthetic
data (Section 11 in the Supplementary Material).

Competing Algorithms: We compare against state-of-art,
unsupervised, online AD algorithms such as MSTREAM
(Bhatia et al., 2021a), xSTream (Manzoor et al., 2018),
LODA (Pevnỳ, 2016), RSHash (Sathe and Aggarwal, 2016)
and HSTrees (Tan et al., 2011). The implementations of all
of these except MSTREAM was taken from (Yilmaz and
Kozat, 2020). In addition, we also compare with two offline,
unsupervised AD algorithms, RCF (Guha et al., 2016) from
(rrc, 2019) and ExtendedIF (Hariri et al., 2019).

9.4. Results from Experiments

We observe from Table 2, that FITNESS obtained supe-
rior performance compared to other competing online al-
gorithms. In the IoT dataset, FITNESS exceeds even the
offline benchmark’s performance. The reason for this is that
the fraction of anomalies in that dataset is large, thereby
skewing the performance of the offline benchmark.

10. Conclusions and Future Work
In our theoretical analysis we identify the complexity param-
eters and formalize desiderata that are expected of online
AD algorithms. We prove that FITNESS is able to achieve
the desiderata in the case when the underlying distributions
are sub-gaussian, and the loss function isL2. For the general
case we propose a heuristic motivated by our analysis, and
empirically show that FITNESS is useful on real datasets.
In practical applications of AD systems, computational and
memory complexity are as important as statistical accuracy
(Mirsky et al., 2018; Bhatia et al., 2021a). We propose
heuristics in Sections 7.3 to allow experimentation on large
datasets in Section 9. A formal study of the impact of and
trade-offs between compute and memory on statistical per-
formance is an important direction of future research.

Acknowledgements We thank Sriram Manohar and
Jeremiah Wilton for useful discussions in formulating the
problem. We thank the reviewers for their positive and con-
structive feedback which substantially improved the paper.

Online anomaly detection in streams with drift and outliers

References
(2019). RRCF: Implementation of the Robust Random Cut

Forest algorithm for anomaly detection on streams. The
Journal of Open Source Software, 4(35):1336.

Ahmed, M., Mahmood, A. N., and Hu, J. (2016). A survey
of network anomaly detection techniques. Journal of
Network and Computer Applications, 60:19–31.

Audibert, J., Michiardi, P., Guyard, F., Marti, S., and Zu-
luaga, M. A. (2020). USAD: Unsupervised anomaly
detection on multivariate time series. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 3395–3404.

Bhatia, S., Jain, A., Li, P., Kumar, R., and Hooi, B. (2021a).
MStream: Fast anomaly detection in multi-aspect streams.
In Proceedings of the Web Conference 2021, pages 3371–
3382.

Bhatia, S., Jain, A., Srivastava, S., Kawaguchi, K., and Hooi,
B. (2021b). MEMSTREAM: Memory-based anomaly
detection in multi-aspect streams with concept drift. arXiv
preprint arXiv:2106.03837.

Bifet, A. and Gavalda, R. (2007). Learning from time-
changing data with adaptive windowing. In Proceedings
of the 2007 SIAM international conference on data min-
ing, pages 443–448. SIAM.

Bifet Figuerol, A. C. and Gavaldà Mestre, R. (2009). Adap-
tive parameter-free learning from evolving data streams.

Bingham, E. and Mannila, H. (2001). Random projection
in dimensionality reduction: applications to image and
text data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 245–250.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learn-
ing, and games. Cambridge university press.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. ACM computing surveys (CSUR),
41(3):1–58.

Cheng, Y., Diakonikolas, I., Ge, R., and Soltanolkotabi,
M. (2020). High-dimensional robust mean estimation via
gradient descent. In International Conference on Machine
Learning, pages 1768–1778. PMLR.

Cheng, Y., Diakonikolas, I., Ge, R., and Woodruff, D. P.
(2019). Faster algorithms for high-dimensional robust
covariance estimation. In Conference on Learning Theory,
pages 727–757. PMLR.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. (2019). Learn-
ing to optimize under non-stationarity. In Proceedings of
the Twenty-Second International Conference on Artificial

Intelligence and Statistics, volume 89 of Proceedings of
Machine Learning Research, pages 1079–1087. PMLR.

Chu, F., Wang, Y., and Zaniolo, C. (2004). An adaptive
learning approach for noisy data streams. In Fourth IEEE
International Conference on Data Mining (ICDM’04),
pages 351–354. IEEE.

Daneshmand, H., Lucchi, A., and Hofmann, T. (2016). Start-
ing small-learning with adaptive sample sizes. In Interna-
tional conference on machine learning, pages 1463–1471.
PMLR.

Davis, J. and Goadrich, M. (2006). The relationship be-
tween precision-recall and roc curves. In Proceedings of
the 23rd international conference on Machine learning,
pages 233–240.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). SAGA:
A fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
neural information processing systems, pages 1646–1654.

Devroye, L., Mehrabian, A., and Reddad, T. (2018). The
total variation distance between high-dimensional gaus-
sians. arXiv preprint arXiv:1810.08693.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A.,
and Stewart, A. (2017). Being robust (in high dimensions)
can be practical. In International Conference on Machine
Learning, pages 999–1008. PMLR.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. (2018). Robustly learning a gaussian:
Getting optimal error, efficiently. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2683–2702. SIAM.

Diakonikolas, I. and Kane, D. M. (2019a). Recent advances
in algorithmic high-dimensional robust statistics. arXiv
preprint arXiv:1911.05911.

Diakonikolas, I. and Kane, D. M. (2019b). Recent advances
in algorithmic high-dimensional robust statistics. arXiv
preprint arXiv:1911.05911.

Ding, Z. and Fei, M. (2013). An anomaly detection ap-
proach based on isolation forest algorithm for streaming
data using sliding window. IFAC Proceedings Volumes,
46(20):12–17.

Dua, D. and Graff, C. (2017). UCI machine learning reposi-
tory.

Frostig, R., Ge, R., Kakade, S. M., and Sidford, A. (2015).
Competing with the empirical risk minimizer in a single
pass. In Conference on learning theory, pages 728–763.
PMLR.

Online anomaly detection in streams with drift and outliers

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. (2014). A survey on concept drift adapta-
tion. ACM computing surveys (CSUR), 46(4):1–37.

Guha, S., Mishra, N., Roy, G., and Schrijvers, O. (2016).
Robust random cut forest based anomaly detection on
streams. In International conference on machine learning,
pages 2712–2721. PMLR.

Gupta, M., Gao, J., Aggarwal, C. C., and Han, J.
(2013). Outlier detection for temporal data: A survey.
IEEE Transactions on Knowledge and data Engineering,
26(9):2250–2267.

Hariri, S., Kind, M. C., and Brunner, R. J. (2019). Extended
isolation forest. IEEE Transactions on Knowledge and
Data Engineering.

Heigl, M., Anand, K. A., Urmann, A., Fiala, D., Schramm,
M., and Hable, R. (2021). On the improvement of the iso-
lation forest algorithm for outlier detection with stream-
ing data. Electronics, 10(13):1534.

Hill, D. J. and Minsker, B. S. (2010). Anomaly detection in
streaming environmental sensor data: A data-driven mod-
eling approach. Environmental Modelling & Software,
25(9):1014–1022.

Huang, H. and Kasiviswanathan, S. P. (2015). Streaming
anomaly detection using randomized matrix sketching.
Proceedings of the VLDB Endowment, 9(3):192–203.

Kim, Y.-g., Kwon, Y., Chang, H., and Paik, M. C. (2020).
Lipschitz continuous autoencoders in application to
anomaly detection. In Chiappa, S. and Calandra, R.,
editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, vol-
ume 108 of Proceedings of Machine Learning Research,
pages 2507–2517. PMLR.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Laxhammar, R. and Falkman, G. (2013). Online learning
and sequential anomaly detection in trajectories. IEEE
transactions on pattern analysis and machine intelligence,
36(6):1158–1173.

Liu, C., Hoi, S. C., Zhao, P., and Sun, J. (2016). Online
arima algorithms for time series prediction. In Thirtieth
AAAI conference on artificial intelligence.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang,
G. (2018). Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineer-
ing, 31(12):2346–2363.

Manzoor, E., Lamba, H., and Akoglu, L. (2018).
XSTREAM: Outlier detection in feature-evolving data

streams. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pages 1963–1972.

Martı́, L., Sanchez-Pi, N., Molina, J. M., and Garcia, A.
C. B. (2015). Anomaly detection based on sensor data
in petroleum industry applications. Sensors, 15(2):2774–
2797.

Mirsky, Y., Doitshman, T., Elovici, Y., and Shabtai, A.
(2018). Kitsune: an ensemble of autoencoders for
online network intrusion detection. arXiv preprint
arXiv:1802.09089.

Miyaguchi, K. and Kajino, H. (2019). Cogra: Concept-
drift-aware stochastic gradient descent for time-series
forecasting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4594–4601.

Na, G. S., Kim, D., and Yu, H. (2018). Dilof: Effective and
memory efficient local outlier detection in data streams.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1993–2002.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Pevnỳ, T. (2016). LODA: Lightweight on-line detector of
anomalies. Machine Learning, 102(2):275–304.

Pokrajac, D., Lazarevic, A., and Latecki, L. J. (2007). Incre-
mental local outlier detection for data streams. In 2007
IEEE symposium on computational intelligence and data
mining, pages 504–515. IEEE.

Raab, C., Heusinger, M., and Schleif, F.-M. (2020). Reac-
tive soft prototype computing for concept drift streams.
Neurocomputing, 416:340–351.

Rayana, S. (2016). Odds library.

Rousseeuw, P. J. (1984). Least median of squares regres-
sion. Journal of the American statistical association,
79(388):871–880.

Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon,
G., Samek, W., Kloft, M., Dietterich, T. G., and Müller,
K.-R. (2021). A unifying review of deep and shallow
anomaly detection. Proceedings of the IEEE.

Sathe, S. and Aggarwal, C. C. (2016). Subspace outlier
detection in linear time with randomized hashing. In
2016 IEEE 16th International Conference on Data Min-
ing (ICDM), pages 459–468. IEEE.

Online anomaly detection in streams with drift and outliers

Saurav, S., Malhotra, P., TV, V., Gugulothu, N., Vig, L.,
Agarwal, P., and Shroff, G. (2018). Online anomaly
detection with concept drift adaptation using recurrent
neural networks. In Proceedings of the acm india joint in-
ternational conference on data science and management
of data, pages 78–87.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. (2001). Estimating the support
of a high-dimensional distribution. Neural computation,
13(7):1443–1471.

Shekhar, S., Shah, N., and Akoglu, L. (2021). FairOD:
fairness-aware outlier detection. In Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society,
pages 210–220.

Tahmasbi, A., Jothimurugesan, E., Tirthapura, S., and Gib-
bons, P. B. (2021). Driftsurf: Stable-state/reactive-state
learning under concept drift. In International Conference
on Machine Learning, pages 10054–10064. PMLR.

Tan, S. C., Ting, K. M., and Liu, T. F. (2011). Fast anomaly
detection for streaming data. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence.

Togbe, M. U., Chabchoub, Y., Boly, A., Barry, M., Chiky,
R., and Bahri, M. (2021). Anomalies detection using
isolation in concept-drifting data streams. Computers,
10(1):13.

Vershynin, R. (2018). High-dimensional probability: An
introduction with applications in data science, volume 47.
Cambridge university press.

Wainwright, M. J. (2019). High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge Uni-
versity Press.

Wu, K., Zhang, K., Fan, W., Edwards, A., and Philip, S. Y.
(2014). RS-forest: A rapid density estimator for stream-
ing anomaly detection. In 2014 IEEE International Con-
ference on Data Mining, pages 600–609. IEEE.

Xu, H., Chen, W., Zhao, N., Li, Z., Bu, J., Li, Z., Liu, Y.,
Zhao, Y., Pei, D., Feng, Y., et al. (2018). Unsupervised
anomaly detection via variational auto-encoder for sea-
sonal kpis in web applications. In Proceedings of the
2018 World Wide Web Conference, pages 187–196.

Yilmaz, S. F. and Kozat, S. S. (2020). PySAD: A streaming
anomaly detection framework in python. arXiv preprint
arXiv:2009.02572.

Zhang, L., Lin, J., and Karim, R. (2016). Sliding window-
based fault detection from high-dimensional data streams.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 47(2):289–303.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. In Proceedings
of the 20th international conference on machine learning
(icml-03), pages 928–936.

APPENDIX

11. Synthetic Data Experiments
11.1. Hyper-parameter sensitivity in FITNESS

In this section, we show that FITNESS GENERAL has good performance in multiple situations, with a single universal
value of the hyper-parameter C1 = 1 of Algo 3 (used in Line 3 of Algo 2). The hyper-parameter C1 plays the role of σ,
which was assumed as an input to Algorithm 1. Observe that if C1 is large, then the cardinality of the dataset B in Line 4 of
Algo 2 will be large running the risk of containing old samples with distributions different than that producing the current
sample Xt. However, if C1 is small, then the dataset B used in Line 4 of Algo 2 will be small leading to large variance in
estimation.

(a) (b) (c)

Figure 2: Evolution of Cumulative regret, where the changepoint occurs in the middle with change of mean and variance.

Impact of C1 under drift In Figure 2, we considered a data-stream of 5 dimensional vectors with only drift, but no outliers.
In Figure 2 (a), the sample Xt, for t ≤ 100 was sampled fromN (

√
t1, 3 ∗ I), while for t > 100, Xt ∼ N (−

√
t1, I). Thus,

this situation consists of both a gradual drift, as well as an abrupt mean and variance change at time 100. In Figure (b),
consisted of two i.i.d. segments, for t ≤ 100, Xt ∼ N (0, I) and for t > 100, Xt ∼ N (0, 2 ∗ I). In Figure 2 (c), there was
no abrupt shift, but a slowly varying change where Xt ∼ N (log(1 + t), I). In all the three cases, we observe that setting
C1 = 1, obtains the smallest regret scaling.

Impact of C1 under drift and outliers - In Figure 3, the top plot shows the signed mean of the vector Xt at time t, and the
bottom plot shows the instantaneous regret achieved by algorithms with different C1. Concretely, the sample Xt at time
t < 100 was sampled from N (−

√
t1, 2I), for 100 ≤ t < 200, Xt ∼ N (

√
t1, 3 ∗ I), for 200 ≤ t < 300, Xt ∼ N (

√
t, I)

and for t ≥ 300, Xt ∼ N (
√
t, 2I). In addition, at each time, we tossed a coin with probability 0.05, and set it as an outlier.

Any point that was set as an outlier was set as Xt = 201. The times of an outlier are indicated by the red dashed vertical
lines in Figure 3. The black vertical lines represent the abrupt change points. From the Figure in 3, we can observe that for
C1 = 1, the trade-off between adaptivity and reduction of estimation variance is optimal. A higher C1 leads to a lot more
fluctuations due to the outliers while a lower value of C1 suffers from high variance in estimation.

Online anomaly detection in streams with drift and outliers

Figure 3: Variation of Instantaneous Regret with different parameter C.

12. Additional Details on Real Data Experiments
12.1. Public Datasets

• Thyroid (Dua and Graff, 2017) - This low-dimensional AD dataset with 6 real valued attributes and three classes. The
minority class is treated as anomalous. More details on this dataset is in (Rayana, 2016).

• Kitsune Network Attack Dataset (Mirsky et al., 2018). This is a dataset collected from packet capture on the network
interface of real IoT devices. The devices initially see a benchmark benign traffic, and a mirai attack is carried out
at some point during the data collection. The captured packets are then processed into 115 real valued features. All
packet during the attack duration are marked anomalous.

• Satellite (Rayana, 2016) is a multi-class (6 classes) classification dataset, where classes 2 and 4 are defined as anomalies.

12.2. Data Pre-processing

Thyroid (Rayana, 2016) is an open-source anomaly detection dataset, where the order in which the points were streamed was
randomly shuffled. The reported results in Table 2 are the average and standard deviation from 10 runs. Satellite (Rayana,
2016) is a multi-class classification dataset with 6 target classes. We set class 2 and 4 as the anomalous ones, and the rest as
non-anomalous. We use this dataset to conduct two experiments. In Satellite (rand) (3rd col in Table 2), the entries of the
dataset are streamed one at a time in a random order. The results reported in col 3 of Table 2 are averaged over 10 different
random ordering of the dataset. In Satellite (sort) (4th col in Table 2), the entries were streamed in order of class labels -
first was all points corresponding to class 1, followed by 2 and so on. The result reported in col 4 of Table 2 were average
after 3 runs in this sorted order. The offline benchmark, by definition for both these are the same. The difference in online
performance on these two settings indicate the degree to which the algorithms are adaptive and robust. This methodology is
commonly used in evaluating streaming AD algorithms (Wu et al., 2014).

IoT Network data is the mirai attack data from (Mirsky et al., 2018). This dataset consists of processed packet features that
are captured sequentially in time. At some point of time, an attack gets executed and all points in the attack duration are

Online anomaly detection in streams with drift and outliers

marked as anomalous. The telemetry data is also an attack data, ordered by time. As both datasets are ordered by time, we
use this order for the streaming experiments, and report the results after 3 runs.

12.3. Hyper-parameter choices in Table 2

Each algorithm (both ours and benchmark) was given one hyper-parameter choice across all datasets. For the benchmark
algorithms, we used the default hyper-parameters given in the implementations (Yilmaz and Kozat, 2020) and (Bhatia et al.,
2021a). For FITNESS we project data down to 36 dimensions (in-case the input data has dimension larger than 36), by
choosing R to be a matrix where each row consists of i.i.d. Gaussian random variables drawn from 0 mean, and equal
variance such that the variance of the norm is 1. We do this, as this is known to reduce dimension while preserving pair-wise
distances (Bingham and Mannila, 2001). For Algorithm 3, we use C1 = 1, and search over window sizes ranging from 0
to 2000, skipping over 100 at a time, i.e., test at 0, 100, 200, · · · , 2000. In case there are not enough history (i.e., less than
2000), we take the full history as one of the window sizes to test. For FITNESS ADAE, the network architecture we use the
KDD-Model defined in (Kim et al., 2020) with code for implementation in https://github.com/kyg0910/Lipschitz-Continuous-
Autoencoders-in-Application-to-Anomaly-Detection/blob/master/src/configuration.py. We use the default parameters given
there for the batch size, learning rate and optimization algorithm and fine-tune for 1 step, i.e, max-iter of Algorithm 4
was set to 1. For Extended IF, we use n-trees as 200 and sample size of 256.

13. Lower Bound Proofs from Section 4
We will prove the results for the simplified problem setting defined in Section 5.1.

Proof of Proposition 4.1. The lower bound follows from the key fact that two unit variance Gaussian that have means with
distance ε, has a total variation distance of order ε.

inf
A

sup
D s.t.

min(Ψ,Φ)≤Tρ,
Υ=εT

RT

≥ inf
A

sup
D s.t.

max(Ψ,Φ)≤0,
Υ=εT

RT ,

≥ inf
A

sup
(Di)Ti=1∼N (µ,1),

Υ=εT

T∑
t=1,t6∈ΛT

||µ̂t − µ||,

≥ inf
A

sup
(Di)Ti=1∼N (µ,1),

Υ=εT

(T − εT) min
t6∈ΛT

||µ̂t − µ||,

(a)

≥ inf
A

sup
(Di)Ti=1∼N (µ,1),

Υ=εT

(T − εT)||µ̂T − µ||,

(b)

≥ cε(T − εT), with probability at-least 2/3.

Step (a) follows from the fact that the regret can be no smaller than if the AD waited to see all samples before predicting an
anomaly score. Step (b) follows from Fact 1.2 of (Diakonikolas and Kane, 2019b).

Proof of Proposition 4.2. The proof strategy follows that of the lower bound (Cheung et al., 2019). We will construct a
family of one dimensional problem instances F , such that the regret is lower-bounded for any estimation algorithm.

In order to do so, fix a H ∈ [0, T] and divide the time interval into d TH e blocks with each block lasting for H time-slots,
except for the last one. We consider the family F to be the set of one dimensional Gaussian distributions with unit variance,
and the means at any point of time taking values in the binary set

{
± 1

4
√
H

}
. Thus the family F contains two distributions.

Moreover, the means are unchanging in each block, i.e., for all i ∈
[
d TH e

]
and t1, t2 ∈ [(i − 1)H + 1,min(iH, T)],

µt1 = µt2 ∈
{
± 1

4
√
H

}
.

Online anomaly detection in streams with drift and outliers

Moreover, the algorithm A is privy to this information. In any block i ∈
[
d TH e

]
, the estimation error at the end of the block

is lower bounded by 1
12
√
H

(Example 15.4 in (Wainwright, 2019)), i.e.,

E[rmin(iH,T)] ≥
1

12
√
H
.

The instantaneous regret inside any block, is trivially lower bounded by the instantaneous regret at the end of the block, i.e.,
for any i ∈

[
d TH e − 1

]
and t ∈ [(i− 1)H + 1,min(iH, T)], rt ≥ 1

12
√
H

. Moreover as the blocks are independent, there is
no information across blocks, i.e., the minimax error across blocks are independent. Thus, the total cumulative regret is
lower bounded by

E[RT] ≥
d TH e−1∑
i=0

∑
t∈[(i−1)H+1,min(iH,T)]

1

12
√
H
,

≥ 1

12

√
H

(
T

H
− 1

)
,

=
T

12
√
H
−
√
H

12
. (1)

Now, we need to see what is the most number of blocks H one can have that adheres to the given variation budget. Observe
that the total variation between two unit variance Gaussians with means µ1 and µ2 is equal to 1

2‖µ1 − µ2‖. Note that the
maximum difference between the means between two blocks is 1

2
√
H

. Thus, the maximum possible variation in the family

F is 1
2
√
H
d TH e ≤

T
H3/2 . Thus, if

T

H3/2
≤ 1

2
ζ,

then the maximum variation in the family F is within ζ. The 1/2 in the RHS of the previous display is because the total
variation between two unit variance Gaussians is 1

2‖µ1 − µ2‖.

Re-arranging the preceding display, we get that we need H ≥ 22/3T 2/3ζ−2/3. Substituting this in Equation (1), we get that

E[RT] ≥ 1

12
T 2/3ζ1/3 − 1

12
T 1/3ζ−1/3,

≥ 1

24
T 2/3ζ1/3.

14. Proof of Theorem 6.2
We denote by the tth input Xt := Zt + µt + ct, where (Zt)t≥1 are i.i.d., 0 mean, sub-gaussian distribution with covariance
bounded above by σ2I. The deterministic sequence (µt)

T
t=1 are vectors characterizing the distribution shifts and c := (ct)

T
t=1

are the corruptions. Recall that ‖c‖0 ≤ Υ by definition. Moreover, c is a random-variable, as it could depend on the
realization of (Zt)t≥1. In the rest of the proof, denote the set of indices that the adversary modified as ΛT (which can also
be the null set), i.e., ΛT := {t ∈ [T], ct 6= 0}.

14.1. Notations and Definitions

Define by the Good Event E as

E :=

{
∀t ∈ {1, · · · , T},∀j ∈ {1, · · · , t− 1},

∥∥∥∥1

j

j−1∑
s=0

Zt−s

∥∥∥∥ ≤ C
√
d

j
log

(
T 2

δ

)}
.

Definition 14.1. For every t ∈ {2, · · · , T}, and j ∈ {1, · · · , t− 1}, denote by the vector T (j, t) ∈ Rd as

T (j, t) =
1

j

j−1∑
s=0

(µt − µt−s−ct−s).

Online anomaly detection in streams with drift and outliers

For every t ∈ {2, · · · , T}, denote by Bt ≤ t, to be the index of j, at which the While loop in Line 4 of Algorithm 1
breaks. Denote by µ̂t ∈ Rd as the output of Algorithm 1 at time t. Thus, according to our notations, µ̂t := 1

Bt

∑Bt−1
s=0 Xt−s.

Denote by rt as the instantaneous regret, i.e., rt := ‖µ̂t − µt‖. The total regret is thus RT :=
∑T
t=1 rt.

14.2. Supporting Lemmas

Proposition 14.2 (A simple concentration inequality).

P[E] ≥ 1− δ.

Proof. We use the classical fact that if (Zs)
T
s=1 are i.i.d. σ sub-Gaussian random vectors, then 1

B

∑t
s=t−B Zs is sub-

gaussian with parameter σ
B . Thus, we have from Definition 5.1 that, for any given t ∈ {1, · · · , T},

∣∣∣∣∣∣∣∣ 1
B

∑t
s=t−B Zs

∣∣∣∣∣∣∣∣ ≤
C
√

dσ
B log(T 2/δ), holds with probability at-least 1− δ/T 2. Now, applying an union bound over all t, B, of which there are

at-most
(
T
2

)
≤ T 2 we obtain the stated result.

Lemma 14.3. Under the event E , if ct = 0, i.e., time t is not corrupted,

rt ≤ C

√
dσ

|Bt|
log

(
T 2

δ

)
+ ‖T (|Bt|, t)‖.

Proof. This follows from the following chain of triangle inequalities,

rt = ‖µ̂t − µt‖,

=

∥∥∥∥ 1

|Bt|

|Bt|−1∑
j=0

(Zt−j + µt−j+ct−j)− µt
∥∥∥∥,

=

∥∥∥∥ 1

|Bt|

|Bt|−1∑
j=0

Zt−j +
1

|Bt|

|Bt|−1∑
j=0

(µt−j+ct−j − µt)
∥∥∥∥,

≤
∥∥∥∥ 1

|Bt|

|Bt|−1∑
j=0

Zt−j

∥∥∥∥+

∥∥∥∥ 1

|Bt|

|Bt|−1∑
j=0

(µt − µt−j−ct−j)
∥∥∥∥,

=

∥∥∥∥ 1

|Bt|

|Bt|−1∑
j=0

Zt−j

∥∥∥∥+ ‖T (|Bt|, t)‖,

(a)

≤ C

√
dσ

|Bt|
log

(
T 2

δ

)
+ ‖T (|Bt|, t)‖,

where step (a) follows as we are on event E .

Lemma 14.4. Under event E , for every t ∈ {2, · · · , T}, if Bt < t, then,

‖T (Bt + 1, t)‖ > C

√
dσ

Bt + 1
log

(
T 2

δ

)
.

Online anomaly detection in streams with drift and outliers

Proof. Let t be a time index such that Bt < t. Denote by j = Bt + 1. We know that j is the index that caused the While
loop of Algorithm 1 to break. Thus, we have∥∥∥∥1

j

j−1∑
s=0

Xt−s −Xt

∥∥∥∥ ≥ C (1 +
2√
j

)√
dσ log

(
T 2

δ

)
(2)

On the other hand, triangle inequality gives us the following chain∥∥∥∥1

j

j−1∑
s=0

Xt−s −Xt

∥∥∥∥ =

∥∥∥∥1

j

j−1∑
s=0

Zt−s − Zt +
1

j

j−1∑
s=0

(µt−s+ct−s)− µt
∥∥∥∥,

≤
∥∥∥∥1

j

j−1∑
s=0

Zt−s

∥∥∥∥+ ‖Zt‖+

∥∥∥∥1

j

j−1∑
s=0

µt−s+ct−s − µt
∥∥∥∥,

=

∥∥∥∥1

j

j−1∑
s=0

Zt−s

∥∥∥∥+ ‖Zt‖+ ‖T (j, t)‖,

(a)

≤ C

(
1 +

1√
j

)√
dσ log

(
T 2

δ

)
+ ‖T (j, t)‖. (3)

Step (a) follows from triangle inequality. Thus from inequalities (2) and (3), we get that

‖T (j, t)‖ > C

√
dσ

j
log

(
T 2

δ

)
.

Lemma 14.5. Under event E , for every t ∈ {2, · · · , T}, J∗(t)− 1 ≤ Bt, where J∗(t) is defined in Definition 6.1.

Proof. The proof follows by analyzing the test-statistic in Line 4 of Algorithm 1 and arguing that for all j ≤ J∗(t) − 1,
j ≤ Bt. ∥∥∥∥1

j

j−1∑
s=0

Xt−s −Xt

∥∥∥∥ =

∥∥∥∥1

j

j−1∑
s=0

Zt−s − Zt +
1

j

j−1∑
s=0

(µt−s+ct−s)− µt
∥∥∥∥,

≤
∥∥∥∥1

j

j−1∑
s=0

Zt−s

∥∥∥∥+ ‖Zt‖+

∥∥∥∥1

j

j−1∑
s=0

µt−s+ct−s − µt
∥∥∥∥,

=

∥∥∥∥1

j

j−1∑
s=0

Zt−s

∥∥∥∥+ ‖Zt‖+ ‖T (j, t)‖,

(a)

≤ C

(
1 +

1√
j

)√
dσ log

(
T 2

δ

)
+ ‖T (j, t)‖. (4)

Thus, if ‖T (j, t)‖ ≤ C
√

dσ
j log

(
T 2

δ

)
, then

∥∥∥∥ 1
j

∑j−1
s=0 Xt−s − Xt

∥∥∥∥ ≤ C
(

1 + 2√
j

)√
dσ log

(
T 2

δ

)
, i.e., the index j ≤

Bt.

Corollary 14.6. Under event E , for all t ∈ {1, · · · , T}, if j ≤ Bt, implies ‖T (j, t)‖ ≤ C
√

dσ
j log

(
T 2

δ

)
.

Proof. Lemmas 14.4 and 14.5 gives that the first j such that ‖T (j, T)‖ > C
√

dσ
j log

(
T 2

δ

)
, then the While loop in

Algorithm 1 breaks.

Online anomaly detection in streams with drift and outliers

Concluding the proof of Theorem 6.2. With probability at-least 1− 2δ, we have

RT =

T∑
t=1

rt,

(a)

≤
T∑
t=1

C

√
dσ

|Bt|
log

(
T 2

δ

)
+ ‖T (|Bt|, t)‖,

(b)

≤
T∑
t=1

2C

√
dσ

|Bt|
log

(
T 2

δ

)
,

Step (a) follows from Lemma 14.3 and step (b) follows from Corollary 14.6.

15. Proofs of Coroallries of Theorem 6.2
15.1. Proof of Corollary 6.4

Proof. Fix any time t ∈ {2, · · · , T} such that J∗(t) < t. By definition of J∗(t) (Definition 6.1), we have that

∥∥∥∥µt − 1

J∗(t)

J∗(t)−1∑
s=0

µt−s

∥∥∥∥ > C

√
dσ

J∗(t)
log

(
T 2

δ

)
. (5)

On the other hand from triangle inequality, we get

∥∥∥∥µt − 1

J∗(t)

J∗(t)−1∑
s=0

µt−s

∥∥∥∥ =

∥∥∥∥ 1

J∗(t)

J∗(t)−1∑
s=0

(µt − µt−s)
∥∥∥∥,

≤ 1

J∗(t)

J∗(t)−1∑
s=0

‖µt − µt−s‖,

≤ 1

J∗(t)

J∗(t)−1∑
s=0

t−s−1∑
l=t

‖µl − µl+1‖,

≤ J∗(t)Φ

T
. (6)

Thus, from inequalities (5) and (6), we get that

C

√
dσ

J∗(t)
log

(
T 2

δ

)
≤ J∗(t)Φ

T
.

Rearranging the above display yields

1√
J∗(t)

≤
(

Φ

T

)1/3(
C
√
dσ log

(
T 2

δ

))−1/3

.

Plugging the last display into Theorem 6.2 gives that

RT ≤
(
C
√
dσT log

(
T 2

δ

))2/3

Φ1/3.

Online anomaly detection in streams with drift and outliers

15.2. Proof of Corollary 6.5

Proof. Notice from the definition of J∗(t) that, under the hypothesis of the proposition, J∗(t) is the distance to the nearest
anomalous time instant in the past. As there are at-most Tα number of corrupted time points, for any index j ∈ N, there can
be at-most 2Tα non-corrupted time points that are at a distance of j from a corrupted point. Thus, the regret scales as

RT ≤ 2C

T∑
t=1,t∈{s:cs=0}

√
dσ

J∗(t)− 1
log

(
T 2

δ

)
,

≤ 4CTα
T/Tα∑
j=1

√
dσ

j
log

(
T 2

δ

)
,

≤ 16CT
1+α
2

√
dσ log

(
T 2

δ

)
.

15.3. Doubling Trick to remove the known T assumption

Algorithm 5 FITNESS :UNKNOWN TIME HORIZON

1: input: σ ≥ 0, Slack δ ∈ (0, 1), C from Defn 5.1
2: for each phase j ≥ 0 do
3: Run FITNESS:SUB-GAUSSIAN with inputs (σ, time-horizon Tj=2j , C, slack δj=δ/2j) at times 2j · · · , 2j+1 − 1.
4: end for

We show here how Corollary 6.4 that relies on known time horizon can be relaxed. Equivalent results for Remarks 6.3 and
Corollary 6.5 can be obtained by using the doubling trick.

Lemma 15.1 (Extending Corollary 6.4 to unknown T). Suppose, for all t ∈ {1, · · · , T − 1}, ‖µt −
µt+1‖ ≤ Φ

T for some Φ > 0. Then with prob at-least 1 − 2δ, the doubling trick Algorithm 5 achieves re-

gret RT ≤ 22/3 log2(T)
(
C
√
dσT log

(
T 2

δ

))2/3

Φ1/3. This is off by a factor of (2 log(16/δ))
2
3 log2(T) from

FITNESS:SUB-GAUSSIAN.

Proof. As, over a time horizon of T , there are at-most log2(T) phases, and Corollary 6.4 gives the regret in any phase j

satisfies with probability at-least 1− δ/2j , Rj ≤
(
C
√
dσ(Sj) log(T 2

j 2j/δ)
)2/3

Φ1/3, where Tj = 2j the time horizon, the

regret of Algorithm 5 satisfies with probability at-least 1−
∑log2(T)
j=0 δ/2j ≥ 1− 2δ,

RT ≤
log2 T∑
j=0

(
C
√
dσ(2j) log(4j2j/δ)

)2/3

Φ1/3,

≤ Φ1/3(2C
√
dσ log(16/δ))2/3 log2(T)T 2/3.

The last step follows by using log(4j2j/δ) ≤ j log(16/δ), for all j ≥ 0 and δ < 1 and j ≤ log2(T) in the summation.

16. A Simple Static Sliding Window Estimator

17. Proof of Theorem 5.2
17.0.1. NOTATIONS AND DEFINITIONS

We denote by (Zs)
T
s=1 to be i.i.d. samples from D, and by X̃s := Zs + µs, for all s ∈ [T] as the samples sampled by

nature. All expectations in the proof are with respect to the random samples (Zs)
T
s=1. For any time point t ∈ [T] denote by

µ̃t := 1
min(t,B)

∑t
s=1(Zs + µs).

Online anomaly detection in streams with drift and outliers

Algorithm 6 Sliding Window Empirical Mean

1: Input Memory buffer B ∈ N, σ ≥ 0, Slack parameter δ ∈ (0, 1), Time horizon T , λ > 1
2: for each time t ≥ 1 do
3: Receive Input Xt ∈ Rd
4: µ̂t ← 1

min(t−B,0)

∑t
s=1Xs

5: if ||µ̂t −Xt|| ≥ λC
√
σd log(T/δ){C is an absolute constant given in Definition 5.1} then

6: µ̂t ← Xt

7: end if
8: Return µ̂t
9: end for

In the rest of the proof, we assume we are on the event

E :=


∣∣∣∣∣∣∣∣ 1

min(t, B)

t∑
s=max(t−B,1)

Zs

∣∣∣∣∣∣∣∣ ≤ C
√

dσ

min(t, B)
log(T/δ),∀t ∈ {1, · · · , T}

 .

Denote the set of indices that the adversary modified as ΛT (which can also be the null set), i.e., ΛT := {t ∈ [T], Xt 6= X̃t}.
In order to simplify exposition, we make some definitions.

Definition 17.1 (Clean B-history). A time point t ∈ [T] is said to have a clean B-history if there are no anomalies/outliers
in Xmax(t−B,0) · · · , Xt. Denote by the setHB as

HB := {t ∈ {1, · · · , T} s.t. t has a clean B history}.

Definition 17.2 (Good times). A time t ∈ HB is called Good, if Line 5 of Algorithm 6 is not executed.

17.0.2. SUPPORTING LEMMAS

Lemma 17.3. A simple concentration inequality

P[E] ≥ 1− δ.

Proof. We use the classical fact that if (Zs)
T
s=1 are i.i.d. σ sub-Gaussian random vectors, then 1

B

∑t
s=t−B Zs is sub-

gaussian with parameter σ
B . Thus, we have from Definition 5.1 that, for any given t ∈ {1, · · · , T},

∣∣∣∣∣∣∣∣ 1
B

∑t
s=t−B Zs

∣∣∣∣∣∣∣∣ ≤
C
√

dσ
B log(T/δ), holds with probability at-least 1− δ/T . Now, applying an union bound over all t ∈ HB , we see that with

probability at-least 1− δ, for all t ∈ HB ,
∣∣∣∣∣∣∣∣ 1
B

∑t
s=t−B Zs

∣∣∣∣∣∣∣∣ ≤ C√dσ
B log(T/δ) holds.

Lemma 17.4. The cardinality |{t ∈ {1, · · · , T} s.t. t 6∈ HB}| ≤ BK.

Proof. There are K blocks of anomalies, each of which can appear in at-most B different time windows.

Lemma 17.5. If event E holds, then for all time point t ∈ HB , ‖µt − µ̃t‖ ≤ C
√
σd log(T/δ)√

B
+
∑t−1
s=t−B ‖µs − µs+1‖.

Online anomaly detection in streams with drift and outliers

Proof. Fix a time t ∈ HB . The following chain holds from triangle inequalities.

‖µ̃t − µt‖ ≤
∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

(Zs + µs)− µt
∣∣∣∣∣∣∣∣,

=

∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

Zs +
1

B

t∑
s=t−B

(µs − µt)
∣∣∣∣∣∣∣∣,

≤
∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

Zs

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

(µs − µt)
∣∣∣∣∣∣∣∣,

≤
∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

Zs

∣∣∣∣∣∣∣∣+
1

B

t∑
s=t−B

‖µs − µt‖,

≤
∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

Zs

∣∣∣∣∣∣∣∣+

t−1∑
s=t−B

‖µs − µs+1‖,

≤ C
√
dσ

B
log(T/δ) +

t−1∑
s=t−B

‖µs − µs+1‖.

The last inequality follows from the fact that we are on event E .

Lemma 17.6. If event E holds, then for all t ∈ HB , such that t is not Good,

t−1∑
s=t−B

‖µs − µs+1‖ ≥
(
λ− 1√

B
− 1

)
C
√
dσ log(T/δ).

Proof. A time t ∈ HB is not good if ‖µ̃t −Xt‖ ≥ λC
√
dσ log(T/δ). Claim 17.5 gives that if event E holds, then for all

t ∈ HB , ‖µt − µ̃t‖ ≤ C
√
σd log(T/δ)√

B
+
∑t−1
s=t−B ‖µs − µs+1‖. Thus,

λC
√
dσ log(T/δ) ≤ ‖µ̃t −Xt‖ =

∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

(Zs + µs)−Xt

∣∣∣∣∣∣∣∣,
=

∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

(Zs + µs)− µt + µtXt

∣∣∣∣∣∣∣∣,
≤
∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

Zs

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ 1

B

t∑
s=t−B

(µs − µt)
∣∣∣∣∣∣∣∣+ ‖Zt‖,

≤ C
√
σd log(T/δ)√

B
+

t−1∑
s=t−B

‖µs − µs+1‖+ C
√
σd log(T/δ).

Rearanging the last display, we see that

t−1∑
s=t−B

‖µs − µs+1‖ ≥
(
λ− 1√

B
− 1

)
C
√
dσ log(T/δ).

Lemma 17.7. If event E holds, then the cardinality

| {t ∈ HB , t is not Good} | ≤ BΦ(
λ− 1√

B
− 1
)
C
√
dσ log(T/δ)

.

Online anomaly detection in streams with drift and outliers

Proof. From Claim 17.6, we get that if t ∈ HB , but t is not good, then
∑t−1
s=max(t−B,1) ‖µs − µs+1‖ ≥(

λ− 1√
B
− 1
)
C
√
dσ log(T/δ), whenever event E holds. We now recursively construct the following sequence of times.

Let

t0 := inf{t ≥ 1, t ∈ HB , t is not Good}.

For any k > 1, denote by

tk := inf{t > tk−1 +B : t ∈ HB , t is not Good}.

Observe that k ≤ Φ(
λ− 1√

B
−1

)
C
√
dσ log(T/δ)

. This is easy to see by contradiction. For if not, then the cumulative complexity

parameter must strictly exceed Φ. Secondly from the construction, the number of points that are unaccounted for by this
sequence is at-most B in between any two intervals.

Lemma 17.8. With probability at-least 1 − δ, for all t such that it is not corrupted ,i.e., ct = 0, ‖µt − µ̂t‖ ≤ (λ +
1)C
√
σd log(T/δ).

Proof. From Line 6 of Algorithm 6, we know that for all t ∈ {1, · · · , T}, ‖µ̂t − Xt‖ ≤ λC
√
σd log(T/δ) holds with

probability 1. Moreover, from the sub-gaussian bounds in Definition 5.1, we get that for any fixed t ∈ {1, · · · , T},
‖Xt − µt‖ ≤ C

√
σd log(T/δ). Thus, taking an union bound over t, we get that with probability at-least 1 − δ, for any

t ∈ {1, · · · , T} \ ΛT ,

‖µt − µ̂t‖ ≤ ‖µ̂t −Xt‖+ ‖Xt − µt‖,

≤ λC
√
σd log(T/δ) + C

√
σd log(T/δ).

17.0.3. CONCLUDING THE PROOF OF THEOREM 5.2

Proof of Theorem 5.2. We now use these definitions to decompose the regret as follows. Under event E ,

RT =

T∑
t=1

1(t 6∈ Λt)‖µ̂t − µt‖,

=

T∑
t=1,t6∈ΛT

‖µ̂t − µt‖,

≤
T∑

t=1,t∈HB

‖µ̂t − µt‖+

T∑
t=1,t6∈HB

‖µ̂t − µt‖,

(a)

≤
T∑

t=1,t∈HB

‖µ̂t − µt‖+ |{t 6∈ HB}|(λ+ 1)C
√
σd log(T/δ),

(b)

≤
T∑

t=1,t∈HB

‖µ̂t − µt‖︸ ︷︷ ︸
Term 1

+BK(λ+ 1)C
√
σd log(T/δ).

Online anomaly detection in streams with drift and outliers

Step (a) follows from Lemma 17.8 and step (b) from Lemma 17.4. We now expand the first term as

T∑
t=1,t∈HB

‖µ̂t − µt‖ =

T∑
t=1,t∈HB ,t is Good

‖µ̂t − µt‖+

T∑
t=1,t∈HB , is not Good

‖µ̂t − µt‖,

(c)

≤
T∑

t=1,t∈HB ,t is Good

‖µ̃t − µt‖+

T∑
t=1,t∈HB , is not Good

(λ+ 1)C
√
dσ log(T/δ),

(d)

≤
T∑

t=1,t∈HB ,t is Good

‖µ̃t − µt‖+
(λ+ 1)BΦ(
λ− 1√

B
− 1
) ,

≤
T∑
t=1

‖µ̃t − µt‖+
(λ+ 1)BΦ(
λ− 1√

B
− 1
) ,

(e)

≤ C
T
√
σd log(T/δ)√

B
+

T∑
t=1

t−1∑
s=max(1,t−B)

‖µs − µs+1‖+
(λ+ 1)BΦ(
λ− 1√

B
− 1
) ,

(f)
= C

T
√
σd log(T/δ)√

B
+BΦ +

(λ+ 1)BΦ(
λ− 1√

B
− 1
) .

Here step (c) follows Lemma 17.8. Step (d) follows from Lemma 17.7, step (e) follows from Lemma 17.5 and step (f)
follows by swapping the order of summations and the definition of the complexity parameter.

18. Proof of Proposition 5.4
The proof follows from standard inequalities of Central Limit Theorem. At any time t, the instantaneous regret is given by

rt =

∣∣∣∣∣∣ 1

min(B, t)

t∑
s=max(t−B,1)

Ys

∣∣∣∣∣∣ .
The above follows since the true mean parameter is 0. Moreover, since (Ys)

T
s=1 are i.i.d., 0 mean, unit variance random

variables, 1
min(B,t)

∑t
s=min(t−B,1) Ys is a 0 mean random variable with variance 1

min(B,t) . From standard results on

Gaussian random variables, if X ∼ N (0, σ), then E[|X|] = σ
√

2
π . Thus,

E[rt] =

√
2

πmin(B, t)
.

The cumulative regret is then

E[RT] =

T∑
t=1

E[rt],

=

T∑
t=1

√
2

πmin(B, t)
,

=

B∑
t=1

√
2

πt
+

T∑
t=B+1

√
2

πB
,

≥
√

2

π

(
T −B√

B
+

√
B

2

)
.

Online anomaly detection in streams with drift and outliers

19. Proof of Proposition 5.5
Consider the distribution D such that for all t ≤ T/2, Xt ∼ N (0, 1), and for all t > T/2, Xt ∼ N (4Cλ log(4T 2), 1).
This sequence has one jump point and thus by construction Φ(D) = 4Cλ log(4T 2). Denote by the events

E1 = {Xt ≤ λC log(4T 2), t ∈ {1, · · · , T/2}},
E2 = {Xt ≥ 3λC log(4T 2), t > T/2}.

Standard concentration inequalities (Lemma 14.2) gives that P[E1 ∩ E2] ≥ 1− 1/2T ≥ 1/2. However, if both events E1
and E2 hold, then no sample (Xt)t>T/2 will ever enter the dynamic window as ‖µ̂t −Xt‖ ≥ 2λC log(T 2), for all t > T/2.
Furthermore, µt ≤ λC log(4T 2), for all t > T/2. Thus, the regret under the event E1 ∩ E2 is at-least 3λC T

2 log(T 2), and
the expected regret is at-least 3λC T

4 log(T 2).

20. Potential Negative Societal Impacts
Anomaly Detection by definition is to identify ‘outliers’. When used in a human context, minority groups naturally appear as
outliers and thus the definition of anomalies must be more nuanced (Shekhar et al., 2021). In environments where outcomes
of AD bear upon decisions made regarding humans, we recommend using the batch AD algorithm in (Shekhar et al., 2021)
as the AD model class in FITNESS .

	Introduction
	Desiderata of online AD algorithms
	Main Contributions

	Related Work
	Problem Setting
	Notations and Definitions
	A sequential interaction protocol
	Performance Measure of Online AD
	Formalizing the desiderata

	Lower Bounds
	Natural Approaches That Fail
	A Simplified Problem Setting
	Sliding Window Algorithms with fixed windows
	Why is this bound unsatisfactory ?

	Dynamically Growing Window

	The FITNESS Algorithm
	Regret Guarantee for FITNESS
	FITNESS is Competitive in the Normal Stationary setting
	FITNESS is Adaptive in the case of steady drift and absence of corruptions
	FITNESS is Robust to Anomalies
	The key idea in FITNESS
	Comparison with offline robust mean estimation
	Known assumption in FITNESS
	Known time horizon T assumption

	FITNESS: GENERAL Algorithm
	Identifying recent similar samples (Algorithm 3)
	Fine-tuning on the identified similar samples (Algorithm 4)
	Heuristics for Scalability

	Synthetic Experiments
	Real Data Experiments
	Benchmark Datasets
	Performance Metric
	Benchmark Algorithms
	Results from Experiments

	Conclusions and Future Work
	Synthetic Data Experiments
	Hyper-parameter sensitivity in FITNESS

	Additional Details on Real Data Experiments
	Public Datasets
	Data Pre-processing
	Hyper-parameter choices in Table 2

	Lower Bound Proofs from Section 4
	Proof of Theorem 6.2
	Notations and Definitions
	Supporting Lemmas

	Proofs of Coroallries of Theorem 6.2
	Proof of Corollary 6.4
	Proof of Corollary 6.5
	Doubling Trick to remove the known T assumption

	A Simple Static Sliding Window Estimator
	Proof of Theorem 5.2
	Notations and Definitions
	Supporting Lemmas
	Concluding the proof of Theorem 5.2

	Proof of Proposition 5.4
	Proof of Proposition 5.5
	Potential Negative Societal Impacts

