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Abstract
Finding paths with optimal properties is a founda-
tional problem in computer science. The notions
of shortest paths (minimal sum of edge costs),
minimax paths (minimal maximum edge weight),
reliability of a path and many others all arise
as special cases of the “algebraic path problem”
(APP). Indeed, the APP formalizes the rela-
tion between different semirings such as min-plus,
min-max and the distances they induce. We here
clarify, for the first time, the relation between
the potential distance and the log-semiring. We
also define a new unifying family of algebraic
structures that include all above-mentioned path
problems as well as the commute cost and others
as special or limiting cases. The family comprises
not only semirings but also strong bimonoids (that
is, semirings without distributivity). We call this
new and very general distance the “log-norm dis-
tance”. Finally, we derive some sufficient condi-
tions which ensure that the APP associated with a
semiring defines a metric over an arbitrary graph.

1. Introduction
Graphs are a versatile abstraction permitting the modeling
and analysis of an extremely broad range of problems from
vision, NLP and learning with structured data. Measuring
the similarity between the nodes in a graph is, in turn, a task
of fundamental importance that often decides on success
or failure of an application. Consequently, the study and
development of graph node metrics with different properties
is a problem of high interest.

The shortest path distance is arguably the most popular
graph node metric. Given two nodes in a graph with edge
costs, the shortest path problem aims to find the path with
minimum cost, i.e., the path for which the sum over the
cost of its constituent edges is minimized. This problem
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is determined by the min and + operations: the + to indi-
cate that edge costs are summed along any path; and the
min to state that the overall cost is given by the smallest
cost of any single path. Together, these form the “min-plus”
semiring. A semiring is an algebraic structure with two
operations that relaxes the concept of a ring by dropping
the requirement for inverses under the “addition” operation.
The algebraic path problem (APP) generalizes the notion
of shortest path by replacing the min-plus semiring by an
alternative semiring. Different semirings result in dramati-
cally different preferences of paths, see the toy example in
Table 1. This generalization encompasses a great variety
of problems and applications in diverse research areas like
NLP (Cortes et al., 2004; Schwartz et al., 2018) or routing
protocols (Griffin & Sobrinho, 2005). For more applications
see (Gondran & Minoux, 2008; Baras & Theodorakopoulos,
2010).

Other common graph metrics that raise from the APP
framework are the commute cost distance (CCD) (Klein
& Randić, 1993; Chandra et al., 1996; Eisner, 2001), which
calculates the average first passage cost between two nodes
in both directions; and the minimax or bottleneck shortest
path distance (Maggs & Plotkin, 1988; Challa et al., 2019),
which computes the path with minimal maximum edge cost
among its edges.

In some situations, these metrics may fail to take the global
structure of the graph into consideration. On the one hand,
the minimax and shortest path distances are determined by
a single path. Thus, they may ignore the topology of the
surrounding graph since the degree of connectivity between
the nodes is not reflected by the metrics. On the other hand,
though CCD weighs all paths, it is known that for large
graphs, it only takes the degree of the source and target
nodes into account (Nadler et al., 2009; Luxburg et al.,
2010).

We aim to combine the advantages and compensate for
the deficiencies of these metrics. To do so, we propose a
novel parametrized family of distances, dubbed log-norm
distances, that interpolate between the shortest path, CCD
and the minimax distances up to a constant factor. We base
our interpolation on the algebraic path problem. First, we
present a family of semirings whose associated APP yields
a metric which interpolates between the shortest and min-
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Table 1. Family of log-norm distances and limit cases (bold) with their associated algebraic structure (red). The family of log-norm
distances interpolates between the commute cost, shortest path and minimax distances. The algebraic structures associated to the cells in
cyan (r > 1 and 0+ < µ <∞) do not form a semiring, but a strong bimonoid. The distances derived from these bimonoids are presented
here for the first time. The graphs below represent the contribution of individual edges/paths to the s,t-distance in a toy problem. The cost
of an edge is given by its length and wider edges have higher relevance. The r parameter regulates the impact of the edge costs in the
paths, with higher r favoring paths with shorter edges. The parameter µ regulates the distribution of the contribution of the paths; higher
µ favors the concentration of the distribution into a smaller number of lowest cost paths. Different distances differ radically in what part
of a graph they emphasize

r
µ

0+ (0,∞) ∞

1

Eisner semiring
Commute cost distance

E
π∼Phst

[c(π)] + E
π∼Phts

[c(π)]

(Klein & Randić, 1993)

Log-semiring
Potential distance

− 1
µ

(
log

(
E
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[
e−µc(π)

])
+ log
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]))
(Kivimäki et al., 2014; Françoisse et al., 2017)

Min-plus semiring
Shortest path distance

min
π∈Pst

c(π)

(1,∞)

Exp-norm bimonoid
Exp-norm distance

E
π∼Phst

[||c(π)||r] + E
π∼Phts

[||c(π)||r]

Log-norm bimonoid
Log-norm distance

− 1
µ
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log
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[
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])
+ log
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E
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[
e−µ||c(π)||r
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Min-norm semiring

Min-norm distance
min
π∈Pst

||c(π)||r
(Mckenzie & Damelin, 2019)

∞

Exp-max bimonoid
Exp-max distance

E
π∼Phst

[
max
e∈π

c(e)

]
+ E
π∼Phts

[
max
e∈π

c(e)

]
Log-max bimonoid

Log-max distance

− 1
µ

(
log

(
E

π∼Phst

[
e−µmaxe∈π c(e)

])
+ log

(
E

π∼Phts

[
e−µmaxe∈π c(e)

]))
Minimax semiring

Minimax distance
min
π∈Pst

max
e∈π

c(e)

(Maggs & Plotkin, 1988)

imax distance. Moreover, we study the potential distance
(Kivimäki et al., 2014; Françoisse et al., 2017), which inter-
polates between the CCD and the shortest path distance. We
redefine this distance via the well-known log-semiring and
its associated APP. As far as we know, we are the first to
formalize the interpolations of these metrics from the APP
point of view. Finally, we introduce a greater parametrized
set of algebraic structures. Though not all the members
of this family of algebraic structures define a semiring, but
strong bimonoids (Droste et al., 2010), their associated APP
define the log-norm family of metrics. These distances are
parametrized by a parameter r, which controls the relevance
of higher cost edges in the paths; and a parameter µ, which
regulates how much individual paths contribute to the dis-
tance, favoring paths with lower cost. Table 1 summarizes
these relations and highlights, on a toy example, how dras-
tically different distances vary. Clearly, these properties
greatly impact the machine learning on graphs.

Intrigued by the fact that so many metrics can be retrieved
from the APP framework, we finally study under which
circumstances the APP associated with a semiring defines
a metric. In concrete, we focus on the setting where only
hitting paths (paths whose last node appears only once)

are considered. We find that one of the key factors lies
in the function that maps elements of the semiring to the
non-negative real numbers. Under natural conditions, we
find that it is necessary, but not sufficient, that this function
is subadditive with respect to the product operation of the
semiring. We also provide sufficient conditions based on
the monotonicity behavior of the function.

In summary we: 1) review the APP and how some of the
most common graph metrics can be recovered by defining
appropriate semirings, demonstrating this relation for the
first time for some of them; 2) introduce a novel unifying
family of graph metrics, dubbed log-norm distances, which
interpolate between the CCD, minimax and shortest path
metrics up to a constant factor; 3) study under which condi-
tions the APP associated with a semiring defines a graph
metric.

1.1. Related Work

There has been much work on interpolations between the
shortest path distance and the CCD. In (Yen et al., 2008),
these distances are interpolated by a family of dissimilarities
inspired by the randomized shortest paths framework (RSP)
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Table 2. Semiring examples. P(A) is the power set of a set A.

Semiring S ⊕ ⊗ 0̄ 1̄ class
Min-plus R+ min + ∞ 0 selective
Minimax R+ min max ∞ 0 selective
Power set P(A) ∪ ∩ ∅ A idempotent

(Saerens et al., 2009). These dissimilarities do not fulfill the
triangle inequality, ergo they are not metrics. Also, based on
the RSP, (Françoisse et al., 2017) and (Kivimäki et al., 2014)
define the same interpolating family of distances, which they
call potential and free energy distances, respectively. We
study this distance as an instance of the APP framework.
The logarithmic forest distances (Chebotarev, 2011) are a
family of distances, based on the matrix forest theorem,
which also interpolate between the SP and the CCD. The
walk distances (Chebotarev, 2012) are a broader set of dis-
tances which include the logarithmic forest, the CCD and
the SP distances. The set of p-resistance distances (Alamgir,
2012) generalize the definition of the effective resistance
distance (Klein & Randić, 1993), which is proportional to
the CCD (Chandra et al., 1996). For p = 1, the SP distance
is retrieved.

Closely related to our work, (Kim & Choi, 2013) define a
family of similarity measures whose behavior resembles the
one observed for the log-norm distances. Our metric adapts
their similarities and transforms them into a proper distance
while building a connection between the CCD, shortest
path and minimax distances. As far as we know, the family
of distances proposed in (Gurvich, 2010) is the only one
that interpolates between the three aforementioned distances
(CCD, minimax and shortest path distances) besides our
proposal. Similar to the p-resistance approach, Gurvich
generalizes the effective resistance concept by introducing
two parameters. One difference between this proposal and
ours lies in the fourth limit case that emerges from the
approaches taken. While our limit computes the expected
maximum edge cost of a path, its limit retrieves the inverse
value of maximum flow between two nodes.

2. Preliminaries
2.1. Semirings

To fix notation and give necessary background, in this sec-
tion we review the semiring algebraic structure, which con-
stitutes the primary tool to understand the algebraic path
problem. For a more extensive analysis of semirings, we
refer the interested reader to (Gondran & Minoux, 2008).

Definition 2.1. A semiring is an algebraic structure
(S,⊕,⊗, 0̄, 1̄) formed by a set S and two binary closed oper-
ations, ⊕ and ⊗, with the following properties ∀a, b, c ∈ S:

• ⊕ commutativity: a⊕ b = b⊕ a

• ⊕ associativity: (a⊕ b)⊕ c = a⊕ (b⊕ c)
• 0̄ neutral element of ⊕: a⊕ 0̄ = 0̄⊕ a = a
• ⊗ associativity: (a⊗ b)⊗ c = a⊗ (b⊗ c)
• 1̄ neutral element of ⊗: a⊗ 1̄ = 1̄⊗ a = a
• distributivity of ⊗ relative to ⊕ :

(a⊕b)⊗c = a⊗c⊕b⊗c, c⊗(a⊕b) = c⊗a⊕c⊗b

• 0̄ absorbing for ⊗: a⊗ 0̄ = 0̄⊗ a = 0̄

Individually, ⊕ and ⊗ define a monoid over S. A semiring
is idempotent if for all a ∈ S, a ⊕ a = a. Furthermore, a
semiring is called selective if a ⊕ b ∈ {a, b}. If we drop
the distributivity property from the list of requirements of
a semiring, then the algebraic structure is called strong
bimonoid (Droste et al., 2010). Table 2 summarizes some
common semirings.

A semiring has a canonical preorder relation1, 4, given by

a 4 b ⇐⇒ ∃c ∈ S : a⊕ c = b. (1)

As for the usual addition and product operations, we can
extend the ⊕ and ⊗ to the matrix domain. Let A,B be two
matrices in Sn×m, then the following operations define a
semiring over the matrices on S:
[A⊕B]ij = Aij ⊕Bij , [A⊗B]ij =

⊕
k Aik ⊗Bkj .

2.2. Graph notation

Let G = (V,E) be a directed graph where V and E rep-
resent the sets of vertices and edges respectively. A path
π = (v0, . . . , vk) from s to t is defined as a sequence of
adjacent nodes, i.e. (vi, vi+1) ∈ E with v0 = s and vk = t.
Note that a node can appear multiple times in a path. A hit-
ting path is a path whose last node, t, appears only once. The
set of all paths from s to t will be represented by Pst. The
subset of paths with exactly k edges is denoted by Pst[k].
Analogously, we define the variant Phst for the set of hitting
paths.

Let (S,⊕,⊗, 0̄, 1̄) be a semiring. We say that a graphG is S-
valued or S-graph if there is a cost function c : V × V → S
that assigns a cost c(e) ∈ S to each edge. We set c(e) = 0̄ if
and only if e /∈ E. Additionally, the cost of a path is defined
as the product of the cost of its edges, c(π) =

⊗
e∈π c(e).

For S-valued graphs, the entry Aij of the adjacency matrix
is equal to the cost of the edge (i, j).

2.3. Algebraic Path Problem

Given a graph with c(e) ∈ R+, the shortest path problem
(SPP) computes

min
π∈Pst

∑
e∈π

c(e). (2)

1Reflexive (a 4 a) and transitive (a 4 b and b 4 c→ a 4 c)
properties are satisfied, but antisymmetry (a 4 b and b 4 a →
a = b) may not hold.
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As previously mentioned, the min and + operations charac-
terize the min-plus semiring (Simon, 1978; Pin, 1998). The
algebraic path problem (APP) extends the SPP through the
use of general binary operations⊕ and⊗ that jointly form a
semiring. On the one hand, the ⊗ operation (+ in the SPP)
acts over the cost of the edges. It can be interpreted as an
edge concatenation operator which constructs the path by
“multiplying” the cost of the edges. On the other hand, the⊕
operation (min in the SPP) acts over paths and behaves like
a path aggregation operator which condenses the cost of dif-
ferent paths. When the semiring is selective (e.g. min-plus
semiring), ⊕ can also be interpreted as a choice operator
where a single path is being selected. Formally, the APP
generalizes (2) by calculating

APP(s, t) :=
⊕
π∈Pst

⊗
e∈π

c(e) =
⊕
π∈Pst

c(π). (3)

Let A be the adjacency matrix of the graph G. It can be veri-
fied that [Ak]st =

⊕
π∈Pst[k] c(π). Since

⋃
k Pst[k] = Pst

and Pst[k]
⋂
Pst[k′] = ∅ if k 6= k′, we obtain

lim
k→∞

[
I ⊕A⊕ · · · ⊕Ak

]
st

=

∞⊕
k=0

⊕
π∈Pst[k]

c(π)

=
⊕
π∈Pst

c(π),

(4)

where I is the diagonal matrix with 1̄’s in the diagonal. The
limit in equation (4) is called the closure of A and it is
denoted by A∗. Note that A∗, and consequently APP(s, t),
may not always exist. An interesting property ofA∗ is that it
is the minimal solution of X = A⊗X ⊕ I (see Proposition
6.2.2, Ch. 3 (Gondran & Minoux, 2008)). In the semirings
considered in this paper, these limits will be well defined.
Alternatively, the closure of an element a in a semiring may
be defined as the solution of equation x = a⊗x⊕ 1̄ instead
of as a limit (Lehmann, 1977).

Specialized algorithms for the SPP have been general-
ized to the APP. The Dijkstra algorithm (Dijkstra, 1959),
which solves the Single Source Shortest Path Problem, has
been generalized for some specific semirings (Mohri, 2002;
Huang, 2008). Analogously, the Floyd-Warshall algorithm
(Floyd, 1962), which solves the All Pairs of Shortest Paths
Problem, can be generalized to solve the APP for any S-
valued graph, for which A∗ exists. This algorithm general-
izes the Gauss–Jordan Method and solves X = A⊗X ⊕ I
(Carre, 1971).

2.4. Semiring Distances

If the edge costs of a graph are strictly positive, the shortest
path distance defines a metric over the nodes of the graph.
In this section, we will review other common graph met-
rics (minimax and CCD) and present how these can be
expressed in terms of the APP.

2.4.1. MINIMAX DISTANCE

An alternative popular distance in the literature is the mini-
max distance (Maggs & Plotkin, 1988; Kim & Choi, 2013;
Challa et al., 2019). As its name indicates, this metric can
be retrieved from the APP framework with the underlying
minimax semiring (see Table 2)⊕

π∈Pst

⊗
e∈π

c(e) = min
π∈Pst

max
e∈π

c(e). (5)

This semiring calculates the so-called minimax path, i.e.,
the path which minimizes the most expensive edge of a path
between two nodes. The minimax semiring can be used
to calculate a minimum spanning tree (mST) since every
simple path (path where each node appears once) between
two nodes in a mST is a minimax path (Maggs & Plotkin,
1988).

2.4.2. COMMUTE COST DISTANCE

A prominent metric used for graphs is the commute cost
distance (CCD) (Fouss et al., 2016). To compute the CCD
between two nodes, it is necessary that each edge (i, j) has
two values, pij and cij , associated to it. The first represents
the probability that a random walker located at node i will
transition from node i to node j through edge (i, j). Usually,
pij is set proportional to some weight wij that measures the
affinity between the nodes i and j. The value cij is a positive
value which indicates some kind of cost associated to the
traversal of the edge (i, j). The first hitting cost dissimilarity
between two nodes s and t,H(s, t), is the expected cost that
it takes a random walker starting at s to reach t for the first
time. The CCD symmetrizes this dissimilarity. Formally,

CCD(s, t) = E
π∼Phst

[c(π)]︸ ︷︷ ︸
H(s,t)

+ E
π∼Phts

[c(π)]︸ ︷︷ ︸
H(t,s)

.
(6)

The term H(s, t) can be expressed in the framework of
the APP if one uses the so-called expectation semirings
(Baras & Theodorakopoulos, 2010). In concrete, the Eisner
semiring (Eisner, 2001), defined over the ground set R+×R+

with operations:
(a, b)⊕(c, d) = (a+c, b+d), (a, b)⊗(c, d) = (ac, cb+ad),
recovers H(s, t). If we set the edge costs of the graph as
(pe, pece), it can be verified that (see appendix B)

H(s, t) =

 ⊕
π∈Phst

⊗
e∈π

(pe, pece)


2

, (7)

where the subindex 2 indicates the second entry. Therefore,
CCD can be expressed in terms of APP. Note that (7)
considers only hitting paths, in contrast to the general APP.
The set Phst over an arbitrary graph G is equal to the set Pst
over the graph Gh[t], where the out-going edges of node t
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have been removed. Hence, t becomes an absorbing node
and any path to t is therefore a hitting path. Consequently,
CCD requires two APP on the graphs Gh[t] and Gh[s] to
computeH(s, t) andH(t, s) respectively. The shortest path
problem can also be constrained to hitting paths, since, as
far as the costs are positive, each node appears only once in
the optimal path.
Remark 2.2. It is known (Kivimäki et al., 2014, appendix)
that given some fixed random walker probabilities, pe, CCD
is proportional to the commute time distance (CTD), i.e.
the expected length of a path (expected number of edges,
that is ce = 1 ∀e ∈ E). The ce values only determine the
proportionality constant between CCD and CTD.

3. Log-Norm Distances
In this section, we propose the novel family of log-norm
distances, which interpolate between the above mentioned
distances up to a constant factor. To do so, we introduce
an interpolating family of distances between the minimax
and shortest path. Moreover, we study the potential distance
(Françoisse et al., 2017), which interpolates between the
CCD and the shortest path distance. We prove that both
metrics are instances of the APP framework once the appro-
priate semiring has been defined. Finally, we combine these
semirings to define a greater family of strong bimonoids
that will define the log-norm family of distances (Table 1).

3.1. Shortest Path and Minimax Distance Interpolation

The min-plus and min-max semiring can be continuously in-
terpolated by the semiring S = (R+,min,⊗r,∞, 0) where
a ⊗r b = r

√
ar + br. We are not aware that this algebraic

structure has been acknowledged in the literature as a semir-
ing, though it has been used in earlier works (Kim & Choi,
2013). Therefore, we dub it min-norm semiring. In ap-
pendix A, we demonstrate that it is indeed a semiring. The
APP derived from the min-norm semiring is defined as⊕

π∈Pst

⊗
e∈π

c(e) = min
π∈Pst

r

√∑
e∈π

(c(e))
r
. (8)

Clearly, when r = 1, ⊗1 is equal to the regular sum, and
consequently we recover the min-plus semiring. On the
other extreme, when r → ∞, ⊗∞ is reduced to the max
operation, hence the minimax semiring is retrieved. In
appendix F.5, we show that (8) defines a metric over the
nodes of a graph, which in turn also interpolates between
the shortest path and minimax distances. This distance is
also known in the literature as the power weighted shortest
path metric (Mckenzie & Damelin, 2019).

The r parameter, which characterizes ⊗r, regulates the im-
pact of the edge costs in the paths. On the one hand, for
high r, the min-norm path tends to have edges with low

cost, though it may contain a higher number of edges (more
similar to the minimax distance). On the other hand, for
lower r, the min-norm path is more dominated by the to-
tal additive cost of the edges, which must be low overall
(closer to the shortest path distance) but may contain edges
whose cost are relatively high. Last column of Figure 1 il-
lustrates this pattern, which was already pointed out in (Kim
& Choi, 2013). The shortest path (r = 1) contains only
three, but one long edge in contrast to the minimax path
(r =∞) which contains many short edges. The min-norm
path (1 < r <∞) interpolates between both path patterns.

3.2. Commute Cost and Shortest Path Distance
Interpolation

As mentioned in the introduction, CCD has some inconve-
niences if the graph is large (Luxburg et al., 2010). Many
node distances have been proposed that interpolate between
the shortest path and the CCD distances in order to exploit
the benefits of both metrics. Among them, we call atten-
tion to the potential distance (PD) (Kivimäki et al., 2014;
Françoisse et al., 2017). This distance is based on the ran-
domized shortest paths (RSP) framework (Saerens et al.,
2009). The PD can be interpreted as the logarithm of the
expected reward exp(−µc(π)) of the paths. Formally,

PD(s, t) =− 1

µ
log
(

Eπ∼Phst [exp (−µc(π))]
)

− 1

µ
log
(

Eπ∼Phts [exp (−µc(π))]
)
,

(9)

where the parameter µ regulates implicitly the entropy of
the distribution defined by the RSP framework. Kivimäki
et al. showed that when µ → 0, PD tends to CCD, and
when µ→∞, it tends to the shortest path distance up to a
constant factor (see appendix E).

This distance also fits in the APP framework if one uses the
log-semiring (Lotito et al., 2005; Litvinov, 2005) defined by
a⊕µ b = − 1

µ log
(

exp(−µa)+exp(−µb)
)
, a⊗b = a+b.

Though the distance and the semiring were already
known, we show the relation between them for the first
time. Setting the edge costs of the graph equal to
− log

(
pe exp(−µce)

)
/µ, it can be verified that (see ap-

pendix C)

PD(s, t) =
⊕

µ

π∈Phst

⊗
µ

e∈π

− 1

µ
log
(
pe exp(−µce)

)
+
⊕

µ

π∈Phts

⊗
e∈π
− 1

µ
log
(
pe exp(−µce)

) (10)

Remark 3.1. In (Françoisse et al., 2017) it was noted that the
PD could also be computed by applying a generalization of
the Bellman-Ford formula (Bellman, 1958). This is a direct
consequence of the APP framework, since the PD can be
retrieved by the log-semiring.
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Figure 1. Schematic log-norm distance relevance of paths for
different values of µ and r in a graph. We computed the
1000 shortest paths according to the costs ||c(π)||r for dif-
ferent r and µ values. The edge width is proportional to∑
π : e∈π Pr(π) exp(−µ||c(π)||r). It visualizes how much each

edge contributes to the value of the APP: the wider the edge, the
more significant. The random walker probabilities are uniform at
each node. The parameter µ regulates how the importance of the
paths is distributed conditioned by their cost, while r regulates the
cost of the paths.

Remark 3.2. It is worth to mention that although the PD
interpolates between the shortest path and CCD distances,
the log-semiring does not interpolate between the min-plus
and the Eisner semiring. When µ→∞, ⊕∞ becomes the
min operator and limµ→∞− log

(
pe exp(−µce)

)
/µ = ce.

Thus, the min-plus semiring arises. Nonetheless, when
µ→ 0+, ⊕0+ and the costs themselves are not well defined.

In contrast to the min-norm semirings, the log-semiring is
not selective, i.e. it does not make a choice over the paths,
but aggregates their costs. The operation ⊕µ weighs all the
paths by their probability and cost. On the one hand, when
µ is close to 0+, the metric considers all paths based on
their probability. In this case, the larger the number of paths
with high probability exist between two nodes (the effect
of the costs is negligible due to remark 2.2), the lower will
be the distance. Intuitively, its more likely that the random
walker is absorbed earlier if there are more connections
between s and t. On the other hand, when µ is high, thanks
to the RSP framework, the paths with lower cost have higher
probability. Therefore, the connecting paths with low cost
become relevant. In the limit case µ→∞, only the shortest
paths are taken into account. See first row of Figure1.

3.3. The family of Log-Norm Distances

In the previous sections we have shown how popular node
metrics can be posed as particular instances of the APP. In
concrete, we presented a semiring that interpolates between
the shortest path and minimax distances via the parameter
r, which conditions the ⊗r operation. Additionally, we
have discussed the log-semiring, whose APP interpolates
between the CCD and the shortest path distances via a
parameter µ that determines the ⊕µ operation. A natural
question arises: is there any semiring that defines a distance
interpolating between the CCD and the minimax distance?

In this section we aim to answer this question by proposing
a family of strong bimonoids, whose associated APP inter-
polates between those distances.
The key operators that allow to interpolate between the
distances are ⊕µ and ⊗r. To relate all above mentioned
distances, we propose to define an algebraic structure that
combines the Eisner, log- and min-norm semirings. We
define the following operations over R+ × R+

(a, b)⊕µ (c, d) =

(
1,− 1

µ
log
(
ae−µb + ce−µd

))
(a, b)⊗r (c, d) =

(
ac,

r
√
br + dr

)
.

(11)

Unfortunately, the distributive property of ⊕µ with respect
to ⊗r does not hold for arbitrary r and µ values. Conse-
quently, these operations do not define a semiring, but a
strong bimonoid. Nonetheless, its APP, with edge costs
equal to (pe, ce) with pe, ce as defined in Section 2.4.2, still
defines a distance which we name log-norm distance (LN):

LN(s, t) =

⊕
µ

π∈Phst

⊗
r

e∈π

(pe, ce) +
⊕

µ

π∈Phts

⊗
e∈π

(pe, ce)


2

=− 1

µ
log
(

Eπ∼Phst [exp (−µ||c(π)||r)]
)

− 1

µ
log
(

Eπ∼Phts [exp (−µ||c(π)||r)]
)
, (12)

where ||c(π)||r = r
√∑

e∈π(ce)r. Table 1 summarizes all
the graph metrics that the log-norm family includes along
with the algebraic structure, whose APP defines the metric.
Note that the algebraic structures do not interpolate between
them for the same reason that was explained in remark 3.2.

The log-norm distances are closely related with the sim-
ilarities presented in (Kim & Choi, 2013), defined as∑
π∈Phts

exp (−µ||c(π)||r). These similarities are not de-
fined when µ → 0+. In our setting, we transform these
similarities into a metric by computing the expected similar-
ity between two nodes followed by the − log(·)/µ function.
This way, we are able to study the limit µ → 0+, which
retrieves the CCD when r = 1.

The log-norm family can also be related with the Helmholtz
free energy, following the same reasoning that related the
PD with the free energy in (Kivimäki et al., 2014). We
prove in appendix H, that the log-norm distance between
two nodes s and t is equal to Φr( Prst) + Φr( Prts), where

Φr( Prst) =
∑
π∈Phst

Prst(π)||c(π)||r+
1

µ
KL
(

Prst, Prref
)

is the free energy of a thermodynamical system and Prst is
a probability distribution over the hitting paths between s
and t that minimizes the free energy at a certain temperature
1/µ. KL denotes the KL-divergence, and Prref denotes
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a reference probability distribution over the hitting paths
given by the random walker.

In Figure 1, we plot schematically the path relevance deter-
mined by the log-norm metric for different r and µ values.
We computed the 1000 shortest paths according to the costs
||c(π)||r for different r values. The edge width is propor-
tional to

∑
π : e∈π Pr(π) exp(−µ||c(π)||r). The width of

the edges visualizes how much each edge contributes to the
value of the APP. The wider the edges, the more significant.
The random walker probabilities are set uniform at each
node. We observe that for lower µ, the influence among
the edges of different paths is more distributed. As a con-
sequence of remark 2.2, for the CCD (r = 1, µ → 0+),
the cost of a path does not determine the influence of the
path. Consequently, the more influential paths are the ones
with higher probability. In our example, the high probability
paths coincide with the shorter length paths (low number of
edges) because we assume a uniform transition probability
at each node. For r and µ values close to 1 and 0 respec-
tively, we expect similar behaviour. Indeed, this pattern is
present in the top left corner graph. Nonetheless, when the
value r is higher, the influence shifts to the paths situated
in the lower part of the graph, which have a lower cost
with respect to || · ||r. This pattern indicates that the cost be-
comes more dominant. However, the mass is still distributed
among all the edges of all the paths and the probabilities of
the paths are still significant.

Contrarily, for higher µ, the contribution of the paths
shifts from paths with higher probability to paths with
lower cost ||c(π)||r. In the limit µ → ∞, only the
path with minimum cost is considered. This conver-
gence is more pronounced for lower r values since
Pr(π) exp(−µ||c(π)||r) ≤ Pr(π) exp(−µ||c(π)||r′) if
r′ ≤ r. Thus, for higher r values the relevance of the factor
Pr(π) in Pr(π) exp(−µ||c(π)||r) decreases at a slower rate,
with respect to the increase of µ, than it does for lower r
values. For higher r, paths which contain low cost edges
are favored. In summary, r and µ have the same effect that
was shown for the min-norm and potential distances, but
can be combined in our framework. Note that Figure 1 is an
approximation since only a finite number of paths has been
considered. The approximation is more reliable for higher µ
values, where the influence of high cost paths is negligible.

In appendix G, we show that LN defines a distance. Though
PD and LN are similar in form, the same strategy that was
followed in (Françoisse et al., 2017) to prove that PD is
a distance does not apply for LN due to the absence of
distributivity. Instead, we expose an step by step deriva-
tion to show the triangle inequality. The proof builds on
the factorization of the set of paths from s to t into those
that cross a third node q and those which do not. Further-
more, the absence of distributivity makes any attempt to

compute the LN distance in finite time impractical, since
one can not factor out common terms for different paths.
General algorithms proposed for the APP can not be ap-
plied here either. Though there have been papers that have
tackled the non-distributivity question, they are not applica-
ble here. For instance, in (Daggitt et al., 2018) only selective
semirings are considered. Alternatively, the proposed ap-
proach in (Lengauer & Theune, 1991) does not simplify
the computation of our algebraic structure. Nonetheless, in
appendix I we sketch an algorithm to compute the Exp-max
and Log-max distances (last row Table 1). The analysis and
implementation of this algorithm is out of the scope of the
current paper and, therefore, is left for future work.

4. When Does a Semiring Define a Distance?
In the previous sections, we have expressed some of the
most common graph metrics in terms of the APP. Now,
we wonder which properties must a semiring satisfy such
that its associated APP defines a metric. Since all the
metrics we have analyzed could be expressed in terms of
the APP framework which considers only hitting paths, we
will focus on the hitting case, denoted here by APPh. We
hope that our results will allow researchers to more easily
define semirings that yield new, potentially useful graph
distances and reveal some of the underlying structure of
semiring based graph distances.

A metric maps a pair of points to a non-negative real number.
Since a semiring can be defined over an arbitrary set, we
need a function g : S 7→ R+∪{∞} that maps an element of
the semiring to the non-negative real numbers. We assume
g(1̄) = 0 and g(0̄) = ∞, since APPh(s, s) = 1̄ and 0̄
represents the cost of the non-existing edges/paths. Let
G = (V,E) be a S-graph. We assume that the graph is
strongly connected such that there exists a path connecting
two arbitrary nodes and that APPh(·, ·) is defined for each
pair of nodes. Given s, t ∈ V we define the following
dissimilarity function

d(s, t) = g
(

APPh(s, t)
)

+ g
(

APPh(t, s)
)
. (13)

We aim to find out which properties g and the semiring S
must satisfy such that (13) determines a metric function. The
non-negativity of d follows trivially from the definition. We
have d(s, s) = 0, since APPh(s, s) = 1̄ and g(1̄) = 0. The
opposite direction of the identity of indiscernibles property
is more delicate. The next lemma states some conditions
that ensure s = t if d(s, t) = 0. Concretely, it requires 1̄ to
be the unique element mapped to 0 and that all paths have
cost greater than 1̄. The results stated in this section are
proven in appendix F.

Lemma 4.1. Let d be defined as in (13). If

• a 4 1̄ ⇐⇒ a = 1̄ or a = 0̄,
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• g(a) = 0 if and only if a = 1̄,
• none of the edge costs is invertible with respect to ⊗,

then d(s, t) = 0 implies s = t.

In the following we will focus on the triangle inequality
property. We will show under which circumstances, the left
summand of (13), dL(s, t) := g(APPh(s, t)), satisfies the
triangle inequality. If it holds for dL it will also hold for
d due to its symmetry. The foundation of our arguments
lies in the fact that the set of paths between s and t can be
partitioned into the set of paths that pass through a node q
and the ones that do not. Consequently, it can be shown that

APPh(s, t) = αh ⊕ βh ⊗APPh(q, t) (14)

for certain αh, βh ∈ S, where βh 4 APPh(s, q) (see ap-
pendix F.2). Equation (14) is the starting point of our proofs.
The next lemma asserts that a necessary, but not sufficient,
condition to satisfy the triangle inequality of dL on arbitrary
S-valued graphs is the ⊗-subadditivity of g.

Lemma 4.2. If the function dL, satisfies the triangle in-
equality over an arbitrary graph and APPh(·, ·) can take
any value in the semiring S, then g is ⊗-subadditive, i.e.,

g(a⊗ b) ≤ g(a) + g(b), ∀a, b ∈ S. (15)

Sketch proof. We consider a graph where all paths from s
to t pass through q, such that APPh(s, q) and APPh(q, t)
can take any possible value in S. In that case, equation
(14) becomes APPh(s, t) = APPh(s, q) ⊗ APPh(q, t).
The triangle inequality implies that g

(
APPh(s, t)

)
=

g
(
APPh(s, q) ⊗ APPh(q, t)

)
≤ g

(
APPh(s, q)

)
+

g
(
APPh(q, t)

)
. Thus, g must be subadditive on S.

Now we will present some conditions that are sufficient to
ensure that (13) satisfies the triangle inequality over an arbi-
trary graph. In particular, we analyze the triangle inequality
when g is monotone with respect to 4.

Theorem 4.3. Let G = (V,E) be an S-graph. If

1. g is subadditive, i.e., g(a⊗b) ≤ g(a)+g(b) ∀a, b ∈ S,
2. g is decreasing, i.e., a 4 b→ g(b) ≤ g(a) ∀a, b ∈ S,
3. a⊗APPh(t, q)⊗APPh(q, t) 4 a, ∀a ∈ S, q, t ∈ V .

then d satisfies the triangle inequality over the nodes of G.

The third assumption states that, if c(π) = a ∈ S is the
cost of a path, π, and this path is concatenated (⊗ operation)
with all cycles starting at a node t and traversing an arbitrary
node q, then the aggregation of all these new costs is not
greater (according to (1)) than the original cost of the path
c(π). Consequently, since g is decreasing, the concatenation
(and aggregation) of the cycles does not increase the g-value
of the path. The proof of Theorem 4.3 (see appendix F.3)

focuses on demonstrating that

APPh(s, q)⊗APPh(q, t) 4 αh ⊕ βh ⊗APPh(q, t).

If βh was equal to APPh(s, q), requiring g to be decreasing
and subadditive would suffice to prove the triangle inequal-
ity. Since βh 4 APPh(s, q), assumption 3 is needed to
ensure the triangle inequatlity.

One can derive as special cases of Theorem 4.3 that the min-
norm distances (including the shortest path and minimax
distances) and the PD define metrics over arbitrary graphs
(see Corollary F.5 and Corollary F.6). However, this the-
orem does not apply to CCD. The next theorem mirrors
Theorem 4.3, but considers g to be increasing instead of
decreasing. As a corollary, we can prove the fact that the
CCD defines a metric (see Corollary F.9).

Theorem 4.4. Let G = (V,E) be an S-graph. If

1. g is subadditive, i.e., g(a⊗b) ≤ g(a)+g(b) ∀a, b ∈ S,
2. g is increasing in S\{0̄}, i.e., a 4 b →
g(a) ≤ g(b) ∀a, b ∈ S\0̄,

3. a 4 a⊗APPh(t, q)⊗APPh(q, t), ∀a ∈ S, q, t ∈ V .

then d satisfies the triangle inequality over the nodes of G.

In the appendix we provide, in addition to simplified proofs
of the validity of existing metrics, a case example of a new
metric, which can be easily verified to be a metric thanks
to our theorems (see appendix H). Note that, none of the
results stated in this section apply to the log-norm distance,
since it is not defined by a semiring but a strong bimonoid.
Distributivity is an essential part of the proofs.

5. Conclusion
We have revisited some of the most common graph metrics
(shortest path, CCD and minimax distances) and have pre-
sented them in terms of the algebraic path problem. We
reviewed semirings whose associated algebraic path prob-
lems retrieve these metrics. We also discussed the poten-
tial distance (which interpolates between the CCD and the
shortest path distance) and the min-norm distance (which in-
terpolates between the shortest path and minimax distances)
from a new perspective. We showed that these metrics can
be expressed as instances of the APP framework.

Moreover, we have proposed a novel unifying family of
metrics which includes and relates all the aforementioned
distances. This family of metrics is parameterized by a pa-
rameter r that regulates the impact of edges with high cost,
and another parameter µ which regulates the influence of
the paths based on their || · ||r-cost. Moreover, inspired by
(Kivimäki et al., 2014), we have proven that the log-norm
distance between two nodes coincides with the symmetrized
minimum Helmholz free energy between the nodes. Unfor-
tunately, this distance cannot be obtained as the APP of a
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semiring but of a strong bimonoid, and its exact computation
remains infeasible. An efficient approximate computation
is left for future work.

Finally, we have provided sufficient conditions which ensure
that the APP constrained to hitting paths associated with a
semiring, S, defines a metric over the nodes of a graph. In
addition, we showed that the function that maps elements
from S to R+ must be ⊗-subadditive if g(APPh(·, ·)) is to
satisfy the triangle inequality. We hope that these results can
help in the design of new metrics, and as such help enrich
the toolbox available to graph-centric machine learning.

Acknowledgements
This work is supported, in part, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy EXC 2181/1 - 390900948
(the Heidelberg STRUCTURES Excellence Cluster); and in
part by Informatics for Life, funded by the Klaus Tschira
Foundation.

References
Alamgir, M. Shortest path distance in random k-nearest

neighbor graphs. Proceedings of the 29th International
Conference on Machine Learning, pp. 8, 2012.

Baras, J. S. and Theodorakopoulos, G. Path Problems in
Networks. Synthesis Lectures on Communication Net-
works, 3(1):1–77, January 2010. ISSN 1935-4185, 1935-
4193. doi: 10.2200/S00245ED1V01Y201001CNT003.
URL http://www.morganclaypool.com/doi/
abs/10.2200/S00245ED1V01Y201001CNT003.

Bellman, R. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958. doi: https://doi.org/10.
1090/qam/102435.

Carre, B. A. An Algebra for Network Routing Problems.
IMA Journal of Applied Mathematics, 7:273–294, 1971.
ISSN 0272-4960. doi: 10.1093/imamat/7.3.273.

Challa, A., Danda, S., Sagar, B. S. D., and Najman, L.
Watersheds for Semi-Supervised Classification. IEEE
Signal Processing Letters, 26(5):720–724, May 2019.
ISSN 1558-2361. doi: 10.1109/LSP.2019.2905155.

Chandra, A. K., Raghavan, P., Ruzzo, W. L., Smolensky,
R., and Tiwari, P. The electrical resistance of a graph
captures its commute and cover times. computational
complexity, 6(4):312–340, 1996. doi: 10.1145/73007.
73062. Publisher: Springer.

Chebotarev, P. A Class of Graph-Geodetic Distances Gen-
eralizing the Shortest-Path and the Resistance Distances.
Discrete Applied Mathematics, 159(5):295–302, March

2011. ISSN 0166218X. doi: 10.1016/j.dam.2010.11.
017. URL http://arxiv.org/abs/0810.2717.
arXiv: 0810.2717.

Chebotarev, P. The Walk Distances in Graphs. Dis-
crete Applied Mathematics, 160(10-11):1484–1500, July
2012. ISSN 0166218X. doi: 10.1016/j.dam.2012.02.
015. URL http://arxiv.org/abs/1103.2059.
arXiv: 1103.2059.

Cortes, C., Haffner, P., and Mohri, M. Ratio-
nal Kernels: Theory and Algorithms. Journal of
Machine Learning Research (JMLR), 5:1035–1062,
2004. URL http://www.cs.nyu.edu/mohri/
postscript/jmlr.pdf.

Daggitt, M. L., Gurney, A. J. T., and Griffin, T. G. Asyn-
chronous convergence of policy-rich distributed bellman-
ford routing protocols. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data
Communication, pp. 103–116, Budapest Hungary, Au-
gust 2018. ACM. ISBN 978-1-4503-5567-4. doi:
10.1145/3230543.3230561. URL https://dl.acm.
org/doi/10.1145/3230543.3230561.

Dijkstra, E. W. A note on two problems in connex-
ion with graphs. Numer. Math., 1(1):269–271, De-
cember 1959. ISSN 0029-599X, 0945-3245. doi: 10.
1007/BF01386390. URL http://link.springer.
com/10.1007/BF01386390.
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Kivimäki, I., Shimbo, M., and Saerens, M. Developments
in the theory of randomized shortest paths with a com-
parison of graph node distances. Physica A: Statistical
Mechanics and its Applications, 393:600–616, January
2014. ISSN 03784371. doi: 10.1016/j.physa.2013.09.
016. URL http://arxiv.org/abs/1212.1666.
arXiv: 1212.1666.
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A. Min-Norm Semiring
Lemma A.1. Given r > 0, the min-norm semiring (S,⊕,⊗r,∞, 0), where S = R+ ∪ {∞} and

x⊕ y = min(x, y), x⊗r y = r
√
xr + yr. (16)

is a commutative selective semiring with 0̄ =∞ and 1̄ = 0 as its neutral elements.

Proof. We will only show the the associativity of ⊗r and the distributivity of ⊗r over ⊕.

• Associativity ⊗r

(x⊗r y)⊗r z = r
√
xr + yr ⊗r z = r

√(
r
√
xr + yr

)r
+ zr = r

√
xr + yr + zr

= r

√
xr +

(
r
√
yr + zr

)r
= x⊗r r

√
yr + zr = x⊗r (y ⊗r z)

(17)

• Distributivity:

(x⊕ y)⊗r z = r

√(
min(x, y)

)r
+ zr = r

√
min(xr, yr) + zr = r

√
min(xr + zr, yr + zr)

= min
(
r
√
xr + zr, r

√
yr + zr

)
= x⊗r z ⊕ y ⊗r z

(18)

The left-distributivity is a consequence of the commutativity of ⊗.

Lemma A.2. Let x, y ≥ 0. Then

lim
r→∞

(xr + yr)
1/r

= max(x, y).

Proof. If x = 0 or y = 0, then the limit is trivial. Without loss of generality, we will assume x ≥ y > 0. First note that

r
√
xr + yr = (xr + yr)

1/r
= exp

(
1

r
log (xr + yr)

)
.

Then

lim
r→∞

(xr + yr)
1/r

= lim
r→∞

exp

(
1

r
log (xr + yr)

)
= exp

(
lim
r→∞

1

r
log (xr + yr)

)
.

Applying L’Hôpital’s rule we obtain

lim
r→∞

1

r
log (xr + yr) = lim

r→∞

xr log(x) + yr log(y)

xr + yr
= lim
r→∞

log(x) +
(
y
x

)r
log(y)

1 +
(
y
x

)r =︸︷︷︸
y
x≤1

log(x). (19)

Therefore exp

(
lim
r→∞

1

r
log (xr + yr)

)
= exp (log (x)) = x = max(x, y).

As a consequence of Lemma A.2, (S,⊕,⊗r,∞, 0) interpolates between the min-plus and minimax semiring. Therefore,
the min-norm distance also interpolates between the shortest path and minimax distance.
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B. APP of the Eisner Semiring Recovers the First Hitting Cost
We show that the second entry of the APP associated with the Eisner semiring restricted to hitting paths is equal to the first
hitting costH(s, t):

⊕
π∈Phst

⊗
e∈π

(pe, pece) =
⊕
π∈Phst

(∏
e∈π

pe,

(∏
e∈π

pe

)(∑
e∈π

ce

))

=
⊕
π∈Phst

(
Pr(π),Pr(π)c(π)

)
=
( ∑
π∈Phst

Pr(π),
∑
π∈Phts

Pr(π)c(π)
)

=

(
E

π∼Phst
[1] , E

π∼Phst
[c(π)]

)
=

(
1, E
π∼Phst

[c(π)]

)
= (1,H(s, t))

(20)

C. APP of the Log-Semiring Recovers the Potential Distance
We show that the APP associated with the log-semiring restricted to hitting paths retrieves the first summand of the potential
distance (Kivimäki et al., 2014; Françoisse et al., 2017).

⊕
π∈Phst

⊗
e∈π
− 1

µ
log
(
pe exp(−µce)

)
=
⊕
π∈Phst

∑
e∈π

1

µ
log

(
pe exp(−µce)

)

=
⊕
π∈Phst

− 1

µ
log

(∏
e∈π

pe exp(−µ
∑
e∈π

ce)

)

=
⊕
π∈Phst

− 1

µ
log

(
Pr(π) exp(−µc(π))

)

= − 1

µ
log

( ∑
π∈Phst

Pr(π) exp(−µc(π))

)

= − 1

µ
log

(
E

π∼Phst

[
exp

(
− µc(π)

)])

(21)

D. Log-Norm Strong Bimonoid
In this section, we prove that the operations defined in equation (11), and restated here in (22), form a strong bimonoid over
R+ × R+ ∪ {0̄}, where 0̄ represents the neutral element of the operation ⊕µ. Since there is not a natural neutral element in
R+ × R+ for ⊕µ, we explicitly need to define an ad hoc neutral element.

Lemma D.1. Let r > 1, µ > 0. The log-norm algebraic structure
(

R+ × R+ ∪ {0̄},⊕µ,⊗r, 0̄, 1̄ = (1, 0)
)

, where

(a, b)⊕µ (c, d) =

(
1,− 1

µ
log
(
ae−µb + ce−µd

))
(a, b)⊕µ 0̄ = 0̄⊕µ (a, b) = (a, b)

(a, b)⊗r (c, d) =
(
ac,

r
√
cr + dr

)
(a, b)⊗r 0̄ = 0̄⊗r (a, b) = 0̄,

(22)

defines a strong bimonoid.

Proof. Note that in (22) we define 0̄ to be absorbing. Thus, we just have left to show that ⊕µ and ⊗r define monoids over
R+ × R+. The associativity and commutativity of ⊗r follow from the associativity and commutativity of the usual product
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operation in R+ and the product operation of the min-norm semiring (Appendix B, equation (17)). It is also trivial to show
that the neutral element of ⊗r is 1̄ = (1, 0).

Next we show the associativity of ⊕µ.

((a1, a2)⊕µ (b1, b2))⊕µ (c1, c2) =

(
1,− 1

µ
log
(
a1e
−µa2 + b1e

−µb2
))
⊕µ (c1, c2)

=

(
1,− 1

µ
log
(
a1e
−µa2 + b1e

−µb2 + c1e
−µc2

))
= (a1, a2)⊕µ

(
1,− 1

µ
log
(
b1e
−µb2 + c1e

−µc2
))

= (a1, a2)⊕µ ((b1, b2)⊕µ (c1, c2)) .

(23)

The commutativity of ⊕µ follows from the commutativity of the common sum.

Lemma D.2. Let r > 1, µ > 0. The associated APP of the log-norm strong bimonoid defines the log-norm distance when
the costs are equal to (pe, ce), i.e.

LN(s, t) =

⊕
µ

π∈Phst

⊗
r

e∈π

(pe, ce) +
⊕

µ

π∈Phts

⊗
e∈π

(pe, pece)


2

= − 1

µ
log
(

Eπ∼Phst [exp (−µ||c(π)||r)]
)
− 1

µ
log
(

Eπ∼Phts [exp (−µ||c(π)||r)]
)
. (24)

Proof.

⊕
π∈Phst

⊗
e∈π

(pe, pece) =
⊕
π∈Phst

∏
e∈π

pe, r

√∑
e∈π

cre


=
⊕
π∈Phst

(
Pr(π), ||c(π)||r

)
=

(
1,− 1

µ
log
( ∑
π∈Phts

Pr(π) exp (−µ||c(π)||r)
))

=

(
1,− 1

µ
log
(

Eπ∼Phts [exp (−µ||c(π)||r)]
))

(25)

Corollary D.3. Let µ > 0.

• The log-max algebraic structure
(

R+ × R+ ∪ {0̄},⊕µ,⊗∞, 0̄, 1̄ = (1, 0)
)

, where

(a, b)⊕µ (c, d) =

(
1,− 1

µ
log
(
ae−µb + ce−µd

))
(a, b)⊕µ 0̄ = 0̄⊕µ (a, b) = (a, b)

(a, b)⊗∞ (c, d) = (ac,max(c, d))

(a, b)⊗∞ 0̄ = 0̄⊗r (a, b) = 0̄,

(26)

defines a strong bimonoid.
• The associated APP of the Log-max strong bimonoid defines the log-norm distance when the costs are equal to (pe, ce),

i.e.

LM(s, t) =

⊕
µ

π∈Phst

⊗
∞

e∈π

(pe, ce) +
⊕

µ

π∈Phts

⊗
∞

e∈π

(pe, pece)


2

= − 1

µ

(
log

(
E

π∼Phst

[
e−µmaxe∈π c(e)

])
+ log

(
E

π∼Phts

[
e−µmaxe∈π c(e)

]))
. (27)
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Proof. Consequence of Lemma D.1 and Lemma D.2 and the fact that limr→∞⊗r = (×,max) (see Lemma A.2).

Analogously, we define the strong bimonoids that would define the exp-norm and exp-max distances presented in Table 1.

Lemma D.4. 1. Let r > 0. The exp-norm algebraic structure
(

R+ × R,⊕,⊗r, (0, 0), (1, 0)
)

defines an strong bimonoid,
where

(a, b)⊕µ (c, d) = (a+ c, b+ d)

(a, b)⊗r (c, d) =

(
ac, ac r

√(
b

a

)r
+

(
d

c

)r)
.

(28)

2. The exp-max algebraic structure
(

R+ × R,⊕,⊗∞, (0, 0), (1, 0)
)

defines an strong bimonoid, where

(a, b)⊕µ (c, d) = (a+ c, b+ d)

(a, b)⊗r (c, d) =

(
ac, acmax

(
b

a
,
d

c

))
.

(29)

Moreover the associated APP of the exp-norm and exp-max strong bimonoids define the exp-norm and exp-max distances
respectively when the costs are equal to (pe, pece), i.e.

⊕
µ

π∈Phst

⊗
r

e∈π

(pe, pece) +
⊕

µ

π∈Phts

⊗
r

e∈π

(pe, pece)


2

= E
π∼Pst

[||c(π)||r] + E
π∼Pts

[||c(π)||r] , (30)

and ⊕
µ

π∈Phst

⊗
∞

e∈π

(pe, pece) +
⊕

µ

π∈Phts

⊗
∞

e∈π

(pe, pece)


2

= E
π∼Pst

[
max
e∈π

c(e)

]
+ E
π∼Pts

[
max
e∈π

c(e)

]
. (31)

Proof. We will only proof the exp-norm case, since the exp-max case is analogous. To prove that the exp-norm is an strong
bimonoid we will just show that the ⊗r is associative. The rest of properties are trivial.

((a1, a2)⊗r (b1, b2))⊗r (c1, c2) =

(
a1b1, a1b1

r

√(
a2
a1

)r
+

(
b2
b1

)r)
⊗r (c1, c2)

=

a1b1c1, a1b1c1 r

√√√√√√√
a1b1

r

√(
a2
a1

)r
+
(
b2
b1

)r
a1b1


r

+

(
c2
c1

)r


=

(
a1b1c1, a1b1c1

r

√(
a2
a1

)r
+

(
b2
b1

)r
+

(
c2
c1

)r)

= (a1, a2)⊗r

(
b1c1, b1c1

r

√(
b2
b1

)r
+

(
c2
c1

)r)
= (a1, a2)⊗r ((b1, b2)⊗r (c1, c2)) .

(32)
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The APP of the exp-norm strong bimonoid follows from

⊕
µ

π∈Phst

⊗
r

e∈π

(pe, pece) =
⊕

µ

π∈Phst

∏
e∈π

pe,

(∏
e∈π

pe

)
r

√∑
e∈π

cre


=
⊕

µ

π∈Phst

(
Pr(π),Pr(π)||c(π)||r

)
=
( ∑
π∈Phst

Pr(π),
∑
π∈Phts

Pr(π)||c(π)||r
)

=

(
E

π∼Phst
[1] , E

π∼Phst
[||c(π)||r]

)
=

(
1, E
π∼Phst

[||c(π)||r]

)
.

(33)

E. Log-Norm Metric Limits
In this section, we prove the limits of the log-norm distance shown in Table 1. First, in Lemma E.1 we prove the limits
when µ→ 0+ and µ→∞ for a finite r.

Lemma E.1.

1.

lim
µ→0+

− 1

µ
log

(
E

π∼Phst

[
exp

(
− µ||c(π)||r

)])
− 1

µ
log

(
E

π∼Phts

[
exp

(
− µ||c(π)||r

)])
= E
π∼Phst

[||c(π)||r] + E
π∼Phts

[||c(π)||r]
(34)

2.

lim
µ→∞

− 1

µ
log

(
E

π∼Phst

[
exp

(
− µ||c(π)||r

)])
− 1

µ
log

(
E

π∼Phts

[
exp

(
− µ||c(π)||r

)])
= 2 min

π∈Phst
||c(π)||r (35)

Proof. By showing the limit of the first summands we can derive the limit of the second in an analogous way.

1.

lim
µ→0+

− 1

µ
log

(
E

π∼Phst

[
exp

(
− µ||c(π)||r

)])
=

lim
µ→0+

− 1

µ
log

 ∑
π∈Phst

(Pr(π) exp (−µ||c(π)||r))

 =︸︷︷︸
L’Hôpital’s rule

lim
µ→0+

∑
π∈Phst

(Pr(π)||c(π)||r exp (−µ||c(π)||r))∑
π∈Phst

(Pr(π) exp (−µ||c(π)||r))
=
∑
π∈Phst

Pr(π)||c(π)||r = E
π∼Phst

[||c(π)||r]

(36)

2.

lim
µ→∞

= − 1

µ
log

(
E

π∼Phst

[
exp

(
− µ||c(π)||r

)])
=

lim
µ→∞

− 1

µ
log

 ∑
π∈Phst

(
Pr(π) exp

(
−µ
∑
e∈π

ce

)) =︸︷︷︸
L’Hôpital’s rule

lim
µ→∞

∑
π∈Phst

(Pr(π)||c(π)||r exp (−µ||c(π)||r))∑
π∈Phst

(Pr(π) exp (−µ||c(π)||r))
= min
π∈Phst

||c(π)||r

(37)
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s

q

t

a

c

b

Figure 2. Graph where all paths connecting s and t pass through q. The terms a, b ∈ S indicate the cost of the corresponding edges. The
triangle inequality can only be satisfied if g is subadditive such that
dL(s, t) = g

(
APPh(s, q)⊗APPh(q, t)

)
= g (a⊗ b) ≤ g (a) + g (b) = g

(
APPh(s, q)

)
+ g

(
APPh(q, t)

)
= d(s, q) + d(q, t).

Since lim
r→∞

x⊗r y = lim
r→∞

r
√
xr + yr = max(x, y) as a consequence of Lemma A.2, we obtain all the limits exposed in

Table 1. Note that for r = 1 we retrieve the potential distance (Kivimäki et al., 2014; Françoisse et al., 2017) and their
limits.

F. When Does a Semiring Define a Distance?
This section contains the proofs of all the results stated in section 4, which provide sufficient conditions to ensure that d(s, t)
defines a proper metric. We will focus only on the left summand of (13), since for the right term the same properties will
follow:

dL(s, t) := g
(
APPh(s, t)

)
= g

 ⊕
π∈Phst

⊗
e∈π

c(e)

 . (38)

Through the whole section we assume that distributivity commutativity and associativity of the semiring operations also
hold for infinite sums and products.

F.1. Proof Lemma 4.1

Lemma F.1 (Lemma 4.1). Let d be defined as in (13). If

1. a 4 1̄ ⇐⇒ a = 1̄ or a = 0̄, where 4 is the canonical preorder relation defined in (1),
2. g(a) = 0 if and only if a = 1̄,
3. none of the edge costs is invertible with respect to ⊗,

then d(s, t) = 0 if and only if s = t.

Proof. According to assumption 2, we just need to prove that APPh(s, t) 6= 1̄ for arbitrary distinct vertices s and t. First
we recall the definition of the canonical order of a semiring which was stated in equation (1):

a 4 b ⇐⇒ ∃c ∈ S such that a⊕ c = b.

As a consequence of the definition of 4 and the first assumption, there do not exist any a and b distinct of 1̄ such that
a⊕ b = 1̄. Therefore,

APPh(s, t) =
⊕
π∈Phst

⊗
e∈π

c(e) = 1̄⇒ ∃π ∈ Phst such that
⊗
e∈π

c(e) = 1̄.

Thanks to assumption 3,
⊗

e∈π c(e) 6= 1̄, otherwise the costs c(e) would have inverse elements.

F.2. The Mapping g is Subadditive

We will assume that the edge costs, and also APPh(·, ·), can take arbitrary values in the semiring S. To prove that the
subadditivity of g is a necessary condition if dL satisfies the triangle inequality on arbitrary graphs, we will define a particular
strongly connected graph where the subadditivity is necessary (see Figure 2).
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First, we will show two equalities that will prove to be useful.

Lemma F.2. Given a graph G and arbitrary nodes s, t and q then

1.
APPh(s, t) = αh ⊕ βh ⊗APPh(q, t). (39)

2.
APPh(s, q) = βh ⊕ αh ⊗APPh(t, q), (40)

where
αh :=

⊕
π∈Phst
q/∈π

⊗
e∈π

c(e), βh :=
⊕

π1∈Phsq
t/∈π

⊗
e∈π

c(e).

Proof. 1.
APPh(s, t) =

⊕
π∈Phst

⊗
e∈π

c(e)

=
⊕
π∈Phst
q/∈π

⊗
e∈π

c(e)⊕
⊕
π∈Phst
q∈π

⊗
e∈π

c(e)

=
⊕
π∈Phst
q/∈π

⊗
e∈π

c(e)⊕
⊕

π1∈Phsq
t/∈π1

π2∈Phqt

(⊗
e∈π1

c(e)

)
⊗

(⊗
e∈π2

c(e)

)

=
⊕
π∈Phst
q/∈π

⊗
e∈π

c(e)

︸ ︷︷ ︸
αh

⊕

 ⊕
π1∈Phsq
t/∈π1

⊗
e∈π1

c(e)


︸ ︷︷ ︸

βh

⊗

 ⊕
π2∈Phqt

⊗
e∈π2

c(e)


︸ ︷︷ ︸

APPh(q,t)

= αh ⊕ βh ⊗APPh(q, t).

(41)

2. The second equality is proven analogously to the previous one once the following permutation is done:

s→ s, q → t, t→ q

The first equality, (39), decomposes the cost of the paths from s to t in two terms: one that depends on the paths that pass
through a third node q and a second term where the paths do not pass through q. Indeed, the term αh aggregates all the
hitting paths which do not cross node q, while the term βh ⊗APPh(q, t) considers all hitting paths that pass through q. The
second equality, (40), performs the same decomposition as the first equality but considering the paths from s to q.

Let us prove now that g must be subadditive, if the triangle inequality holds for the function dL, (38). It follows from
equation (39) that

g
(
αh ⊕ βh ⊗APPh(q, t)

)
= g
(
APPh(s, t)

)
= dhL(s, t)

≤ dhL(s, q) + dhL(q, t) = g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

(42)

Lemma 4.2 claims that the subadditivity of g with respect to ⊗ is a necessary condition to ensure the triangle inequality of
dL in any graph. Indeed, for a graph where all paths from s to t cross node q (e.g. Figure 2) we have αh = 0 and therefore
βh = APPh(s, q). Hence

g
(
APPh(s, t)

)
= g
(
APPh(s, q)⊗APPh(q, t)

)
= dL(s, t) ≤ dL(s, q) + dL(q, t) = g

(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

(43)
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Note that in the graph of Figure 2 the cost of the edge from s to q, a, is equal to APPh(s, q). Analogously, APPh(q, t) = b.
Thus, for arbitrary values a, b ∈ S the subadditivity of g in S follows:

g (a⊗ b) ≤ g (a) + g (b) .

We have proven that g must be subadditive such that dL satisfies the triangle inequality on the graph in Figure 2. Thus, g
must be subadditive such that dL satisfies the triangle inequality on all graphs.
Remark F.3. Note that APPh(s, q) and APPh(q, t) may not take any possible value in the semiring. For instance, in
the Eisner semiring, which characterizes the commute cost distance, the possible values of these variables lie in the set
{1} × R+. In the Eisner semiring, the first entry of APP(s, t) is always equal to

∑
π∈Phst Pr(π) = 1, since it is the sum of

the probabilities of the hitting paths from s to t.2 In this concrecte case, the subadditivity should be constrained to this set.

F.3. Proof Theorem 4.3

Theorem F.4 (Theorem 4.3). Let G = (V,E) be an S-graph. If

1. g is ⊗-subadditive, i.e. g(a⊗ b) ≤ g(a) + g(b), ∀a, b ∈ S
2. g is decreasing with respect to the order defined in (1), i.e., a 4 b→ g(b) ≤ g(a) ∀a, b ∈ S,
3. a⊗APPh(t, q)⊗APPh(q, t) 4 a, ∀a ∈ S, q, t ∈ V , i.e., aggregating the cost of the cycles starting at an arbitrary

node q and traversing a node t, does not increase (according to (1)) the cost a of a path.3

then d, as defined in (13), satisfies the triangle inequality over the nodes of G.

Proof. We need to prove that the triangle inequality (42) holds. Let s, q and t be arbitrary nodes of G. Due to the
subadditivity of g, we have

g
(
APPh(s, q)⊗APPh(q, t)

)
≤ g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

Therefore, as a consequence of (39), it will be enough to show

dL(s, t) = g
(
APPh(s, t)

)
= g
(
αh ⊕ βh ⊗APPh(q, t)

)
≤ g
(
APPh(s, q)⊗APPh(q, t)

)
= dL(s, q) + dL(q, t),

which will follow from
APPh(s, q)⊗APPh(q, t) 4 αh ⊕ βh ⊗APPh(q, t), (44)

since g is decreasing. As a consequence of (40), it suffices to prove the following inequality

APPh(s, q)⊗APPh(q, t) =
(
αh ⊗APPh(t, q)⊕ βh

)
⊗APPh(q, t)

= αh ⊗APPh(t, q)⊗APPh(q, t)⊕ βh ⊗APPh(q, t)

4 αh ⊕ βh ⊗APPh(q, t),

(45)

which holds if
αh ⊗APPh(t, q)⊗APPh(q, t) 4 αh. (46)

Indeed, (46) holds thanks to our third assumption.

Corollary F.5. Min-norm distances, including the shortest path and minimax distances, are graph node metrics.

Proof. We will apply the previous theorem. The subadditivity follows from the subadditivity of r-th roots:

a⊗r b =
r
√
ar + br ≤ a+ b, ∀r ≥ 1, (47)

since g is equal to the identity function. Trivially, the subadditivity also holds for the max operation.

2Appendix A (Françoisse et al., 2017) proves that the sum of the path likelihoods is equal to 1 for hitting paths.
3Note that, althogh the cost of a path a is not increased when one aggregates the cost of the mentioned cycles, the distance does not

decrease because g is decreasing. Thus, aggregating cycles leaves equal or increases the distance.
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Furthermore, the identity function g is a decreasing function since

a 4 b ⇐⇒ ∃c ∈ S s.t. min(a, c) = a⊕ c = b ⇐⇒ b ≤ a. (48)

Finally, the third assumption is a consequence of the increasing nature of the ⊗r and max operations: for a, b ∈ R+ we have

a⊗r b =
r
√
ar + br ≥ a⇒ a⊗r b 4 a; max(a, b) ≥ a⇒ a⊗∞ b 4 a

Therefore, a⊗APPh(q, t)⊗APPh(t, q) 4 a.

Corollary F.6. The potential distance (Kivimäki et al., 2014; Françoisse et al., 2017) defines a metric.

Proof. We will apply Theorem F.4. The potential distance can be retrieved by the APP associated with the log-semiring.
In this case ⊗ coincides with +. Therefore, g is the identity ⊗-homomorphism and the subadditivity follows trivially.

The function g is a decreasing function since

a 4 b ⇐⇒ ∃c ∈ S s.t. a⊕µ c = − 1

µ
log
(
e−µa + e−µc

)
= b

⇐⇒ ∃c s.t. c = − 1

µ
log
(
e−µb − e−µa

)
⇐⇒ b ≤ a

(49)

The third assumption of Theorem 4.3 follows from the fact that the cost of a path is strictly positive and that a⊗b = a+b 4 a
since a ≤ a+ b for b ≥ 0.

F.4. Proof Theorem 4.4

Theorem F.7 (Theorem 4.4). Let G = (V,E) be an S-graph. If

1. g is ⊗-subadditive, i.e. g(a⊗ b) ≤ g(a) + g(b), ∀a, b ∈ S,
2. g is increasing in S\{0̄} with respect to the order defined in (1), i.e., a 4 b→ g(a) ≤ g(b) ∀a, b ∈ S\{0̄},
3. a 4 a⊗ APPh(t, q)⊗ APPh(q, t) ∀a ∈ S, q, t ∈ V , i.e., aggregating the cost of the cycles starting at an arbitrary

node q and traversing a node t, does not decrease the cost.4

then d, as defined in (13), satisfies the triangle inequality over the nodes of G.

Remark F.8. We need to consider that g is increasing in S\{0̄} because 0̄ 4 s, ∀s ∈ S since s ⊕ 0̄ = s. However, by
assumption g(0̄) =∞, thus g(0̄) ≥ g(s). If we did not exclude 0̄, g would map all elements of S to∞.

Proof. We need to prove that the triangle inequality (42) holds. Let s, q and t be arbitrary nodes of G. Due to the
subadditivity of g, we have

g
(
APPh(s, q)⊗APPh(q, t)

)
≤ g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

Therefore, as a consequence of (39), it will be enough to show

dL(s, t) = g
(
APPh(s, t)

)
= g
(
αh ⊕ βh ⊗APPh(q, t)

)
≤ g
(
APPh(s, q)⊗APPh(q, t)

)
= dL(s, q) + dL(q, t),

which will follow from
αh ⊕ βh ⊗APPh(q, t) 4 APPh(s, q)⊗APPh(q, t). (50)

since g is increasing. As a consequence of Lemma F.2, it suffices to show the following inequality

αh ⊕ βh ⊗APPh(q, t) 4 APPh(s, q)⊗APPh(q, t)

=
(
αh ⊗APPh(t, q)⊕ βh

)
⊗APPh(q, t)

= αh ⊗APPh(t, q)⊗APPh(q, t)⊕ βh ⊗APPh(q, t),

(51)

4And also the distance, since g is increasing.
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which holds if
αh 4 αh ⊗APPh(t, q)⊗APPh(q, t). (52)

Indeed, (52) holds thanks to our third assumption.

Corollary F.9. The Commute Cost Distance defines a metric.

Proof. Note that the values of the semiring that we consider lie in {1} × R+, since the first entry of APP(s, t)h is equal to∑
π∈Pst Pr(π) = 1 (see Remark F.3). Thus we just need to show the properties of Theorem 4.4 for this subset of elements.

In this case g is the projection of the second entry of R+ × R+. Hence, the subadditivity follows from

g
(
(1, c1)⊗ (1, c2)

)
= g
(
(1, c1 + c2)

)
= c1 + c2 = g

(
(1, c1)

)
+ g
(
(1, c2)

)
. (53)

The function g is an increasing function since

(p1, c1) 4 (p2, c2) ⇐⇒
∃(p3, c3) ∈ S s.t. (p1, c1)⊕µ (p3, c3) = (p1 + p3, c1 + c3) = (p2, c2)

⇐⇒ ∃p3, c3 > 0 s.t. p1 + p3 = p2 & c1 + c3 = c2

⇒ c1 ≤ c2.

(54)

The third assumption of Theorem 4.4 follows from

(p1, c1) 4 (p1, c1)⊗APPh(t, q)︸ ︷︷ ︸
=(1,c2)

⊗APPh(q, t)︸ ︷︷ ︸
=(1,c3)

= (p1, c1)⊗ (1, c2)⊗ (1, c3) = (p1, c1 + p1(c2 + c3)),

since c1 ≤ c1 + p1(c2 + c3) because p1, c2, c3 ≥ 0.

F.5. Use Case of the Results in Section 4

In order to illustrate the application of the results exposed in section 4, we will define a graph distance that can be easily
verified to be a metric thanks to Theorem 4.3.

Let pij ∈ [0, 1) be the transition probabilities of a vanishing random walker, i.e. a random walker for which there exist
at least one node k where

∑
j pkj < 1. That is, there is a non-zero probability that the random walker ”vanishes”.

Alternatively, one could interpret that there exists an absorbing node, i∗, to which every node, i, can transition with
probability pii∗ = 1−

∑
j 6=i∗ pij . In such case, there exists at least one node k such that pki∗ > 0.

Let

d(s, t) :=



dL(s,t)︷ ︸︸ ︷
−1

r
log

 ∑
π∈Phst

∏
(i,j)∈E

prij


dR(s,t)︷ ︸︸ ︷

−1

r
log

 ∑
π∈Phts

∏
(i,j)∈E

prij

 if s 6= t

0 otherwise

(55)

We claim that (55) defines a metric. To prove it we will apply Theorem 4.3.

First, consider the semiring S = {R+,⊕r, ·, 0, 1} with x⊕r y = r
√
xr + yr, r ≥ 1 and g(x) = − log(x). Note that if s 6= t,

then ⊕
π∈Phst

⊗
e∈π

pe =
∏
π∈Phst

r

√∑
e∈π

pre = r

√ ∏
π∈Phst

∑
e∈π

pre. (56)

If we apply the function g(x) = − log(x) to (56), we retrieve (55):

g

 ⊕
π∈Phst

⊗
e∈π

pe

 = − log


r

√ ∏
π∈Phst

∑
e∈π

pre

 = −1

r
log

 ∑
π∈Phst

∏
(i,j)∈E

prij

 = dL(s, t). (57)
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From the definition of (55), it is clear that d(s, t) satisfies the symmetry and indiscernible properties. It is only left to prove
the triangle inequality to show that (55) is indeed a metric. This property follows easily from Theorem 4.3, since:

• g(x) = − log(x) is ⊗-subadditive:

g(a⊗ b) = − log(a⊗ b) = log
(
r
√
ar + br

)
= −1

r
log(ar + br)

= −1

r
log(ar)− 1

r
log(br) = − log(a)− log(b)) = g(a) + g(b)

• g(x) = − log(x) is decreasing: Note that a 4 b ⇐⇒ ∃c ∈ R+ such that ar + cr = br. Consequently,

a 4 b ⇐⇒ a ≤ b. (58)

Thus, if a 4 b, then

g(b) = − log(b) = − log
(
r
√
ar + cr

)
= −1

r
log(ar + cr) ≤ −1

r
log(ar) = − log(a) = g(a).

• A similar argument as was used in (Françoisse et al., 2017) (see Remark F.3) can be used to show that
APPh(t, q) =

⊕
π∈Phst

⊗
e∈π pe ≤ 1. Hence, a ⊗ APPh(t, q) ⊗ APPh(q, t) 4 a, ∀a ∈ S, q, t ∈ V follows

from this fact together with (58).

We have just proven the following corollary.
Corollary F.10. Given the transition probabilities of a vanishing random walker, pij ∈ [0, 1) , over an arbitrary graph G,
the function d(s, t) defines a metric.

d(s, t) :=

{
− 1
r log

(∑
π∈Phst

∏
(i,j)∈E p

r
ij

)
− 1

r log
(∑

π∈Phts

∏
(i,j)∈E p

r
ij

)
if s 6= t

0 otherwise
. (59)

We provide a bit of intuition about this metric: when r = 1, the expression
∑
π∈Phst

∏
(i,j)∈E p

r
ij is equal to the absorbing

probability of t from s before the random walker vanishes.

lim
r→1

∑
π∈Phst

∏
(i,j)∈E

prij =
∑
π∈Phst

∏
(i,j)∈E

pij =
∑
π∈Phst

Pr(π)

Thus, when r → 1, nodes are closer if they have higher absorbing probability before the RW vanishes. On the other
extreme, when r →∞, then the distance focuses on the path of maximum probability between two nodes. If we consider
pij = exp(−cij),5 the limit case r →∞ would be equivalent to twice the shortest path cost with edge costs equal to cij :

lim
r→∞

dL(s, t) = lim
r→∞

−1

r
log

 ∑
π∈Phst

∏
(i,j)∈E

exp(−r · cij)

 = lim
r→∞

− log


r

√ ∑
π∈Phst

exp (−r · c(π))


= − log

(
max
π∈Phst

exp (−c(π))

)
= min
π∈Pst

c(π).

G. Log-Norm Distance
In this section we will prove that the log-norm distance defines a metric over the nodes of a graph with positive edge-costs.
Since the log-norm operations ⊗r and ⊕µ do not define a semiring, we can not use the results developed in Section 4.
Therefore, we present an additional proof for the log-norm distance.
Lemma G.1. Given r ≥ 1, µ > 0 and c : E 7→ R+ then

LN(s, t) = − 1

µ

 log

(
E

π∼Phst

[
exp

(
− µc(||π||r)

)])
+ log

(
E

π∼Phts

[
exp

(
− µc(||π||r)

)]) (60)

defines a distance over the vertices of the graph.
5In this case we are assuming that cij are high enough for all i, j such that

∑
k cik < 1 for all nodes i.
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Proof. The symmetry, non-negativity and the equality LN(s, s) = 0 are trivial consequences of the definition. Moreover, if
we assign to each e ∈ E a cost c(e) > 0, then c(||π||r) > 0 for any path π. Consequently, LN(s, t) > 0 for s 6= t.

From now on, we focus on the triangle inequality. We will show the triangle inequality for the terms with the paths in Phst
since the case for Phts is analogous. Hence, we claim

− 1

µ
log

(
E

π∼Phst

[
exp

(
− µ||c(π)||r

)])

≤ − 1

µ
log

(
E

π∼Phsq

[
exp

(
− µ||c(π)||r

)])
− 1

µ
log

(
E

π∼Phqt

[
exp

(
− µ||c(π)||r

)]) (61)

Equation (61) is equivalent to

E
π∼Phst

[
exp

(
− µ||c(π)||r

)]
≥ E
π∼Phsq

[
exp

(
− µ||c(π)||r

)]
E

π∼Phqt

[
exp

(
− µ||c(π)||r

)]
(62)

after applying − 1
µ log(·) to both sides of (62). Next, in order to isolate the terms on the right-hand side of (62), we separate

the set of hitting paths from s to t into those that cross the third node q and those that do not.
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E
π∼Phst

[
exp

(
− µ||c(π)||r

)]
=
∑
π∈Phst

Pr(π) exp
(
− µ||c(π)||r

)
∗
≥

∑
π1∈Phsq
t/∈π1

∑
π2∈Phqt

Pr(π1) Pr(π2) exp
(
− µ||c(π1)||r

)
exp

(
− µ||c(π2)||r

)

+
∑
π∈Phst
q/∈π

Pr(π) exp
(
− µ||c(π)||r

)

=

 ∑
π1∈Phsq
t/∈π1

Pr(π1) exp
(
− µ||c(π1)||r

)
 ∑
π2∈Phqt

Pr(π2) exp
(
− µ||c(π2)||r

)
+
∑
π∈Phst
q/∈π

Pr(π) exp
(
− µ||c(π)||r

)

=

 ∑
π1∈Phsq

Pr(π1) exp
(
− µ||c(π1)||r

)
−

∑
π1∈Phsq
t∈π1

Pr(π1) exp
(
− µ||c(π1)||r

)
×

 ∑
π2∈Phqt

Pr(π2) exp
(
− µ||c(π2)||r

)+
∑
π∈Phsq
q/∈π

Pr(π) exp
(
− µ||c(π)||r

)

=

 ∑
π1∈Phsq

Pr(π1) exp
(
− µ||c(π1)||r

) ∑
π2∈Phqt

Pr(π2) exp
(
− µ||c(π2)||r

)

−

 ∑
π1∈Phsq
t∈π1

Pr(π1) exp
(
− µ||c(π1)||r

)
 ∑
π2∈Phqt

Pr(π2) exp
(
− µ||c(π2)||r

)
+
∑
π∈Phst
q/∈π

Pr(π) exp
(
− µ||c(π)||r

)

= E
π∼Phsq

[
exp

(
− µ||c(π)||r

)]
E

π∼Phqt

[
exp

(
− µ||c(π)||r

)]

−

 ∑
π1∈Phsq
t∈π1

Pr(π1) exp
(
− µ||c(π1)||r

)
 ∑
π2∈Phqt

Pr(π2) exp
(
− µ||c(π2)||r

)
+
∑
π∈Phst
q/∈π

Pr(π) exp
(
− µ||c(π)||r

)

(63)

In ∗ we have used the fact that

r

√∑
i∈I1

xri +
∑
i∈I2

yri ≤ r

√∑
i∈I1

xri + r

√∑
i∈I2

yri .

and that exp(−x) is a decreasing function. Note that for r = 1 equality holds.
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In order to show (62) from (63) we need to prove

∑
π∈Phst
q/∈π

Pr(π) exp
(
− µ||c(π)||r

)

≥

 ∑
π∈Phsq
t∈π

Pr(π) exp
(
− µ||c(π)||r

)
 ∑
π∈Phqt

Pr(π) exp
(
− µ||c(π)||r

) (64)

Let π1 � π2 denote the concatenation of paths. Since c(e) > 0 we deduce

c(π1 � π2) = r

√ ∑
e∈π1�π2

(
c(e)

)r ≥ r

√∑
e∈π1

(
c(e)

)r
= c(π1).

Thus,

∑
π∈Phsq
t∈π

Pr(π) exp
(
− µ||c(π)||r

)
=

 ∑
π1∈Phst
q/∈π1

∑
π2∈Phtq

Pr(π1) Pr(π2) exp
(
− µc(π1 � π2)

)

≤

 ∑
π1∈Phst
q/∈π1

∑
π2∈Phtq

Pr(π1) Pr(π2) exp
(
− µc(π1)

) =
∑

π1∈Phst
q/∈π1

Pr(π1) exp
(
− µc(π1)

) (65)

Since ||c(π)||r > 0 for any π ∈ Phij for any vertices i 6= j. Therefore,∑
π∈Phst

Pr(π) exp
(
− µ||c(π)||r

)
<
∑
π∈Phst

Pr(π) = 1. (66)

Then equation (64) follows from (65) and (66).

Note that, as a consequence of the previous theorem, the triangle inequality of the exp-max, log-max and exp-norm limits
exposed in Table 1 is also satisfied. Indeed, by taking the corresponding limits in both sides of the log-norm triangle
inequality, the inequality will still hold.

H. Log-Norm Distance and the Randomized Shortest Paths
In this section we will relate the log-norm distance with the Helmholtz free energy, following the same reasoning that related
the potential distance with the free energy in (Kivimäki et al., 2014). Let s and t two arbitrary but fixed nodes in the granp G.
As defined in (Kivimäki et al., 2014), the free energy of a thermodynamical system modelled by the probability distribution
Prst and with temperature T = 1/µ is given by

Φ( Prst) =
∑
π∈Phst

Prst(π)c(π) +
1

µ
KL
(

Prst, Prref
)
, (67)

where Prref(π) =
∏
e∈π pe is the probability that a path π ∈ Phst is generated by a random walker and KL is the Kullback-

Leibler divergence. In our setting, the cost of a path will be given by ||c(π)||r. Therefore, we use the following expression
for the free energy

Φr( Prst) =
∑
π∈Phst

Prst(π)||c(π)||r +
1

µ
KL
(

Prst, Prref
)
. (68)
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We will show that the symmetrized minimum free energy between two nodes s and t (free energy distance in (Kivimäki
et al., 2014)) coincides with the log-norm distance, i.e.

LN(s, t) = Φr( Prst) + Φr( Prts).

First, we define the probability distribution over the hitting paths from s to t as the one that minimizes the free energy

Pr∗st(·) := arg min
Pr(·)

∑
π∈Phst

Pr(π)||c(π)||r +
1

µ
KL
(

Prst, Prref
)
. (69)

It can be easily checked that the minimizer is given by the following Gibbs probability distribution (Kivimäki et al., 2014)

Pr∗st(π) =
Prref(π) exp (−µ||c(π)||r)∑

π̂∈Phst

Prref(π̂) exp (−µ||c(π̂)||r)
. (70)

If we now compute the KL-divergence between Pr∗st and Prref we obtain

KL
(

Pr∗st, Prref
)

=
∑
π∈Phst

Pr∗st(π) log

(
Pr∗st(π)

Prref(π)

)

=
∑
π∈Phst

Pr∗st(π) log

 Prref(π) exp (−µ||c(π)||r)∑
π̂∈Phst

Prref(π̂) exp (−µ||c(π̂)||r)

− ∑
π∈Phst

Pr∗st(π) log
(

Prref(π)
)

=
∑
π∈Phst

Pr∗st(π) log
(

Prref(π)
)
− µ

∑
π∈Phst

Pr∗st(π)||c(π)||r

− log

 ∑
π̂∈Phst

Prref(π) exp (−µ||c(π)||r)

− ∑
π∈Phst

Pr∗st(π) log
(

Prref(π)
)

= −µ
∑
π∈Phst

Pr∗st(π)||c(π)||r − log

 ∑
π∈Phst

Prref(π) exp (−µ||c(π)||r)



(71)

Combining this result with (68) it follows that

Φr( Pr∗st) = − 1

µ
log

 ∑
π∈Phst

Prref(π) exp (−µ||c(π)||r)

 .

Finally, symmetrizing this expression we obtain the log-norm distance.

I. Exp-Max and Log-Max Metric Computation
Currently, there does not exist any efficient algorithm to compute the log-norm distance, LN, in its general form. Nonetheless,
we briefly sketch here a possible algorithm to compute the novel exp-max distance (EM) that arises as a limit case of LN
(see Table 1).

EM(s, t) = E
π∼Phst

[
max
e∈π

c(e)

]
︸ ︷︷ ︸

EML(s,t)

+ E
π∼Phts

[
max
e∈π

c(e)

]
︸ ︷︷ ︸

EMR(s,t)

(72)

Let G = (V,E) be a graph, l(E) be the set of edge costs instantiated by the graph G, and Phst(c) be the set of paths with
maximum cost equal to c:

l(E) := {c(e) : e ∈ E} (73)
Phst(c) := {π ∈ Phst : c = max

e∈π
c(e)} (74)
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(b) Graph to compute P≤4
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(c) Graph to compute P<4 = P≤3

Figure 3. 3(a) Graph with edge costs and two marked nodes s and t. 3(b) Graph with two absorbing nodes (black nodes). Each path
connecting s and t that has a cost ||c(π)||∞ = maxe∈π ce higher than 4 must contain the edge with cost equal to 5. By adding artificial
absorbing nodes to this edge,7any random walker that crosses this edge will be absorbed. Thus, the node t absorption probability by a
random walker starting at node s in this graph is equal to the probability of sampling a path with cost lower or equal than 4, i.e., P≤4. 3(c)
Analogously we can compute P<4 if we add absorbing nodes in all edges with cost higher or equal than 4. Note that since there are no
edges with cost in between 3 and 4, we have that P<4 = P≤3.

We can decompose the left summand of EM as

EML(s, t) = E
π∼Phst

[
max
e∈π

c(e)

]
=
∑
π∈Phst

Pr(π) max
e∈π

c(e) =
∑
c∈l(E)

∑
π∈Phst(c)

Pr(π) max
e∈π

c(e) =
∑
c∈l(E)

cPr
(
π ∈ Phst(c)

)
.

Let P�c := Pr(π ∈ ∪c′�cPhst(c′)) with � ∈ {<,≤}. Thus,

Pr
(
π ∈ Phst(c)

)
= P≤c − P<c (75)

can be computed in closed form, since P<c (P≤c) is the probability of reaching t from s without traversing an edge with
lower (or equal) cost than c. This is equal to the absorption probability of t, which can be computed analytically by solving
a linear system (see 3.7.2 (Fouss et al., 2016)), once extra absorbing nodes have been set on the edges with higher (or equal)
cost than c (see Figure 3). The computational cost of this algorithm scales with |l(c)|. To reduce the computational cost, we
suggest to bin the edge costs coarsely.

Analogously, one can decompose the left summand of the log-max distance (LM) (see Table 1) and approximate it in a
similar form:

LML(s, t) = − 1

µ
log

(
E

π∼Phst

[
e−µmaxe∈π c(e)

])
= − 1

µ
log

 ∑
c∈l(E)

e−µc Pr
(
π ∈ Phst(c)

) . (76)

We have shown that one can compute these particular limit instances of the log-norm distance. The analysis and implemen-
tation of this algorithm is out of the scope of the current paper and, therefore, is left for future work.

7We add two absorbing nodes per edge to account for the directions of the edges, which could have different costs. Since in this
concrete case the graph is undirected, adding one absorbing node would have been enough.


