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Abstract

It has been intensively investigated that the lo-
cal shape, especially flatness, of the loss land-
scape near a minimum plays an important role
for generalization of deep models. We developed
a training algorithm called PoF: Post-Training
of Feature Extractor that updates the feature ex-
tractor part of an already-trained deep model to
search a flatter minimum. The characteristics are
two-fold: 1) Feature extractor is trained under
parameter perturbations in the higher-layer pa-
rameter space, based on observations that suggest
flattening higher-layer parameter space, and 2) the
perturbation range is determined in a data-driven
manner aiming to reduce a part of test loss caused
by the positive loss curvature. We provide a theo-
retical analysis that shows the proposed algorithm
implicitly reduces the target Hessian components
as well as the loss. Experimental results show that
PoF improved model performance against base-
line methods on both CIFAR-10 and CIFAR-100
datasets for only 10-epoch post-training, and on
SVHN dataset for 50-epoch post-training.

1. Introduction

It has been intensively discussed what conditions make deep
models generalized for given datasets and network archi-
tectures. Factors that affect learning dynamics, such as
optimizers (Chen et al., 2020a; Keskar & Socher, 2017;
Ashia C Wilson & Recht, 2017; Zhou et al., 2020), batch
sizes (Chaudhari et al., 2019; Keskar et al., 2017) and learn-
ing rate (Chaudhari & Soatto, 2018; Goyal et al., 2017)
etc., are known to affect generalization abilities. Related to
the learning dynamics, information theoretical aspects such
as loss landscapes near a local minimum brought insights
to the way a model acquire generalization ability. Studies
about the loss landscape (Hochreiter & Schmidhuber, 1997;
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Figure 1. Sketches of local structures around minima (top), and be-
haviors of training methods with toy data (bottom). (a) Curvature-
based loss increment AL tends to be small for a relatively flat
test-loss landscape. (b) AL tends to be large for a sharper case. (c)
Loss increments are evaluated for different layers of an MLP with
5 weight layers after a vanilla SGD and the proposed PoF. PoF suc-
cessfully reduces AL at the final layer. (d) Local loss landscapes
of the training set along the principal eigenvectors of the Hessian
matrices at the final layer. PoF expands the characteristic scale of
the flat region.

Keskar et al., 2017; Jiang* et al., 2020; Dziugaite & Roy,
2017; Jiang* et al., 2020) argue that a flatter local structure
around a minimum (Fig. 1 (a)) is preferred to a sharper one
(Fig. 1 (b)). This argument holds sufficiently if distance Aw
between the training and test minimizers are the same in the
flatter and sharper cases, as depicted in Fig. 1 (a) and (b).

Recent optimization methods that seek flatter minima have
been exhibiting to improve generalization of deep models
for various tasks (Foret et al., 2021; Kwon et al., 2021;
Wu et al., 2020; Zheng et al., 2021; Izmailov et al., 2018).
While performance gain is likely obtained by these methods,
practitioners need to examine such methods under different
hyperparameter settings or combinations to figure out the
best performing one for given dataset and network architec-
ture. Even if a best performing model is obtained after trials,
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no easy way is known to check if there is still a room to
improve the performance. Isn’t there any strategy to exam-
ine an already-trained model to see if further performance
improvement is possible, for instance, by actively seeking
an even wider basin?

A technical question to implement this strategy would be in
what subspace of the parameter space the flatness indicator
should be improved. Importance of flatness may vary for the
lower and higher layer parameters. In general, compared to
the distribution of the higher layer features, the distribution
of the lower layer features is not well separated; therefore,
it is likely that the shift of feature distributions between the
training and test sets is comparatively moderate in the lower
layers.

In Fig. 1 (c), we examined how much the test loss increases,
denote by AL, from its minimum value near the training-
set minimizer on an artificially generated toy dataset using
a 5-layer MLP. We extract the eigenvector corresponding
the maximum eigenvalue of the Hessian block that is the
second derivative of the loss function with respect to the
parameters at each layer. Then we measure AL along each
of the eigenvectors, plotted in Fig. 1 (c). Typically, but not
always, higher layers tend to indicate larger AL than lower
layers. This means that there likely exists a better solution
in the vicinity of the current solution along the direction that
has the largest curvature in the higher layer parameter space.
Enhancing flatness along such a direction would be more
efficient, rather than arbitrarily chosen directions.

Another technical question would be in what range the loss
landscape should become flat. Suppose that the training loss
landscape becomes fairly flat in a certain region around the
minimum. If the gap between the training and test loss mini-
mizers, denoted as Aw, is larger than the characteristic scale
of the flat region (see Fig. 1 (b)), expanding the flat region
would improve generalization performance. In contrast, if
such a gap is similar or less than the characteristic scale
of the flat region (see Fig. 1 (a)), further expansion of the
flat region would have little effect and simply reducing (the
zero-th derivative of) the loss would be a better approach.

In this paper, we propose a training method called PoF:
Post-Training of Feature Extractor that updates the feature
extractor part of an already-trained deep model to search a
flatter minimum for improving generalization. Our method
addresses the abovementioned technical issues. Let us ar-
bitrarily divide a deep model into two parts: the feature
extractor and the classifier. For a case of 2D convolutional
neural network, the former may include the local feature
processing layers and a layer that convert the local features
to the global features, such as the global average pooling
layer (Lin et al., 2014), and the latter includes all the sub-
sequent layer(s). We summarize our main contributions
below.

* The proposed training method, PoF, post-trains the
feature extractor part of a given deep model whose
parameters are already at a local minimum by some
method. PoF provides a practical means for searching a
better-performing model, given that the computational
time required by PoF is shorter than a typical end-to-
end training from random initialization.

* PoF is designed to flatten the local shape of a loss
function near a minimum in the classifier parameter
space by gradually changing feature-extractor param-
eters, based on an assumption that flattening the loss
landscape in the classifier parameter space enhances
robustness, similar to the concept of maximum-margin
classifiers.

* The characteristic range where PoF enhances flatness
is determined in a data-driven manner to balance the 0-
th and 2nd order derivative terms so that loss increment
caused by non-zero curvature is well reduced. No hand
tuning is required to set an upper-bound of the range.

2. Related Work

2.1. Flatness and Generalization

The relationship between the local loss landscape and the
generalization ability of a minimum has been discussed ex-
tensively in theoretical and empirical literature (Hochreiter
& Schmidhuber, 1997; Keskar et al., 2017; Dziugaite &
Roy, 2017; Jiang* et al., 2020; Dinh et al., 2017). The pre-
vious section described an intuitive picture explaining why
a flatter minimum likely generalizes. Another view is given
by the bits-back argument (Hinton & Camp, 1993; Honkela
& Valpola, 2004). It states models that are stable against
weight perturbations can be described with fewer bits. Ac-
cording to the minimum description length (MDL) (Ris-
sanen, 1978) or similar criteria, models that can be repre-
sented with a smaller number of bits are expected to have
better generalization abilities. Both the geometrical and
description-length points of views suggest flatter minima
are preferable for generalization.

With deep neural networks, there are a number of studies
that aim to measure the flatness of the loss landscape. For
example, Keskar et al. (2017) measured the flatness by the
worst loss around the minima. Li et al. (2018) visualizes loss
landscapes with findings that sharp minimizers tend to have
larger generalization error. Loss landscape visualization
was carried out with minimization trajectories (Goodfellow
et al., 2015) and with parameter interpolations (Im et al.,
2016).

Hessian matrices are sometimes utilized to quantify flatness
with eigenvalues (Sagun et al., 2016; Wu et al., 2017; Zhang
et al., 2018) and spectral norm (Yao et al., 2018). However,
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measuring the flatness is still an open problem in general
due to high dimensionality and architectural complexity of
deep networks.

2.2. Optimization Methods and Flatness

For a given network architecture, different optimization
methods tend to reach solutions that are different in terms of
flatness. Stochastic gradient descent (SGD) is known to be
biased towards flat minima (Jastrzebski et al., 2018; Maddox
et al., 2020). The stochastic noise in the parameter updates
leads to parameter convergence in distribution with similar
loss from a Langevin-dynamics based modeling (Chaudhari
& Soatto, 2018). Stochastic Weight Averaging (SWA) was
proposed to find a flatter point near a minimizer reached
by SGD, but SWA itself does not work like an optimizer
that can find a wider basin. Recently, optimization algo-
rithms that seek flatter minima have attracted attention. The
sharpness-aware minimization (SAM) (Foret et al., 2021)
based on the PAC-Bayes generalization bound (Langford &
Shawe-Taylor, 2003) has been shown to be effective for vari-
ous image classification tasks. There are some extensions of
SAM including adaptive optimization methods (Chen et al.,
2020b; Kwon et al., 2021). These sharpness-aware methods
apply parameter perturbations within some radius at each
iteration, aiming to make the perturbed region flat. PoF
also adopts a parameter perturbation, whose range is deter-
mined in data-driven manner to reduce a specially designed
effective loss as described in the next section.

Curvature estimation of a loss surface by approximated Hes-
sian matrices or Fisher information matrices (N. Le Roux &
Bengio, 2008; Aleksandar Botev & Barber, 2017; Grosse
& Martens, 2016; Martens & Grosse, 2015; Pauloski et al.,
2021) is related to the flatness-based optimization. A second-
order term appears in the formulation of SAM, but it is
simply dropped to reduce the computational cost from a
practical perspective. PoF is designed to implicitly reduce
some Hessian components without a need to directly com-
pute Hessian or Fisher information matrices.

2.3. Co-Adaptation Prevention between Layers

Some previous work discussed co-adaptation prevention
between layers, in particular, a feature extractor and a clas-
sifier. Prevention of co-adaptation among neurons likely
brings a positive effect on generalization (Hinton et al.,
2012). FOCA (Sato et al., 2019) avoids between-layer co-
adaptation by using many random weak classifiers during
optimization. Moayed and Mansoori (2020) proposed a
method to adaptively assign dropout rate according to the
co-adaption pressure. Wei et al. (2020) makes a series of
weak classifiers to decouple co-adaptation. Our work can
be viewed as a method to weaken co-adaptation between
the feature extractor and the classifier.

3. Post-Training of Feature Extractor

This section explains the proposed method PoF that post-
trains a feature extractor based on a specially-designed flat-
ness index. In the following, we consider a supervised set-
ting. Let (x, t) be a data sample consisting of a real-valued
input data = and the corresponding real/integer-valued tar-
get data ¢, respectively. The training dataset D contains np
such training samples. We denote a feature extractor as a
function of = by Fy () with the feature-extractor parame-
ter set ¢. Similarly, a classifier is denoted as a function of
feature by Cy(Fy(x)) with the parameter set . The loss
function of the training dataset is given by

Lo(0,0) = — 3 LCo(Fs@)t), ()

n
D (z,t)eD

where L(-) is a sample-wise loss function such as squared er-
ror or cross entropy. Similar to Lp (¢, ), we denote a mini-
batch loss by L;(¢, #), which is an averaged sample-wise
loss within a given mini-batch B of size ng. Let (¢o, o)
be a pair of parameter sets that are given by some training
method so that the training loss Lp (¢, 0) is regarded to be
locally minimized at (¢, 8) = (¢, 6p).

We assume that the loss function is locally convex around the
local minimum. In general, the number of training samples
is finite, so the minimizer of training loss, (¢, 6p), does not
exactly coincide with the closest minimizer of the test loss,
(Ptests Otest)- As illustrated in Fig. 1, how large the charac-
teristic scale of the flat region is compared to the parameter
distance between (g, 0p) and (Piest, Grest) is important for
generalization. Importance of flatness of a loss landscape
has been pointed out; however, extending a flat region much
beyond this parameter distance would be meaningless. In
this case, naively descending the loss may be more effective.
PoF is designed not just to make a loss landscape flat within
a predefined region, but to control the characteristic scale
of the flat region from the abovementioned perspective in a
data-dependent fashion.

In general, it is impossible to control the flatness or Hes-
sian components for a test set. In this work, we simply
assume that the shape / curvature of the test loss landscape
is interlocked with that of the training loss landscape, but
the positions of their minima can somewhat differ. Such
a condition was also implicitly assumed in (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017).

3.1. Algorithm

PoF is a perturbation-based method to seek a flatter min-
imum, i.e., loss gradients are computed with respect to
shifted parameters at each iteration. As illustrated in Fig. 1
(c), we assume that the deterioration in loss caused by the
positional discrepancy between the training and test mini-
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Algorithm 1 Post-training of Feature Extractor (PoF)

Input: feature-extractor parameters ¢o; classifier parameters 6o;
training data D; expansion factor y

Begin
= ¢o
fort =1:Tdo
Draw a mini-batch B from D.
Obtain £ by Eq. (2).
Draw another mini-batch B from D.
Obtain A¢ by Eq.(5) with ~.
$+ ¢+ Ag
end for
End

Output: feature-extractor parameters ¢* = ¢
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Figure 2. Mini-batch statistics. (a) The number of mini-batches is
counted up in the i-th box given by arg max,|v; 0Ls/90|o=0,|,
where v; represents the Hessian eigenvector of the i-th eigenvalue
(¢ = 1 being the largest). The mini-batch gradients most frequently
show highest correlations to the principal eigenvector. (b) Proba-
bility distributions of £ (see Eq. (2) for definition) are evaluated.
Positions of the mini-batch loss minima for the training set tend to
appear smaller than those for the test set. These experiments use a
machine-generated toy dataset with an MLP with 5 weight layers.

mizers is most severe in the classifier parameter space. PoF
aims to update the feature extractor so that the returned
features yield a flat loss landscape to an appropriate extent
in the classifier parameter space. Making the classifier pa-
rameters or the corresponding decision boundary “loose” is
analogous to the concept of the maximum margin method
(see Fig. 3).

PoF determines the direction of perturbation in a data-driven
manner. Perturbing in a spherically uniform way would be
very inefficient, because Hessian spectra are in most cases
dominated by a very small number of eigenstates compared
to the parameter dimension, and the rest of the Hessian
components are negligible. Thus, perturbing along the di-
rection of the eigenvector corresponding to the maximum
eigenvalue of the Hessian would be much more efficient.
However, it is practically infeasible to compute a Hessian
and its eigenvectors even at some interval of iterations due

to high computational cost. PoF avoids to directly compute
Hessians and adopts a much more computationally efficient
approach. Figure 2 (a) shows counts of randomly sampled
mini-batches whose gradients maximally correlate with -
th eigenvector of the Hessian. This toy experiment shows
that mini-batch gradients highly likely correlate the princi-
pal eigenvector. Though we are unsure to what extent this
tendency holds, we simply assume this tendency generally
holds. Based on the observation, we adopt an approach
where a perturbation is taken along a mini-batch gradient
direction in the classifier parameter space.

PoF determines the range of perturbation in a data-driven
manner as well. It adopts a linear search method along the
direction of (negative) mini-batch gradients evaluated at 6
to find the nearest minimum in the 1D subspace, i.e.,

& = arg min L (6,00 — €£5 ) @

€0

where EAIB is a special short-hand notation of

5 0Lg/08lg=g,

= —— "0 3
5= T10Ls/00]9—s, I ®)

Here, {j is the Euclidean distance to the minimum of the
mini-batch loss in the 1D subspace. The classifier with the
perturbed parameters 6y —& Lf% behaves as a somewhat weak
classifier for the entire training dataset when § ~ £5. The
idea here is to make this kind of a somewhat weak classifier
stronger for an arbitrary mini-batch B by optimizing the fea-
ture extractor. In this way, the perturbed region is expected
to become a flat basin. Next, we investigate an appropriate
perturbation range of £. Figure 2 (b) shows probability dis-
tributions of j for different mini-batches after an orthodox
SGD training using a toy dataset. It indicates that the peak
point of the test distribution is roughly twice as that of the
training distribution. Then, a naive strategy would be to en-
large the perturbation range by setting £ = &} with v ~ 2
to compensate the training-test distribution gap.

One could use an iterative gradient descent method instead
of linear search to find a nearest minimum of a mini-batch
loss. But, the computational cost would become much
higher in such a case. Given that the classifier parameters
o already reached a local minimum, it would be a decent
assumption that a mini-batch loss landscape is locally con-
vex. Computationally efficient linear search usually suffices
in practice.

Lp($,00 — vE5L))

“4)

for some m >> 1. An update of feature-extractor parameters,

¢* = arg min 1 Z

1) m
Be{B1,Bz2, ,Bm}
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Figure 3. Illustration of how loss landscape becomes flat (left) and
the allowed margin around the decision boundary changes (right)
by PoF. Left: The algorithm starts from the minimum (black dot)
to search for a minimum of a mini-batch loss in the classifier
parameter space (blue dot). The expansion factor - takes the point
to another point (blue circle). Feature-extractor parameter updates
with perturbed classifiers eventually yield a flatter loss landscape
(red curve). Right: Feature distributions change under feature-
extractor parameter updates with perturbed decision boundaries so
that more margin is allowed around 6y-classifier.

A¢, that approximately minimizes Eq. (4), is given by

Ly (¢, 00 — v§5Lp)
n 96 )
with arbitrarily chosen mini-batches B and B. Here, we
artificially set 8123 /0¢ =2 0 so that the update reduces
the empirical loss with respect to the perturbed classifier
0o — 75,*35}5. Modification of Eq. (5) by adding a momen-
tum term, efc., is possible. This update makes the perturbed
classifier stronger, contributing to make the local loss land-
scape flatter, as illustrated in Fig. 3. When v = 0, the
update rule is equivalent to SGD. As an extension of the
method, one could randomize -y in a predefined range such
as v € [0, 2], or employ some scheduling function to «y such
as linear growth from 0 to 2. A pseudocode of our algorithm
is provided in Algorithm 1. One trick that we employ here is
that a mini-batch is re-sampled right before computing the
feature-extractor update in Eq. (5). This avoids too much
over-fitting to a particular mini-batch at each iteration.

Ap = —

n>0 ®)

PoF updates only feature extractors, and the classifier pa-
rameters 6y are kept unchanged. From our experience, this
strategy works well on real datasets. But, it could be pos-
sible that the position of the minimum drifts from 6y dur-
ing PoF. To avoid this type of drifting, one may add an
SGD update step for the classifier parameters 6 after the
feature-extractor parameter update. From our experience,
this strategy does not affect the final performance much
on real datasets, so we did not apply this strategy for the

experiments reported in the experimental section (Sec. 4).

A similar concept to PoF was proposed by Sato et al., where
they proposed a supervised representation learning method,
FOCA, for optimizing a feature extractor with respect to
weak-classifier ensemble (Sato et al., 2019; 2021). To obtain
a weak classifier, FOCA applies gradient descent iterations
using a given mini-batch from random initialization, while
PoF effectively finds a nearest local minimum of the mini-
batch loss starting from the training-loss minimum. Not only
does PoF enable post-training, but PoF can effectively find
a flatter minimum, as is explained in the next subsection.

As for word choice, we adopt “post-training” rather than
“fine-tuning” throughout this paper. The latter word is com-
monly used in transfer learning settings, whereas PoF in-
tends to improve in-distribution performance.

3.2. Mathematical Analysis

Next, we present a mathematical analysis about the rela-
tionship of the proposed algorithm and the loss landscape.
Let us approximate the mini-batch loss landscape along a
direction of mini-batch loss gradients LA’B as

Lo(6,00 — L) ~ (6~ &)Ly Hilo, )L, (©)

where Hp (¢, 0p) is the second-order derivatives of the mini-
batch loss defined in the classifier parameter space,

0?Ls(0,0
(Ha(ort)y = L]

(N
Here, we model the landscape as a quadratic function of
& € R. As is obvious from Eq. (6), £ = £} minimizes
the mini-batch loss in the linear subspace whose basis is
given by ﬁ% It is also assumed that the minimum is zero,
which is not a bad approximation, given that 6, already
minimizes the entire training loss and the mini-batch loss
is further optimized by linear search. Next, we expand the
loss function of the entire training set D as

N 2 .7 N
Lp(9,00 — £Lp) = Lp(9,00) + 5 L5 Hp(¢,00) Ly,

®)
where Hp (¢, 0p) is the Hessian computed from the entire
training set in the classifier parameter space. Since the
training loss is assumed to be locally minimized at 6 = 6y,
there is no first-order term of £ in Eq. (8). Setting £ = v¢5,
Eq. (8) becomes

,)/2

5*2 AT .
SE-Ly Mo (9,00) L
©))
Let us call this approximated loss as the effective loss. The
algorithm effectively reduces these quantities for arbitrary

Lp(¢, 90*751*31%) ~ Lp(¢,00)+
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choices of B by searching appropriate feature-extractor pa-
rameters ¢, on which £p and Hp depend. The effective
loss consists of the zero-th and the second order derivatives
of the training loss. If £} goes small, the zero-th order term
becomes a dominant term; oppositely, if {z; goes large, the
second order term becomes a dominant term. The quantity

@EA’BTHDL% is a rough estimate of AL as depicted in
Fig. 1 for a subset of the test set. Reduction of this curvature-
based loss term would decrease the training-loss curvature
as well as the test-loss curvature, under the assumption that
two curvatures are interlocked. By combining Eq. (6) and
Eq. (8), Eq. (9) can be equivalently expressed as

~ T ~
LIB HD(¢a 90)‘6/3

~ T A N

Ly Hply
(10

The second order term has the batch-gradient projected Hes-
sian component with a coefficient given by batch statistics
Ls, EA’B, and Hp evaluated at (¢, 6p) besides the overall
scalar . In this way, the range of perturbation is determined
in a data-driven manner. As described earlier, - has an in-
tuitive geometrical meaning, such that v = 1 corresponds
to the minimum of the mini-batch loss and v = 2 corre-
sponds to the opposite side of the quadratic mini-batch loss
landscape.

Lp(6,00—E5LY) =~ Lp(6,00)+7> L

It is worth mentioning that the proposed method often gives
some order-of-magnitude large perturbations in the classifier
parameter space compared to a typical SGD step. Never-
theless, the algorithm is surprisingly stable. Suppose now
that v = 2. If the mini-batch loss is quadratic as in Eq. (6),
a parameter perturbation with v = 2 makes the mini-batch
loss invariant. It means this mini-batch experiences no harm
by this (possibly very large) perturbation. This prevents the
classifier from becoming too adversarial to the rest of the
samples.

In reality, some mini-batches show asymmetric loss land-
scapes, such that one side for £ € (0,¢%) is close to
quadratic but the other side is almost constant. This type of
loss landscapes can be detected in the linear search. When
such a landscape is found during the training, one may dis-
card the mini-batch and repeat the mini-batch sampling step
followed by the linear search algorithm.

4. Experiments

The aim of this section is to show quantitative results about
generalization performance gain, the change in target Hes-
sian components, training time, scale of perturbation ranges
by PoF, and further classifier post-training. We conducted
various image classification experiments on CIFAR-10,
CIFAR-100 (Krizhevskyf & Hinton, 2009), SVHN (Net-
zer et al., 2011), and Fashion-MNIST (Xiao et al., 2017).

WideResNet-28-10 (Zagoruyko & Komodakis, 2016) was
used as the classification network in all experiments.

4.1. Settings

Baseline methods. We compared the performance of PoF
to SGD and SAM as baselines. The network was trained for
250 epochs with batch size of 256. The learning rate was ini-
tialized to 0.1 (0.01 for SVHN) and was multiplied by a fac-
tor of 0.2 at 60-th, 120-th, 160-th, and 200-th epochs.' We
used the Nesterov Accelerated Gradient (Nesterov, 1998)
with momentum rate of 0.9 and weight decay rate of Se-4.
With SAM, p, the range of the perturbation, was set to 0.05
(0.01 for SVHN) as in the original paper.”> Weights in the
feature extractors use He-initialization, and those in classi-
fiers were initialized with a normal distribution A/(0, 0.12).

Training details of PoF. The network was trained with
SAM (p = 0.05) for the first 200 epochs. Then, the feature
extractor was post-trained with PoF for additional 50 epochs
with batch size of 256 and learning rate of 3e-5, with the Ne-
strov Accelerated Gradient having the same parameters with
those in SGD. The batch size for generating weak classifiers
was 32. From our experience, this batch size was sufficient
for PoF to work well. The expansion factor v in Eq. (5) was
randomly sampled at each iteration from a predefined range,
i.e., v € 0,2] in all experiments.

Additional details. All results used basic data augmenta-
tions (horizontal flip, padding by four pixels, and random
crop), and cutout with 16 x 16 pixels was additionally used
for the results of CIFAR-{10, 100}. We used standard train-
ing/validation/testing split for all datasets, but the 530K
extra images were used in addition to the standard train-
ing data of SVHN. The computing environment used in
all experiments is 4 compute nodes, each equipped with 4
NVIDIA A100 GPUsg, i.e., totally 16 GPUs were used in
parallel.

4.2. Results

Generalization. The test error rates with SGD, SAM, and
PoF with different training epochs are summarized in Ta-
ble 1. Two checkpoints were used for each method; namely,
SGD at 200/250 epochs, SAM at 200/250 epochs, PoF at
210 epochs (10-epoch post-trained), PoF at 250 epochs (50-
epoch post-trained). As the table shows, on CIFAR-{10,
100} and SVHN, PoF can improve the classification accu-
racy on average. In each case, the performance gain of
averaged accuracy from the second-to-the-best result clearly

'We also tried different learning rate, namely 3e-5, after 200-th
epoch as adopted for PoF. The resulting test error rates of SAM
are similar to the corresponding values in Table 1.

>For the record, we also tested SAM with two order-of-
magnitude larger value of p on CIFAR-10, and found that the
test accuracy is similar to that with the default p(= 0.05).
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Table 1. Test error rates (%) of classification on CIFAR-{10, 100},
SVHN, and Fashion-MNIST. Two check points are evaluated for
each method. For PoF, networks that are trained by SAM for the
first 200 epochs are post-trained for additional 10 epochs (totally
210 epochs as depicted) and for additional 40 epochs (totally 250
epochs as depicted). PoF outperforms three out of four datasets.

Dataset
Method CIFAR-10 | CIFAR-100 SVHN Fashion
SGD .
(200 epochs) 3.2240.14 | 18.234+0.35 | 1.67+0.03 | 4.60+0.11
SGD 3.14+0.13 | 18.40+0.35 | 1.674+0.03 | 4.63+0.14
(250 epochs) ' ’ : : ’ : ’ :
SAM 2.50+0.07 | 16.274+0.09 | 1.644+0.04 | 4.144+0.09
(200 epochs) ' ’ : : ’ : ’ :
SAM 2.534+0.08 | 16.32+0.20 | 1.63+0.03 | 4.124+0.05
(250 epochs) | ~ ' ’ ’ ' ’ : ’
SAM-PoF 2.41+0.02 | 16.07+0.15 | 1.60+0.04 | 4.254+0.05
(210 epochs)
SAM-PoF 2.41+0.06 | 16.60+0.05 | 1.554+0.02 | 4.354+0.07
(250 epochs)
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(a) Entire test error rate curves (b) Zoomed view

Figure 4. The test error rate curves of SAM and PoF. (a) shows
the behavior of overall training duration. (b) provides an enlarged
view between 180-250 epochs. PoF post-trains the network that is
trained by SAM for 200 epochs. For a comparison, we also shows
the plot of SAM that is continued after 200 epochs. PoF enjoys
further error rate drop right after it gets activated.

exceeds by one standard deviation. The timing of PoF’s
peak performance somewhat varies depending on datasets.
On CIFAR-{10, 100}, the peak performance comes rela-
tively early, say about 10-20 epochs after PoF activated, as is
shown in Fig. 4. On SVHN it comes relatively later, say by
40 epochs. But in either case, training epochs can be much
fewer, compared to training from random initialization.

The result shows that PoF does not improve generalization
for Fashion-MNIST. This indicates that flattening the loss
landscape in the classifier parameter space could not further
improve the performance, probably because lower layers
suffers severer loss deterioration AL. PoF clearly has a
limitation in such a case.

Hessian evaluation. We evaluated how particular Hessian

300 300
=3 SAM I SAM
[ PoF - =1 PoF
200 = 200 m
o "
e c
3 3
§ 8
100 N 100 H
0 0

R
0.00 0.02 0.04 0.06 0.08 0.10
Estimated Hessian component

(b) Test dataset

0.00 0.02 0.04 0.06 0.08 0.10
Estimated Hessian component

(a) Training dataset

Figure 5. Histograms of estimated Hessian components on (a) train-
ing dataset and (b) test dataset. Blue bars show results of SAM at
200 epochs and orange bars show results of PoF at 210 epochs (10-
epoch post-trained). PoF successfully reduces Hessian components
from SAM. See text for the way of estimation.

Table 2. Training time per epoch. WideResNet-28-10 was used
on the CIFAR-10 dataset. Data-parallelism is utilized with 16
NVIDIA A100 GPUs.

Method | Time per epoch
SGD 21.8s
SAM 329s
PoF 25.6's

components at the classifier parameter space change by PoF.
Since direct computations of Hessian matrices are compu-
tationally demanding, we adopt a computationally efficient
way of estimating the largest eigenvalue of the Hessian
block. As discussed in Sec. 1, a mini-batch gradient shows
high correlation to the principal eigenvector of Hessian ma-
trix. We gathered 400 such estimations with different mini-
batches on CIFAR-10, and made histograms as shown in
Fig. 5.2

As is evident from Fig. 5, PoF clearly reduces the Hessian
components. The peak values are roughly reduced by a
factor of two for both training and test sets. As SAM is a
strong baseline having a flatness-enhancing functionality,
it is surprising that there is still a room for the network
to improve flatness along certain directions as well as to
improve generalization just by additional 10 epoch post-
training.

Computational time. In Table 2, we show the comparison
of training time per epoch for SGD, SAM and PoF. SAM re-
quires 1.51 x more time than SGD, and PoF requires 1.17x
more time than SGD per epoch. SAM requires computation
of gradients multiple times to generate a parameter pertur-
bation. This additional process slows the training speed. In

3For the test distribution, mini-batch gradients are computed
using test samples.
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Figure 6. Histograms of scales of perturbation range. The x-axis
shows sizes of classifier-parameter perturbations denoted by ||56)||2
in a logarithmic scale. PoF exhibits a few order-of-magnitude
larger perturbations than SAM, while SAM does have large pertur-
bations compared to typical size of SGD updates.

contrast, PoF adopts a simple linear search algorithm; thus,
only a single gradient computation is required to generate
parameter perturbation.

Perturbation range. We compared the scale of the pa-
rameter perturbations in the classifier parameter space 6
to those of SGD and SAM. PoF setting: The perturbation

sizes are given by || — 75;35}34 |2 (see Eq. (4)) for different
mini-batches B, and we set v = 2.0. One of the CIFAR-10
models post-trained by PoF for 10 epochs (after pre-training
by SAM for 200 epochs) was used. SGD setting: As SGD is
not a perturbation-based method, we simply measured sizes
of regular updates for reference given as || — nVLg||2 for
different B. The learning rate 1 was set to 1.6e-4 to measure
typical update sizes. One of the CIFAR-10 models trained
by SGD for 200 epoch was used. SAM setting: Sizes of a
classifier-parameter perturbations, which are upper bounded
by the fixed radius p, were measured for different 3. One of
the CIFAR-10 models trained by SAM for 200 epoch was
used. Results: The histograms of those scalar values of each
method are shown in Fig. 6. The horizontal axis is shown in
the logarithmic scale. A typical perturbation range involved
in PoF is a few order-of-magnitude larger than that in SAM,
while SAM has much larger scale than SGD updates. PoF
can have a very large perturbation range, which effectively
works as expanding the flat region. In spite of such large
displacements, learning is quite stable thanks to the fact that
the perturbed classifier does work well on a certain training
mini-batch.

Further classifier fine-tuning. In all experiments shown
in Table 1, parameter set (¢*, 6y) were used for evaluation,
where ¢* is given by PoF and 6 is given by the pre-training
method, i.e., SAM. It means that PoF did not change the
classifier parameters 6 after all. As discussed in the pre-

vious section, it might be possible that the position of the
minimum drifts away from 6y during PoF. We examined
this possibility by fine-tuning only 6y with respect to fixed
feature extractor ¢* after PoF. We took a particular training
instance from CIFAR-10 experiments. Its test error rate
after PoF at 210 epochs (10-epoch post-trained) is marked
2.40%. Then, starting from this model, we fine-tuned the
classifier for additional 10 epochs. Final test error rate be-
came 2.39 + 0.03%. This experiment indicates that further
classifier fine-tuning does not improve performance.

5. Conclusion

This paper introduced PoF: Post-Training of Feature Extrac-
tor. PoF is an in-domain post-training method that updates
a feature-extractor part of a deep network that has already
optimized by some method. Motivated by a toy-data obser-
vation, we made an assumption that flattening loss landscape
in the higher layer parameter space likely improves general-
ization, analogous to classical maximum margin methods.
Aiming to reduce large eigenvalues of Hessian defined in the
higher-layer classifier parameter space, PoF applies parame-
ter perturbations to the classifier parameters in a particular
way that reduces a curvature-aware effective loss, and up-
dates the feature-extractor parameters. It is demonstrated
that PoF further improved test performance of networks that
are already trained by SAM on three out of four datasets. No-
tably, on certain datasets, performance improvements with
clear margins were obtained by only additional 10-epoch
post-training.
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