
Data-SUITE: Data-centric identification
of in-distribution incongruous examples

Nabeel Seedat 1 Jonathan Crabbé 1 Mihaela van der Schaar 1 2 3

Abstract
Systematic quantification of data quality is critical
for consistent model performance. Prior works
have focused on out-of-distribution data. Instead,
we tackle an understudied yet equally important
problem of characterizing incongruous regions of
in-distribution (ID) data, which may arise from
feature space heterogeneity. To this end, we pro-
pose a paradigm shift with Data-SUITE: a data-
centric AI framework to identify these regions, in-
dependent of a task-specific model. Data-SUITE
leverages copula modeling, representation learn-
ing, and conformal prediction to build feature-
wise confidence interval estimators based on a
set of training instances. These estimators can be
used to evaluate the congruence of test instances
with respect to the training set, to answer two prac-
tically useful questions: (1) which test instances
will be reliably predicted by a model trained with
the training instances? and (2) can we identify
incongruous regions of the feature space so that
data owners understand the data’s limitations or
guide future data collection? We empirically val-
idate Data-SUITE’s performance and coverage
guarantees and demonstrate on cross-site medical
data, biased data, and data with concept drift, that
Data-SUITE best identifies ID regions where a
downstream model may be reliable (independent
of said model). We also illustrate how these iden-
tified regions can provide insights into datasets
and highlight their limitations.

1. Introduction
Machine learning models have a well-known reliance on
training data quality (Park et al., 2021). Hence, when de-
ploying such models in the real world, the reliability of
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predictions depends on the data’s congruence with respect
to the training data. Significant literature has focused on
identifying data instances that lie out of the training data’s
distribution (OOD). This includes label shifts (Ren et al.,
2018; Hsu et al., 2020) or input feature shift, where these
instances fall out of the support of the training set’s distri-
bution (Zhang et al., 2021). However, a much less studied,
yet equally important problem is identifying heterogeneous
regions of in-distribution (ID) data.

Data in the wild can be ID yet have heterogeneous regions
in feature space. This manifests in varying levels of incon-
gruence, in cases of different sub-populations, data biases or
temporal changes (Leslie et al., 2021; Gianfrancesco et al.,
2018; Obermeyer et al., 2019). We illustrate each of these
types of incongruence with real world data (Table 2), in the
experiments from Secs. 4.3 and 4.5.

In this paper, we present a data-centric framework to char-
acterize such incongruous regions of ID data and define
two groups, namely (i) inconsistent and (ii) uncertain, with
respect to the training distribution. We contextualize the
difference based on confidence intervals (CI) (See Sec.3.3
for details). When feature values lie outside of a CI, we
term it inconsistent, alternatively we characterize the level
of feature uncertainty based on the CI’s width.

At this point, one might ask if the data is ID; why should we
worry? Not accounting for these incongruous ID regions of
the feature space can be problematic when deploying models
in high-stakes settings such as healthcare, where spurious
model predictions can be deadly (Saria & Subbaswamy,
2019; Varshney, 2020). That said, even in settings where
poor predictions are not risky, consistent exploratory data
analysis (EDA) and retroactive auditing of such data is time-
consuming for data scientists (Polyzotis et al., 2017; Kandel
et al., 2012). Hence, systematically identifying these incon-
gruous regions has immense practical value.

Consequently, we build a framework to empower data scien-
tists to address the previously mentioned challenges related
to insightful exploratory data analysis (EDA) and reliable
model deployment, anchored by the following desiderata:
(D1) Insightful Data Exploration: Alice has a new dataset
D and wants to explore and gain insights into it with respect
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Figure 1. Illustration highlighting two problems Data-SUITE addresses

to a training set, without necessarily training a model. It
would be useful if, independent of a predictive model, she
could both identify the incongruous regions of the feature
space (e.g., sub-population bias or under-representation), as
well as, obtain easily digestible prototype examples of each
region. This could guide where to collect more data and, if
this is not possible, to understand the data’s limitations.
(D2) Reliable Model Deployment: Bob has a trained
model f∗ and now deploys it to another site. For new data
Dtest, it would be useful if he could identify incongruous
regions, for which he should NOT trust f∗ to make predic-
tions.
(D3) Practitioner confidence: Both Alice and Bob want to
feel confident when using any tool. Guarantees of coverage
of predictive intervals (e.g. CIs) could assist in this regard.

These examples, shown in Fig. 1 highlight the need to un-
derstand incongruence in data. As we shall discuss in the
related work, there has been significant work on uncertainty
estimation, with a focus on the uncertainty of a model’s pre-
dictions (model-centric). Estimating predictive uncertainty
can address Bob’s use-case (D2), however since it requires a
predictive model it is not naturally suited to Alice’s insights
use-case (D1). Further, most predictive uncertainty methods
do not provide coverage guarantees (D3).

Therefore, in satisfying all the desiderata, we take a different
approach and advocate for a data-centric approach, where
we model the uncertainty in the data features 1. This is
different from model-centric predictive uncertainty, as we
construct CIs (at feature level), without reference to any
downstream model. A benefit of the flexibility is that we can
flag instances and draw insights that are not model-specific
(i.e. model independent).

To ensure clarity, we note that the term data-centric is used
in the context of data-centric AI, which we define as “tools
applied to the underlying data used to train and evaluate
models”. We note that both paradigms of ML (model and
data-centric) rely on models, differing based on how mod-

1Here, “feature” uncertainty refers to the degree of incongruity
with the training distribution, rather than the uncertainty of the
measured value (e.g. measurement noise)

els are used. In “model-centric ML”: models are used for
predictive tasks and in “data-centric ML”: models are used
to study/evaluate the data itself, which does not preclude
using algorithms to process the data. Our definition is con-
sistent with (Polyzotis et al., 2017) “data-centric AI as the
problem of (...) [A]nd quality monitoring processes for
datasets”. This paper fits this as a systematic tool for data
quality evaluation based on uncertainty.

In this work, we focus on tabular data, a common format in
medicine, finance, manufacturing etc, where data is based
on relational databases (Borisov et al., 2021; Yoon et al.,
2020). That said, compared to image data, tabular data has
an added challenge since specific features may be uncertain
while others are not; hence characterizing an instance as a
whole is non-trivial.

Contributions. We present Data Searching for Uncertain
and Inconsistent Test Examples (Data-SUITE), a data-
centric framework to identify incongruous regions of data
using CI’s and make the following contributions:
• Data-SUITE is a paradigm shift from model-centric un-
certainty and, to the best of our knowledge, the first to
characterize ID regions in a systematic data-centric, model-
independent manner. Not only is this more flexible, but also
enables us to gain insights which are not model-specific.
• Data-SUITE’s pipeline-based approach to construct
feature-wise CIs enables specific properties (Sec. 3.2) that
permit us to flag uncertain and inconsistent instances, mak-
ing it possible to identify incongruous data regions.
• Data-SUITE’s performance and properties, such as cover-
age guarantees, are validated to satisfy D3 (Sec. 4.1).
• Further motivating the paradigm shift, we empirically high-
light the performance benefit of a data-centric approach
compared to a model-centric approach (Sec. 4.2).
• As a portrayal of reliable model deployment (D2), we show
on real-world datasets with different types of incongruence,
that Data-SUITE best identifies incongruous data regions,
translating to the best performance improvement. (Sec. 4.3).
• Finally, we illustrate with multiple use-cases how Data-
SUITE can be used as a model-independent tool to facilitate
insightful data exploration, hence satisfying D1 (Sec. 4.5).



Data-SUITE: Data-centric identification of in-distribution incongruous examples

2. Related work
This paper primarily engages with the literature on uncer-
tainty quantification and contributes to the nascent area of
data-centric AI. We also highlight the key differences of our
work with the literature on noisy labels.

Uncertainty quantification. There are numerous Bayesian
and non-Bayesian methods for uncertainty quantification, in-
cluding Gaussian processes (Williams & Rasmussen, 2006),
Quantile Regression (Koenker & Hallock, 2001), Bayesian
Neural Networks (Ghosh et al., 2018; Graves, 2011), Deep
Ensembles (Lakshminarayanan et al., 2017), Dropout (Gal
& Ghahramani, 2016; Chan et al., 2020) and Conformal Pre-
diction (Vovk et al., 2005). These methods typically assess
predictive uncertainty, i.e., measuring the certainty in the
model’s prediction (Seedat & Kanan, 2019). The predom-
inant focus on predictive uncertainty is different from the
notion of uncertainty in our setting, which is feature (i.e.
data) uncertainty. We specifically highlight that we quantify
data uncertainty, independent of a task-specific model. Ad-
ditionally, the aforementioned methods often do not assess
the coverage or provide guarantees of the uncertainty inter-
val (Wasserman, 2004; Alaa & Van Der Schaar, 2020) (i.e.,
how often the interval contains the true value). The concept
of coverage will be outlined further in Secs. 3 and 4.

Data-Centric AI. Ensuring high data quality is a critical
but often overlooked problem in ML, where the focus is
optimizing models (Sambasivan et al., 2021; Jain et al.,
2020). Even when it is considered, the process of assessing
datasets is adhoc or artisanal (Sambasivan et al., 2021; Ng
et al., 2021). However, there has been recent discussion
around data-centric AI (DCAI), which we define as tools
applied to the underlying data used to train and evaluate
models, independent of the task-specific, predictive models.
Our work contributes to this nascent body of work – present-
ing Data-SUITE, which, to the best of our knowledge, is the
first systematic data-centric framework to model uncertainty
in datasets. Specifically, we model the uncertainty in the fea-
ture (data) values themselves (data-centric), which contrasts
to modeling the uncertainty in predictions (model-centric).
We also highlight a tangential of classical data management
(Kumar et al., 2017), which does not consider uncertainty
and randomness in the data for subsequent analysis. An
exception is probabilistic databases (Suciu et al., 2011).

Noisy labels. Learning with noisy data is a widely studied
problem, we refer the reader to (Algan & Ulusoy, 2021;
Song et al., 2020) for an in depth review. In machine learn-
ing, the focus is label noise. We argue that work on noisy
labels is not directly related, as the goal is to learn a model
robust to the label noise, which is different from our goal of
modeling the uncertainty in the features. Additionally, meth-
ods are often coupled to the task-specific predictive model,
which is different from our model-independent setting.

3. Data-SUITE
In this section, we give a detailed formulation of Data-
SUITE 2,3. We start with a problem formulation and outline
the motivation for working with feature confidence inter-
vals (CIs). Then, we describe how these CIs are built by
leveraging copula modelling, representation learning and
conformal prediction. Finally, we demonstrate how these
CIs permit to flag uncertain and inconsistent instances.

3.1. Preliminaries
We consider a feature space X =

∏dX
i=1[ai, bi] ⊆ RdX ,

where [ai, bi] is the range for feature i. Note that we make
the range of each feature explicit, this will be necessary in
the definition of our formalism. We assume that we have a
set ofM ∈ N∗ training instancesDtrain = {xm | m ∈ [M ]}
sampled from an unknown distribution P, where [M ] de-
notes the positive integers between 1 and M . These in-
stances typically correspond to training data for a model on
a downstream task, such as classification.

We assume that we are given new test instances Dtest. Our
purpose is to flag the subset of instances from Dtest that
are quantitatively different from instances of Dtrain without
necessarily being OOD. To that aim, we use Dtrain to build
CIs [li(x), ri(x)] ⊆ [ai, bi] for each feature i ∈ [dX ] of
each test instance x ∈ Dtest. As we will show in Sec. 3.3,
these CIs permit to systematically flag test instances whose
features are uncertain or inconsistent with respect to Dtrain.
For now, let us motivate the usage of feature CIs: (1) With a
model of uncertainty and inconsistency at the feature level,
it is possible to identify regions of the feature spaceX where
bias and/or low coverage occurs with the training data Dtrain.
(2) Since CIs are built with Dtrain and without reference
to any predictive downstream model, the flagged instances
in Dtest are likely to be problematic for any downstream
model trained on top of Dtrain. Hence, we are able to draw
conclusions that are not model-specific. These two points
are illustrated in our experiments from Sec. 4. Let us now
detail how the CIs are built.

3.2. Feature CIs
We now build CIs [li(x), ri(x)] ⊆ [ai, bi] for each feature
i ∈ [dX ] of each test instance x ∈ Dtest. It goes without
saying that the CIs should satisfy some properties, i.e.
(P1) Coverage: We would like to guarantee that the feature
xi of an instance x ∼ P lies within the interval such
that E

[
1xi∈[li(x),ri(x)]

]
≥ 1 − α where the significance

level α ∈ (0, 1) can be chosen. In this way, a feature out
of the CI hints that x is unlikely to be sampled from P
at the given significance level. This is then considered
across all features to characterize the instance (see Sec. 3.3).

2https://github.com/seedatnabeel/Data-SUITE
3https://github.com/vanderschaarlab/mlforhealthlabpub/

tree/main/alg/Data-SUITE
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Figure 2. Outline of our framework Data-SUITE.

(P2) Instance-wise: The CI should be adaptive at an
instance level. i.e, we do not wish ri(x) − li(x) to be
constant w.r.t x ∈ X . In this way, the CIs permit to
order various test instances x ∈ Dtest according to their
uncertainty. This property is particularly desirable in
healthcare settings where we wish to quantify variable
uncertainty for individual patients, rather than for the
population as whole.

(P3) Feature-wise: We build CIs [li(x), ri(x)] for each
feature i ∈ [dX ] as opposed to an overall confidence region
R(x) ⊂ X . While less general than the latter approach,
feature-wise CIs are more interpretable, allowing attribution
of inconsistencies and uncertainty to individual features.

(P4) Downstream coupling: Instances with smaller CIs are
more reliably predicted by a downstream model trained
on Dtrain. More precisely, our CIs should have a negative
correlation between CI width and downstream model per-
formance. In this way, CIs allow to draw conclusions about
the incongruence of test instances x ∈ Dtest.

To construct feature CIs that satisfy these properties, we in-
troduce a new framework leveraging copula modeling, repre-
sentation learning and conformal prediction. The blueprint
of our method is presented in Fig. 2. Concretely, our method
relies on 3 building blocks: a generator that augments the
initial training set Dtrain; a representer that leverages the
augmented training set D+

train to learn a low-dimensional
representation f : X → H of the data and a conformal pre-
dictor that predicts instance-wise feature CIs [li(x), ri(x)]
on the basis of each instance’s representation f(x) ∈ H. By
construction of the CIs, this method fulfills properties (P2)
and (P3). As we will see in the following, the conformal
predictor’s theoretical properties guarantees (P1). However,
we also empirically validate (P1), see Sec 4.1. We then also
demonstrate (P4) empirically in Sec. 4. Appendix C.1 quan-
tifies the significance of each block via an ablation study.
Let us now detail each block.

Generator. The purpose of the generator is to augment
the initial training set Dtrain with instances that are consis-
tent with the initial distribution P. Many data augmentation
techniques can be used for this block. Since our focus is on
tabular data, we found copula modeling to be particularly
useful. Copulas leverage Sklar’s theorem (Sklar, 1959) to
estimate multivariate distributions with univariate marginal

distributions. In our case, we use vine copulas (Bedford &
Cooke, 2001) to build an estimate P̂ for the distribution P
on the basis of Dtrain. We then build an augmented training
set D+

train by sampling from the copula density P̂. Interest-
ingly, our method does not need to access Dtrain once the
copula density P̂ is available. It is perfectly possible to use
only instances from P̂ to build the augmented dataset D+

train.
This could be useful for data sharing, if the access to the
training setDtrain is restricted to the user. Further details and
motivations on copulas is found in Appendix A.2.1. Note
that a copula might not be ideal for very high-dimensional
(large dX ) data in domains such as computer vision or ge-
nomics. In those cases, copula modeling can be replaced by
domain-specific augmentation techniques.

Representer. A trivial way to verify the coverage guaran-
tee (P1) would be to use the true values of the features to
build the CIs: [li(x), ri(x)] = [xi − δ, xi + δ] for some
δ ∈ R+. The problem with this approach is two-fold:
(1) it does not leverage the distribution P underlying the
training set Dtrain and (2) it results in an uninformative re-
construction with CIs that does not capture the specificity
of each instance, hence contradicting (P2). To provide a
more satisfactory solution, we propose to represent the aug-
mented training data D+

train with a representation function
f : X → H that maps the data into a lower-dimensional
latent representation space H ⊆ RdH , dH < dX . The pur-
pose of this representer is to capture the structure of the
low-dimensional manifold underlying D+

train. At test time,
the conformal predictor (detailed next), uses the lower rep-
resentations f(x) ∈ H to estimate a reconstruction interval
for each feature xi. This permits to bring a satisfactory
solution to the two aforementioned problems: (1) the CIs
are reconstructed in terms of latent factors that are useful
to describe the training set Dtrain and (2) the predicted CIs
vary according to the representation f(x) ∈ H of each test
instance x ∈ Dtest. In essence, our approach is analogous to
autoencoders. As we will explain soon, the crucial differ-
ence is the decoding step: our method outputs CIs for the
reconstructed input. In this work, we use Principal Com-
ponent Analysis (PCA), the workhorse for tabular data, to
learn the representer f . Note that more general encoder ar-
chitectures can be used in settings such as computer vision.

Conformal Predictor. We now turn to the core of the
problem: estimating feature-wise CIs. As previously men-
tioned, the CIs [li(x), ri(x)], i ∈ [dX ] will be computed on
the basis of the latent representation f(x) for each x ∈ Dtest.
The idea is simple: for each feature i ∈ [dX ], we train a
regressor gi : H → [ai, bi] to reconstruct an estimate of the
initial features xi from the latent representation f(x) of the
associated training instance: (gi ◦ f)(x) ≈ xi. We stress
that the regressor gi has no knowledge of the true observed
xi but only of the latent representation f(x), as illustrated
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Figure 3. Conformal Predictor in Data-SUITE.

in Fig. 3. Of course, the feature regressor by themselves pro-
vides point-wise estimates for the features. In order to turn
these into CIs, we use conformal prediction as a wrapper
around the feature regressor (Vovk et al., 2005).

We formalize our problem in the framework of Inductive
Conformal Prediction (for motivations, see Appendix A.2.2).
Hence, under the formulation, we start by splitting the aug-
mented training set into a proper training set and a calibra-
tion set: D+

train = D+
train2tD

+
cal. We use the latent representa-

tion of the proper training set, to train the feature regressor
gi, i ∈ [dX ] for the reconstruction task. Then, the latent
representation of the calibration set is used to compute the
non-conformity score (µ), which estimates how different a
new instance looks from other instances.

In practice, we use the absolute error non-conformity score
µi(x) = |xi − (gi ◦ f)(x)|. We obtain an empirical dis-
tribution of non-conformity scores {µi(x) | x ∈ D+

cal}
over the calibration instances for each feature i ∈ [dX ].
This is used to obtain the critical non-conformity score ε,
which corresponds to the d(|D+

cal| + 1)(1 − α)e-th small-
est residual from the set {µi(x) | x ∈ D+

cal} (Vovk,
2013). We then apply the method to any unseen incom-
ing data to obtain predictive CIs for the data point, i.e.
[li(x), ri(x)] = [(gi ◦ f)(x)− ε, (gi ◦ f)(x) + ε]. However,
in this form the CIs are constant for all instances, where the
width of the interval is determined by the residuals of the
most difficult instances (largest residuals).

We adapt our conformal prediction framework to obtain
the desired adaptive intervals (P2) using a normalized non-
conformity function (γ), see Eq. 1 (Boström et al., 2016;
Johansson et al., 2015). The numerator is computed as
before based on µ, however, the denominator normalizes
per instance. We learn the normalizer per feature i ∈ [dX ].

To do so, we compute the log residuals per feature, for all
instances in the respective proper training set Dtrain2. We
produce tuples per feature: {(f(x), ln|x − (gi ◦ f)(x)|) |
x ∈ Dtrain2}. These are used to train a different model,
σi : X → R+ (e.g., MLP), to predict the log residuals. We
can then apply σi to test instances to capture the difficulty
in predicting said instance. Note, we apply an exponential
to the predicted log residual for the test instance converting

to the true scale and ensuring positive estimates.

γi(x) ≡ |xi − (gi ◦ f)(x)|
σi(x)

, (1)

We can then obtain the critical non-conformity score ε
applied to the empirical distribution of normalized non-
conformity scores {γi(x) | x ∈ D+

cal}, in the same way as
before, based on residuals.

The instance-specific adaptive intervals are then obtained as
per Eq. 2, where g is the underlying feature regressor and
σi is the instance-wise normalizing function.

[li(x), ri(x)] = [(gi ◦ f)(x)− εσi(x), (gi ◦ f)(x) + εσi(x)]
(2)

Remarks on theoretical guarantees. Under the ex-
changeability assumption detailed in the Appendix A.2.2,
the validity of coverage guarantees (P2) is fulfilled with our
definition. In our implementation, we use α = .05.

3.3. Identifying Inconsistent and Uncertain Instances
Now that we have CIs [li(x), ri(x)] ⊂ [ai, bi] for each fea-
ture xi, i ∈ [dX ] of the instance x, we can evaluate if in-
stances from a dataset falls within the predicted range. If it
falls outside the predicted range, we characterize the incon-
sistency (see Definition 3.1)

Definition 3.1 (Inconsistency). Let x ∈ Dtest be a test in-
stance for which we construct a (1−α)-CI, [li(x), ri(x)], for
each feature xi, i ∈ [dX ] for some predetermined α ∈ (0, 1).
For each xi, i ∈ [dX ], the feature inconsistency is a binary
variable indicating if xi falls out of the CI.

νi(x) ≡ 1(xi /∈ [li(x), ri(x)]) (3)

The instance inconsistency ν(x) is obtained by averaging
over the feature inconsistencies νi(x).

ν(x) ≡ 1

dX

dX∑
i=1

νi(x)

The instance x is inconsistent if the fraction of inconsistent
features is above a predetermined threshold4 λ ∈ [0, 1]:
ν(x) > λ.

There can also be degrees of uncertainty in the feature value
for features that fall within the CI, which can reflect the
instance as a whole. Indeed, if the CI [li(x), ri(x)] is large,
the feature xi is likely to fall within its range. Nonetheless,
we should keep in mind that large CIs correspond to a large
uncertainty for the related feature. This will also typically

4In our implementation, we use λ = 0.5.
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happen when the instance x ∈ Dtest differs from the training
set Dtrain used to build the CI. We now introduce a quantita-
tive measure that expresses the degree of uncertainty of the
instance with respect to Dtrain (see Definition 3.2).

Definition 3.2 (Uncertainty). Let x ∈ Dtest be a test in-
stance for which we construct a (1 − α) CI [li(x), ri(x)]
for each feature xi, i ∈ [dX ] for a predetermined α ∈ (0, 1).
For each xi, i ∈ [dX ], we define feature uncertainty ∆i(x)
as the feature CI width normalized by the feature range:

∆i(x) ≡ ri(x)− li(x)

bi − ai
(4)

The instance uncertainty ∆(x) is obtained by averaging
over all feature uncertainties:

∆(x) ≡ 1

dX

dX∑
i=1

∆i(x) ∈ (0, 1].

Remark. Instance uncertainties are strictly larger than zero,
as feature uncertainties are computed over all features.
Hence, this characterization offers a natural split between
certain and uncertain instances if we sort the instances
based on uncertainty.

4. Experiments
This section presents a detailed empirical evaluation demon-
strating that Data-SUITE satisfies (D1) Insightful Data Ex-
ploration,(D2) Reliable Model Deployment and (D3) Prac-
titioner confidence, introduced in Sec. 1. We tackle these
in reverse order, as practitioner confidence is a prerequisite
for the adoption of D1 and D2. Recall that the notion of un-
certainty in Data-SUITE is different from predictive uncer-
tainty (model-centric). We empirically compare these two
paradigms using methods for predictive uncertainty. That
said, a natural additional question is whether model-centric
uncertainty estimation methods can simply be applied in
this setting and provide uncertainty estimates for feature
values. We benchmark the following widely used Bayesian
and non-Bayesian methods (under BOTH model-centric &
data-centric paradigms): Bayesian Neural Networks (BNN)
(Ghosh et al., 2018), Deep Ensembles (ENS) (Lakshmi-
narayanan et al., 2017), Gaussian Processes (GP) (Williams
& Rasmussen, 2006), Monte-Carlo Dropout (MCD) (Gal &
Ghahramani, 2016) and Quantile Regression (QR) (Koenker
& Hallock, 2001). We also ablate and test Data-SUITE’s
constituent components independently: conditional sam-
pling from copula (COP), Conformal Prediction on raw data
(CONF) (Vovk et al., 2005; Balasubramanian et al., 2014).
For implementation details, see Appendix B.1.

4.1. Validating coverage & comparing properties
We firstly wish to validate the CIs to ensure that the coverage
guarantees are satisfied such that users can have confidence

i. Coverage & 95% guarantee (1-α)

ii.Deficit

iii. Excess

Figure 4. Comparison of methods based on coverage, deficit and
excess under various configurations (Da, Db, Dc)

that the true value lies within the predicted CIs (D3). We
assess the CIs based on the following metrics defined in
(Navratil et al., 2020) - (1) Coverage: how often the CI
contains the true value, (2) Deficit: extent of CI shortfall
(i.e., the severity of the errors) and (3) Excess: extent of CI
excess width to capture the true value.

Coverage = E
[
1xi∈[li,ri]

]
(5)

Deficit = E
[
1xi /∈[li,ri] ·min {|xi − li| , |xi − ri|}

]
(6)

Excess = E
[
1xi∈[li,ri] ·min {xi − li, ri − xi}

]
(7)

Synthetic data. We assess the properties of different meth-
ods using synthetic data as the ground truth values are avail-
able, even when encoding incongruence. The synthetic data
with features, X = [X1, X2, X3], is drawn IID from a multi-
variate Gaussian distribution, parameterized by mean vector
µ and a positive definite covariance matrix

∑
(details in Ap-

pendix B.2). We sample n = 1000 points for both Dsynthtrain

and Dsynthtest and encode incongruence into Dsynthtest using a
multivariate additive model X̂ = X+Z, where Z ∈ Rn×m,
is the perturbation matrix. We conduct experiments with
different configurations: (1)Da: Multivariate Gaussian with
variance 2 and varying proportion of perturbed instances. (2)
Db: Multivariate Gaussian with varying variance and fixed
proportion of perturbed instances (50%) and (3) Dc: Vary-
ing distribution ∈ {Beta,Gamma,Normal,Weibull}.

Fig. 4 outlines mean coverage, deficit and excess averaged
over five runs for Dsynthtest under the different configurations
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(Da, Db, Dc). There is a clear variability amongst the dif-
ferent methods, suggesting specific methods are more suit-
able. Data-SUITE outperforms the other methods based
on coverage and deficit across all configurations. We note
the methods with poor coverage are typically “incorrectly”
confident, i.e. small intervals with low coverage and high
deficit. Fig. 4 also demonstrates a meaningful relationship
that coverage and deficit are inversely related (high coverage
is associated with the low deficit), as with deficit and excess.
Although high coverage and low deficit ideally occur with
low excess, we observe that high levels of coverage occur in
conjunction with high levels of excess. Critically, however,
in satisfying D3, Data-SUITE maintains the 95% coverage
guarantees across all configurations, unlike other methods.

4.2. Synthetic data stratification w/ downstream task
While it is essential to validate a method’s properties, the
most useful goal is whether the intervals can be used to iden-
tify instances that will be reliably predicted by a downstream
predictive model. With Data-SUITE, we stress that this is
done in a model-independent manner (i.e. no knowledge
of the downstream model). We train a downstream regres-
sion model using Dsynthtrain , where features X1, X2 are used
to predict X3. We first compute a baseline mean squared
error (MSE) on a held-out validation set of Dsynthtrain and the
complete test set Dsynthtest (X̂ = X+Z). Thereafter, we con-
struct predictive intervals for Dsynthtest using all benchmark
methods (either uncertainty intervals or CIs). The intervals
are then used to sort instances based on width.

In addition, we answer the question of whether a data-
centric or model-centric approach yields the best perfor-
mance. For data-centric paradigm, we construct intervals
for the features X1, X2, hence instances are categorized in a
model-independent manner based on data-level CIs. In con-
trast, the model-centric paradigm is tightly coupled with a
task-specific model, categorizing instances using predictive
uncertainty based on prediction X3.

We then compute MSE for the 100 most certain instances as
ranked by each method (smallest widths). For Data-SUITE,
we also compute the MSE for those instances identified as
inconsistent (outside CIs). The best method is one in which
the certain sorted instances produce MSE values closest to
the clean train MSE (baseline) i.e. has the lowest MSE.

Table 1 shows the MSE for configurations Da and Db. As
one example of satisfying D2, Data-SUITE has the best
performance and identifies the top 100 certain instances
that yields the best downstream model performance, with
the lowest MSE across all configurations. In addition, as
expected the inconsistent instances are unreliably predicted.
The poor performance for ablations of Data-SUITE compo-
nents, suggests the necessity of the inter-connected frame-
work (more in Appendix C.1)

Table 1. MSE based on instance stratification for different meth-
ods. Data-SUITE outperforms other methods, whilst data-centric
methods in general outperform model-centric methods

Proportion (Da) Variance (Db)
PERTURBATION .1 .25 .5 1 2
Train Data (BASELINE) .067 .059 .068 .065 .068
Test Data .222 .513 .889 .275 .889

D
at

a-
ce

nt
ri

c

Data-SUITE (All, Uncertainty) .069 .122 .197 .104 .197
Data-SUITE (All, Inconsistent) .595 1.608 2.322 .791 2.322
Data-SUITE (CONF) .125 .396 .846 .293 .846
Data-SUITE (COP) .220 .277 .451 .236 .451
BNN .192 .216 .704 .173 .704
ENS .125 .311 .565 .204 .565
GP .112 .153 .296 .158 .296
MCD .173 .391 .692 .201 .692
QR .116 .228 .635 .193 .635

M
od

el
-c

en
tr

ic BNN (Predictive) .208 .220 .692 .195 .692
ENS (Predictive) .143 .226 .625 .257 .625
GP (Predictive) .147 .472 .584 .237 .584
MCD (Predictive) .206 .255 .684 .213 .684
QR (Predictive) .187 .477 .671 .223 .671

Additionally, we see for the same base methods (e.g. BNN,
MCD etc), that the data-centric paradigm outperforms the
model-centric paradigm in identifying the “best” instances
to give the lowest MSE. This result highlights the perfor-
mance advantage of a flexible, model-independent data-
centric paradigm compared to the model-centric paradigm.

4.3. Real dataset stratification w/ downstream task
We now demonstrate how Data-SUITE can be practically
used on real data to stratify instances for improved down-
stream performance (satisfying D2). Specifically, to assist
with more reliable and performant model deployment across
a variety of scenarios. To this end, we select three real-world
datasets with different types of incongruence as presented
in Table 2. For details see Appendix B.3.

Evaluation. We stratify Dtest into certain and uncertain
instances based on the interval width predicted by each
method. e.g. the most uncertain has the largest width.

Are the identified instances OOD? At this point, one might
be tempted to assume that the identified instances are simply
OOD. i.e. samples that fall out of the support of the training
set’s distribution. We show in reality that this is unlikely
the case. We apply existing algorithms to detect OOD and
outliers (for others see (Yang et al., 2021)): Mahalanobis
distance (Lee et al., 2018), SUOD (Zhao et al., 2021), CO-
POD (Li et al., 2020) and Isolation Forest (Liu et al., 2012).
For each of the detection methods, we compute the over-
lap between the predicted OOD/Outlier instances and the
uncertain and inconsistent instances as identified by Data-
SUITE. We found minimal overlap across methods, ranging
between 1-18%. Additionally, the OOD detection methods
were often unconfident in their predictions, with average
confidence scores ranging between 5-50%. Both results
suggest the identified uncertain and inconsistent instances
are unlikely OOD. For more see Appendix C.2.

Each stratification method will identify different instances
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Table 2. Comparison of real-world datasets
Dataset Incongruence Type Downstream Task Stratification

Seer (US) &
Cutract (UK)

Geographic UK-US
(Cross-site medical)

Predict mortality
from prostate cancer

DSeertrain : Seer (US),
DCuttest : Cutract (UK)

Adult Demographic Bias
(Gender & Income)

Predict income
over $50K

DAdulttrain , DAdulttest
balanced split

Electricity Temporal
(Consumption patterns)

Predict electricity
price rise/fall

DElectrain :1996 ,
DElectest : 1997-1998

for each group, hence we aim to quantify which method
identifies instances that provide the most improvement to
downstream performance. We do this by computing the
accuracy of the certain and uncertain stratification’s, on a
downstream random forest trained on Dtrain. Ideally, correct
instance stratification results in greater accuracy for certain
compared to uncertain instances. As an overall comparative
metric, we compute the Mean Performance Improvement
- MPI (Eq. 8). MPI is the difference in accuracy (Acc)
between certain and uncertain instances, as identified by a
specific method, averaged over different threshold propor-
tions P . The best performing method would clearly identify
the most appropriate certain and uncertain instances, which
would translate to the largest MPI.

MPI =
1

|P |
∑
p∈P

Acc(Certp)−Acc(Uncertp) (8)

where P = {0.05k | k ∈ [20] },Certp = Set of pmost certain
instances, Uncertp = Set of p most uncertain instances.

Fig. 5 illustrates an example of Data-SUITE, applied to the
CUTRACT dataset. The metric MPI (Eq. 8) is the mean dif-
ference between certain (green) and uncertain (red) curves.
The results demonstrate the performance improvement when
evaluating with the stratified certain and uncertain instances
(compared to performance evaluated on the baseline Dtest or
random sampling of instances). The result further demon-
strates that the identified inconsistent instances have worse
performance when compared to uncertain instances.

Figure 5. Example on CUTRACT of how Data-SUITE instance
stratification can be used to improve downstream performance,
contrasted with baseline Dtest (blue) or random selection (black).

Table 3 shows the MPI scores across methods. In satisfy-
ing D2, of improving deployed model performance, Data-

Table 3. MPI metric across datasets for different methods
SEER-CUTRACT Adult Electricity

Data-SUITE 0.11 ± 0.015 0.64 ± 0.03 0.26 ± 0.03
BNN 0.08 ± 0.02 -0.15 ± 0.02 -0.005 ± 0.01
CONFORMAL 0.05 ± 0.01 -0.07 ± 0.07 0.12 ± 0.03
ENSEMBLE 0.01 ± 0.02 -0.03 ± 0.02 -0.02 ± 0.02
GP 0.05 ± 0.04 0.56 ± 0.02 0.04 ± 0.04
MCD 0.01 ± 0.01 -0.16 ± 0.01 0.15 ± 0.03
QR -0.10 ± 0.03 0.12 ± 0.06 0.15 ± 0.06

SUITE consistently outperforms other methods, providing
the greatest performance improvement, with the lowest vari-
ability across datasets. The result suggests that Data-SUITE
identifies the most appropriate certain and uncertain in-
stances, accounting for the performance improvement. Over-
all, the quality of stratification by Data-SUITE has not been
matched by any benchmark uncertainty estimation method.

4.4. Data-SUITE usage with diverse downstream
models

Data-SUITE operates to identify instances , independent
of the downstream task predictive model. Previous ex-
periments use a fixed downstream model (e.g. RF). We
now evaluate a more diverse set downstream models, i.e.
RF, MLP, GBT and include a ROBUST model- Median-of-
Means (MOM) estimators (Lecué et al., 2020)). For each
downstream model, we compare the performance on in-
stances identified by Data-SUITE and baselines. We rank
them based on MPI (see Eq.8). i.e larger MPI=higher rank.
Ideally, the rank should be invariant across models, showing
the instances identified by Data-SUITE are impactful, no
matter the downstream model.

Figure 6. Rank assessment for a diverse set of downstream mod-
els, showing Data-SUITE has the most consistent ordering across
different models

We show results for the Adult dataset in Fig. 6, with the
other datasets included in Appendix C.5. Overall, the results
are similar, whereby Data-SUITE’s identification remains
the most appropriate, with consistent highest MPI rank, no
matter the model. In contrast, baseline methods rank differ-
ently depending on the model. This shows that Data-SUITE
identifies impactful instances no matter the downstream
task-specific model.
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4.5. Use-Case: Data-SUITE in the hands of users
We now demonstrate how users can practically leverage
Data-SUITE to better understand their data. We do so by
profiling the incongruous regions identified by Data-SUITE
and highlight the insights which can be garnered indepen-
dent of a model. This satisfies D1, where the quantitative
profiling provides valuable insights that could assist data
owners to characterize where to collect more data and if this
is not possible, to understand the data’s limitations.

For visual purposes, we embed the identified certain and un-
certain instances into 2-D low-dimensional space as shown
in Fig. 7. We clearly see that the certain and uncertain in-
stances are distinct regions and that they lie in-distribution as
evidenced by the embedding projection. This reinforces the
quantitative findings of the previous experiment (i.e., that
the identified instances are not OOD). We further highlight
centroid, “average prototypes” of the certain and uncer-
tain regions as a digestible example of the region, which
can easily be understood by stakeholders. For the SEER-
CUTRACT analysis, in addition to prototypes for DCuttest
regions, we can also find the nearest neighbor SEER (USA)
prototypes for each instance. Comparing the average and
nearest neighbor prototypes assists us to tease out the incon-
gruence between the two geographic sites.

Overall, Fig. 7, in their respective captions, highlights the
most valuable insights, quantitatively garnered on the basis
of Data-SUITE across all three datasets. We conduct a more
detailed analysis of the regions in Appendix C.3, to outline
further potential practitioner usage.

5. Discussion
Automation should not replace the expertise and judgment
of a data scientist in understanding the data, nor will it re-
place the ingenuity required to build better models. In this
spirit, we developed Data-SUITE and illustrated its capa-
bility, across multiple datasets, to empower data scientists
to perform more insightful data exploration, as well as, en-
able more reliable model deployment. We address these
use-cases for the understudied problem of in-distribution
heterogeneity and propose a flexible data-centric solution.
This permits the identification of impactful instances, in-
dependent of a task-specific model. Data-SUITE allows
to perform stratification of test data into inconsistent and
uncertain instances with respect to training data. This strat-
ification has been shown to be in line with downstream
performance and to provide valuable insights for profiling
incongruent test instances in a rigorous and quantitative
way. The quality of this stratification by Data-SUITE is not
matched by any benchmark uncertainty estimation method
(data-centric or not). The promising result serves two roles.
1. The method could be used by practitioners both to im-
prove data exploration, as well as, enable more reliable

FEATURE VALUE
Age 70

PSA 21
Comorbities 0.1
Treatment RT-RDx
Grade 2.5
Stage 2

FEATURE VALUE
Age 73

PSA 27
Comorbities 0.2
Treatment PHT
Grade 3.4
Stage 1

FEATURE VALUE
Age 70

PSA 63
Comorbities 0.66
Treatment RT-RDx
Grade 2.88
Stage 4

FEATURE VALUE
Age 71

PSA 23
Comorbities 0.5
Treatment RT-RDx
Grade 2.33
Stage 2

CUTRACT
UNCERTAIN

Nearest SEER
PROTOTYPE

Nearest - SEER
PROTOTYPE

CUTRACT
CERTAIN

i. SEER-CUTRACT: CUTRACT certain instances are similar to
their SEER nearest prototypes, whilst CUTRACT uncertain

instances are different to their nearest SEER prototypes (e.g. PSA).

FEATURE VALUE
Age 36

Marital Status Single
Race White
Sex Male

FEATURE VALUE
Age 39

Marital Status Married
Race Black
Sex Female

TEST UNCERTAIN:

PROTOTYPE


TEST CERTAIN
PROTOTYPE


ii. Adult: The certain and uncertain instances, represent two
different demographics, aligning with the known dataset biases
toward females. The uncertain instances specifically highlight a

sub-group of black, females.

TEST CERTAIN
PROTOTYPE


FEATURE VALUE
nswprice 0.069

nswdemand 0.35
vicprice 0.003

vicdemand 0.422
transfer 0.41

TEST UNCERTAIN:

PROTOTYPE


FEATURE VALUE
nswprice 0.035

nswdemand 0.41
vicprice 0.002

vicdemand 0.38
transfer 0.53

Mid 1996 Early 1997 Mid 1997 Early 1998

Train Test Certain Test Uncertain

iii. Electricity: The certain instances are similar to the training set in
features and time. The uncertain instances identified represent a later

time period, wherein concept drift has likely occurred.

Figure 7. Insights of prototypes identified by Data-SUITE. Tables
describe the average prototypes for certain and uncertain instances.

model deployment. 2. Data-SUITE opens up future avenues
to advance the data-centric AI research agenda, taking it
a step further by both explaining why instances might be
classed as uncertain or inconsistent. Further, how this in-
formation could be leveraged either to correct the identified
instances or improve the data collection process to improve
overall data quality. Finally, the current formulation has
focused on tabular data. For usage with high-dimensional
data, we refer the reader to Appendix A.2.3 for proposals
on possible modifications to Data-SUITE.

Acknowledgements
The authors are grateful to Fergus Imrie, Zhaozhi Qian,
Yuchao Qin, Krzysztof Kacprzyk, Kamile Stankeviciute and
the 4 anonymous ICML reviewers for their useful comments
& feedback. Nabeel Seedat would like to acknowledge
Hameeda Saif for her constant support and feedback. Nabeel
Seedat is funded by the Cystic Fibrosis Trust, Jonathan
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A. Data-SUITE details & related work
A.1. Extended Related Work
We present a comparison of our framework Data-SUITE, and contrast it to the related work of uncertainty quantification and
learning with noisy labels. Table 4, highlights both similarities and differences across multiple dimensions. We highlight 3
key features which distinguish Data-SUITE: (1) Data-centric uncertainty is a novel paradigm compared to the predominant
model-centric approaches, (2) Our method offers increased flexibility, as it is used independent of task-specific predictive
models. Any conclusions that we draw from Data-SUITE are not model-specific. (3) Our method provides theoretical
guarantees concerning the validity of coverage.

Table 4. Comparison of related work

Data-centric
uncertainty

Model-centric
uncertainty

Task Model
independent

No noise
assumptions

Coverage
guarantees

Data-SUITE (Ours) X × X X X
Uncertainty Quantification × X × X ×
Noisy labels × X × × ×

A.2. Data-SUITE Details
We present a block diagram of our framework Data-SUITE in Figure 8. We next have in-depth discussions on both the
generator and conformal predictor. We outline the motivations as well as technical details not covered in the main paper.
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Figure 8. Outline of our framework Data-SUITE

A.2.1. GENERATOR: COPULAS

Motivation. Recall in our formulation, we have a set of training instances Dtrain and we wish to learn the dependency
between features X . Hence, we model the multivariate joint distribution of Dtrain to capture the dependence structure
between random variables. A significant challenge is modeling distributions in high dimensions. Parametric approaches
such as Kernel Density prediction (KDE), often using Gaussian distributions, are largely inflexible.

On the other hand, nonparametric versions are typically infeasible with complex data distributions and the curse of
dimensionality. Additionally, while Variational Autoencoders (VAEs) (Kingma & Welling, 2014) and Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014a) can model learn the joint distributions, they both have limitations for our setting.
VAEs make strong distributional assumptions (Rezende & Mohamed, 2015), while GANs involve training multiple models,
which leads to associated difficulties (Srivastava et al., 2017; Gulrajani et al., 2017) (both from training computational
burden and inherent to GANs - e.g., mode collapse).

An attractive approach, particularly for tabular data, is Copulas; which flexibly couple the marginal distributions of the
different random variables into a joint distribution. One important reason lies in the following theorem:
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Property A.1 (Sklar’s theorem). A d-dimensional random vector X = (X1, ..., Xd) with joint distribution F and marginal
distributions F1, ..., Fd can be expressed as f(X1, ..., Xd) = Cθ{F1(X1)...Fd(Xd)}, where Cθ : [0, 1]d → [0, 1] is a
Copula. This is attractive in high dimensions, as it separates the learning of univariate marginal distributions from learning
of the coupled multivariate dependence structure.

Parametric copulas have limited expressivity; hence we use pair copula constructions (vine copulas) (Bedford & Cooke,
2001), which are hierarchical and express a multivariate copula as a cascade of bivariate copulas.

Copula Details. To learn the copula, we factorize the d-dimensional copula density into a product of d(d− 1)/2, bivariate
conditional densities by means of the chain rule.

The graphical model which has edges being each bivariate-copula that encodes the (conditional) dependence between
variables. The graphical model additionally consists of levels (where there are as many levels as features of the dataset). Each
node will be a variable, and edges are coupling between variables based on bivariate copulas. As each level is constructed,
the number of nodes decreases per level. The product over all pair-copula densities is then taken to define the joint copula.

Once we have learned the copula density, we sample the copula to obtain an augmented dataset of pseudo/synthetic samples.
The copula samples are then easily transformed back to the natural data scale using the inverse probability integral transform.

Specifically, assume we have U = (U1, U2...Ud) random variable U(0, 1). We can then use the Copula Cθ to define
variables S = (S1, S2...Sd), where S1 = C−1(U1), S2 = C−1(U2|U1)...Sd = C−1(Ud|U1, U2...Ud−1). This means
that S is the inverse Rosenblatt transform of U and hence, S ∼ C, which allows us to simulate synthetic/pseudo samples.
For more on Copulas in general, we refer the reader to (Joe, 2014).

Complexity. As we go through each tree, there are a decreasing number of pair copulas. i.e. (T1 = d − 1, T2 =
d− 2...Td−1 = 1). Hence, the complexity of this algorithm is O(n)× d× truncation level), which for all purposes is O(n).

A.2.2. CONFORMAL PREDICTOR

Motivation. Conformal prediction allows us to transform any underlying point predictor into a valid interval predictor.
We will not discuss the generalized framework of conformal prediction (Transductive Conformal prediction), which requires
model training to be redone for every data point. This has a large computational burden for modern datasets with many
datapoints. For more, see (Shafer & Vovk, 2008; Balasubramanian et al., 2014).

We instead only discuss Inductive Conformal prediction, which is used in Data-SUITE. The inductive method splits the two
processes needed: 1. the training of the underlying model and 2. computing the conformal estimates.

Conformal Prediction Details. Practically, we split the training set (|D+
train| = n) into two disjoint sets, namely the proper

training set and calibration set: D+
train = D+

train2 t D
+
cal, where |D+

train2| = m and (|D+
cal| = n−m).

We use the proper training set to create our prediction rules for the feature-wise regressor (g).The calibration set is used for
“conformalization”, i.e. for computing the non-conformity scores and p-values.

The non-conformity score µi of each example is a function which computes the disagreement (i.e. non-conformance)
between the prediction and the true value. Note, we only compute non-conformity scores on the calibration set.

To obtain our intervals, we need to determine the critical value ε based on the non-conformity scores. We first sort them in
in descending order. The critical value ε is then the d(|D+

cal|+ 1)(1− α)e-th smallest residual (Vovk, 2013). Consequently,
for any confidence level (1-α), we can use the critical value to find p(x) > α, which corresponds to the maximum and
minimum values with p-values larger than α. As a consequence, we can obtain the maximum and minimum values of our
predictive intervals.

The whole process is detailed in Algorithm 1. Normalization to obtain adaptive instance-wise intervals can be done using a
normalization function sigmai, as described in the main paper.
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Algorithm 1 General Inductive Conformal prediction

function CE (α,D+
train2,D

+
cal, µ)

Input :Significance α, nonconformity measure µ, proper training set, D+
train2 and calibration set, D+

cal
Output :Interval estimate

1 Train the underlying model g on D+
train2

2 Compute non-conformity scores on the calibration set D+
cal

3 P = {} ; foreach (x, xi) ∈ D+
cal do

4 µi(x) = |xi − gi ◦ f(x)|;
5 Add µi(x) to P
6 end
7 CONFORMALIZATION.
8 Sort P in descending order to obtain scores S
9 Determine the critical value of ε← d(|D+

cal|+ 1)(1− α)e-th smallest residual in S.
10 Construct the interval interval predictor for each new value:
11 procedure Γα(x : X)
12 foreach x ∈ Dtest do
13 Apply xm = gi ◦ f(x)
14 end
15 return [li(x), ri(x)] = [xm − ε, xm + ε]

Remarks on theoretical guarantees. A motivation for conformal prediction in high-stakes settings is the theoretical
guarantees on CI coverage validity (See Property A.2).

i.e., at a confidence level (1− α) of 95% (α = 0.05), the true value will be within the CIs in at least 95% of the cases. The
framework is non-parametric and only makes the exchangeability assumption (which we detail next) and the guarantees of
validity of coverage hold for any choice of dataset, underlying model or nonconformity measure – which makes it a versatile
option.

Property A.2 (Validity). Under the exchangeability assumption, the conformal predictor will return an interval, P(Y ∈
[li(x), ri(x)]) ≥ 1− α, i.e, error ≤ α.

The validity of the CI holds if the data is independent and identically distributed (IID). In practice, the weaker assumption of
exchangeability (see Assumption A.1) also guarantees validity (Lei et al., 2018). This means that we are not required to
impose any additional requirements for the validity of the CI, since the aforementioned assumptions on the underlying data
are typically made for any ML model.

We also highlight that the validity is maintained even in the case of normalization, as long as the proper training set and
calibration set are disjoint.

Assumption A.1 (Exchangeability). In a dataset of n observations, the data points do not follow any particular order, i.e.,
all n permutations are equiprobable. Exchangeability is weaker than IID observations; however, IID observations satisfy
exchangeability.
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A.2.3. DATA-SUITE BEYOND TABULAR

Currently, the focus of Data-SUITE has primarily engaged with tabular data being the most ubiquitous data type across
industries (Borisov et al., 2021). However, there is of course value in application to other high dimensional modalities such
as images or text. We provide some possible ideas of how Data-SUITE could be adapted for these other modalities.

Generator. As discussed in the main text, a copula might not be ideal for very high-dimensional (large dX ) data in domains
such as computer vision or genomics. In those cases, copula modeling can be replaced by domain-specific augmentation
techniques. For example, Generative Adversarial Networks (GANs).

Representer. PCA while the workhorse of tabular data, is typically not suitable for modalities such as images. Methods
such as autoencoders could easily replace PCA in this instance.

Conformal Predictor. The primary challenge lies in the conformal predictor. Data-SUITE builds feature-wise regressors
– which fits the tabular feature-wise setting. Two alternatives are proposed for other modalities. 1. Instead of feature-wise
regressors, to construct instance-wise regressors or 2. consider the components of an intermediate representation vector as
the “features”.
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B. Benchmarks & Experimental Details
B.1. Benchmarks & Implementations
B.1.1. DATA-SUITE
Implementation details. Data-SUITE adopts a pipeline-based approach to constructing CI’s, leveraging copula modeling,
representation learning and conformal estimation.

We break down each of these below:
Copula Modeling: We use the Copula to estimate a multivariate distribution with univariate marginal distributions. We make
use vine copulas (Bedford & Cooke, 2001). for this task.

Specifically, we use Direct-Vines (D-Vines), which impose constraints on the edges such that we only learn vines of the
structure given in Figure 9 below. When fitting each tree, we select the “best” base copula (Gaussian, Frank, Clayton or
Gumbel) based on likelihood.

Figure 9. D-Vine structure

Finally, when we sample from the copula, we specifically sample nsamples = |Dtrain|.

Representation learning: For the representer, we specifically make use of Principal Component Analysis (PCA). That said,
we can simply replace this block with any alternative such as an autoencoder.

We pre-process all data prior to the representer, by standardizing the data, such that each feature has zero mean and unit
variance (see Eq. 9). Note if the features were indeed categorical, we perform one-hot encoding of the features.

z =
(x− µ)

σ
(9)

When applying PCA, to learn the latent representation, we halve the dimensionality of Dtrain, i.e. dX/2.

Conformal Prediction: The two most important design decisions for conformal estimation is selecting the underlying
feature-wise regressor (gi) and the non-conformity score (µi).

We selected gi, as in conventional machine learning by grid-search over different possible underlying models, evaluated on a
validation set. We evaluate an MLP, KNN, Decision Trees and Random Forests. We ultimately selected a Decision Tree to
serve as the base model for all n = |dX | feature-wise regessors. We use the following parameters max depth=None, min
samples split=2, min samples leaf=5.

Interestingly, a simpler base model proved to be more effective and outperformed more parameterized models, which would
require more compute. This is an additional advantage of Data-SUITE. We motivate that the simpler model might be directly
related to the fact that we build feature-wise regressors, hence the mapping function is easier to approximate.

Finally, we use the absolute error non-conformity score. In practice, we can use any non-conformity score, however,
intuitively for our application where we want to approximate the true value as closely as possible, the absolute error makes
the most sense. Our non-conformity score used is given by Eq. 10 below.

µi(x) = |xi − (gi ◦ f)(x)| (10)

B.1.2. BAYESIAN NEURAL NETWORK (BNN)
Bayesian modelling, when applied to neural networks, involves a likelihood function p(Y |X, θ), where the parameters θ are
estimated by a neural network. In contrast to conventional neural networks which have point estimates for the parameters,
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BNNs aim to learn distributions over parameters. However, modern neural networks have many parameters and weights.
This makes exact inference largely intractable.

Hence, approximate Bayesian methods such as variational inference are often used instead. By this we mean we do not
compute the posterior in the conventional manner. Rather, the variational approximation means we replace the posterior
p(θ|D) with a more tractable variational distribution q(θ;λ). The Kullback-Leibler (KL) divergence between the true
distribution and the variational distribution is then minimized as the loss function, which equates to maximizing the evidence
lower bound (ELBO), see Equation 11. We note, however that the reparameterization trick (Kingma et al., 2015) is needed
to make back propagation possible.

LVI
(
D;λ) := DKL

(
q(θ;λ) || p(θ)

)
− E

[
log p(D | θ)

]
(11)

Implementation details. We train a 5-layer MLP model. A Gaussian prior is placed over the weights and we optimize the
KL divergence during training. Our implementation is based on (Ghosh et al., 2018) and we use the implementation from 5.

B.1.3. DEEP ENSEMBLES (ENSEMBLE)
Deep Ensembles (Lakshminarayanan et al., 2017) is widely regarded as the state-of-the-art non-Bayesian uncertainty
estimation method. The rationale is that training multiple randomly initialized models allows more robust predictions.
Uncertainty can be computed as the variance of the different model predictions. We highlight some important features
of Deep Ensembles: (1) optimization based on a proper scoring rule such that the loss has a unique minimum - which
encourages the model to approximate the true probability distribution. However, the proper nature of the scoring rule
introduces a distributional assumption. (2) Deep Ensembles uses adversarial perturbations based on the Fast Gradient Sign
Method (Goodfellow et al., 2014b) and given by Equation 12.

x′ := x + η � sgn
(
∇xL(x, y; θ)

)
, (12)

where � denotes element-wise multiplication.

This modifies the loss function used for gradient descent:

Ltot(X,y; θ) := L(X,y; θ) + L(X′,y; θ) , (13)

To construct prediction intervals with an uncertainty estimate, an assumption of a conditionally normal distribution is
assumed and the intervals, with uncertainty estimates are given as per Eq. 14.

Γ(x∗) :=
[
E[y∗ |x∗]−

√
var[y∗ |x∗],E[y∗ |x∗] +

√
var[y∗ |x∗]

]
. (14)

Implementation details. We have 5 models in the ensemble, all randomly initialized. Each model is a 3-layer MLP, which
we train for 10 epochs. The learning rate was empirically determined based on a validation set. To compute the uncertainty
estimates at test time we obtain predictions from each model in the ensemble. The prediction interval is computed as per Eq.
14.

B.1.4. GAUSSIAN PROCESS (GP)
Gaussian process (GP) models (?) are fully characterized by: the mean and covariance functions µ and

∑
. The inference

step can be performed exactly, as marginalizing the multivariate normal distributions can be written in closed form. See
Equation 15, whereby conditioning on the dataset D, we can compute the posterior.

(y∗ | x∗,D) ∼ N
(
µ∗ + (Σ∗)tΣ−1(y − µ),Σ∗∗ − (Σ∗)tΣ−1Σ∗

)
. (15)

5https://github.com/IBM/UQ360
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We note the two assumptions made by GPs: (1) the data is conditionally normally distributed and (2) the covariance selection
is correct. That said, violations to these assumptions can severely impact performance. In addition, GPs have an issue of
computational complexity due to matrix inversion of O(n3). For high-dimensional data, stochastic approximations are often
used instead.

Implementation details. The GP is fit with a radial basis function (RBF) kernel and we make use of the Scikit-learn 6

implementation of GPs which is based on (Williams & Rasmussen, 2006).

B.1.5. MONTE-CARLO DROPOUT (MCD)
Dropout layers are typically used as a regularizer at training time . (?). As shown by (Gal & Ghahramani, 2016) dropout
networks can be used at test time (Monte-Carlo Dropout (MCD)) and are a variational approximation to deep Gaussian
processes. Note that this induces the assumption of normality similar to GPs.

A key component of MCD, is that dropout at test time effectively allows us to obtain an ensemble of different models
without having to retrain the model itself. For this, we do multiple stochastic forward passes at test time.

When making predictions, we compute a conditional mean. This is approximated by Monte-Carlo integration, i.e. mean of
multiple forward passes. The prediction interval to characterize the uncertainty is given by Eq. 16:

Γ(x∗) :=
[
E[y∗ |x∗]−

√
var[y∗ |x∗],E[y∗ |x∗] +

√
var[y∗ |x∗]

]
. (16)

Implementation details. We train a 3-layer MLP with dropout (p = 0.1)for 10 epochs. The learning rate was empirically
determined based on a validation set. To compute uncertainty estimates at test time, we perform 20 Monte-Carlo Samples
(forward passes at test time). The prediction interval is computed as per Eq. 16.

B.1.6. QUANTILE REGRESSION (QR)
Quantile regressors estimate the conditional quantiles of a distribution (rather than conditional mean). Consequently, there is
a natural measure of the underlying distribution’s spread.

Typically, the MSE loss is replaced by the pinball loss, otherwise known as quantile loss, given by Equation 17, which
balances the number of points above and below the quantiles (Koenker & Hallock, 2001). Neural networks are easily applied
and optimize the loss function with the appropriate number of output heads.

Lpinball(T ) :=
∑

(x,y)∈T

max
(

(1− α)(q̂α(x)− y), α(y − q̂α(x))
)
. (17)

Implementation details. The base model for predicting the quantiles is a Gradient Boosting Regressor, with 10 estimators,
max depth=5,minimum samples per leaf=5, minimum samples for split=10. We use the implementation from 7.

6https://scikit-learn.org
7https://github.com/IBM/UQ360
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B.2. Synthetic Experiment Details
B.2.1. DATASET & EXPERIMENT CONFIGURATIONS

The synthetic data X = [X1, X2, X3] is drawn IID from a multivariate Gaussian distribution, parameterized by mean vector
µ and a positive definite covariance matrix

∑
.

µ =

 5.0
0.0
10.0

 ∑∑∑
=

 3.40 −2.75 −2.00
−2.75 5.50 1.50
−2.00 1.50 1.25


We sample n = 1000 for both Dtrain and Dtest respectively. We encode inconsistency and uncertainty into the features of the
test set Dtest using a multivariate additive model X̂ = X + Z. where Z ∈ Rn×m, is the perturbation matrix.

We conduct three experiments with different configurations (Da, Db, Dc), see Table 5

Table 5. Different configurations of the synthetic data

Noise distribution Perturbation Proportions Perturbation variance

Da {Normal} {0.1, 0.25, 0.5, 0.75} {2}
Db {Normal} {0.5} {1, 2, 3}
Dc {Beta,Gamma,Normal,Weibull} {0.5} {2}

B.2.2. DOWNSTREAM MODEL

In Section 4.2, we have a downstream task wherein we compute the MSE for different models. The base model which we
train using Dtrain is a linear regression model.

B.3. Real-Data Experiment Details
B.3.1. DATASETS

SEER Dataset The SEER dataset consists of 240,486 patients enrolled in the American SEER program (Duggan et al.,
2016). The dataset consists of features used to characterize prostate cancer: including age, PSA (severity score), Gleason
score, clinical stage, treatments etc. A summary of the covariate features can be found in Table 6. The classification task is
to predict patient mortality, which is binary label ∈ {0, 1}.

The dataset is highly imbalanced, where 94% of patients survive. Hence, we extract a balanced subset of of 20,000 patients
(i.e. 10,000 with label=0 and 10,000 with label=1).

Table 6. Summary of features for the SEER Dataset (Duggan et al., 2016)

Feature Range

Age 37− 95
PSA 0− 98
Comorbidities 0, 1, 2,≥ 3
Treatment Hormone Therapy (PHT), Radical Therapy - RDx (RT-RDx),Radical Therapy -Sx (RT-Sx), CM
Grade 1, 2, 3, 4, 5
Stage 1, 2, 3, 4
Primary Gleason 1, 2, 3, 4, 5
Secondary Gleason 1, 2, 3, 4, 5

CUTRACT Dataset The CUTRACT dataset is a private dataset consisting of 10,086 patients enrolled in the British
Prostate Cancer UK program (Prostate Cancer UK). Similar, to the SEER dataset, it consists of the same features to
characterize prostate cancer. Additionally, it has the same task to predict mortality. A summary of the covariate features can
be found in Table 7.

Once again, the dataset is highly imbalanced, hence we then choose extract a balanced subset of of 2,000 patients (i.e. 1000
with label=0 and 1000 with label=1).
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Table 7. Summary of features for the CUTRACT Dataset (Prostate Cancer UK)

Feature Range

Age 44− 95
PSA 1− 100
Comorbidities 0, 1, 2,≥ 3
Treatment Hormone Therapy (PHT), Radical Therapy - RDx (RT-RDx),Radical Therapy -Sx (RT-Sx), CM
Grade 1, 2, 3, 4, 5
Stage 1, 2, 3, 4
Primary Gleason 1, 2, 3, 4, 5
Secondary Gleason 1, 2, 3, 4, 5

ADULT Dataset The ADULT dataset (Asuncion & Newman, 2007) has 32,561 instances with a total of 13 attributes
capturing demographic (age, gender, race), personal (marital status) and financial (income) features amongst others. The
classification task predicts whether a person earns over $50K or not. We encode the features (e.g. race, sex, gender etc) and
a summary can be found in Table 8.

There is a known bias between gender and income in the dataset. We perform a train-test split such that Dtrain and Dtest have
approximately equal sizes, with 15,378 and 14,784 samples respectively. In particular, to highlight the data exploration
use-case.

Note that there is an imbalance across certain features. However, these are amongst the sensitive attributes. Thus, we do
not want to balance the datasets based on this, as we wish to show both in the data exploration and model deployment
experiments that we can identify these biases in the datasets. Balancing might eliminate these biases.

Table 8. Summary of features for the ADULT Dataset (Asuncion & Newman, 2007)

Feature Range

Age 17− 90
education-num 1− 16
marital-status 0, 1
relationship 0, 1, 2, 3, 4
race 0, 1, 2, 3, 4
sex 0, 1
capital-gain 0, 1
capital-loss 0, 1
hours-per-week 1− 99
country 0, 1
employment-type 0, 1, 2, 3
salary 0, 1

ELECTRICITY Dataset. The Electricity dataset (Harries & Wales, 1999), represents energy pricing in Australia, over
the period of May-1996 to December 1998, with recordings every 30 minutes giving 45312 samples. The dataset records the
energy prices and demand for New South Wales and Victoria, and the amount of power transferred between the two states.
The goal is to predict whether the transfer price increases or decreases.

The covariates outlined in Table 9 are normalized to the interval [0, 1]

We temporally partition the dataset where Dtrain is Mid-1996 to early-1997 and Dtest is early-1997 to 1998. We note that the
dataset has been characterized as having concept shift for some features over the test period (however without an explicit
timepoint or label). This could be due to behavioral changes or consumption pattern changes (Zliobaite, 2013). Hence, Dtest
consists of data which is both congruous and incongruous with Dtrain.
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Table 9. Summary of features for the ELECTRICITY Dataset (Harries & Wales, 1999)

Feature Range

data 0− 1
period 0− 1
nswprice 0− 1
nswdemand 0− 1
vicprice 0− 1
vicdemand 0− 1
transfer 0− 1
class 0− 1

B.3.2. DOWNSTREAM MODEL

In Section 4.3, we have a downstream task for each of the three datasets. For all the datasets, our base model which we train
using Dtrain is a Random Forest Classification model with 100 estimators in the ensemble and splits are based on the ’Gini’
criterion.
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C. Additional Experiments
This appendix presents additional experiments, validating further properties of Data-SUITE, conducting further comparisons
or deep-dives into the regions identified by Data-SUITE and what insights can be garnered.

C.1. Data-SUITE Ablation
Data-SUITE adopts a pipeline-based approach. Hence, to better understand the effect of each component, we perform an
ablation study of different constituent components. The constituent components are then compared to the complete pipeline,
which we denote as Data-SUITE (ALL).

The two components that we explicitly test are:

• Data-SUITE (CONF): Test the conformal predictor without the representer. The conformal prediction process and
instance stratification are as defined in the main paper.

• Data-SUITE (COP): Test the copula by itself. For this ablation, we fit the copula on Dtrain. Then, to compute intervals
per feature, we condition on the remaining features and sample 100 estimates from the copula. For example, for feature
x1, we condition on x2...xn. The uncertainty estimates are then the variance of these samples, which then is used to
stratify the samples as before.

Firstly, we compare the coverage for each of the constituent components as per Table 10 for different configurations of
the synthetic experiment. We see that Data-SUITE (All) is the only method to maintain coverage guarantees across all
configurations. That said, we see a significant divergence between Data-SUITE (CONF) and Data-SUITE (COP), which
suggests the conformal estimator is the most important component. The performance gap to Data-SUITE (All) is then likely
the representer.

Table 10. Coverage of constituent components of Data-SUITE
Proportion (Da) Variance (Db)

PERTURBATION .1 .25 .5 1 2
Data-SUITE (All) .97 .96 .96 .95 .96
Data-SUITE (CONF) .89 .88 .90 .87 .90
Data-SUITE (COP) .16 .15 .16 .17 .16

Secondly, we compare the downstream MSE for each of the constituent components as per Table 11 for different configura-
tions of the synthetic experiment. Recall that a lower MSE (i.e. closer to Train Data (BASELINE)) is desired. Data-SUITE
(All) outperforms the constituent components and is less sensitive to perturbations. Interestingly, despite the higher coverage
for Data-SUITE (CONF) vs Data-SUITE (COP), when evaluating for a downstream task, Data-SUITE (COP) in fact
produces results which are less sensitive to perturbations.

Table 11. Downstream MSE for ablations of constituent components of Data-SUITE
Proportion (Da) Variance (Db)

PERTURBATION .1 .25 .5 1 2
Train Data (BASELINE) .067 .059 .068 .065 .068
Test Data .222 .513 .889 .275 .889
Data-SUITE (All) .069 .122 .197 .104 .197
Data-SUITE (CONF) .125 .396 .846 .293 .846
Data-SUITE (COP) .220 .277 .451 .236 .451

Takeaway: Both results show reduced performance for the constituent components of Data-SUITE, with each component
having different individual sensitivities. This highlights the necessity of the interconnected Data-SUITE (All) framework.
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C.2. Regions identified by Data-SUITE as NOT OOD
In this experiment, we address the question whether the regions identified by Data-SUITE as uncertain or inconsistent are in
fact OOD. We benchmark four widely used methods (with different detection mechanisms), which have been applied in the
literature for OOD and outlier detection:

• Mahalanobis distance (Lee et al., 2018)

• SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection (Zhao et al., 2021)

• COPOD: Copula-Based Outlier Detection (Li et al., 2020)

• Isolation Forest (Liu et al., 2012)

We note for SUOD, much like the original paper, we make use of an ensemble of base estimators namely: Local outlier
factor (LOF) (Breunig et al., 2000), COPOD, Isolation Forest.

For each dataset, we have the instance IDs identified by Data-SUITE for various proportions. We then apply each of the
aforementioned methods and compute the overlap between the predicted OOD/Outlier instances and our identified uncertain
and inconsistent instances.

The results for the overlap of uncertain instances can be found in Fig. 10. We see minimal overlap across methods ranging
between 2-18%.

We additionally, evaluate the confidence scores (for those methods which provide confidence scores as outputs). The goal
is to see if an instance is predicted as OOD/outlier, then with what confidence does the detection method ascribe to the
instance. The results in Fig. 11 suggest that the methods were often unconfident, with average confidence scores ranging
between 5-50%. This suggests the identified uncertain instances are unlikely OOD.

A similar question might be asked for the inconsistent instances. The results are similar to the uncertain instances as shown
in Fig. 12. This result, similar to uncertain instances, suggests the identified inconsistent instances are unlikely OOD.

Takeaway: The Data-SUITE identified uncertain and inconsistent instances are unlikely OOD. The reason is the limited
overlap of predicted OOD and both uncertain and inconsistent instances, coupled with unconfident (low probability)
predictions for OOD.

SEER-CUTRACT ADULT ELECTRICITY

Figure 10. OOD-Uncertain Instances Match Rate or overlap

SEER-CUTRACT ADULT ELECTRICITY

Figure 11. Mean probability of predicted OOD, i.e. confidence
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SEER-CUTRACT ADULT ELECTRICITY

Figure 12. OOD-Inconsistent Instances Match Rate or overlap

C.3. EDA & digestable prototype insights
As discussed in the main paper, we now conduct a more detailed analysis of the regions identified by Data-SUITE, as well as,
the digestible average prototypes. This illustrates the full potential of the detail that practitioners can get from Data-SUITE
and how they can practically use Data-SUITE to garner insights about the data. We present the diagram again for easy
reference (see Fig 14).

SEER-CUTRACT. Data-SUITE identifies distinct certain (Green) and uncertain (Red) regions of ID data as shown in Fig.
14 (i). Beyond average prototypes for Dtest regions i.e., CUTRACT (UK), we also find the nearest neighbor SEER (USA)
prototypes for each instance in the identified regions. Comparing these prototypes assists us to tease out the differences
between the two geographic sites. We note three specific insights which can assist end-users. (1) certain instances represent
less severe patients than the uncertain instances (see PSA values). (2) certain instances: CUTRACT (UK) and SEER (USA)
prototypes are similar in all-feature values. (3) uncertain instances: CUTRACT (UK) and SEER (USA) prototypes have
differences in certain feature values (PSA, more comorbities, different treatment, staging score).

We conduct an extended deep-dive below, highlighting features such as PSA, that show no difference on a population level,
or for certain instances. However, when teasing out uncertain instances and their prototypes, we see this difference. This
example illustrates the full potential of how Data-SUITE can be used by practitioners to uncover differences across sites (to
benefit clinical practice), whilst also identifying patients where model performance would either be reliable or substandard
(independent of the model).

We highlight this in Figure 13, which shows no PSA difference between the USA and UK on a population level, or for
certain instances, but when teasing out uncertain instances and their prototypes we see this difference.

Figure 13. PSA Deep-Dive, which highlights how the difference is not evident at population level or for certain instances. Only the
uncertain instances highlight the heterogeneity. However, it does highlight common support based on the whiskers of the box plot.

We extend this analysis to further illustrate the full potential of the detail that practitioners can get from Data-SUITE. We do
this by comparing the Earth Movers Distance (EMD) - see Fig. 15 which is a common metric to flag drift. We see no PSA
difference between the USA and UK on a population level, or for certain instances. However, when teasing out uncertain
instances and their prototypes, we see this difference.

Takeaway: We highlight that while not evident at population level, the heterogeneous groups can be teased out by using
Data-SUITE. This fully demonstrates the added capability of what Data-SUITE offers to practitioners.
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FEATURE VALUE
Age 70

PSA 21
Comorbities 0.1
Treatment RT-RDx
Grade 2.5
Stage 2

FEATURE VALUE
Age 73

PSA 27
Comorbities 0.2
Treatment PHT
Grade 3.4
Stage 1

FEATURE VALUE
Age 70

PSA 63
Comorbities 0.66
Treatment RT-RDx
Grade 2.88
Stage 4

FEATURE VALUE
Age 71

PSA 23
Comorbities 0.5
Treatment RT-RDx
Grade 2.33
Stage 2

CUTRACT
UNCERTAIN

Nearest SEER
PROTOTYPE

Nearest - SEER
PROTOTYPE

CUTRACT
CERTAIN

i. SEER-CUTRACT: CUTRACT certain instances are similar to their SEER nearest prototypes, whilst CUTRACT uncertain instances
are different to their nearest SEER prototypes (e.g. PSA).

FEATURE VALUE
Age 36

Marital Status Single
Race White
Sex Male

FEATURE VALUE
Age 39

Marital Status Married
Race Black
Sex Female

TEST UNCERTAIN:

PROTOTYPE


TEST CERTAIN
PROTOTYPE


ii. Adult: The certain and uncertain instances, represent two different demographics, aligning with the known dataset biases toward
females. The uncertain instances specifically highlight a sub-group of black, females.

TEST CERTAIN
PROTOTYPE


FEATURE VALUE
nswprice 0.069

nswdemand 0.35
vicprice 0.003

vicdemand 0.422
transfer 0.41

TEST UNCERTAIN:

PROTOTYPE


FEATURE VALUE
nswprice 0.035

nswdemand 0.41
vicprice 0.002

vicdemand 0.38
transfer 0.53

Mid 1996 Early 1997 Mid 1997 Early 1998

Train Test Certain Test Uncertain

iii. Electricity: The certain instances are similar to the training set in features and time. The uncertain instances identified, represent a
later time period, wherein concept drift has likely occurred.

Figure 14. Insights of prototypes identified by Data-SUITE. Tables describe the average prototypes for certain and uncertain instances.
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Earth Movers Distance on the FULL Dataset (Population): Train (SEER) & Test (CUTRACT) - No Difference

Earth Movers Distance: CERTAIN: Train (SEER Nearest Neighbors) & Test (CUTRACT) - No Difference

Earth Movers Distance: UNCERTAIN: Train (SEER Nearest Neighbors) & Test (CUTRACT)- Clear Difference

Figure 15. Earth Movers Distance Deep-Dive into PSA, which highlights how the difference is not evident at the population level or in
certain instances. Only the uncertain instances highlight the heterogeneity
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Adult. The dataset has a known bias between gender and income, which Data-SUITE successfully identifies. However, an
added dimension between the most certain and uncertain instances as shown in Fig. 7 (ii) is that marital status and race are
also relevant biases.

We capture this finding with prototypes, (i) certain prototype: younger, single, white, males (ii) uncertain prototype: older,
married, black, females.

These prototypes can inform end-users such as data scientists and stakeholders of the dangers of naively building models on
this dataset without first considering these issues.

Electricity. The dataset has concept drift over time, which Data-SUITE identifies as the uncertain instances, which have
increased transfer of energy between NSW and Victoria, increased NSW energy price and decreased demand relative to the
certain instances.

These prototypes can inform end-users of this change in consumption habits, despite the data still lying in-distribution.

Additionally, we note as per Fig. 7 (iii), the certain instances capture the time-frame closer to the training data (Start
1997-Mid 1997), whilst the uncertain instances are later in time (Mid 1997-Early 1998), hence more likely affected by the
concept drift.

C.4. Assessment of different CI regressors gi
In our formulation, we select a CI regressor (gi). We wish to assess if the choice of CI regressor can impact the performance
on a fixed downstream task predictive model.

We hence carry out an experiment where we assess different gi ∈ {RF,MLP, SV RandTree}, based on the Mean
Performance Improvement (MPI) -Eq. 8 on a downstream task.

Takeaway. We find the variance of MPI across CI regressor types ranges between 0.04%-3% on our 3 datasets. The low
variability in MPI is desirable, as it indicates minimal impact of the choice of CI regressor on Data-SUITE’s performance.

C.5. Rank for a diverse set of downstream models
We now present additional results for the experiment with a diverse set of downstream models, as outlined in Sec. 4.4. See
Figure 16
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SEER-CUTRACT ELECTRICITY

Figure 16. Rank assessment for on diverse downstream models
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C.6. Inconsistent instances λ sensitivity
As described in Section 3.3, an instance x is inconsistent if the fraction of inconsistent features is above a predetermined
threshold λ ∈ [0, 1]: ν(x) > λ. In our implementation, we use λ = 0.5, i.e. if more than 50% of features are inconsistent,
then the sample is considered inconsistent.

For completeness, we conduct an analysis of the sensitivity to the values of λ ∈ [0, 1]. We show the accuracy score as a
function of λ, as well as, the number of instances that would be classified as inconsistent for that value of λ. The results
are shown in Fig. 17. The flat, steady performance for small λ and then drop off approximately around λ = 0.5 across all
datasets, suggests that our chosen value of λ = 0.5 is indeed a sensible choice.

SEER-CUTRACT ADULT
ELECTRICITY

Figure 17. λ sweep to flag inconsistent instances

Takeaway: Based on the sweep across all three datasets, we see that λ = 0.5 is a sensible choice in practice.

C.7. Computation time comparison
All experiments were run on CPU on a MacBook Pro with an Intel Core i5 and 16GB RAM. Besides the actual performance
values, practitioners often are interested in the computation time associated with different methods. This is especially true if
the algorithms are applied to very large datasets with many instances.

We hence conduct a comparison of the computation time needed by each method to both train and to construct the predictive
intervals for all instances in Dtest. We present the results in Table 12, with the recorded computation time provided to the
nearest minute.

Table 12. Comparison of computation time across methods to the nearest minute

SEER-CUTRACT Adult Electricity

Data-SUITE 4 1 1
BNN 2 1 1
CONFORMAL 2 1 2
ENSEMBLE 28 3 3
GP 22 15 24
MCD 19 13 19
QR 1 1 1

Takeaway: Data-SUITE does not have the fastest computation time (due to the inter-connected framework). However, the
computation times are neither too dissimilar and nor prohibitive for practitioners to use.
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C.8. Comparison to domain adaptation
In the paradigm of domain adaptation, a popular metric is the maximum mean discrepancy (MMD) (Gretton et al., 2012).
For example, (Kumagai & Iwata, 2019; Long et al., 2015; Yan et al., 2017; Haeusser et al., 2017) have used MMD as the
metric to compare distributions and subsequently, to optimize to minimize the distributional difference of representations.

The MMD metric is a distance-based metric that compares the mean embeddings of two probability distributions source S
and target T , in a reproducing kernel Hilbert space Hk. This is given by Eq. 18

MMD(S, T ) = ||µk(S)− µk(T )||Hk
(18)

We can compute unbiased estimates of samples from the two distributions after we apply the kernel trick (in this case we use
a Radial Basis Function Kernel).

In the domain adaptation literature, the goal is to minimize the latent feature divergence by optimizing the MMD. Hence,
MMD is a fundamental component of domain adaptation and is used to identify instances with discrepancies between source
and target domains.

As a comparison to our approach (Data-SUITE), we cast the problem as a potential domain adaptation problem and apply
MMD, where the source distribution (S ∼ Dtrain) and target distribution (T ∼ Dtest). We then use the computed MMD to
stratify instances, where lower MMD means certain and large MMD means uncertain.

The mean performance improvement (MPI) is then computed for instances stratified based on MMD, similar to the
experiment in Section 4.3. Table 13 contrasts the results using MMD vs Data-SUITE to stratify instances.

Takeaway. The approach of Data-SUITE achieves greater average performance improvement based on MPI across all three
datasets, when compared to framing the problem in the context of domain adaptation (using the MMD metric to identify and
stratify instances).

Table 13. Comparison of average performance improvement for Data-SUITE vs MMD (Domain Adaptation)

Data-SUITE MMD

SEER-CUTRACT 0.11 0.088
Adult 0.64 -0.06
Electricity 0.26 -0.17

C.9. Comparison to prototypes
We compare the samples identified by Data-SUITE with prototypes. Specifically, we compare ProtoDash (Gurumoorthy
et al., 2019).

Takeaway. When explaining Dtest using prototypes, the prototypes uniformly cover the manifold, i.e. we cannot easily
identify clusters of “certai” or “uncertain” as in Data-SUITE.

Alternatively, explaining Dtest with prototypes from Dtrain, the prototypes match the “certai” instances identified by Data-
SUITE (DS), where the Pearson r ≈ 0.8 for DS(certain) vs prototypes. On the contrary, it doesn’t match the uncertain
samples where DS(uncertain) vs prototypes ≈ 0.55.

Thus, the prototypes either are “uniform samples” or “certain samples” with no distinct “uncertain samples”. We conclude
that Data-Suite has an advantage of identifying BOTH “certain” and “uncertain” samples, relevant for reliable model
deployment (Desiderata 2)


