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Abstract
Neural Tangent Kernel (NTK) is widely used to
analyze overparametrized neural networks due to
the famous result by Jacot et al. (2018): in the
infinite-width limit, the NTK is deterministic and
constant during training. However, this result can-
not explain the behavior of deep networks, since
it generally does not hold if depth and width tend
to infinity simultaneously. In this paper, we study
the NTK of fully-connected ReLU networks with
depth comparable to width. We prove that the
NTK properties depend significantly on the depth-
to-width ratio and the distribution of parameters at
initialization. In fact, our results indicate the im-
portance of the three phases in the hyperparameter
space identified in Poole et al. (2016): ordered,
chaotic and the edge of chaos (EOC). We derive
exact expressions for the NTK dispersion in the
infinite-depth-and-width limit in all three phases
and conclude that the NTK variability grows expo-
nentially with depth at the EOC and in the chaotic
phase but not in the ordered phase. We also show
that the NTK of deep networks may stay constant
during training only in the ordered phase and dis-
cuss how the structure of the NTK matrix changes
during training.

1. Introduction
Despite the widespread use of Deep Neural Networks
(DNNs), the theory behind their success is still poorly un-
derstood. For instance, no present theory can explain why
highly overparametrized DNNs generalize very well in prac-
tice, contrary to classical statistical learning theory predic-
tions. Likewise, it is surprising that optimizing a highly
non-convex loss function of a DNN with a variant of Gradi-
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ent Descent (GD) typically yields a good local minimum.

Although training dynamics and generalization capabilities
of DNNs stand among the biggest open problems of deep
learning theory, it is possible to address these challenges
in the special case of infinitely-wide DNNs using the so-
called Neural Tangent Kernel (NTK). This kernel captures
the first-order approximation of DNN’s evolution during
GD training. Consider the gradient flow dynamics of the
DNN’s parameters:

ẇ = −∇wL(D) = −
∑

(xi,yi)∈D

∇wf(xi)
∂L(D)

∂f(xi)
, (1)

where w is the vector of all the trainable parameters, f(·)
is the DNN’s output function (defined in Section 2), L(·) is
the loss function and D is the dataset. Then the dynamics
of the DNN’s output function is given by:

ḟ(x) = ∇wf(x) · ẇ = −
∑

(xi,yi)∈D

Θ(x, xi)
∂L(D)

∂f(xi)
, (2)

where the kernel Θ(xi, xj) :=
〈
∇wf(xi),∇wf(xj)

〉
is

called the NTK.

A famous result by Jacot et al. (2018) states that in the
infinite-width limit, the NTK is deterministic under proper
random initialization and stays constant during training.
Thereby, the dynamics in (2) is equivalent to kernel regres-
sion and has an analytical solution expressed in terms of
the kernel. It is then possible to derive properties of trained
infinitely-wide DNNs theoretically by means of their NTKs.
Hence, many recent works used the NTK to explain em-
pirically known properties of DNNs (Huang et al., 2020;
Adlam & Pennington, 2020; Wang et al., 2022; Tirer et al.,
2021; Geiger et al., 2019). Numerous contributions also de-
rived the infinite-width limit of the NTK for popular DNN
architectures (Yang, 2020; Du et al., 2019; Alemohammad
et al., 2021). Other papers established some non-asymptotic
results on the concentration of the NTK at initialization
(Arora et al., 2019; Buchanan et al., 2021) and stability of
the NTK during training (Huang & Yau, 2020; Lee et al.,
2019).

However, the extent to which the results in the infinite-
width limit extrapolate to realistic DNNs remains largely
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an open question. Indeed, multiple authors have argued
that the NTK regime and, in general, the infinite-width
limit cannot explain the success of DNNs (Chizat et al.,
2019; Hanin & Nica, 2020; Aitchison, 2020; Li et al., 2021;
Seleznova & Kutyniok, 2021; Bai et al., 2020; Huang & Yau,
2020). The first argument in this direction is that no feature
learning occurs if the NTK stays constant during training.
Moreover, several works showed that the infinite-width limit
of the NTK becomes completely data-independent as depth
increases (Xiao et al., 2020; Hayou et al., 2019), which
suggests poor generalization performance for deep networks
in the NTK regime. Finally, numerous empirical results
demonstrated that the performance of trained DNNs and the
corresponding kernel methods often differs in practice (Fort
et al., 2020; Lee et al., 2020; Arora et al., 2020). That is
why it is essential to understand the statistical properties of
the NTK and how they depend on the myriad of settings of
a given DNN to assess if the infinite-width limit provides a
reasonable approximation for this network. We contribute to
this line of research by exploring the combined effect of two
factors on the NTK: the network’s depth and initialization
hyperparameters.

Network’s depth Most results on the NTK are derived in
the setting where the network’s depth is kept constant while
the width tends to infinity. This limit can only model very
wide and shallow networks since the depth-to-width ratio
tends to zero in it. Indeed, several recent papers demon-
strated that infinite-width approximations often get worse
as the depth increases (Li et al., 2021; de G. Matthews et al.,
2018; Yang & Schoenholz, 2017). In particular, Hanin &
Nica (2020) first showed that the NTK of fully-connected
ReLU DNNs may be random and change during training if
depth and width are comparable. Hu & Huang (2021) also
studied the effects of depth on the NTK distribution and
derived an upper bound for the NTK moments. We expand
on these results by precisely characterizing the variability
of the NTK at initialization and generalizing to different
initialization settings described below.

Initialization hyperparameters There are three phases
in the initialization hyperparameter space where the proper-
ties of untrained infinitely-wide DNNs differ significantly:
ordered, chaotic and the edge of chaos (EOC) (Poole et al.,
2016). In the ordered phase, the gradient norms decrease
with depth, whereas in the chaotic phase the gradient norms
increase, and the edge of chaos is the initialization at the
border between these two phases (Schoenholz et al., 2017).
The results by Hanin & Nica (2020) concerned the statistical
properties of the NTK of wide and deep ReLU networks at
the EOC. At the same time, several contributions demon-
strated that the properties of the infinite-width NTK depend
significantly on the phase of initialization (Xiao et al., 2020;
Hayou et al., 2019). However, these results do not apply to
networks with depth comparable to width since they assume

infinite width before considering the effects of growing
depth. We fill this gap by deriving statistical properties of
the NTK for wide and deep ReLU networks in all three
phases of initialization.

1.1. Contributions

We study the variability of the NTK at initialization for
fully-connected ReLU DNNs with depth comparable to
width and varying initialization hyperparameters in Sec-
tion 3. Our contributions are as follows:

• We precisely characterize the dispersion of the diagonal
elements Θ(x, x) of the NTK (for arbitrary input x) in
the infinite-depth-and-width limit and conclude that
the variability of the NTK grows exponentially with the
depth-to-width ratio at the EOC and in the chaotic phase.
Conversely, the variance of Θ(x, x) tends to zero in the
same limit in the ordered phase. Our results allow to
evaluate the variance of the NTK for a given DNN with
any depth-to-width ratio and initialization.

• We provide non-asymptotic expressions for the first two
moments of Θ(x, x) and illustrate finite-width effects
that follow. We show that the variance of the finite-width
NTK in the ordered phase gradually increases as the ini-
tialization approaches the EOC, which describes the tran-
sition between the two kinds of behavior in the limit. We
also notice that the NTK dispersion depends on the archi-
tecture, i.e. on the varying widths of the fully-connected
layers. Notably, the dispersion of Θ(x, x) decreases with
depth in the ordered phase if the DNN increases the di-
mensionality in consecutive layers. This enables us to
conclude that deeper networks are more robust to random
initialization in this setting.

• We lower-bound the ratio of the expected non-diagonal
elements of the NTK, i.e. Θ(x, x̃) with x ̸= x̃, and the
diagonal elements Θ(x, x) in the infinite-depth-and-width
limit. We also upper-bound the dispersion of the non-
diagonal elements. In the ordered phase, our results allow
to ensure that the whole NTK matrix is approximately
deterministic and thus can be approximated by the infinite-
width limit.

• We provide extensive numerical experiments to ve-
rify our theoretical results. We use JAX (Bradbury
et al., 2018) and Flax (neural network library for
JAX) (Heek et al., 2020) to compute the NTK of
fully-connected ReLU networks effortlessly. Source
code to reproduce the presented results is available at:
https://github.com/mselezniova/ntk beyond limit.

We study the training dynamics of the NTK for fully-
connected ReLU DNNs with depth comparable to width
and varying initialization hyperparameters in Section 4. Our
contributions are as follows:

https://github.com/mselezniova/ntk_beyond_limit
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• We show that the expected relative change of Θ(x, x) in
the first GD step tends to infinity in the chaotic phase
and to zero in the ordered phase in the infinite-depth-and-
width limit. Combined with the result by Hanin & Nica
(2020), which states that the expected relative change of
Θ(x, x) in the first GD step is exponential in the depth-
to-width ratio at the EOC, we can conclude that the NTK
of deep networks can stay approximately constant during
GD training only in the ordered phase.

• We discuss how the structure of the NTK matrix changes
during training outside of the NTK regime. The NTK ma-
trix at initialization has a diagonal structure with larger val-
ues on the main diagonal as compared to the non-diagonal
ones. We speculate that the training process changes the
NTK structure to block-diagonal with blocks of larger
values corresponding to classes and provide experiments
to support this sentiment.

2. Preliminaries
We consider fully-connected ReLU DNNs of depth L ∈ N
with linear output layer and widths (nℓ)0≤ℓ≤L, where
n0 ∈ N is the input dimension and nL = 1 is the out-
put dimension. Forward propagation in such a network is
defined as follows:

xℓ(x) := ϕ(hℓ(x)), x0(x) := x ∈ Rn0 ,

hℓ(x) := Wℓxℓ−1(x) + bℓ, 1 ≤ ℓ ≤ L− 1,

f(x) := WLxL−1(x) + bL ∈ R,
(3)

where ϕ(x) := x1{x>0} denotes the ReLU function, Wℓ ∈
Rnℓ×nℓ−1 and bℓ ∈ Rnℓ are the weights and the biases and
f(x) is the output function of the DNN. The NTK of this
network on a pair of inputs (x, x̃) is given by:

Θ(x, x̃) := ΘW (x, x̃) + Θb(x, x̃),

ΘW (x, x̃) :=

L∑
ℓ=1

nℓ∑
j=1

nℓ−1∑
i=1

∂f(x)

∂Wℓ
ij

∂f(x̃)

∂Wℓ
ij

,

Θb(x, x̃) :=

L∑
ℓ=1

nℓ∑
j=1

∂f(x)

∂bℓ
j

∂f(x̃)

∂bℓ
j

,

(4)

where ΘW (x, x̃) comprises the gradients w.r.t. the weights
and Θb(x, x̃) — the gradients w.r.t. the biases.

When we consider wide networks with unequal widths in
the hidden layers, we define a width scale parameter M and
constants λ, (αℓ)0≤ℓ≤L−1 such that:

L

M
= λ ∈ R,

nℓ

M
= αℓ ∈ R, 0 ≤ ℓ ≤ L− 1. (5)

Then we can describe the asymptotic behavior of the NTK
in terms of M and the constants defined above.

2.1. Initialization and parametrization

We consider random i.i.d. initialization given by:

Wℓ
ij ∼ N

(
0,

σ2
w

nℓ−1

)
, bℓ

i ∼ N (0, σ2
b ), (6)

where (σw, σb) are the initialization hyperparameters.
This initialization corresponds to the so-called standard
parametrization (SP), where the weights and the biases de-
fined in (3) are the trainable parameters. We note that the
NTK is often considered in the so-called NTK parametriza-
tion (NTP), where the weights in (3) are the scaled versions
of trainable parameters: Wℓ

ij = σw/
√
nℓ−1w

ℓ
ij for train-

able wℓ ∈ Rnℓ×nℓ−1 initialized as wℓ
ij ∼ N (0, 1) i.i.d.

This reparametrization, of course, does not change the dis-
tribution of the DNN’s components. However, it scales the
gradients by O(1/M) and gives the NTK a well-defined
infinite-width limit for fixed L. At the same time, NTP
is equivalent to setting an individual learning rate in each
layer inverse-proportionally to width, as explained, e.g., in
Yang & Hu (2021). In this paper, we focus on the NTK in
SP since this parametrization is more common in practice
(indeed, SP is the default setting in PyTorch). However, our
results can be generalized to NTP straightforwardly.

2.2. Information propagation in DNNs

Results on information propagation in infinitely-wide DNNs
established that the initialization hyperparameters (σw, σb)
determine the evolution of the variances E[(xℓ

i(x))
2] and the

covariances E[xℓ
i(x)x

ℓ
i(x̃)] as they propagate through the

DNN’s layers. Based on this, Poole et al. (2016) identified
three phases with distinct properties in the hyperparame-
ter space: ordered, chaotic and the edge of chaos (EOC).
Schoenholz et al. (2017) subsequently showed that the or-
dered phase corresponds to vanishing gradients and the
chaotic phase corresponds to exploding gradients, i.e. the
gradient norm decreases with depth in the ordered phase
and increases in the chaotic phase. The edge of chaos is
the initialization at the border between these two phases,
which allows deeper signal propagation through a DNN
by avoiding vanishing or exploding gradients. Consider
backpropagation equations given by:

∂f(x)

∂Wℓ
ij

= δℓix
ℓ−1
j ,

∂f(x)

∂bℓ
i

= δℓi ,

δℓi :=
∂f(x)

∂hℓ
i

= ϕ
′
(hℓ

i)
∑
j

δℓ+1
j Wℓ+1

ji ,
(7)

Schoenholz et al. (2017) studied the evolution of E[(δℓi )2]
along with E[(xℓ

i)
2] to find the distribution of DNNs’ gradi-

ents. Some recent publications used these results to derive
the properties of the infinite-width NTK in all the three
phases of initialization (Karakida et al., 2019; Xiao et al.,
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Figure 1. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M ∈ {100, 200, 500}
with α0 = 1. The dashed lines represent the experimental results and the solid lines correspond to the theoretical predictions from
Theorem 3.1. For each DNN configuration, we sampled 500 random initializations and computed an unbiased estimator for the ratio (see
details in Appendix C.3). The error bars (indicated by the vertical lines) show the bootstrap estimation of the standard error (only in a
subset of points to keep the figure readable). We provide additional figures with continuous error bars in Appendix C.2.

2020). Hayou et al. (2019) also showed that the infinite-
depth limit of the infinite-width NTK (when first the limit
M → ∞ is taken with fixed L and then L → ∞) yields a
data-independent kernel and thus cannot explain properties
of finite DNNs. Although our approach is different from the
mentioned results since we do not assume infinite width be-
fore increasing depth, we show that the statistical properties
of δℓ and xℓ can still be derived and lead to results on the
NTK in our setting.

The initialization hyperparameters that comprise each phase
differ depending on the chosen activation function. Since
we are interested in ReLU networks, we note that the or-
dered phase corresponds to σ2

w < 2 and the chaotic phase
— to σ2

w > 2 for this activation function. The EOC is the
initialization with σ2

w = 2. We refer, e.g., to Schoenholz
et al. (2017) for a method to compute the border between
phases for a given activation function.

3. Variability of the NTK
In the infinite-width limit, the NTK is deterministic under
random initialization, which is one of the main results of the
NTK theory. We investigate when this result holds outside
of the NTK limit and, consequently, when the infinite-width
behavior of the NTK gives a good approximation for realis-
tic DNNs.

3.1. Infinite-depth-and-width limit

Most results on the NTK assume that the network’s depth
is fixed as the width tends to infinity, i.e., L/M → 0 in the
limit. This setting, of course, does not describe deep finite-
width networks since their depth-to-width ratio is bounded
away from zero. Indeed, some recent works demonstrated
that infinite-width approximations often get worse as the

network’s depth increases (Li et al., 2021; de G. Matthews
et al., 2018; Yang & Schoenholz, 2017). In particular, Hanin
& Nica (2020) considered this effect for the NTK and de-
rived bounds for the ratio E[Θ2(x, x)]/E2[Θ(x, x)] in case
of ReLU DNNs initialized at the EOC (σw = 2). This ratio
characterizes the dispersion of the NTK: it is close to one if
the NTK is approximately deterministic and is larger than
two if the NTK’s distribution is of high variance. Our first
main result characterizes this ratio in the infinite-depth-and-
width limit under different initializations:

Theorem 3.1 (Dispersion of the NTK at initialization in
the limit). Consider a ReLU DNN as defined in (3) with
constant width of hidden layers M ∈ N, input dimension
n0 = α0M , α0 ∈ R and output dimension nL = 1. The
initialization is given by (6) and the biases are initialized to
zero, i.e. σb = 0. Then, in the infinite-depth-and-width limit
M → ∞, L → ∞, L/M → λ ∈ R, the following holds
for the dispersion of the NTK:

1. In the chaotic phase (a := σ2
w/2 > 1), the NTK

dispersion grows exponentially with depth-to-width ratio
λ := L/M as follows:

E[Θ2(x, x)]

E2[Θ(x, x)]
−→ 1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
. (8)

2. At the EOC (a = 1), the NTK dispersion grows exponen-
tially with depth-to-width ratio λ as well, but with a slower
rate given by:

E[Θ2(x, x)]

E2[Θ(x, x)]
→ 1

(1 + α0)2

[
e5λ
( 1

2λ
+

2α2
0 − 8α0

25λ2

)
+(eλ − e5λ)

1− 4α0

8λ2
+

2α0

5λ

(4− α0

5λ
− 1− α0

)]
.

(9)



Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.1 0.2 0.3 0.4 0.5
λ

1

1.5

2.0

a) α0 =2.0σ2
w =1.4

σ2
w =1.6

σ2
w =1.7

σ2
w =1.8

σ2
w =1.9

σ2
w =2.0

σ2
w =2.1

0.0 0.1 0.2 0.3 0.4 0.5
λ

1

1.5

2.0

b) α0 =0.5

0.0 0.1 0.2 0.3 0.4 0.5
λ

1

1.5

2.0

c) α0 =0.1

Figure 2. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M = 200 with the ratio
α0 := n0/M ∈ {2.0, 0.5, 0.1}. The initialization hyperparameter σ2

w is close to the EOC for all the lines. The dashed lines represent the
experimental results (computed as described in Figure 1) and the solid lines show the theoretical predictions given by Theorem 3.2. The
error bars are shown only for a subset of points to keep the figure readable. We provide additional figures with continuous error bars in
Appendix C.2.

3. In the ordered phase (a < 1), the NTK dispersion tends
to one:

E[Θ2(x, x)]

E2[Θ(x, x)]
→ 1. (10)

Our numerical experiments in Figure 1 demonstrate that
Theorem 3.1 provides accurate approximations for the be-
havior of sufficiently deep and wide DNNs. Indeed, the
proofs listed in Appendix A.1 show that the expressions in
the above theorem are true up to the approximation given
by (1 + c/M)L ≈ ecλ and O(1/

√
M) in the coefficients of

the exponents in case of finite width and depth.
Remark 1. The EOC expression in Theorem 3.1 tends to
the chaotic phase expression if α0 := n0/M tends to zero
(i.e. when the input dimension is fixed). We discuss this
effect in Appendix B.1.
Remark 2. Model scaling introduced in papers on the so-
called ”lazy training” phenomenon (Chizat et al., 2019)
does not change the results of Theorem 3.1. We discuss lazy
training and its effects on our analysis in Appendix B.3.

3.2. Finite depth and width effects

We notice that some features of the NTK dispersion are
still not visible in the infinite-depth-and-width limit. One
can see in Figure 1 that the NTK variance in the ordered
phase is not exactly zero for finite-width DNNs, contrary to
the prediction in the limit. This is especially noticeable for
initialization close to the EOC, where the transition between
the two kinds of limiting behavior occurs. Moreover, Theo-
rem 3.1 cannot reveal the effects of the architecture since it
considers only DNNs of constant width. Therefore, we pro-
vide non-asymptotic expressions for the first two moments
of the NTK at initialization in the following theorem and
show that these expressions accurately describe the behavior
of finite-width DNNs.

Theorem 3.2 (Moments of the NTK at initialization). Con-
sider a ReLU DNN defined in (3) with widths scaling defined
in (5) and the output dimension nL = 1. The initialization
is given by (6) and σb = 0. Then the expectation of the NTK
is determined by the following terms:

E[ΘW (x, x)] = ∥x0∥2aL−1
L∑

ℓ=1

nℓ−1

n0
, (11)

E[Θb(x, x)] =

L∑
ℓ=1

aL−ℓ, (12)

where the NTK components ΘW and Θb are defined in (4).
Moreover, the second moment of the NTK is determined by:

E[Θ2
W (x, x)]

∥x0∥4a2(L−1)
= X(1,L)

[
L∑

ℓ=1

n2
ℓ−1

n2
0

+
∑
ℓ1<ℓ2

nℓ2−1nℓ1−1

n2
0

C(ℓ1,ℓ2)
X(ℓ1,ℓ2)

]
,

(13)

E[Θb(x, x)
2]

a2L
=

L∑
ℓ=1

X(ℓ,L)

a2ℓ
+ 2

∑
ℓ1<ℓ2

X(ℓ2,L)

aℓ1+ℓ2
, (14)

E[ΘW (x, x)Θb(x, x)]

∥x0∥2a2L−1
=

L∑
ℓ=1

nℓ−1

n0

X(ℓ,L)

aℓ

+
∑
ℓ1<ℓ2

X(ℓ2,L)

aℓ1
nℓ1−1

n0

(
nℓ2−1

nℓ1−1
C(ℓ1,ℓ2) +

aℓ1

aℓ2

)
,

(15)

where we denoted X(i,j) :=
∏j−1

k=i

(
1 + 5

nk
+O

(
M−3/2

))
,

C(i,j) :=
∏j−1

k=i

(
1 + 1

nk
+O

(
M−3/2

))
and a := σ2

w/2.
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These expressions are derived in Appendix A.1 as a part of
the proof of Theorem 3.1 and they simplify to the results in
the limit by noticing that X(1,L) → e5λ and C(1,L) → eλ.

Figure 2 examines how well the above expressions approxi-
mate the NTK of DNNs with varying ratios α0 := n0/M
between the input dimension and the width of hidden layers.
One can see that the NTK variance in the ordered phase
indeed grows as the initialization approaches the EOC. This
effect is due to the terms proportional to

(
(a − 1)M

)−1

in the moments of Θb(x, x) and ΘW (x, x)Θb(x, x). When
the initialization is close enough to the EOC, (a− 1)−1 be-
comes comparable with finite M , and therefore the behavior
diverges from the limit.

Another remarkable observation is that the NTK dispersion
may decrease with depth in the ordered phase for DNNs
that increase the dimensionality (i.e. n0 ≤ n1 ≤ . . . nL−1),
which means that deeper networks can be more robust. In-
deed, in Subfigures b) and c) of Figure 2, the dispersion
reaches its peak at a certain depth and then decreases. We
provide additional results characterizing this effect in DNNs
with non-constant width in hidden layers in Appendix B.2.

3.3. Non-diagonal elements of the NTK

The results stated so far only concern the diagonal elements
of the NTK. To generalize to the whole kernel, we provide
the following theorem proven in Appendix A.2:
Theorem 3.3 (Non-diagonal elements of the NTK). Con-
sider a ReLU DNN from Theorem 3.2. The following bounds
hold for the ratio of non-diagonal and diagonal elements of
the NTK:

1 ≥ lim
L→∞,M→∞
L/M→λ∈R

E[Θ(x, x̃)]

E[Θ(x, x)]
≥ 1

4
. (16)

Moreover, the dispersion of the non-diagonal elements is
bounded by the dispersion of diagonal ones:

lim
L→∞
M→∞
L/M→λ

E[Θ2(x, x̃)]

E2[Θ(x, x̃)]
≤ 16 lim

L→∞
M→∞
L/M→λ

E[Θ2(x, x)]

E2[Θ(x, x)]
. (17)

Of course, the bound in (17) is too loose for practical ap-
plications if the goal is to prove that the NTK is approxi-
mately deterministic. However, we note that the ratio of
non-diagonal and diagonal elements can be close to the
lower bound only in the chaotic phase. In the ordered phase,
our proof suggests the following bound for sufficiently wide
and deep networks:

E[Θ(x, x̃)]

E[Θ(x, x)]
≳

∑L
ℓ=1 a

L−ℓ
∏L−1

k=ℓ g(ρk−1)∑L
ℓ=1 a

L−ℓ
, (18)

where g(t) := 1
π (π/2+arcsin t) and ρk is the infinite-width

approximation of the cosine distance between xk and x̃k,

which only increases with depth and is given by applying
the function r(t) := 1

π

(√
1− t2 + tπ/2 + t arcsin t

)
to ⟨x0, x̃0⟩ consecutively k times. The function r(·) arises
from the expectation of a product of two correlated Gaussian
variables under ReLU function.

We provide empirical results on the ratio of non-diagonal
and diagonal elements of the NTK in Figure 3. We also plot
the estimate for the ratio given by (18) in the same figure.
One can see that the ratio quickly increases with depth in
the ordered phase. Moreover, the lower bound in (18) gives
a good approximation for the experimental results. Then for
a given network in the ordered phase one can replace the
coefficient 16 in the bound (17) with 1/c2, where c is a better
estimate for the lower bound of E[Θ(x, x̃)]/E[Θ(x, x)] and
can be close to one in the ordered phase.

We also provide experiments on the dispersion of the non-
diagonal elements in Appendix C.1. Our results indicate
that, in practice, the dispersion here is only slightly higher
than the prediction for the diagonal elements. The general
picture stays the same as in Figure 1: the dispersion is
low and does not grow with depth in the ordered phase
but increases exponentially with the depth-to-width ratio at
the EOC and in the chaotic phase. The finite-width effects
represented in Figure 2 also remain the same for the non-
diagonal elements.

3.4. Proof ideas

All our proofs are based on the following decomposition of
the NTK:

Θ(x, x) =

L∑
ℓ=1

∥δℓ(x)∥2
(
∥xℓ−1(x)∥2 + 1

)
, (19)

which directly follows from (4) and the representation
of the gradients in backpropagation (7). Using forward-
propagation equations (3) and backpropagation equations
(7), we derive the first two moments for the ratios
N ℓ

x := ∥xℓ∥2/∥xℓ−1∥2 and N ℓ
δ := ∥δℓ∥2/∥δℓ+1∥2 in

Lemmas A.1 and A.2. We then notice that N ℓ
x are uncorre-

lated in different layers of the networks, as well as N ℓ
δ , while

N ℓ
x and N ℓ

δ in the same layer can be weakly correlated and
we quantify the effects of this dependence in Lemma A.4.
Given the moments of N ℓ

x and N ℓ
δ and the results on their

correlations, we can represent summands of the NTK as the
following telescopic products:

∥δℓ∥2∥xℓ−1∥2 = ∥x0∥2∥δL∥2
ℓ−1∏
k=1

N k
x

L−1∏
p=ℓ

N p
δ (20)

and use this decomposition to compute the expectation and
the second moment of the NTK. We derive the first two
moments for ΘW (x, x) and Θb(x, x) separately in Lemmas
A.5 and A.6. These two components have very different
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Figure 3. Ratio E[Θ(x, x̃)]/E[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M ∈ {100, 200, 500} with
α0 = 1. Colors and markers indicate different values of σ2

w. There are 5 dashed lines for each σ2
w value, which correspond to 5 values of

the initial angle between input samples ⟨x0, x̃0⟩ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Darker lines (which also display larger values of the ratio
of interest) correspond to larger product ⟨x0, x̃0⟩. Expectations are computed by sampling 500 random initializations of each DNN
configuration. The solid lines show the estimate for the ratio of interest given by (18) in the ordered phase.

properties in the infinite-depth-and-width limit and, as we
show in the proof of Theorem 3.1, the behavior of the NTK
is determined by ΘW (x, x) in the chaotic phase and by
Θb(x, x) in the ordered phase. We also derive the expecta-
tion of ΘW (x, x)Θb(x, x) in Lemma A.7 to complete the
calculations of the second moment of the NTK.

We note that many papers on the NTK use the so-called gra-
dient independence assumption (GIA), which leads to the
independence of N ℓ

x and N ℓ
δ . This assumption often leads

to correct results in the infinite-width limit, as discussed in
Yang (2019). However, in our case of infinite depth and
width, it may have a non-negligible effect even for simple
fully-connected networks with all the weights initialized
independently. Thus, we have to calculate this effect ex-
plicitly in our proofs. We also note that Li et al. (2021)
used a similar technique involving telescoping products of
weakly-correlated variables to derive the distribution of the
activation norms of ResNets.

4. Training dynamics of the NTK
In the infinite-width limit, the NTK stays constant during
training, which allows to study the gradient flow dynamics
of infinitely-wide DNNs analytically. In this section, we
discuss when this result holds outside of the infinite-width
limit and how the empirical NTK changes during training.

4.1. The first GD step

Hanin & Nica (2020) proved that the NTK of over-
parametrized fully-connected ReLU networks initialized
at the EOC can evolve non-trivially during GD training if
depth and width of the network are comparable. In particu-

lar, their result bounds the relative change of the diagonal
elements of the NTK Θ(x, x) in the first GD step carried
out on a single sample x above and below by an exponential
function of the depth-to-width ratio λ. We generalize this
result to different initializations with the following theorem
proven in Appendix A.3:

Theorem 4.1 (GD step of the NTK). Consider a ReLU
DNN from Theorem 3.2. A single GD update on a sample
(x, y) ∈ D results in the following changes of the NTK:

1. In the chaotic phase (a := σ2
w/2 > 1), the changes to

the NTK value are infinite in the limit for a constant
learning rate η ∈ R:

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

∞. (21)

2. In the ordered phase (a < 1), the NTK stays constant
in the limit:

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0. (22)

This result shows that deep networks can potentially behave
according to the NTK theory during GD training only in
case of initialization in the ordered phase. We refer to exper-
iments in Seleznova & Kutyniok (2021), which confirm that
the relative change of the NTK during training on MNIST
is significant and grows with depth in the chaotic phase and
at the EOC but not in the ordered phase. However, it is
unclear how to generalize this result to realistic scenarios of
DNN training, which include randomly selected batches of
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Figure 4. Structure of the NTK matrix in different stages of training for fully-connected ReLU DNNs with L = 20 and M = 300. The
DNNs are initialized with σ2

w ∈ {1.0, 2.0, 2.2} and trained on MNIST using Adam algorithm with learning rate 10−5. Subplots a) and b)
show the test and the train loss achieved by each DNN. Subplots c), d) and e) characterize label-awareness of the NTK. Variables Θd, Θc

and Θn are defined in (23). The heatmaps show the NTK matrix on MNIST subsample of size 100 at epoch t ∈ {0, 100, 500, 3000}.
The subsample contains 10 elements of each class and is arranged so that consecutive diagonal blocks of size 10 contain pairwise NTK
values on each class. The color range in the heatmaps is adjusted to include the interval between the maximal and the minimal values of
the NTK in a given epoch, i.e. the colors correspond to different values for different epochs. Brighter colors indicate larger values.

arbitrary size and optimization algorithms beyond vanilla
GD. Our experiments in the next subsection show that the
NTK evolution is in general non-trivial even in the ordered
phase.
Remark 3. Deep networks rescaled as in Chizat et al. (2019)
can exhibit lazy training (with random NTK at initialization)
in the chaotic phase only if the scaling parameter grows
exponentially with depth L. We discuss the lazy training
phenomenon and its effects on our results in Appendix B.3.

4.2. Changes of the NTK structure

The NTK at initialization is label-agnostic, i.e. its value on
a pair (x, x̃) is independent of whether the labels of x and x̃
are the same or not. Clearly, label-agnostic features cannot
provide an optimal representation system for an arbitrary
task and many authors studied the benefits of adding label
information to kernels (Cristianini et al., 2001; Gönen &
Alpaydin, 2011; Tishby & Zaslavsky, 2015). In particular,
Chen et al. (2020) argued that label-agnosticism can explain
the performance gap between trained DNNs and the NTK
and demonstrated that adding label-awareness improves the
performance of the infinite-width NTK. Thus, it is impor-
tant to characterize label-awareness of the empirical NTK
and how the training process leads to it to understand the
properties of DNNs.

We saw in Section 3.3 that the NTK at initialization has an
approximately diagonal structure with the diagonal values

larger than the non-diagonal ones. On the contrary, the ”opti-
mal kernel” for a classification task would be block-diagonal
with blocks of larger values corresponding to samples of the
same class. Thus, we expect the NTK to naturally change
towards the block-diagonal structure during the training pro-
cess. Our experiments in Figure 4 confirm this intuition in
a simple setting of fully-connected ReLU networks trained
on MNIST. Let us define the following variables that char-
acterize label-awareness of the NTK matrix:

Θd :=
1

|X |
∑
x∈X

Θ(x, x),

Θc :=
1

K

K∑
k=1

1

|Xk|(|Xk| − 1|)
∑

xi ̸=xj ,
xi,xj∈Xk

Θ(xi, xj),

Θn :=
1

K

K∑
k=1

1

|Xk|(|X | − |Xk|)
∑

xi∈Xk,
xj ̸∈Xk

Θ(xi, xj),

(23)

where X = ∪K
k=1Xk is the decomposition of the dataset X

into K classes. Then Θd is the mean diagonal value, Θc

is the mean value of the NTK on samples from the same
class and Θn is the mean value on samples from different
classes. Figure 4 suggests that a larger gap between Θn/Θd

and Θc/Θd may be related to better performance of DNNs.
Moreover, the gap between 1 and the ratio Θc/Θd may char-
acterize overfitting. Therefore, we believe that the structure
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of the NTK can be a proxy for generalization of DNNs even
outside of the NTK regime. One can also see that the struc-
ture of the NTK changes more rapidly in the early stages
of training, which is coherent with the conclusion in Fort
et al. (2020) that useful features are mostly learned in the
first epochs of training. Thus, dynamics of the NTK may
provide information about the state of the training process.

5. Conclusions and future work
This paper adds to the line of research on the statistical
properties of the NTK and the correspondence between
finite-width DNNs and their infinite-width approximations.
Our results in Section 3 precisely quantify variability of
the NTK at initialization for a given fully-connected ReLU
DNN and assess how well the kernel is approximated by its
infinite-width limit. Combining our findings from Section
3 with the results on the GD update of the NTK in Section
4.1, we conclude that the NTK regime can approximate
trained networks with non-trivial depth-to-width ratio only
in the ordered phase. At the same time, the behavior of
overparametrized DNNs outside of the NTK regime is very
poorly understood so far. It is unclear how to characterize
DNNs’ training dynamics in the general case and what role
the properties of the (random and dynamic) NTK play here.
We make a step into this direction in Section 4.2 by demon-
strating how the NTK acquires a block-diagonal structure
during training. We believe that precisely characterizing
the effects of this NTK structure on the generalization of
DNNs is a promising direction for future work. In general,
we hope to establish new connections between the NTK and
other aspects of DNN training outside of the NTK regime.
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A. Proofs
A.1. Variability of the NTK at initialization

Lemma A.1 (Forward-propagation of variance). Consider a fully-connected DNN defined in (3) initialized as in (6). The
activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}. Assume further that the biases are initialized
to zero, i.e. σb = 0. Then the following holds for the ratios of the activation norms in consecutive layers of the network,
denoted N ℓ

x := ∥xℓ∥2/∥xℓ−1∥2, ℓ = 1, . . . , L− 1:

E[N ℓ
x] =

σ2
w

2

nℓ

nℓ−1
, E[(N ℓ

x)
2] =

(σ2
w

2

)2( nℓ

nℓ−1

)2(
1 +

5

nℓ

)
. (24)

N ℓ
x − E[N ℓ

x]√
V[N ℓ

x]

d−−−−→
nℓ→∞

N (0, 1), (25)

where N (0, 1) is the standard normal distribution. Moreover, random variables {N ℓ
x}ℓ=0,...,L−1 are mutually independent.

Proof. The squared norm of the activation vector in layer ℓ is given by

∥xℓ∥2 =

nℓ∑
i=1

ϕ2(Wℓ
i·x

ℓ−1 + bℓi)

Here xℓ−1 depends only on {(Wj ,bj)}j=1,...ℓ−1, therefore xℓ−1 is independent of (Wℓ,bℓ). Since elements of Wℓ are
i.i.d Gaussian, the distribution of Wℓxℓ−1 depends only on the norm of xℓ−1 and not on the direction. Then we can write
the following equalities in distribution:

Wℓ
i·x

ℓ−1=

√
σ2
w

nℓ−1
∥xℓ−1∥Uℓ

i ,

ϕ2
(
Wℓ

i·x
ℓ−1 + bℓi

)
=
(√ σ2

w

nℓ−1
∥xℓ−1∥+ σb

)2
ϕ2(Uℓ

i ),

where we introduced i.i.d random variables Uℓ
i=
〈√

nℓ−1

σ2
w

(Wℓ
i·)

T , xℓ−1

∥xℓ−1∥

〉
∼ N (0, 1), i = 1, . . . , nℓ, which are indepen-

dent of xℓ−1, and used the fact that ϕ(αx) = αϕ(x) for α ∈ R+. Therefore for the norm of the activation vector we have
the following:

∥xℓ∥2 =

nℓ∑
i=1

ϕ2(Wℓ
i·x

ℓ−1 + bℓi)=
(√ σ2

w

nℓ−1
∥xℓ−1∥+ σb

)2 nℓ∑
i=1

ϕ2(Uℓ
i ),

where only the first bracket depends on xℓ−1. Then in case of zero biases, i.e. σb = 0, for the ratio between the norms of
consecutive activation vectors we have

N ℓ
x=

σ2
w

nℓ−1

nℓ∑
i=1

ϕ2(Uℓ
i ),

where the variables Uℓ
i , i = 1, . . . , nℓ depend only on the weights in the given layer Wℓ. Then the ratios N ℓ

x in different
layers are independent and we can obtain the desired moments of N ℓ

x as follows:

E[N ℓ
x] =

σ2
w

nℓ−1

nℓ∑
i=1

E[ϕ2(Uℓ
i )] =

σ2
w

2

nℓ

nℓ−1
,

E[(N ℓ
x)

2] =
( σ2

w

nℓ−1

)2 nℓ∑
i=1

V[ϕ2(Uℓ
i )] + E2[(N ℓ

x)] =
(σ2

w

2

)2( nℓ

nℓ−1

)2(
1 +

5

nℓ

)
,

where we used the moments of variables ϕ(Ui), which can be calculated by integration:

E[ϕ2(Uℓ
i )] =

1

2
, V[ϕ2(Uℓ

i )] =
5

4
, i = 1, . . . , nℓ.
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Moreover, by the central limit theorem we have

N ℓ
x − E[N ℓ

x]√
V[N ℓ

x]
=

2
( 1

nℓ

∑nℓ

i=1 ϕ
2(Uℓ

i )−
1

2

)
√

5/nℓ

d−−−−→
nℓ→∞

N (0, 1).

Lemma A.2 (Backpropagation of variance). Consider the same setting as in Lemma A.1. Then the following holds
for the ratios of norms of backpropagated errors (defined in (7)) in consecutive layers, denoted N ℓ

δ := ∥δℓ∥2/∥δℓ+1∥2,
ℓ = 1, . . . , L− 1:

E[N ℓ
δ ] =

σ2
w

2
, E[(N ℓ

x)
2] =

(σ2
w

2

)2(
1 +

5

nℓ

)
. (26)

N ℓ
δ − E[N ℓ

δ ]√
V[N ℓ

δ ]

d−−−−→
nℓ→∞

N (0, 1), (27)

where N (0, 1) is the standard normal distribution.

Proof. The recursive formula for the backpropagated errors is given by

δℓi = ϕ′(hℓ
i)

nℓ+1∑
j=1

Wℓ+1
ji δℓ+1

j = ϕ′(hℓ
i)(W

ℓ+1)Ti·δ
ℓ+1.

Then, in the same way as in Lemma A.1, we have the following for the squared norm of δℓ:

∥δℓ∥2 =

nℓ∑
i=1

(ϕ′(hℓ
i))

2
(
(Wℓ+1)Ti·δ

ℓ+1
)2

=
σ2
w

nℓ
∥δℓ+1∥2

nℓ∑
i=1

(ϕ′(hℓ
i))

2(Vℓ+1
i )2,

where we introduced i.i.d. random variables Vℓ+1
i =

〈√
nℓ

σ2
w
Wℓ+1

·i , δℓ+1

∥δℓ+1∥

〉
∼ N (0, 1), i = 1, . . . , nℓ, which are indepen-

dent of δℓ+1. One can also see that ϕ′(hℓ) can only depend on {(Wj ,bj)}j=1,...ℓ, therefore it is independent of ∥δ∥ℓ+1

and of Vℓ+1
i , i = 1, . . . , nℓ. Moreover, ϕ′(hℓ

i) = ϕ′(Wℓ
i·x

ℓ−1) = ϕ′(Uℓ
i ) for all i = 1, . . . , nℓ, therefore ϕ′(hℓ) depends

only on Wℓ. Then we can write the following for the ratio of interest and its moments:

N ℓ
δ=

σ2
w

nℓ

nℓ∑
i=1

ϕ′(Uℓ
i )(Vℓ+1

i )2,

E[N ℓ
δ ] =

σ2
w

2
, E[(N ℓ

δ )
2] =

(σ2
w

2

)2(
1 +

5

nℓ

)
,

where we calculated the moments of the summands as

E[(ϕ′(hℓ
i))

2V2
i ] = E[(ϕ′(hℓ

i))
2]E[V2

i ] =
1

2
, V[(ϕ′(hℓ

i))
2V2

i ] = E[(ϕ′(hℓ
i))

4]E[V4
i ]−

1

4
=

5

4
.

Here we used that, in case of ReLU activation, ϕ′(hℓ
i), i = 1, . . . , nℓ are Bernoulli variables with probability of 1 and 0

equal to 1/2, since hℓ is symmetric around zero. Therefore, E[(ϕ′(hℓ
i))

2] = E[(ϕ′(hℓ
i))

4] = 1/2.

Same as in Lemma A.1, the limiting distribution of N ℓ
δ is given by the central limit theorem.

As we note in Section 3.4, many papers that study the NTK adopt the following assumption:

Assumption A.3 (Gradient independence assumption (GIA)). Matrix (Wℓ)T in backpropagation equations (7) and matrix
Wℓ in forward-propagation equations (3) are independent for all ℓ ∈ {1, . . . , L}.
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This assumption is of course not true; however, the products (Wℓ)Ti·x =
∑nℓ

k=1 W
ℓ
kixk and Wℓ

j·x =
∑nℓ−1

k=1 Wℓ
jkxk are

only dependent through the single summand containing Wℓ
ij . Thus, the correlations caused by this dependence are of order

O(1/M) and can be disregarded in the infinite-width limit. However, in our case of the infinite-depth-and-width limit terms
of order O(1/M) can have a non-trivial impact on the computations. Therefore, we calculate the effects of the dependence
between the forward-propagated chain and the backpropagated chain in the following lemma.

Lemma A.4 (Gradient independence assumption (GIA)). Consider the same setting as in Lemma A.1. Then the following
statements hold:

1. GIA does not change the expectation of ∥δℓ∥2/∥δℓ+k+1∥2:

E
[ k∏
p=0

N ℓ+p
δ

]
=

k∏
p=0

E[N ℓ+p
δ ] (28)

2. GIA changes the expectation of ∥δℓ∥2/∥δℓ+k+1∥2 · ∥xℓ+k∥2/∥xℓ−1∥2 by a term that has a non-trivial depth-and-width
limit where M → ∞, L → ∞, L/M → λ ∈ R. In particular, we have:

E
[ k∏
p=0

N ℓ+p
δ N ℓ+p

x

]
=

k∏
p=0

E[N ℓ+p
δ ]E[N ℓ+p

x ]
(
1 +

1

nℓ+p
+O

( 1

M3/2

))
, (29)

where nℓ = αℓM,αℓ ∈ R, ℓ = 1, . . . , L− 1

3. GIA does not change the expectation of (∥δℓ∥2/∥δℓ+k+1∥2)2 in the infinite-depth-and-width limit where M →
∞, L → ∞, L/M → λ ∈ R. In particular, we have:

E
[ k∏
p=0

(N ℓ+p
δ )2

]
=

k∏
p=0

E[(N ℓ+p
δ )2]

(
1 +O

( 1

M3/2

))
, (30)

where nℓ = αℓM,αℓ ∈ R, ℓ = 1, . . . , L− 1:

Proof. In Lemmas A.1 and A.2 we derived the following equations for N ℓ
δ and N ℓ

x:

N ℓ
δ=

σ2
w

nℓ

nℓ∑
i=1

(ϕ′(hℓ
i))

2(Vℓ+1
i )2=

σ2
w

nℓ

nℓ∑
i=1

(ϕ′(Uℓ
i ))

2(Vℓ+1
i )2,

N ℓ
x=

σ2
w

nℓ−1

nℓ∑
i=1

ϕ2(Uℓ
i ),

where Uℓ
i depends only on the i-th row of the weights matrix Wℓ

i· and Vℓ
j depends only on j-th column of the same matrix

Wℓ
·j for i = 1, . . . , nℓ, j = 1, . . . , nℓ−1, ℓ = 1, . . . , L− 1. Therefore, variables Uℓ

i and Vℓ
j are only dependent through the

single weight Wℓ
ij , which nevertheless makes N ℓ

δ and N ℓ+1
δ dependent for any ℓ = 1, . . . , L− 2. One can also see that

N ℓ
δ and N ℓ

x are dependent through {Uℓ
i }i=1,...,nℓ

. The objective of this lemma is to determine the effects of these weak
dependencies on the expectation of products that appear in the NTK.

Part 1. We first consider the product of ratios of the backpropagated errors:

E
[ k∏
p=0

N ℓ+p
δ

]
=

k∏
p=0

σ2
w

nℓ+p

nℓ∑
i0=1

· · ·
nℓ+k∑
ik=1

E[ϕ′(Uℓ
i0)(Vℓ+1

i0
)2ϕ′(Uℓ+1

i1
)(Vℓ+2

i1
)2 · · · · · ϕ′(Uℓ+k

ik
)(Vℓ+k+1

ik
)2]

=

k∏
p=0

σ2
w

nℓ+p

nℓ∑
i0=1

· · ·
nℓ+k∑
ik=1

E[ϕ′(Uℓ
i0)]E[(Vℓ+k+1

ik
)2]

k∏
p=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)]

=
1

2

k∏
p=0

σ2
w

nℓ+p

nℓ∑
i0=1

· · ·
nℓ+k∑
ik=1

k∏
p=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)].
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As Uℓ+p
ip

that Vℓ+p
ip−1

depend only through Wℓ+p
ipip−1

, we can condition the expectation of their product as follows:

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)] = E
[
E[(Vℓ+p

ip−1
)2 | Wℓ+p

ipip−1
] · E[ϕ′(Uℓ+p

ip
) | Wℓ+p

ipip−1
]
]
.

To simplify the notation, let us denote wipip−1
:=

√
nℓ+p−1

σ2
w

Wℓ+p
ipip−1

∼ N (0, 1), aj := xℓ+p
j /∥xℓ+p∥ and

bk := δℓ+p
k /∥δℓ+p∥. Then we have Vℓ+p

ip−1
=
∑nℓ+p

k=1 wkip−1
bk = wipip−1

bip +
∑

k ̸=ip
wkip−1

bk and

Uℓ+p
ip

=
∑nℓ+p−1

j=1 wjip−1
aj = wipip−1

aip−1
+
∑

j ̸=ip−1
wipjaj . We can then open the conditional expectations:

E[(Vℓ+p
ip−1

)2 | Wℓ+p
ipip−1

] = w2
ipip−1

b2ip + E[(
∑
k ̸=ip

wkip−1
bk)

2] = 1− b2ip(1− w2
ipip−1

),

E[ϕ′(Uℓ+p
ip

) | Wℓ+p
ipip−1

] = P[
∑

j ̸=ip−1

wipjbk > −wipip−1
aip−1

] = Φ
(wipip−1

aip−1√
1− a2ip−1

)
,

where Φ(·) is the CDF of the standard normal distribution. Here we used that
∑

k ̸=ip
wkip−1

bk ∼ N (0, 1 − b2ip) and∑
j ̸=ip−1

wipjaj ∼ N (0, 1− a2ip−1
). Then we have:

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)] = (1− b2ip)E[Φ(A · wipip−1)] + b2ipE[w
2
ipip−1

Φ(A · wipip−1)] =
1

2
,

where we used the following integrals:

E[Φ(A · wipip−1
)] =

1

2
+

1

2

∫ ∞

−∞

1√
2π

erf
( A√

2
wipip−1

)
exp
(
−
w2

ipip−1

2

)
dwipip−1

=
1

2
,

E[w2
ipip−1

Φ(A · wipip−1)] =
1

2
E[w2

ipip−1
]

+
1

2

∫ ∞

−∞

1√
2π

w2
ipip−1

erf
( A√

2
wipip−1

)
exp
(
−
w2

ipip−1

2

)
dwipip−1

=
1

2
.

Thus, the expectation of the product of the ratios of backpropagated errors is exactly equal to the product of their expectations:

E
[ k∏
p=0

N ℓ+p
δ

]
=

1

2

k∏
p=0

σ2
w

nℓ+p

nℓ∑
i0=1

· · ·
nℓ+k∑
ik=1

1

2k
=
(σ2

w

2

)k+1

=

k∏
p=0

E[N ℓ+p
δ ],

which completes the proof of the first statement.

Part 2. We now consider the expectation of products of the activations’ ratios and the backpropagated errors’ ratios for the
same layers. The product in a single layer is given by:

N ℓ
δN ℓ

x =
σ2
w

nℓ−1

σ2
w

nℓ

nℓ∑
i=1

nℓ∑
j=1

ϕ2(Uℓ
j )(ϕ

′(Uℓ
i ))

2(Vℓ+1
i )2 =

σ2
w

nℓ−1

σ2
w

nℓ

nℓ∑
i=1

nℓ∑
j=1

ϕ′(Uℓ
i )ϕ

′(Uℓ
j )(Uℓ

j )
2(Vℓ+1

i )2,

where we noticed that ϕ(Uℓ
i )ϕ

′(Uℓ
i ) = ϕ(Uℓ

i ) = Uℓ
i ϕ

′(Uℓ
i ). Then for the product involving multiple layers we have:

k∏
p=0

N ℓ+p
δ N ℓ+p

x =
σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏
j=0

( σ2
w

nℓ+j

)2 nℓ∑
i0=1

nℓ∑
j0=1

. . .

· · ·
nℓ+k∑
ik=1

nℓ+k∑
jk=1

ϕ′(Uℓ
i0)ϕ

′(Uℓ
j0)(Uℓ

j0)
2(Vℓ+1

i0
)2 . . . ϕ′(Uℓ+k

ik
)ϕ′(Uℓ+k

jk
)(Uℓ+k

jk
)2(Vℓ+k+1

ik
)2,
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And the expectation can be decomposed into products as follows:

E
[ k∏
p=0

N ℓ+p
δ N ℓ+p

x

]
=

σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏
j=0

( σ2
w

nℓ+j

)2 nℓ∑
i0=1

nℓ∑
j0=1

. . .

· · ·
nℓ+k∑
ik=1

nℓ+k∑
jk=1

E[ϕ′(Uℓ
i0)ϕ

′(Uℓ
j0)(Uℓ

j0)
2]E[(Vℓ+k+1

ik
)2] ·

k∏
p=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2]

=
nℓ

4

(
1 +

1

nℓ

) σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏
j=0

( σ2
w

nℓ+j

)2 nℓ∑
i0=1

· · ·
nℓ+k∑
ik=1

nℓ+k∑
jk=1

k∏
p=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2],

where we used that E[(V l+k+1
ik

)2] = 1 and
∑nℓ

j0=1 E[ϕ′(Uℓ
i0
)ϕ′(Uℓ

j0
)(Uℓ

j0
)2] = 1

4 (nℓ − 1) + 1
2 = nℓ

4

(
1 + 1

nℓ

)
. If jp ̸= ip,

we also know that the terms in E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] are only dependent through {Wℓ+p
ipip−1

,Wℓ+p
jp,ip−1

}.
Same as in Part 1, we can condition the product on these weights:

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] = E
[
E[(Vℓ+p

ip−1
)2 | wipip−1

, wjpip−1
] · E[ϕ′(Uℓ+p

ip
) | wipip−1

]·
· E[ϕ′(Uℓ+p

jp
) | wjpip−1 ] · E[(Uℓ+p

jp
)2 | wjpip−1 ]

]
.

And we can again write the conditional expectations in case jp ̸= ip as follows:

E[(Vℓ+p
ip−1

)2 | wipip−1
, wjpip−1

] = 1− b2ip(1− w2
ipip−1

)− b2jp(1− w2
jpip−1

) + 2bipbjpwipip−1
wjpip−1

,

E[ϕ′(Uℓ+p
ip

) | wipip−1
] = Φ

(wipip−1aip−1√
1− a2ip−1

)
,

E[ϕ′(Uℓ+p
jp

) | wjpip−1
] = Φ

(wjpip−1
aip−1√

1− a2ip−1

)
,

E[(Uℓ+p
jp

)2 | wjpip−1 ] = 1− a2ip−1
(1− w2

jpip−1
).

To calculate the expectation of the product here we will need to use that E[Φ(A · w)] = E[w2Φ(A · w)] = 1
2 , which we

already computed in Part 1. One can also easily see that E[w4Φ(A ·w)] = 3
2 . The other expectations involved in the product

can be calculated as follows:

E[wΦ(A · w)] = 1

2
√
2π

∫ ∞

−∞
w erf

( A√
2
w
)
exp
(
−w2

2

)
dw =

1√
2π

A√
A2 + 1

,

E[w3Φ(A · w)] = 1

2
√
2π

∫ ∞

−∞
w3 erf

( A√
2
w
)
exp
(
−w2

2

)
dw =

1√
2π

A√
A2 + 1

(
2 +

1

A2 + 1

)
.

Expressions for the integrals above can be found e.g. in (Korotkov & Korotkov, 2020). Using all the above expressions, we
can obtain the following expression for the considered expectation in case jp ̸= ip:

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
1

4
(1− b2ip − b2jp)(1− a2ip−1

) +
1

4
(b2ip + b2jp)(1− a2ip−1

)

+
1

4
(1− b2ip − b2jp)a

2
ip−1

+
1

4
b2ipa

2
ip−1

+
3

4
b2jpa

2
ip−1

+ 2bipbjp(1− a2ip−1
)

4A2

A2 + 1
+ 2bipbjpa

2
ip−1

4A2

A2 + 1

(
2 +

1

A2 + 1

)
=

1

4
+

1

2
b2jpa

2
ip−1

+ 8bipbjpa
2
ip−1

(1 + 2a2ip−1
− a4ip−1

)

On the other hand, if jp = ip we have ϕ′(U l+p
ip

)ϕ′(U l+p
jp

)(U l+p
jp

)2 = ϕ′(U l+p
ip

))(U l+p
ip

)2 and therefore the expectation is
given by:

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)(Uℓ+p
ip

)2] =
1

2
+ a2ip−1

b2ip .
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We now notice that index jp appears only in one expectation term in the product for each p. Therefore, we can sum over jp
independently for all p:

nℓ+p∑
jp=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
nℓ+p

4
(1 +

1

nℓ+p
) +

1

2
a2ip−1

+
1

2
a2ip−1

b2ip

+
(nℓ+p∑
jp=1

bjp

)
8bipa

2
ip−1

(1 + 2a2ip−1
− a4ip−1

).

On the other hand, we need to sum over ip−1 values sequentially over different values of p. First, we can calculate the
following sum:

nℓ+p−1∑
ip−1=1

nℓ+p∑
jp=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
nℓ+p−1nℓ+p

4
(1 +

1

nℓ+p
) +

1

2
+

1

2
b2ip

+
(nℓ+p∑
jp=1

bjp

)
8bip(1 + 2

nℓ+p−1∑
ip−1=1

a4ip−1
−

nℓ+p−1∑
ip−1=1

a6ip−1
).

Then we can obtain the following bounds for the sum of bjp and aip−1
given by Hölder’s inequality:

∣∣∣nℓ+p∑
jp=1

bjp

∣∣∣ ≤ nℓ+p∑
jp=1

|bjp | = ∥b∥1 ≤ √
nℓ+p∥b2∥ =

√
nℓ+p,

0 ≤ 1 + 2

nℓ+p−1∑
ip−1=1

a4ip−1
−

nℓ+p−1∑
ip−1=1

a6ip−1
≤ 3,

|bip | ≤ 1, b2ip ≤ 1.

Therefore, we can rewrite the previous sum as

nℓ+p−1∑
ip−1=1

nℓ+p∑
jp=1

E[(Vℓ+p
ip−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
nℓ+p−1nℓ+p

4

(
1 +

1

nℓ+p
+O

( 1

M3/2

))

Finally, for the expectation of the whole product we have:

E
[ k∏
p=0

N ℓ+p
δ N ℓ+p

x

]
=

σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏
j=0

( σ2
w

nℓ+j

)2nℓnℓ+k

4

(
1 +

1

nℓ

) k∏
p=1

nℓ+p−1nℓ+p

4

(
1 +

1

nℓ+p
+O

( 1

M3/2

))

=
(σ2

w

2

)2(k+1)nℓ+k

nℓ−1

k∏
p=0

(
1 +

1

nℓ+p
+O

( 1

M3/2

))

=

k∏
p=0

E[N ℓ+p
δ ]E[N ℓ+p

x ]
(
1 +

1

nℓ+p
+O

( 1

M3/2

))

Part 3. Finally, we consider the expectation of a product of squared ratios of the backpropagated errors. In a single layer we
have:

(N ℓ
δ )

2 =
(σ2

w

nℓ

)2 nℓ∑
i=1

nℓ∑
j=1

ϕ′(Uℓ
i )ϕ

′(Uℓ
j )(Vℓ+1

i )2(Vℓ+1
j )2.
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And for the product in multiple layers we have:
k∏

p=0

(N ℓ+p
δ )2 =

k∏
p=0

( σ2
w

nℓ+j

)2 nℓ∑
i0=1

nℓ∑
j0=1

. . .

· · ·
nℓ+k∑
ik=1

nℓ+k∑
jk=1

ϕ′(Uℓ
i0)ϕ

′(Uℓ
j0)(Vℓ+1

i0
)2(Vℓ+1

j0
)2 . . . ϕ′(Uℓ+k

ik
)ϕ′(Uℓ+k

jk
)(Vℓ+k+1

jk
)2(Vℓ+k+1

ik
)2,

E
[ k∏
p=0

(N ℓ+p
δ )2] =

k∏
p=0

( σ2
w

nℓ+p

)2 nℓ∑
i0=1

nℓ∑
j0=1

. . .

· · ·
nℓ+k∑
ik=1

nℓ+k∑
jk=1

E[ϕ′(Uℓ
i0)ϕ

′(Uℓ
j0)]E[(Vℓ+k+1

ik
)2(Vℓ+k+1

jk
)2] ·

k∏
p=1

E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)]

Here the expectations under product are more complicated since the variables in E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)]

are dependent through {Wℓ+p
ipip−1

,Wℓ+p
jp,ip−1

,Wℓ+p
ipjp−1

,Wℓ+p
jpjp−1

}. Nevertheless, we can still decompose the expectation as
before into the following terms:

E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)] = E
[
E[(Vℓ+p

ip−1
)2 | wipip−1

, wjpip−1
] · E

[
E[(Vℓ+p

jp−1
)2 | wipjp−1

, wjpjp−1
]·

E[ϕ′(Uℓ+p
ip

) | wipip−1
, wipjp−1

] · E[ϕ′(Uℓ+p
jp

) | wjpip−1
, wjpjp−1

]
]
.

And each conditional expectations can again be calculated explicitly:

E[(Vℓ+p
ip−1

)2 | wipip−1
, wjpip−1

] = 1− b2ip(1− w2
ipip−1

)− b2jp(1− w2
jpip−1

) + 2bipbjpwipip−1
wjpip−1

,

E[(Vℓ+p
jp−1

)2 | wipjp−1 , wjpjp−1 ] = 1− b2ip(1− w2
ipjp−1

)− b2jp(1− w2
jpjp−1

) + 2bipbjpwipjp−1wjpjp−1 ,

E[ϕ′(Uℓ+p
ip

) | wipip−1 , wipjp−1 ] = Φ
(wipip−1

aip−1
+ wipjp−1

ajp−1√
1− a2ip−1

− a2jp−1

)
,

E[ϕ′(Uℓ+p
jp

) | wjpip−1
, wjpjp−1

] = Φ
(wjpip−1

aip−1
+ wjpjp−1

ajp−1√
1− a2ip−1

− a2jp−1

)
.

We open the expectation using the following expressions, which, as before, are integrals involving the error function
computed e.g. in (Korotkov & Korotkov, 2020):

E[Φ(Aiwi +Ajwj)] = E[w2
iΦ(Aiwi +Ajwj)] =

1

2
,

E

[
wiΦ

( wiaip−1
+ wjajp−1√

1− a2ip−1
− a2jp−1

)]
=

√
1

2π
aip−1 ,

E

[
wiwjΦ

( wiaip−1
+ wjajp−1√

1− a2ip−1
− a2jp−1

)]
= 0,

E

[
w2

iw
2
jΦ
( wiaip−1

+ wjajp−1√
1− a2ip−1

− a2jp−1

)]
=

1

2
,

E

[
wiw

2
jΦ
( wiaip−1 + wjajp−1√

1− a2ip−1
− a2jp−1

)]
=

1√
2π

aip−1
(1− a2jp−1

).

Using all of the above, we get the following expression for the expectation in case ip−1 ̸= jp−1:

E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)] =


1

2
ip = jp,

1

4
+

1

π
bipbjp(a

2
ip−1

+ a2jp−1
− 2a2ip−1

a2jp−1
(b2ip + b2jp)) ip ̸= jp,
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In case ip−1 = jp−1, we have

E[(Vℓ+p
ip−1

)4 | wipip−1
, wjpip−1

] = 1− b2ip(1− w2
ipip−1

)− b2jp(1− w2
jpip−1

) + 2bipbjpwipip−1
wjpip−1

,

E[ϕ′(Uℓ+p
ip

) | wipip−1
] = Φ

(wipip−1aip−1√
1− a2ip−1

)
,

E[ϕ′(Uℓ+p
jp

) | wjpip−1 ] = Φ
(wjpip−1

aip−1√
1− a2ip−1

)
.

Therefore, the expectation in this case is given by:

E[(Vℓ+p
ip−1

)4ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)] =


3

2
ip = jp,

3

4
+

2

π
bipbjpa

2
ip−1

(3− a2ip−1
(b2ip + b2jp)) ip ̸= jp.

To compute the sum, we now notice that equality of indices in one layer (ip = jp) amounts to multiplying the product∏k
p=1 E[(V

ℓ+p
ip−1

)2(Vℓ+p
jp−1

)2ϕ′(Uℓ+p
ip

)ϕ′(Uℓ+p
jp

)] by 6 +O(1/M3/2) and for every pair of indices (ip, jp) there are only nℓ+p

summands with this multiplier and nℓ+p(nℓ+p − 1) summands without it. We can also see that if we computed the sum

with all the pairs of indices not equal, we would get
∏k

p=0

(
nℓ+p/2

)2(
1− 1/nℓ+p +O(1/M3/2)

)
. Therefore, we get the

desired expression for the expectation of the product:

E
[ k∏
p=0

(N ℓ+p
δ )2] =

k∏
p=0

( σ2
w

nℓ+p

)2 k∏
p=0

(nℓ+p

2

)2(
1− 1

nℓ+p
+

6

nℓ+p
+O

( 1

M3/2

))

=

k∏
p=0

(σ2
w

2

)2(
1 +

5

nℓ+p
+O

( 1

M3/2

))

=

k∏
p=0

E[(N ℓ+p
δ )2]

(
1 +O

( 1

M3/2

))
.

Lemma A.5 (Dispersion of ΘW (x, x)). Consider a fully-connected DNN of depth L defined in (3) initialized as in (6).
The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M . The
activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}, and the output layer is linear. Assume also that the
biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the component of the NTK corresponding

to the weights ΘW (x, x) :=
∑L

ℓ=1

∑
ij

(∂f(x)
∂Wℓ

ij

)2
has the following properties at initialization:

E[ΘW (x, x)] =
(σ2

w

2

)L−1(
1 +

M

n0
(L− 1)

)
, (31)

E[Θ2
W (x, x)]

E2[ΘW (x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
. (32)
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Proof. Using backpropagation formulas for the gradients, we can rewrite the NTK as follows:

ΘW (x, x) =

L∑
ℓ=1

nℓ∑
i=1

nℓ−1∑
j=1

(δℓi )
2(xℓ−1

j )2

=

L∑
ℓ=1

∥δℓ × xℓ−1∥2 =

L∑
ℓ=1

∥δℓ∥2∥xℓ−1∥2

=

L∑
ℓ=1

∥δL∥2∥x0∥2
L−1∏
j=ℓ

∥δj∥2
∥δj+1∥2

ℓ−1∏
k=1

∥xk∥2
∥xk−1∥2

=

L∑
ℓ=1

∥δL∥2∥x0∥2
L−1∏
j=ℓ

N j
δ

ℓ−1∏
k=1

N k
x .

Here for the simplicity of notation we omit the dependence on δℓ and xℓ−1 on the input x.

If the last layer has a linear activation and the input data is normalized, we also have that ∥δL∥2∥x0∥2 = 1. Then, using the
results about expectations of N ℓ

δ and N ℓ
x from Lemma A.1 and Lemma A.2, as well as the results about correlations from

Lemma A.4, we can write the following for the expectation of ΘW (x, x):

E[ΘW (x, x)] =

L∑
ℓ=1

L−1∏
j=ℓ

σ2
w

2

ℓ−1∏
k=1

σ2
w

2

nk

nk−1
=
(σ2

w

2

)L−1 L∑
ℓ=1

nℓ−1

n0

And for constant width of hidden layers, i.e. nℓ = M, ℓ = 1, . . . , L− 1, this simplifies to

E[ΘW (x, x)] =
(σ2

w

2

)L−1(
1 +

M

n0
(L− 1)

)
∝
(σ2

w

2

)LML

n0

Now we consider the second moment of the NTK, which is given by:

E[Θ2
W (x, x)] =

L∑
ℓ=1

E[θ2ℓ ] + 2
∑

1≤l1<l2≤L

E[θℓ1θℓ2 ],

θℓ =

L−1∏
j=ℓ

N j
δ

ℓ−1∏
k=1

N k
x , ℓ = 1, . . . , L.

We can open the expectation of the squared terms defined above as follows:

E[θ2ℓ ] = E
[L−1∏
j=ℓ

(N j
δ )

2
]
E
[ℓ−1∏
k=1

(N k
x )

2
]

=
(σ2

w

2

)2(L−1)(nℓ−1

n0

)2 L−1∏
j=ℓ

(
1 +

5

nj
+O

( 1

M3/2

)) ℓ−1∏
k=1

(
1 +

5

nk

)
,

which simplifies to the following expressions in case of constant width M :

E[θ2ℓ ] =
(σ2

w

2

)2(L−1)(M
n0

)2(
1 +

5

M
+O

( 1

M3/2

))L−1

, ℓ > 1,

E[θ21] =
(σ2

w

2

)2(L−1)(
1 +

5

M
+O

( 1

M3/2

))L−1

.
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And the mixed terms with 1 ≤ ℓ1 < ℓ2 ≤ L can be calculated as follows:

E[θℓ1θℓ2 ] = E
[L−1∏
j=ℓ2

(N j
δ )

2
]
E
[ℓ2−1∏
p=ℓ1

N p
δ N p

x

] ℓ1−1∏
k=1

E[(N k
x )

2]

=
(σ2

w

2

)2(L−1)(nℓ2−1nℓ1−1

n2
0

) L−1∏
j=ℓ2

(
1 +

5

nj
+O

( 1

M3/2

)) ℓ2−1∏
p=ℓ1

(
1 +

1

np
+O

( 1

M3/2

)) ℓ1−1∏
k=1

(
1 +

5

nk

)
,

which for constant width M simplifies to

E[θℓ1θℓ2 ] =
(σ2

w

2

)2(L−1)(M
n0

)2(
1 +

5

M
+O

( 1

M3/2

))L−1−∆ℓ
(
1 +

1

M
+O

( 1

M3/2

))∆ℓ

, ℓ1 > 1,

E[θ1θℓ2 ] =
(σ2

w

2

)2(L−1)(M
n0

)(
1 +

5

M
+O

( 1

M3/2

))L−ℓ2(
1 +

1

M
+O

( 1

M3/2

))ℓ2−1

.

To make the notation lighter, we will denote x := 1 + 5/M +O
(
M−3/2

)
, y := 1 + 1/M +O

(
M−3/2

)
, a := σ2

w/2 and
λ := L/M here and in the following proofs. Then we can rewrite the two sums that comprise the second moment of the
NTK as follows:

L∑
ℓ=1

E[θ2ℓ ] = a2(L−1)xL−1
(M2

n2
0

(L− 1) + 1
)

= a2(L−1)M
2L2

n2
0

[
xL−1 1

λM
+O

( 1

M3/2

)]
= a2(L−1)M

2L2

n2
0

[
xL−1 1

λM
+O

( 1

M3/2

)]
,

∑
1≤ℓ1<ℓ2≤L

E[θℓ1θℓ2 ] = a2(L−1)M
2

n2
0

L−2∑
∆ℓ=1

(L− 1−∆ℓ) x
L−1−∆ℓy∆ℓ + a2(L−1)M

n0

L∑
ℓ2=2

xL−ℓ2yℓ2−1

= a2(L−1) M4

16n2
0

(
(L− 2)yxL − (L− 1)y2xL−1 + xyL

)
+ a2(L−1)M

2

4n0
(yxL−1 − yL)

= a2(L−1)M
2L2

n2
0

[
xL

(
1

4λ

(
1− 5

M

)
− 1

16λ2

(
1 +

5− 4α0

M

)
+O

( 1

M3/2

))
+

+ yL

(
1

16λ2

(
1 +

5− 4α0

M

)
+O

( 1

M3/2

))]
Therefore, the complete expression for the second moment of ΘW (x, x) is given by:

L∑
ℓ=1

E[θ2ℓ ] + 2
∑

1≤ℓ1<ℓ2≤L

E[θℓ1θℓ2 ] = a2(L−1)M
2L2

n2
0

[
xL

(
1

2λ

(
1− 3

M

)
− 1

8λ2

(
1 +

5− 4α0

M

)
+O

( 1

M3/2

))
+

+ yL

(
1

8λ2

(
1 +

5− 4α0

M

)
+O

( 1

M3/2

))]

a2(L−1)M
2L2

n2
0

[
xL

(
1

2λ
− 1

8λ2
+O

( 1

M

))
+ yL

1

8λ2
+O

( 1

M

))]
One can see that in the limit L → ∞, M → ∞, L/M → λ ∈ R, we have xL → e5λ and yL → eλ. Therefore, we can find
the limit of the desired ratio:

E[Θ2
W (x, x)](σ2

w

2

)2(L−1)L2M2

n2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
.
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Lemma A.6 (Dispersion of Θb(x, x)). Consider a fully-connected DNN of depth L defined in (3) initialized as in (6). The
input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M . The
activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}, and the output layer is linear. Assume also that the
biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the component of the NTK corresponding

to the biases Θb(x, x) :=
∑L

ℓ=1

∑
i

(∂f(x)
∂bℓ

i

)2
has the following properties at initialization:

E[Θb(x, x)] =



(σ2
w

2

)L
− 1

σ2
w

2
− 1

if
σ2
w

2
̸= 1

L if
σ2
w

2
= 1

(33)

E[Θ2
b(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R



1 if
σ2
w

2
< 1

2

25λ2
(e5λ − 1)− 2

5λ
if
σ2
w

2
= 1

e5λ if
σ2
w

2
> 1

(34)

Proof. Using backpropagation equations (7), we can obtain the following expression for Θb(x, x):

Θb(x, x) =

L∑
ℓ=1

∥δℓ∥2 = ∥δL∥2
L∑

ℓ=1

L−1∏
j=ℓ

∥δj∥2
∥δj+1∥2 =

L∑
ℓ=1

L−1∏
j=ℓ

N j
δ .

In this lemma, we will again denote a := σ2
w/2 and x := 1 + 5/M +O(1/M3/2). And in the following computations, we

will need to consider cases with a ̸= 1 and a = 1 separately.

Case 1: a ̸= 1. In this case the expectation is given by a sum of a geometric progression:

E[Θb(x, x)] =

L∑
ℓ=1

L−1∏
j=ℓ

E[N j
δ ] =

L∑
ℓ=1

aL−ℓ =
aL − 1

a− 1

And for the second moment we can write:

E[Θb(x, x)
2] = E

[( L∑
ℓ=1

L−1∏
j=ℓ

N j
δ

)2]
=

L∑
ℓ=1

E
[L−1∏
j=ℓ

(N j
δ )

2
]
+ 2

∑
1≤ℓ1<ℓ2≤L

E
[ℓ2−1∏
j=ℓ1

N j
δ

L−1∏
k=ℓ2

(
N k

δ

)2]

=

L∑
ℓ=1

a2(L−ℓ)
L−1∏
j=ℓ

(
1 +

5

nj
+O

( 1

M3/2

))
+ 2

∑
1≤ℓ1<ℓ2≤L

a2L−ℓ1−ℓ2

L−1∏
k=ℓ2

(
1 +

5

nk
+O

( 1

M3/2

))
For constant width M the above expression simplifies to the following sum:

E[Θb(x, x)
2] =

L∑
ℓ=1

a2(L−ℓ)xL−ℓ + 2
∑

1≤ℓ1<ℓ2≤L

a2L−ℓ1−ℓ2xL−ℓ2

=

L∑
ℓ=1

a2(L−ℓ)xL−ℓ + 2

L−1∑
ℓ1=1

a2(L−ℓ)xL−ℓ
L−ℓ∑
∆ℓ=1

a−∆ℓx−∆ℓ
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And the involved terms can be further calculated explicitly as follows:

E[Θb(x, x)
2] =

a2LxL − 1

a2x− 1
+

2

ax− 1

L−1∑
ℓ=1

a2(L−l)xL−l(1− al−Lxl−L)

=
a2LxL − 1

a2x− 1
+

2

ax− 1

(a2LxL − 1

a2x− 1
− 1− aL − a

a− 1

)
=

a2LxL − 1

a2x− 1

ax+ 1

ax− 1
− 2

ax− 1

aL − 1

a− 1

=
1

(a− 1)2

[
a2LxL

(
1 +O

( 1

M

))
− 2aL

(
1 +O

( 1

M

))
+ 1 +O

( 1

M

))]

If a < 1, the expectation and the second moment have finite limits:

E[Θb(x, x)] −−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

1− a

E[Θb(x, x)
2] −−−−−−−−−→

M→∞,L→∞,
L/M→λ∈R

−1

a2 − 1

a+ 1

a− 1
− 2

a− 1

−1

a− 1
=

1

(a− 1)2

Therefore for a < 1 we have
E[Θ2

b(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

On the other hand, if a > 1 then the limits are infinite but there is a finite limit of the ratio:

E[Θb(x, x)
2]

a2L/(a− 1)2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

e5λ

Case 2: a = 1. In this case, the expectation is just a sum of ones, so we have

E[Θb(x, x)] =

L∑
ℓ=1

1 = L

And the second moment can be calculated as follows:

E[Θb(x, x)
2] =

L∑
ℓ=1

xL−ℓ + 2

L−1∑
ℓ=1

xL−ℓ
L−l∑
∆ℓ=1

x−∆ℓ =
xL − 1

x− 1
+

2

x− 1

(L−1∑
ℓ=1

xL−ℓ −
L−1∑
ℓ=1

1
)

=
xL − 1

x− 1
+

2

x− 1

(xL − x

x− 1
− L+ 1

)
= M2

[
xL
( 1

5M
+

2

25

)
− 1

5M
− 10λ+ 2

25

]

=
xL − 1

x− 1
+

2

x− 1

(xL − x

x− 1
− L+ 1

)
= L2

[
xL
( 2

25λ2
+O

( 1

M

))
− 2

5λ
− 2

25λ2
+O

( 1

M

)]

Then for the desired ratio we have the following result in the limit:

E[Θb(x, x)
2]

L2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

2

25λ2
(e5λ − 1)− 2

5λ
,

which completes the proof for all the cases.
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Lemma A.7 (Dispersion of ΘW (x, x)Θb(x, x)). Consider a fully-connected DNN of depth L defined in (3) initialized as in
(6). The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M .
The activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}, and the output layer is linear. Assume also
that the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the following statements hold:

1. In the chaotic phase, i.e. if σ2
w/2 > 1:

E[ΘW (x, x)Θb(x, x)]

E2[ΘW (x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0 (35)

2. In the ordered phase, i.e. if σ2
w/2 < 1:

E[ΘW (x, x)Θb(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0 (36)

3. At the EOC, i.e. if σ2
w/2 = 1:

E[ΘW (x, x)Θb(x, x)]

L2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

4α0

(
e5λ

9

25λ2
− eλ

1

λ2
− 4

5λ
+

16

25λ2

)
(37)

Proof. We can decompose ΘW (x, x)Θb(x, x) into telescopic products as follows:

ΘW (x, x)Θb(x, x) =

L∑
ℓ=1

∥δℓ∥2∥xℓ−1∥2
L∑

ℓ′=1

∥δℓ′∥2

= ∥δL∥4∥x0∥2
L∑

ℓ=1

L−1∏
j=ℓ

∥δj∥4
∥δj+1∥4

ℓ−1∏
k=1

∥xk∥2
∥xk−1∥2

+ ∥δL∥4∥x0∥2
∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏
p=ℓ1

∥δp∥2
∥δp+1∥2

L−1∏
j=ℓ2

∥δj∥4
∥δj+1∥4

ℓ2−1∏
k=1

∥xk∥2
∥xk−1∥2

+ ∥δL∥4∥x0∥2
∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏
p=ℓ1

∥δp∥2
∥δp+1∥2

L−1∏
j=ℓ2

∥δj∥4
∥δj+1∥4

ℓ1−1∏
k=1

∥xk∥2
∥xk−1∥2

Then, as in the previous lemmas, we can calculate the expectation using the results of Lemmas A.1, A.2 and A.4:

E[ΘW (x, x)Θb(x, x)] =

L∑
ℓ=1

E
[L−1∏
j=ℓ

(N j
δ )

2
] ℓ−1∏
k=1

E[N k
x ] +

∑
1≤ℓ1<ℓ2≤L

ℓ2−1∏
p=ℓ1

E[N p
δ N p

x ]E
[L−1∏
j=ℓ2

(N j
δ )

2
] ℓ1−1∏

k=1

E[N k
x ]

+
∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏
p=ℓ1

E[N p
δ ]E
[L−1∏
j=ℓ2

(N j
δ )

2
] ℓ1−1∏

k=1

E[N k
x ]

=

L∑
ℓ=1

a2L−ℓ−1nℓ−1

n0

L−1∏
j=ℓ

(
1 +

5

nj
+
( 1

M3/2

))

+
∑

1≤ℓ1<ℓ2≤L

a2L−ℓ1−1nℓ2−1

n0

ℓ2−1∏
p=ℓ1

(
1 +

1

np
+
( 1

M3/2

)) L−1∏
j=ℓ2

(
1 +

5

nj
+
( 1

M3/2

))

+
∑

1≤ℓ1<ℓ2≤L

a2L−ℓ2−1nℓ1−1

n0

L−1∏
j=ℓ2

(
1 +

5

nj
+
( 1

M3/2

))
,

where we denoted a := σ2
w/2. As in Lemma A.6, we will need to consider the cases with a ̸= 1 and a = 1 separately here.
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Case 1: a ̸= 1. For constant width M the above expression for the expectation simplifies to:

E[ΘW (x, x)Θb(x, x)] =

L∑
ℓ=1

nℓ−1

n0
a2L−ℓ−1xL−ℓ +

L−1∑
ℓ1=1

a2L−ℓ1−1
L∑

ℓ2=ℓ1+1

nℓ2−1

n0
yℓ2−ℓ1xL−ℓ2

+

L−1∑
ℓ1=1

nℓ1−1

n0

L∑
ℓ2=ℓ1+1

a2L−ℓ2−1xL−ℓ2

= a2(L−1)xL−1
(
1 +

M

n0

1

ax− 1

)
− M

n0

aL−1

ax− 1

+ a2(L−1)xL−1M

n0

1

x− y

ay

ax− 1
− a2(L−1)yL

M

n0

1

x− y

ay

ay − 1

+ aL
M

n0

1

x− y

( −xy

ax− 1
+

y2

ay − 1

)
+ a2(L−1)xL−1 1

ax− 1

(
1 +

M

n0

1

ax− 1

)
− aL−1

ax− 1
− aL−1

ax− 1

M

n0
(L− 2)− M

n0

aLx

(ax− 1)2

= a2(L−1)xL−1

[(
1 +

M

n0

1

ax− 1

)(
1 +

1

ax− 1

)
+

M

n0

1

x− y

ay

ax− 1

]

− a2(L−1)yL
M

n0

1

x− y

ay

ay − 1

+ aL−1

[
M

n0

a

x− y

( −xy

ax− 1
+

y2

ay − 1

)
− 1

ax− 1

(
1 +

M(L− 1)

n0

)
− M

n0

ax

(ax− 1)2

]

= a2(L−1)xL−1 M

4α0

a

ax− 1

[
y +

4α0x

M
+

4x

(ax− 1)M
+O

( 1

M

)]

− a2(L−1)yL
M

4α0

a

ay − 1

[
y +O

( 1

M

)]

+ aL−1 M

4α0

a

ax− 1

[
16

M2(ay − 1)(ax− 1)
− 4α0

Ma

(
1 +

L− 1

α0

)]

=
M

4α0

a

a− 1

[
a2(L−1)xL−1 − a2(L−1)yL − 4aL−1λ+O

( 1

M

)]
,

where we also denoted x := 1 + 5/M +O(1/M3/2) and y := 1 + 1/M +O(1/M3/2). From the last expression, we see
that E[ΘW (x, x)Θb(x, x)] tends to zero if a < 1, therefore in this case we get

E[ΘW (x, x)Θb(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0, (38)

using the result of Lemma A.6 that E[Θ2
b(x, x)] has a finite limit when a < 1.

On the other hand, if a > 1, we can see that E[ΘW (x, x)Θb(x, x)] contains polynomials of M and L of degree not larger
than 1. Therefore, we have

E[ΘW (x, x)Θb(x, x)]

a2LM2L2/n2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0, (39)

which completes the proof for the case when a ̸= 1.
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Case 2: a = 1. In this case, the expression for the expectation with constant width M is given by:

E[ΘW (x, x)Θb(x, x)] =

L∑
ℓ=1

nℓ−1

n0
xL−ℓ +

L−1∑
ℓ1=1

L∑
ℓ2=ℓ1+1

nℓ2−1

n0
yℓ2−ℓ1xL−ℓ2

+

L−1∑
ℓ1=1

nℓ1−1

n0

L∑
ℓ2=ℓ1+1

xL−ℓ2

=
M2

4α0

[
xL−1

( 9

25
+O

( 1

M

))
− yL

(
1 +O

( 1

M

))
− 4λ

5
+

16

25

]

Theorem A.8 (Dispersion of the NTK at initialization). Consider a fully-connected DNN of depth L defined in (3) initialized
as in (6). The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width
M . The activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}, and the output layer is linear. Assume
also that the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the dispersion of the NTK at
initialization is given by the following expressions:

1. In the chaotic phase (a := σ2
w/2 > 1), the NTK dispersion grows exponentially with the depth-to-width ratio

λ := L/M as
E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
(40)

2. At the EOC (a = 1), the NTK dispersion grows exponentially with the depth-to-width ratio λ as well, but with a slower
rate given by

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

(1 + α0)2λ

[
e5λ
(1
2
+

16α2
0 + 36α0 − 25

200λ

)

+ eλ
1− 4α0

8λ
+

2α0(4− α0)

25λ
− 2α0(1 + α0)

5

] (41)

3. In the ordered phase (a < 1), the NTK variance does not grow with λ and we have

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1 (42)

Proof. We will consider the cases of the ordered phase (a := σ2
w/2 < 1), the chaotic phase (a > 1) and the EOC (a = 1)

separately.

Case 1: Chaotic phase. Using the results of Lemmas A.5, A.6, and A.7 and taking into account that a > 1, we obtain the
following limit:

E[Θb(x, x)]

E[ΘW (x, x)]
=

aL − 1

a− 1

aL−1(1 +
M

n0
(L− 1))

=

a− a−L+1

a− 1

1 +
M

n0
(L− 1)

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

Therefore, recalling that Θ(x, x) = ΘW (x, x) + Θb(x, x), we get the ratio between the complete NTK and its component
corresponding to weights:

E2[Θ(x, x)]

E2[ΘW (x, x)]
=
(
1 +

E[Θb(x, x)]

E[ΘW (x, x)]

)2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1
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Similarly, from Lemmas A.5, A.6, A.7, we can also obtain the following limit:

E[Θ2(x, x)]

E2[ΘW (x, x)]
=

E[Θ2
W (x, x)]

E2[ΘW (x, x)]
+

E[Θ2
b(x, x)]

E2[ΘW (x, x)]
+

E[ΘW (x, x)Θb(x, x)]

E2[ΘW (x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

E[Θ2
W (x, x)]

E2[ΘW (x, x)]

Therefore, the dispersion of the NTK is determined by ΘW (x, x) in the infinite-depth-and-width limit in case of the
initialization in the chaotic phase. Then we have the following expression for the dispersion in the limit:

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
,

which completes the first part of the proof.

Case 2: Ordered phase. In the ordered phase, i.e. if a < 1, we have that aL → 0 as L → ∞, so Lemmas A.5, A.6 and A.7
suggest different relations between the terms of the NTK:

E[ΘW (x, x)]

E[Θb(x, x)]
=

aL−1(1 +
M

n0
(L− 1))

aL − 1

a− 1

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

E[Θ2
W (x, x)] −−−−−−−−−→

M→∞,L→∞,
L/M→λ∈R

0,

E[ΘW (x, x)Θb(x, x)] −−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

E[Θ2
b(x, x)] −−−−−−−−−→

M→∞,L→∞,
L/M→λ∈R

1

(a− 1)2

Therefore, the dispersion of the NTK is determined by the component corresponding to biases Θb in the limit in case of
initialization in the ordered phase:

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1,

which completes this part of the proof.

Case 3: EOC. Here we have aℓ = 1 for any ℓ ∈ N. Therefore, we can simplify the expressions for expectations from
Lemmas A.5, A.6 and A.7 as follows:

E[ΘW (x, x)] = 1 +
1

α0
(L− 1),

E[Θb(x, x)] = L.

Then the expectation of the complete NTK is given by:

E[Θ(x, x)] = E[ΘW (x, x)] + E[Θb(x, x)] =
L

α0

(
1 + α0 +

α0

L
− 1

L

)
∝ L

α0
(1 + α0).

The squared NTK is given by Θ2(x, x) = Θ2
W (x, x) + 2ΘW (x, x)Θb(x, x) + Θ2

b(x, x). Then we need to consider the
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expectations of all the components of this sum:

E[Θ2
W (x, x)]

L2/α2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

e5λ
( 1

2λ
− 1

8λ2

)
+ eλ

1

8λ2
,

E[Θ2
b(x, x)]

L2/α2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

α2
0

( 2

25λ2
e5λ − 2

25λ2
− 2

5λ

)
,

E[ΘW (x, x)Θb(x, x)]

L2/α2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

α0

4

( 9

25λ2
e5λ − 1

λ2
eλ − 4

5λ
+

16

25λ2

)
.

Putting the above expressions together, we get the following limit for the desired ratio:

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

(1 + α0)2λ

[
e5λ
(1
2
+

16α2
0 + 36α0 − 25

200λ

)

+ eλ
1− 4α0

8λ
+

2α0(4− α0)

25λ
− 2α0(1 + α0)

5

]
,

which completes the proof.

A.2. Non-diagonal elements of the NTK

Theorem A.9 (Non-diagonal elements of the NTK). Consider a fully-connected DNN of depth L defined in (3) initialized
as in (6). The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width
M . The activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}, and the output layer is linear. Assume
also that the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then for the ratio of non-diagonal
and diagonal elements of the NTK we have:

1 ≥ lim
L→∞,M→∞
L/M→λ∈R

E[Θ(x, x̃)]

E[Θ(x, x)]
≥ 1

4

Moreover, for the dispersion of the non-diagonal elements we have:

lim
L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x̃)]

E2[Θ(x, x̃)]
≤ 16 lim

L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x)]

E2[Θ(x, x)]

Proof. The non-diagonal element of the NTK on point x and x̃ is given by

Θ(x, x̃) =

L∑
ℓ=1

⟨δℓ, δ̃ℓ⟩⟨xℓ−1, x̃ℓ−1⟩+
L∑

ℓ=1

⟨δℓ, δ̃ℓ⟩,

where the activations and the backpropagated errors with tilde correspond to x̃. Same as in Lemma A.1, we can write the
following for the involved dot products:

⟨xℓ, x̃ℓ⟩ = σ2
w

nℓ−1
∥xℓ−1∥∥x̃ℓ−1∥

nℓ∑
i=1

ϕ(Uℓ
i )ϕ(Ũℓ

i )

We notice that in this case Uℓ
i ∼ N (0, 1) and Ũℓ

i ∼ N (0, 1) are correlated variables and the covariance is given by
ρℓ−1
x := ⟨xℓ−1,x̃ℓ−1⟩

∥xℓ−1∥∥x̃ℓ−1∥ . The distribution of Uℓ
i and Ũℓ

i depends only on the angle between the activations and not on the
norms.

Assuming ρℓ−1
x is given, we can calculate the expectation of ϕ(Uℓ

i )ϕ(Ũℓ
i ):

E[ϕ(Uℓ
i )ϕ(Ũℓ

i ) | ρℓ−1
x ] =

1

2π

(√
1− (ρℓ−1

x )2 + ρℓ−1
x π/2 + ρℓ−1

x arcsin ρℓ−1
x

)
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Then, denoting g(x) := 1
π

(√
1− x2 + xπ/2 + x arcsinx

)
, we have

E
[ ⟨xℓ, x̃ℓ⟩
⟨xℓ−1, x̃ℓ−1⟩

]
=

σ2
w

2

nℓ

nℓ−1
E
[g(ρℓ−1

x )

ρℓ−1
x

]
We can reason in the same way to find expected dot products of the backpropagated errors:

⟨δℓ, δ̃ℓ⟩ = σ2
w

nℓ
∥δℓ+1∥∥δ̃ℓ+1∥

nℓ∑
i=1

ϕ′(Uℓ
i )ϕ

′(Ũℓ
i )Vℓ+1

i Ṽℓ+1
i

We can also calculate the involved expectations:

E[ϕ′(Uℓ
i )ϕ

′(Ũℓ
i ) | ρℓ−1

x ] =
1

2π

(π
2
+ arcsin ρℓ−1

x

)
,

E[Vℓ
i Ṽℓ

i | ρℓδ] = ρℓδ :=
⟨δℓ, δ̃ℓ⟩
∥δℓ∥∥δ̃ℓ∥

And, using the above expressions, we get

E
[ ⟨δℓ, δ̃ℓ⟩
⟨δℓ+1, δ̃ℓ+1⟩

]
=

σ2
w

2
E
[ 1
π

(π
2
+ arcsin ρℓ−1

x

)]

We also need to consider the expectation of ρℓx:

E[ρℓx | ρℓ−1
x ] = E

[ ∑
i ϕ(Uℓ

i )ϕ(Ũℓ
i )√∑

i ϕ
2(Uℓ

i )
√∑

i ϕ
2(Ũℓ

i )
| ρℓ−1

x

]
−−−−−−→
nℓ−1→∞

g(ρℓ−1
x ),

where the correction to the above expectation for finite width is of order O(1/M) since the components approach normality
with this rate. Moreover, the estimator of correlation coefficient has a negative bias, therefore E[ρℓx | ρℓ−1

x ] approaches
g(ρℓ−1

x ) from below with nℓ−1 → ∞. Then we have

E
[
⟨xℓ, x̃ℓ⟩

]
= ⟨x0, x̃0⟩E

[ ℓ∏
k=1

⟨xk, x̃k⟩
⟨xk−1, x̃k−1⟩

]
= ⟨x0, x̃0⟩aℓ nℓ

n0
E
[g(ρℓ−1

x )

ρ0x

ℓ−2∏
k=0

g(ρk)

ρk+1

]
≥ ∥x0∥∥x̃0∥aℓ nℓ

n0
E
[
ρℓx
]

Similarly, denoting f(x) := 1
π (π/2 + arcsinx), we get the following for the products of backpropagated errors:

E[⟨δℓ, δ̃ℓ⟩] ≥ aL−ℓ
L−1∏
k=ℓ

f
(
E[ρk−1

x ]
)

Now we notice that E[ρℓx] → g◦ℓ(ρ0x) not only if M → ∞ but also if ℓ → ∞ with finite M , where g◦k denotes composition
of the function k times. Indeed g(x) is a monotonically increasing function with g(x) ≥ x and a single fixed point at
x = 1, so we have E[ρℓx] → 1 and g◦ℓ(ρ0x) → 1 if ℓ → ∞. In other words, if E[ρℓx]/g◦ℓ(ρ0x) = 1 + cℓ/M for some
coefficients cℓ, then cℓ → 0 as ℓ → ∞. Therefore, we can replace E[ρℓx] with g◦ℓ(ρ0x) in the above bounds to obtain the
infinite-depth-and-width limit.

Putting everything together, we can write the following bound for the expectation of a non-diagonal element of the NTK

lim
L→∞,M→∞
L/M→λ∈R

[Θ(x, x̃)] ≥ lim
L→∞,M→∞
L/M→λ∈R

[
∥x0∥∥x̃0∥aL−1

L∑
ℓ=1

nℓ−1

n0
g◦ℓ−1(ρ0x)

L−1∏
k=ℓ

f
(
g◦(k−1)(ρ0x)

)
+

L∑
ℓ=1

aL−ℓ
L−1∏
k=ℓ

f
(
g◦(k−1)(ρ0x)

)]
,
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Now studying the expressions above we can find the following bounds:

1 ≥ lim
L→∞,M→∞
L/M→λ∈R

E[Θ(x, x̃)]

E[Θ(x, x)]
≥ 1

4
,

The upper bound is trivial. We obtain the lower bound in case of initialization in the chaotic phase by noticing that∑L
ℓ=1 g

◦ℓ−1(ρ0x)
∏L−1

k=ℓ f
(
g◦(k−1)(ρ0x)

)
≥ L/4 for L ≥ 2, which, by Chebyshev’s sum inequality, gives the maximal ratio

between diagonal and non-diagonal elements of the NTK, since E[ΘW (x, x)] = aL−1
∑L

ℓ=1

nℓ−1

n0
. In the ordered phase,

we have
∑L

ℓ=1

∏L−1
k=ℓ f

(
g◦(k−1)(ρ0x)

)
≥ L/4 and E[Θb(x, x)] =

∑L
ℓ=1 a

L−ℓ, which gives the same bound.

Moreover, it is easy to see that E[Θ2(x, x̃)] ≤ E[Θ2(x, x)], therefore we can write

lim
L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x̃)]

E2[Θ(x, x̃)]
≤ 16 lim

L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x)]

E2[Θ(x, x)]

A.3. Training dynamics of the NTK

Theorem A.10 (GD step of the NTK). Consider a fully-connected DNN of depth L defined in (3) initialized as in (6). The
input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M . The
activation function in the hidden layers is ReLU, i.e. ϕ(x) = x1{x > 0}, and the output layer is linear. Assume also that
the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then, if we perform a GD step on a point
(x, y) ∈ D with learning rate η, the following holds for the changes of the corresponding element of the NTK:

1. In the chaotic phase (a := σ2
w/2 > 1), the changes to the NTK value are infinite in the limit for a constant learning

rate:
E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

∞ (43)

The scaling of the learning rate needed to avoid the infinite limit is given by η = O(a−L), which tends to zero with
depth.

2. In the ordered phase (a < 1), the NTK stays constant in the limit:

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0 (44)

Proof. A derivative of the NTK in gradient flow can be expanded as follows:

Θ̇(x, x) =

L∑
ℓ=1

(∑
i,j

∂Θ(x, x)

∂Wℓ
ij

Ẇℓ
ij +

∑
i

∂Θ(x, x)

∂bℓ
i

ḃℓ
i

)
,

where the parameters change in the direction of the negative gradient:

Ẇℓ
ij = −∂L(D)

∂Wℓ
ij

, ḃℓ
i = −∂L(D)

∂bℓ
i

, i = 1, . . . nℓ, j = 1, . . . , nℓ−1, ℓ = 1, . . . L

If we now assume that the gradient descent step is performed on a single point of the dataset x, which is the same point for
which the NTK is calculated, we have:

Ẇℓ
ij = −∂L(x)

∂Wℓ
ij

= −∂L(x)
∂f(x)

∂f(x)

∂Wℓ
ij

= −∂L(x)
∂f(x)

δℓix
ℓ−1
j ,

ḃℓ
i = −∂L(x)

∂bℓ
i

= − ∂L(x
∂f(x)

∂f(x)

∂bℓ
i

= −∂L(x)
∂f(x)

δℓi
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It remains to calculate the derivatives of the NTK with resepect to the parameters. The involved terms are:

∂ΘW (x, x)

∂Wℓ
ij

=
∑
ℓ′

∑
i′,j′

∂

∂Wℓ
ij

( ∂f(x)

∂Wℓ′
i′j′

)2
= 2

∑
ℓ′

∑
i′,j′

∂f(x)

∂Wℓ′
i′j′

∂2f(x)

∂Wℓ
ijW

ℓ′
i′j′

,

∂ΘW (x, x)

∂bℓ
k

=
∑
ℓ′

∑
i′,j′

∂

∂bℓ
k

( ∂f(x)

∂Wℓ′
i′j′

)2
= 2

∑
ℓ′

∑
i′,j′

∂f(x)

∂Wℓ′
i′j′

∂2f(x)

∂bℓ
kW

ℓ′
i′j′

,

∂Θb(x, x)

∂bℓ
k

=
∑
ℓ′

∑
i′

∂

∂bℓ
k

(∂f(x)
∂bℓ′

i′

)2
= 2

∑
ℓ′

∑
i′

∂f(x)

∂bℓ′
i′

∂2f(x)

∂bℓ
kb

ℓ′
i′
,

∂Θb(x, x)

∂Wℓ
ij

=
∑
ℓ′

∑
i′,j′

∂

∂Wℓ
ij

(∂f(x)
∂bℓ′

i′

)2
= 2

∑
ℓ′

∑
i′

∂f(x)

∂bℓ′
i′

∂2f(x)

∂Wℓ
ijb

ℓ′
i′

To calculate these terms, we need to find the second derivatives of the DNN’s output function.

∂2f(x)

∂Wℓ
ijW

ℓ′
i′j′

= δℓ
′

i′
∂xℓ′−1

j′

∂Wℓ
ij

+ xℓ′−1
j′

∂δℓ
′

i′

∂Wℓ
ij

= 1ℓ<ℓ′δ
ℓ′

i′ x
ℓ−1
j

∂xℓ′−1
j′

∂hℓ
i

+ 1ℓ>ℓ′δ
ℓ
ix

ℓ′−1
j′ ϕ′(hℓ−1

j )
∂δℓ

′

i′

∂δℓ−1
j

,

In the above equation the first term is non-zero only in case ℓ′ > ℓ and the second term is non-zero only if ℓ′ < ℓ. Then we
can write the following:

∑
ℓ

∑
i,j

∂ΘW (x, x)

∂Wℓ
ij

Ẇℓ
ij =− ∂L(x)

∂f(x)

∑
ℓ′>ℓ

∥δℓ′∥2∥xℓ−1∥2
∑
i

δℓi
∂∥xℓ′−1∥2

∂hℓ
i

− ∂L(x)
∂f(x)

∑
ℓ>ℓ′

∥δℓ∥2∥xℓ′−1∥2
∑
j

xℓ−1
j

∂∥δℓ′∥2
∂δℓ−1

j

Opening the remaining parts of the derivative in the same way, we obtain the following expression:

Θ̇(x, x) = −∂L(x)
∂f(x)

(∑
ℓ′>ℓ

(
∥δℓ′∥2∥xℓ−1∥2 + ∥δℓ′∥2

)∑
i

δℓi
∂∥xℓ′−1∥2

∂hℓ
i

+
∑
ℓ>ℓ′

(
∥δℓ∥2∥xℓ′−1∥2 + ∥δℓ∥2

)∑
j

xℓ−1
j

∂∥δℓ′∥2
∂δℓ−1

j

)

Case 1. Chaotic phase. Let us bound the change of the NTK by computing only the terms with ℓ′ = ℓ+ 1. In this case,
∂∥xℓ′−1∥2

∂hℓ
i

= 2xℓ
i . We then notice that

∑
i x

ℓ
iδ

ℓ
i =

∑
k δ

ℓ+1
k

∑
i W

ℓ+1
ki xℓ

i =
∑

k δ
ℓ+1
k hℓ+1

k =
∑

k δ
ℓ+1
k xℓ+1

k , which by

induction gives
∑

i x
ℓ
iδ

ℓ
i = f(x). Therefore, taking into account that for quadratic loss we have ∂L(x)/∂f(x) = f(x)− y,

we can write the following bound:

E[|∆Θ(x, x)|] ≥ 2ηE
[
f(x)2

L∑
ℓ=1

(
∥δℓ+1∥2∥xℓ−1∥2 + ∥δℓ+1∥2

)]
Then, using the results of Lemmas A.1, A.2 and A.4 again, we obtain the expectation of the first part:

E[|∆Θ(x, x)|] ≥ 4η
∥x0∥4
n0

a2L−1
L∑

ℓ=1

L−1∏
j=ℓ+1

(
1 +

1

nj
+O

( 1

M3/2

)) ℓ−1∏
i=1

(
1 +

5

nj

)
∝ a2L−1

And since in case of the chaotic phase E[Θ(x, x)] ∝ E[ΘW (x, x)] ∝ aLLM/n0, we have the desired limit:
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E[|∆Θ(x, x)|]
E[Θ(x, x)]

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

∞

Case 2. Ordered phase. The bound that we used for the chaotic phase above gives zero in the limit in case of the
ordered phase. We will now show that the upper bound of the relative change of the NTK is also zero in the limit in this

case. We notice that
∑

i f(x)δ
ℓ
i
∂∥xℓ′−1∥2

∂hℓ
i

=
∑

i δ
ℓ
i

∑
k δ

ℓ
k
∂∥xℓ′−1∥2

∂hℓ
i

hℓ
k =

∑
i(δ

ℓ
i )

2 ∂∥xℓ′−1∥2

∂hℓ
i

hℓ
i +
∑

i ̸=k δ
ℓ
iδ

ℓ
k
∂∥xℓ′−1∥2

∂hℓ
i

hℓ
k.

Then we have
∑

i f(x)δ
ℓ
i
∂∥xℓ′−1∥2

∂hℓ
i

≤ ∥δℓ∥2∥xℓ′−1∥2 + A, where the expectation of A is zero. Similarly, we have∑
j f(x)x

ℓ−1
j

∂∥δℓ′∥2

∂δℓ−1
j

≤ ∥δℓ′∥2∥xℓ−1∥2 +B with a term B of zero expectation. The we have the following bound for the

change of the NTK:
E[|∆Θ(x, x)|] ≤ 2ηE

[∑
ℓ1

∥δℓ1∥2∥xℓ1−1∥2
∑
ℓ2<ℓ1

∥δℓ2∥2
(
∥xℓ2∥2 + 1

)]
The expectation of

∑
ℓ2<ℓ1

θℓ1W θℓ2W , where θℓW := ∥δℓ∥2∥xℓ−1∥2, was calculated in Lemma A.5 and the expectation of∑
ℓ2<ℓ2

θℓ1W θℓ2b , where θℓb := ∥δℓ∥2, was calculated in Lemma A.7. In particular, we have the following results for the two
sums:

E[
∑
ℓ2<ℓ1

θℓ1W θℓ2W ] ∝ a2L
L2

α2
0

1

4λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
,

E[
∑
ℓ2<ℓ1

θℓ1W θℓ2b ] ∝ a2L

a− 1

L

α0

1

4λ
e5λ(1− e−4λ).

Then we see that the upper bound on the changes of the NTK is proportional to a2LL2, which tends to zero with depth in
the ordered phase. Given that the expectation of the NTK in the ordered phase has a non-zero limit given by 1/(1− a), we
can then conclude that

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

in case of initialization in the ordered phase.

B. Additional observations
B.1. Effects of α0 := n0/M at the EOC

The theoretical expression for the NTK dispersion in the infinite-width limit, which we derived in Theorem 3.1, depends on
the ratio α0 := n0/M at the EOC:

VEOC :=
E[Θ2(x, x)]

E2[Θ(x, x)]
→ 1

(1 + α0)2

[
e5λ
( 1

2λ
+

2α2
0 − 8α0

25λ2

)
+ (eλ − e5λ)

1− 4α0

8λ2
+

2α0

5λ

(4− α0

5λ
− 1− α0

)]
.

Examining this expression, one can see that it tends to the limiting expression for the NTK dispersion in the chaotic phase as
the ratio α0 decreases:

VEOC −−−−→
α0→0

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
.

We illustrate this effect in Figure 5. One can see that gradually decreasing the value of α0 moves the NTK dispersion at the
EOC closer to the NTK dispersion in the chaotic phase.

B.2. Effects of the architecture

In Section 3.2, we showed that constant-width DNNs that increase the input dimensionality, i.e. n0 < n1 = · · · = nL−1, get
more robust with depth in a sense that the dispersion of their NTK decreases. Here we show how the theoretical expressions
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Figure 5. Effects of α0 := n0/M on the NTK dispersion at the EOC in the infinite-depth-and-width limit. All the lines show the
theoretical expressions from Theorem 3.1. The black line (uppermost) corresponds to the NTK dispersion in the chaotic phase, while all
the other lines show the NTK dispersion at the EOC with varying α0 values. The colors spanning from yellow to violet (from lighter to
darker tones) indicate the value of α0 spanning from 1 (yellow) to 0.1 (violet).
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Figure 6. Effects of the architecture on the NTK dispersion ratio E[Θ2(x, x)]/E2[Θ(x, x)] as predicted by Theorem 3.2. The subplots
show the dispersion for varying values of σ2

w for three different architectures. The lower row of the figure illustrates the considered
architectures. Formally, the widths for each architecture are given by: a) nℓ = M1 +

⌈
ℓ(M2 −M1)/L

⌉
, b) nℓ =

⌈
(M1 +M2)/2

⌉
,

c) nℓ = M2 +
⌈
ℓ(M1 −M2)/L

⌉
for 0 ≤ ℓ ≤ L. The width parameters are given by M1 = 100, M2 = 500 and do not change as the

depth grows. The depth-to-width ratio is computed for the average width, i.e. λ = 2L/(M1 +M2).
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for the NTK moments in Theorem 3.2 reveal more effects of the DNN’s architecture. In Figure 6, we compute the theoretical
prediction of the NTK dispersion for three architectures: the first one gradually increases width over L layers from n0 = M1

to nL−1 = M2, the second one keeps constant width, i.e. n0 = · · · = nL−1 = (M1 +M2)/2, and the third one gradually
decreases width over L layers from n0 = M2 to nL−1 = M1. We note that all the architectures have the same average width
in this setting. We also note that we keep M1 and M2 fixed while varying the depth L. Therefore, we compare networks that
increase or decrease the dimensionality equally but over a different number of layers. Figure 6 demonstrates that the NTK
dispersion is lower for the DNNs that increase the dimensionality. Moreover, for such DNNs the peak of dispersion falls on
the relatively shallow networks. Therefore, it may be beneficial to increase dimensionality over more layers if the goal is to
decrease the variance of the DNN. On the contrary, the dispersion only increases with depth for DNNs that decrease the
dimensionality. Thus, it may be beneficial to keep such networks shallow if one wants to keep the variance minimal.

B.3. Lazy training

The NTK regime of neural networks is often discussed in connection with the so-called lazy training phenomenon (Chizat
et al., 2019). In lazy training, a model behaves as its linearization around the initialial parameters due to rescaling given by:

f̃α(x) = αf(x), L̃α(D) =
1

α2
L(D), α ∈ R,

where f(·) is the original model’s output function and L(D) is the training loss. Chizat et al. (2019) showed that the
dynamics of a rescaled model defined by f̃α(·) and L̃α(D) is close to its linearization if the scaling factor α is large. Thus,
in this section we discuss the effects of the lazy training rescaling on the results presented in our paper.

One can see that the NTK changes trivially if we rescale the output function:

∇wf̃α(x) = α∇wf(x) ⇒ Θ̃α(x1, x2) = α2Θ(x1, x2),

where we denoted the NTK of the rescaled model as Θ̃α. Therefore, all our results concerning the NTK dispersion
(Theorem 3.1) and the ratios of expectations at initialization (Theorem 3.3) do not change if we rescale the model, since the
constants added to the nominator and the denominator cancel each other:

E[Θ̃2
α(x1, x2)]

E2[Θ̃α(x1, x2)]
=

E[Θ2(x1, x2)]

E2[Θ(x1, x2)]
.

On the other hand, the relative change of the NTK in a gradient descent step (Theorem 4.1) is affected by the rescaling.
Recall that the NTK derivative is given by:

Θ̇(x, x) =

L∑
ℓ=1

(∑
i,j

∂Θ(x, x)

∂Wℓ
ij

Ẇℓ
ij +

∑
i

∂Θ(x, x)

∂bℓ
i

ḃℓ
i

)
.

Terms of the above expression change as follows due to the rescaling:

∂Θ̃α(x, x)

∂Wℓ
ij

= α2 ∂Θ(x, x)

∂Wℓ
ij

,
∂Θ̃α(x, x)

∂bℓ
i

= α2 ∂Θ(x, x)

∂bℓ
i

,

( ˜̇Wℓ
ij

)
α
= −∂L̃α(D)

∂Wℓ
ij

= − 1

α2

∂L(D)

∂Wℓ
ij

= − 1

α2

˜̇Wℓ
ij ,

(˜̇
bℓ
i

)
α
=

1

α2
ḃℓ
i .

Therefore, the NTK derivative is not changed by the rescaling and for the relative change of the NTK we have:

E[∆Θ̃α(x, x)]

E[Θ̃α(x, x)]
=

1

α2

E[∆Θ(x, x)]

E[Θ(x, x)]
.

For any constant choice of α ∈ R, this scaling does not change our limiting results in Theorem 4.1. However, if the rescaling
parameter is scaled exponentially with L as α ∝ (σw/

√
2)L then the relative change of the NTK tends to zero in the chaotic

phase, as well as in the ordered phase and at the EOC. Thus, it is possible to enforce lazy training in deep networks outside
of the ordered phase but the required rescaling parameter grows exponentially with depth.
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C. Additional experiments
C.1. Non-diagonal elements of the NTK

We provide empirical results on the dispersion of the non-diagonal elements of the NTK in this subsection. Figure 7 is
analogous to Figure 1: it compares the dispersion of the NTK in different phases of initialization. One can see that the
non-diagonal elements of the NTK behave similarly to the diagonal ones. In particular, the dispersion of the non-diagonal
elements grows exponentially with the depth-to-width ratio and reaches high values for deep networks in the chaotic phase
and at the EOC, whereas in the ordered phase the dispersion is low and does not grow with depth. Figure 8 is analogous to
Figure 2: it characterizes the behavior of the NTK dispersion close to the EOC, where the finite-width effects are significant.
Here the picture is again similar to the one described in Section 3.2 for the diagonal elements of the NTK. In particular, the
dispersion gradually increases as σ2

w grows and approaches the EOC. One can also see that the dispersion of the non-diagonal
elements decreases with depth in the ordered phase for networks with α0 < 1, same as in the case of the diagonal elements.
In all the figures, we provide experiments for varying initial angles between the two input samples of the NTK and conclude
that the dispersion does not depend significantly on this angle.

C.2. Additional error bars for Figures 1, 2 and 3

To keep all the figures readable, we include error bars only in a subset of points in Figures 1 and 2 in the main text. We also
omit error bars in Figure 3. To give the reader a better idea about the variance observed in our experiments, we include
additional figures with continuous error bars in this section. Figure 9 is analogous to Figure 1: it shows the estimated
dispersion of the NTK along with the theoretical expressions in the infinite-depth-and-width limit from Theorem 3.1. We
include fewer lines (values of σ2

w) in this figure to keep the continuous error bars distinguishable. Similarly, Figure 10 is
analogous to Figure 2: it shows the results concerning the NTK dispersion around the EOC. Finally, Figure 11 shows a
subset of lines from Figure 3 with their continuous error bars and concerns the ratio between non-diagonal and diagonal
elements of the NTK.

C.3. Estimating the NTK dispersion from a sample

In our experiments, we estimate the ratio r := E[Θ2(x, x)]/E2[Θ(x, x)] at initialization from a sample. To do so, we sample
an element of the NTK N times with independently chosen intialization parameters and get a sample {θi}Ni=1.

In this setting, the standard estimators for the first and the second moments given by µ̂1 :=
∑N

i=1 θi/N and
µ̂2 :=

∑N
i=1 θ

2
i /N are unbiased:

E[µ̂1] = E
[ 1
N

N∑
i=1

θi

]
=

1

N

N∑
i=1

E[θi] = µ1,

E[µ̂2] = E
[ 1
N

N∑
i=1

θ2i

]
=

1

N

N∑
i=1

E[θ2i ] = µ2,

where we denoted the actual moments as µ1 := E[θi] and µ2 := E[θ2i ].

However, µ̂1 and µ̂2 computed on the same sample are dependent, so the estimator for the desired ratio given by µ̂2/(µ̂1)
2

is biased and we need to correct it. First, we notice that the estimator for µ2
1 given by the square of µ̂1 is biased as follows:

E[µ̂2
1] = E

[ 1

N2

( N∑
i=1

θi

)2]
=

µ2

N
+

N − 1

N
µ2
1

Therefore, an unbiased estimator for µ2
1 can be computed as

(̂µ2
1) =

N

N − 1
(µ̂2

1 −
1

N
µ̂2)

Second, we want to remove the dependence between the numerator and the denominator, which can be done simply by
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Figure 7. Ratio E[Θ2(x, x̃)]/E2[Θ(x, x̃)] at initialization (on a pair of different input samples, i.e. x ̸= x̃) for fully-connected
ReLU networks of constant width M = 200 with α0 ∈ {2.0, 0.5, 0.1} and varying initial angle between the input samples
⟨x0, x̃0⟩ ∈ {0.1, 0.5, 0.9}. The dashed lines show the experimental results and the solid lines show the corresponding theoret-
ical predictions for diagonal elements of the NTK from Theorem 3.1. For each network configuration, we sampled 500 random
initializations and computed an unbiased estimator for the ratio (see details in Appendix C.3). The error bars show the bootstrap estimation
of the standard error.
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Figure 8. Ratio E[Θ2(x, x̃)]/E2[Θ(x, x̃)] at initialization (on a pair of different input samples, i.e. x ̸= x̃) for fully-connected
ReLU networks of constant width M = 200 with α0 ∈ {2.0, 0.5, 0.1} and varying initial angle between the input samples
⟨x0, x̃0⟩ ∈ {0.1, 0.5, 0.9}. The dashed lines show the experimental results and the solid lines show the theoretical predictions
given by Theorem 3.2 for the diagonal elements of the NTK. For each network configuration, we sampled 500 random initializations and
computed an unbiased estimator for the ratio (see details in Appendix C.3). The error bars show the bootstrap estimation of the standard
error.
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Figure 9. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU DNNs of constant width M ∈ {100, 200, 500} with
α0 = 1. The experiment setup is the same as in Figure 1. Continuous error bars show the bootstrap estimation of the standard error.
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Figure 10. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M = 200 with the ratio
α0 := n0/M ∈ {2.0, 0.5, 0.1}. The initialization hyperparameter σ2

w is close to the EOC for all the lines. The experiment setup is the
same as in Figure 2. Continuous error bars show the bootstrap estimation of the standard error.
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Figure 11. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M = 200 with the ratio
α0 := n0/M ∈ {2.0, 0.5, 0.1}. The initialization hyperparameter σ2

w is close to the EOC for all the lines. The experiment setup is the
same as in Figure 2. Continuous error bars show the bootstrap estimation of the standard error.
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using disjoint parts of the sample to compute the two:

r̂ :=
1

N − 2

N∑
i=1

θ2i

1
(N−1)(N−2)

[(∑
j ̸=i θj

)2
−∑j ̸=i θ

2
j

] ,
where we used the unbiased version of the estimator for µ2

1 computed on a sample without θi in the denominator. Then we
can compute the expectation of our new estimator for the ratio as follows:

E[r̂] = (N − 1)

N∑
i=1

E[θ2i ]

E
[(∑

j ̸=i θj

)2
−∑j ̸=i θ

2
j

] =
µ2

µ2
1

.

Therefore, r̂ is an unbiased estimator of the ratio.


