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Abstract

In this paper, we explore how we can endow
robots with the ability to learn correspondences
between their own skills, and those of agents with
different embodiments and in different domains
than their own, in an entirely unsupervised
manner. Our insight and premise is that agents
with different embodiments use similar strategies
(high-level skill sequences) to solve similar
tasks. Based on this insight, we frame learning
skill correspondences as a problem of matching
distributions of sequences of skills across agents.
We then present an unsupervised objective
that encourages a learnt skill translation model
to match these distributions across domains
inspired by recent advances in unsupervised
machine translation. Our approach is able to
learn semantically meaningful correspondences
between skills across multiple robot-robot
and human-robot domain pairs, despite being
completely unsupervised. Further, the learnt
correspondences enable the transfer of task
strategies across robots and domains. Dynamic
visualization of our results can be found here:
https://sites.google.com/view/
translatingrobotskills/home

1. Introduction

Humans have a remarkable ability to efficiently learn to
perform tasks by watching others demonstrate similar tasks.
For example, children quickly learn the skills needed to play
a new sport by watching their parents perform skills such as
kicking a ball. Notably, they are able to learn from these vi-
sual demonstrations despite significant differences between
themselves and the demonstrator, including visual perspec-
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tives, environments, kinematic and dynamic properties, and
morphologies. This ability may be attributed to two factors;
firstly, humans have well-developed basic motor skills that
we can execute with little effort. Second, we can recognize
the sequence of skills (or the high-level strategy) the demon-
strator uses, and understand a corresponding set of skills
that we can execute ourselves ( s ).

In this paper, we explore how we can endow robots with this
ability - i.e., to adopt task strategies from agents with differ-
ent embodiments (such as morphologically different robots,
or even human demonstrators), and then execute correspond-
ing skills to solve similar tasks. Key to solving this problem
is for the robot to identify how its owns skills correspond
to those of the demonstrator, which is tremendously pow-
erful. First, it allows the robot to adopt the demonstrator’s
strategies for solving various tasks. Second, by adopting
and adapting these strategies for itself, the robot can effi-
ciently learn to solve a variety of tasks previously outside its
repertoire. Finally, it allows us to understand the task strate-
gies used by various agents in a unified manner, enabling
robots to learn from data collected from a heterogeneous
collection of tasks and agent embodiments. Skills provide
a natural framework to facilitate such concise knowledge
transfer across agents compared to low-level controls; skills
inherently abstract away low-level details that may differ
across the demonstrator and the learner, and instead focus
on the commonalities between them, such as the task strat-
egy. For example, skills such as reaching and placing on
robot manipulators abstract away differences in morpholo-
gies or configuration, and are thus well grounded across
robots, while there may not be obvious correspondence in
their low-level actions.

How can one acquire correspondences between skills?
Stated more formally, given agents with different embod-
iments, a set of unlabelled demonstrations of each agent
solving a variety of tasks, and a method for extracting skills
from those demonstrations, how can one learn correspon-
dences between the skills of these different agents? Learning
such correspondences is straightforward when supervised
pairs of skills or trajectories are available. However, col-
lecting and annotating such data is time-consuming and
tedious, and requires a high degree of human expertise,
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Figure 1: Sample skill correspondences learnt by our unsupervised approach, across the 4 different morphological robots and a human
demonstrator. We visualize a “placing skill” as translated by our approach, used to place objects to the left of each of the agents. Note the
semantic correspondence between these skills, despite our approach being completely unsupervised.

particularly at the scale necessary to successfully learn cor-
respondences across a diverse set of skills. In contrast, we
explore whether we can learn such skill correspondences in
a fully unsupervised manner, i.e., without access to super-
vised skill or trajectory pairs. Learning unsupervised skill
correspondences can enable learning from a diverse and het-
erogeneous dataset spanning multiple tasks and robots (e.g.
Sharma et al. (2018); Mandlekar et al. (2018)). While unsu-
pervised learning of correspondences is more scalable, it is
also difficult at the same time due to the lack of a grounded
learning signals that can enable end-to-end learning.

To overcome these challenges with unsupervised learning
of correspondences, we propose leveraging the following
insights. Our first insight and contribution is that differently
embodied agents use similar task strategies (in terms of
sequences of skills) to solve similar tasks; in other words,
the sequences of skills executed by different agents to solve
similar tasks ought to belong to similar distributions. For ex-
ample, to make a cup of tea, both a robot and a human would
likely first reach for the kettle, grasp it, move it appropriately
over the cup, and then begin to pour the tea, irrespective of
their exact morphology. Our second insight and contribu-
tion is that learning skill correspondences without access
to supervised data closely mirrors unsupervised machine
translation (UMT), where the objective is to learn a trans-
lation between representations in different languages (such
as between word embeddings across languages), without
access to parallel data (Conneau et al., 2017; Lample et al.,
2018). Inspired by these two insights, we present our third
contribution - deriving an unsupervised objective to guide

our learning towards meaningful skill correspondences.

We approach the problem of learning unsupervised skill cor-
respondences by learning a translation model to map from
the skill space on one “source” agent to the skill space on
another “target” agent. We construct an unsupervised objec-
tive that encourages the translation model to respect our first
insight - i.e., to preserve the sequences of skills observed
across both the (translated) source and target agents. To
do this, we take inspiration from our second insight, and
specifically from Zhou et al. (2019), and construct explicit
probability density models over the skill sequences observed
in the source and target domains, and then train the trans-
lation model to match these distributions. We demonstrate
that our approach is able to learn semantically meaningful
correspondences across four different robots (the Franka
Panda, Sawyer, Baxter Left and Right hands) and a human
agent, despite being completely unsupervised, as depicted
in Figures 1 and 3. The learnt correspondences facilitate
transferring task strategies across across domains, as we
demonstrate on a set of downstream tasks. Our results are
visualized at https://sites.google.com/view/
translatingrobotskills/home

2. Related Work

Skill Learning: Eysenbach et al. (2019); Sharma et al.
(2020) both address unsuperivsed skill learning from interac-
tion data, by constructing information theoretic approaches.
Fox et al. (2017); Krishnan et al. (2017); Shankar et al.
(2020); Sharma et al. (2018); Shankar & Gupta (2020); Kipf
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( ) ( ) ( ) instead
learn skills or abstractions from unlabelled demonstration

data by performing latent variable inference. These frame-
works all learn skills in the context of a single domain, while
we seek to learn correspondences of skills across domains.

Unsupervised Correspondence Learning: Our problem
bears a close resemblance with unsupervised machine trans-
lation ( R ; R ), and unpaired
image translation ( , ; s ). Specif-
ically, they all share the notion of learning correspondences
across representations learnt from unpaired data:

¢ In Machine Translation: ( ) leveraged
domain-adversarial training ( , ) to align
word embeddings of two languages. ( );

( ) use the idea of back-translation to con-
straint the learnt translation models across languages.

( ) learn bilingual word embeddings by matching
explicit density functions over the word embedding spaces.
In Image Translation: The vision community has similarly
explored the unpaired image-to-image translation setting

( , ; , ), using cycle-consistency

( , ) or contrastive losses ( s ).
¢ In Video: ( ); ( ) extend

Cycle-GAN ( s ) to the video domain, by

incorporating temporal consistency losses.

Domain Transfer in Robotics and Graphics: The robotics
and graphics communities have taken interest in cross-
domain transfer of policies in recent years:

Policy Transfer with Paired Data: ( );
learn morphology and viewpoint invariant

feature spaces for policy transfer respectively, but require

paired data to do so.

Policy Transfer via Modularity: ( );

( ); ( ) address morphological

transfer by modularity in their policies. ( );
( ) adopt modularity in a hierarchical

sense, but leverage common grounding of subgoals across

morphologies to perform transfer. We do not assume access

to such common grounding.

State based Policy Transfer: ( );

( ); ( ) address cross-
morphology transfer by state based imitation learning.
Motion Retargetting: The graphics community has ad-
dressed transferring behaviors across morphologically dif-
ferent characters ( s ; s ;

s ; s ), using care-
fully handcrafted kinematic models. These works transfer
behaviors by imitating joint positions, and performing in-
verse kinematics to retrieve the character state, which is
infeasible for widely different morphological characters.

» Unsupervised Action Correspondence: ( );
( ); ( ) address learning

low-level state and action correspondences from unpaired,
unaligned interaction and demonstration data respectively.
While similar in spirit, our work argues that learning high-
level skill correspondence instead is a more natural choice,
as mentioned in the introduction.

Applicability to learning skill correspondences: While
successful in their respective problem domains, existing ap-
proaches are not trivially applicable to our problem. The
adversarial training used in most of these approaches is noto-
riously difficult to train, and is prone to the mode dropping
problem ( , ). They require strong con-
straints such as pixel-wise or joint-wise identity losses (

, ; s ), or inherent similarity of
the spaces to be aligned, such as word embeddings across
languages ( s ; s ). Learnt
skill representations do not possess this property in general.
Shortcomings notwithstanding, these approaches provide
insight into how we may pursue learning unsupervised skill
correspondences.

3. Approach

3.1. Pre-requisites

We begin by first reviewing an important prerequisite - the
skill learning pipeline of ( ), which
provides us a learnt representation of robotic skills given
an unlabelled robot demonstration dataset. Their method
first represents robotic skills as continuous latent variables
z, and introduce a Temporal Variational Inference (TVI)
to infer these skills or latent variables. TVI trains a varia-
tional encoder ¢(z|7) that takes as input a robot trajectory
7 ={s1,a1,..-84—1,An_1, Sn }, and outputs a sequence of
skill encodings z = {z1, 22, ...2, }. Note that these skill
encodings repeat over time for the duration of a given skill.
TVI also trains a latent conditioned policy 7(als, z) that
takes as input robot state s, and the chosen skill encoding
z, and predicts the low-level action a that the robot should
execute. We direct the reader to ( ) for
a more thorough description of their skill learning approach.

3.2. Problem Setting

Consider two robots with potentially differing morpholo-
gies and environments (collectively called “domain”), repre-
sented as source and target domains, or M and M., respec-
tively. Associated with each domain is an unlabelled and
unsegmented dataset of demonstrations of the robot perform-
ing various tasks represented as D and D, respectively.
D, and D, are collected independently, on an intersecting
(but not identical) set of tasks. This is equivalent to the
setting in machine translation without parallel data, with
access only to monolingual corpora.

We also assume access to a skill-learning pipeline, that can
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take in such an unlabelled demonstration dataset D of a
robot M performing various tasks, and learns a representa-
tion Z of skills on a given robot. We specifically use TVI
( , ), but we believe our approach is
compatible with any unsupervised skill-learning approach
that affords a continuous representation space. We train the
skill-learning pipeline independently on each of the domain
datasets D4 and D,.. This affords us skill encoders ¢, and
¢, and latent conditioned policies 7y and 7 for each do-
main. We may then encode trajectories in both domains

75 € D, and 7, € D, into their constituent skills {z l;sll

and {z!, I;Tll, via g, and ¢, respectively. We represent the
space of skills learnt on the entire dataset in each of the two
domains as Z, and Z,, respectively.

Our goal is to learn semantically meaningful correspon-
dences between skills in the source domain, z, € Z, and
those in the target domain, 2z, € Z,, that helps solve tasks
in the target domain M.,. We specify these correspondences
by learning a “translation” function T ... : Z, — Z., that
maps skills in the source domain z, to translated skills in
the target domain z,_, ... This mirrors the word translation
models present in ( ); ( ).
Learning meaningful skill-correspondences thus amounts to
learning a good translation model 7'. We can also translate
the entire source space Z to the target domain, to retrieve
the translated source space, Z

S—T"*

3.3. Using sequential information of skills

Our first insight is that differently embodied agents follow
similar strategies to address similar tasks - in other words,
sequences of skills executed by two different agents ought
to belong to similar distributions. It is important to consider
sequences of skills here rather than skills in isolation since
the ordering of skills can guide our learning towards the
right correspondences. Constraining correspondences based
on individual skills alone could lead to incorrect results. For
example, “reaching” skills in one domain corresponding to
“grasping” skills in another domain is incorrect, but could be
prevented by sequential information, since grasping skills
are systematically executed after reaching skills.

However, processing entire sequences of skills is computa-
tionally infeasible for arbitrarily long trajectories. Instead,
we draw inspiration from the simple yet powerful bigram
models in the NLP community, and consider consecutive
pairs, or tuples of skills. While less expressive than the full
skill-sequences, these tuples retain enough information of
the ordering of skills to guide the correspondence learning
towards the right solution, and are far more computationally
tractable. We thus construct a skill-tuple space, which rep-
resents the various transitions between skills observed in a
given domain. Each consecutive pair of skills (2%, z!*1) in
the original space Z of a given domain is represented as a

single point z* in the skill-tuple space X of that domain. For
initial and terminal skills 2= and z*=I"!, we pad these tu-
ples, and treat the preceding and succeeding skill encodings
as appropriately dimensioned 0’s respectively.

The skill-tuple spaces for source and target domains are
represented as X, and X respectively, and are imple-

mented as a set of skill-tuples from each domain, i.e.

X, = {xg jvzs'l,XT ={z.; i]\;Tl. The procedure to con-
struct these spaces is presented in the sub-routine of Algo-
rithm 1. We also construct a translated skill-tuple space,
X, _ ¢, that is simply the translation of all skills present in
Xy, ie X, . = {mSHT,i}’fisl‘ Translating a skill-tuple
at = (2L, z!T1) from source to target is done by translating
the individual skills z; and zé“ to the target domain,z*

S—T
and z!"! . and constructing the translated skill-tuple as
o t4+1
Tor = (Zs—rr’zs—rr)'

3.4. Distributional perspective on learning translations

We would like our translation model to exhibit two proper-
ties - first, to translate source skills z, such that they belong
to the distribution of target skills, and second, to capture all
modes of skills that exist in the target domain. Dropping
modes of skills limits the set of skills the target robot can use,
reducing its capabilities. GANSs ( , )
and domain-adversarial approaches ( , ) sat-
ify the first property since they optimize for how realistic the
generated samples are (or how indistinguishable source and
target domain features are ( , )), but often
drop modes of the “real” data ( , ).

Instead, we approach this problem from an explicit distribu-
tion perspective, and maintain explicit probability density
estimates over the translated source and target skill-tuple
spaces, X . and X, p(zs_ ) and p(x.) respectively.
Following our insight that sequences of skills on different
robots ought to belong to similar distributions, we would
like these distributions p(z,_,..) and p(z..) to match. We
can optimize our translation model to enforce this, by maxi-
mizing the likelihood of translated skill-tuples x . under
the target skill-tuple distribution p(x..), and the likelihood
of target skill-tuples ., under the translated skill-tuple distri-
bution p(x_, ). This is similar in spirit to optimizing both
the forward and reverse KL between two distributions. We
formalize this objective and provide intuition for it below.

We can train a translation model 7 _, . to translate skills in
such a way that the translated skill tuples x . belong to
the distribution of target skill-tuples p..(x), or that they are
realistic with respect to the target distribution. We do this by
maximizing the “forward” likelihood L of the translated

skill-tuples x under the target density p..(z):

S—T?

'Cf = ExSNp(mS),zSHT ~ TS*}T('le) |:10ng ("I:SHT):| (])
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Figure 2: Overview of our approach. We translate the original learnt skill space to the target domain. We then construct explicit
density estimates over the original target and translated source skill-tuple spaces. We train our translation model to maximize the

likelihood of randomly sampled translated source and original target
skill-correspondences across both robots.

To encourage the second mode-covering property in the
translation model, we can also optimize the “backward” like-
lihood Ly, of the farget skill-tuples .. under the translated
source skill-tuple space p, . (z):

Ly = E1T~p(mT) {logpSHT (xT):| 2
By combining these two objectives we may construct our fi-
nal objective £ for training the translation model, by simply
combining these two objectives, L = L + Ly:

L=E

~ Ts

wg~p(Tg),Tg o L (lzg) [long (‘/L.S%T):|

3
+EET ~p(zp) [ IOg Ps_,r (xT )]

We can operationalize our full objective £, by instantiat-
ing the target and translated source skill-tuple distributions
pr(2s_,r), and pg_ . (2.) respectively. To do so, we con-
struct explicit estimates of these distributions. We follow
Zhou et al. (2019)’s choice of representing these distribu-
tions using Gaussian Mixture Models (GMM), owing to
their expressive power and efficiency in low-dimensional
spaces, but note that a wide variety of explicit density esti-
mators may be used here.

Here, the target space skill-tuple distribution, p..(z), is a
GMM with N, Gaussian kernels, each centered at a target
skill-tuple z7, ; ~ X.:

NT NT
po(x) = plal ) plalal )= plzlal ;) @
=1 =1

skill-tuples under these densities respectively, affording meaningful

Zhou et al. (2019) use kernel weights p(z!_ ;) proportional
to the frequency of the word the kernel represents. In our
setting, each kernel is simply one of the skill-tuples in the
continuous target skill space X, motivating our choice of
equal mixture weights over all kernels (i.e. skill-tuples), i.e.
p(x,, ;) = 1/N,. The mixture components p(z|z’, ;) are
specified by a fixed variance Gaussian centered at x”_ i le.
p(xlal ;) = N(x|z! ;,0%), where o specifies the standard
deviation of the Gaussian kernel. Similarly, the translated
source skill-tuple distribution p,_, ..(x) is also represented
as a GMM, with N . equally weighted Gaussian kernels,

! ~X

each centered at a translated skill-tuple x, ot

NS—>T

Pea(@)= Y plafe

i=1

!/
S—T,?

) )

Using these parametrizations of distributions in our overall
objective Equation (3), we have our unsupervised objective
for learning skill correspondences.

Parsing the objective: In contrast with adversarial train-
ing methods, which require alternating training phases and
stability tricks such as gradient penalties, our objective
amounts to simple maximum likelihood (albeit in two di-
rections). It is hence simpler, more stable, and quicker to
converge.Intuitively, £, captures how “realistic” each trans-
lated skill-tuple looks with respect to the target skill-tuple
distribution, while £, captures how well the translated skills
cover the modes of the target skill-tuple space. We present a
pictorial representation of our overall approach in Figure 2,
and the full algorithm in the supplementary material.
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Figure 3: Sample skill correspondences learnt by our unsupervised approach, across the 4 different morphological robots and a human
demonstrator. We visualize a “reaching skill” as translated by our approach, used to reach towards objects in the workspace of each of the
agents. Note the semantic correspondence between these skills, despite our approach being completely unsupervised.

4. Experiments

Agents: We evaluate our approach’s ability to learn skills
correspondences across the following robots - the Sawyer
robot (Sawyer), the Franka Panda robot (Franka), the Baxter
left hand (Bax-L), and the Baxter right hand (Bax-R). We
consider domain pairs between each of these robots (Franka
to Sawyer, Bax-R to Franka, Bax-L to Sawyer, Bax-R to
Sawyer). In addition, we also consider translating from
human demonstrators to each of the above robots. This
results in 4 additional domain pairs.

Together, these domain-pairs span a wide variety of differ-
ences in morphology and embodiment of agents, such as
number, type and configuration of joints, link lengths, joint
limits, and dynamic properties, etc. The human agents also
have different degrees of freedom (DoF) (23, compared to
the robots’ 8), and consist of complex joints with multiple
DoFs (such as the shoulder), compared to the robots’ single
DoF joints. We believe our results across these diverse set
of domains shows the efficacy of our approach.

Datasets: We make use of the following datasets for each
agent. For the Sawyer robot, we use the Roboturk dataset
(Mandlekar et al., 2018), which consists of roughly 2000
demonstrations across 8 different tasks. For the Franka
robot, we use the RoboMimic dataset (Mandlekar et al.,
2021), which has 800 demonstrations across 4 tasks. For
the Baxter robot, we utilize the MIME dataset (Sharma
et al., 2018). For human demonstrations, we consider the
GRAB dataset (Taheri et al., 2020), which consists of 10

different people manipulating various objects. Additional
details, including preprocessing steps, are provided in our
supplement.

Skill Representation: We learn skill-representations for
each of the agents independently from their respective
datasets, using TVI (Shankar & Gupta, 2020). We use a 16-
dimensional skill-representation space for each agent, that is
learnt from joint-states and joint velocities. We then freeze
these learnt skill representations for all of our experiments.
We follow the preprocessing steps and training parameters
specified by (Shankar & Gupta, 2020). We also manually
annotate 50 skills in each domain with one of 6 semantic
labels of what type of skills they were. We emphasize that
our approach is not trained with these labels, but rather is
only evaluated against them.

4.1. Learning meaningful skill correspondences

The first question we would like to answer is - “Can our un-
supervised method learn meaningful skill-correspondences
between skill spaces?” We first present qualitative results
towards answering this question.

Translating Individual Skills and Entire Trajectories:
We present two sets of visualizations; individual skills
and their translations, as well as entire trajectories (or se-
quences of skills) and their translations. We first visu-
alize a set of source domain trajectories 7., obtained by
rolling out their skill encodings {z! }1;\1 via the source
domain policy m,. We then translate these sequences of
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Table 1: Evaluating Skill-Tuple Distribution Matching via our approach against various baselines, across half of the considered domain
pairs. We present results on the remaining domain pairs including the human-robot pairs in the supplementary material. Baselines are

adapted from (1): ( ), (2): ( ), (3): ( ). Lower is better for all metrics except the label accuracy.
Domain ) Chamfer Cycle Label Supervised
Pair Approach: Ly Lo Distance  Error  Accuracy Z Error
DomAd [1] 56.4 70.5 20.1 17.3 8.2% 23.8
Franka Cycle GAN [2] 39.5 483 12.8 8.4 12.5% 19.7
to Sawyer State Im [3] 66.8 81.4 28.3 32.8 24.2 % 29.2
Ours 21.2 359 8.7 8.9 70.7 % 10.2
DomAd [1] 50.9 60.1 24.2 21.3 9.8% 14.9
Baxter-L  Cycle GAN [2] 385 53.7 17.1 8.8 12.0% 15.4
to Saw State Im [3] 66.5 73.1 38.9 224 19.3 % 36.8
Ours 16.8 339 7.8 9.0 68.7 % 9.0
DomAd [1] 62.5 80.1 25.8 27.4 10.2% 26.2
Baxter-R  Cycle GAN [2] 499 62.6 19.8 14.5 17.2 % 23.9
to Franka State Im [3] 793 923 29.3 37.1 24.3 % 25.1
Ours 21.0 16.6 94 12.7 65.8% 11.8
skill encodings to the target domain, i.e. {zéHT 7';‘1, and Using the learnt correspondences, we are able to transfer the

visualize rollouts of the target policy 7, conditioned on
these translated skills. We present visualizations of individ-
ual skills and their translations, as well as visualizations
of entire trajectories and their translations in Figures 1
and 3 and at https://sites.google.com/view/
translatingrobotskills/home.

Analysing Qualitative Skill Translations: Despite being
learned in a purely unsupervised manner, we observe our
translation model is able to learn good semantically mean-
ingful coarse skill correspondences between semantic clus-
ters of skills that emerge in the original spaces, across all
domain pairs. For example, from Figures 1 and 3, we see
source domain placing skills correspond to target domain
placing skills across all domain pairs, as do reaching, plac-
ing in other directions and pushing / sliding skills to the left
or to the right, and returning skills to their rest configuration.
However, our model is unable to guarantee learning perfect
finer correspondences (such as between twisting or grasping
skills), or between variations of skills that belong to the same
semantic cluster in the original skill spaces (such as plac-
ing and reaching with different arm shapes, as in Figures 1
and 3). We emphasize that our method is unsupervised, and
instead exploits similar contexts of skills across domains to
learn correspondences; these results are expected as a result.
Finer skills and intra-cluster variations of such skills are
often executed in similar contexts, such as after reaching or
before placing skills, making them difficult to disambiguate.
Despite this, our model often does translate finer skills (such
as twisting and grasping) correctly, suggesting its potential
for improvement via techniques such as iterative refinement
( s ), or via additional inductive biases.

source domain trajectory’s overall structure, and sequence
of skills executed, remarkably well to the target domain.
Our model does so despite variations in the precise shape
of the robot arms, or start and end positions of these respec-
tive skills. This provides further evidence that the learnt
correspondences are indeed semantically meaningful, and
additionally suggests these learnt correspondences would be
useful in transferring task strategies across domains. We be-
lieve this is a powerful result, especially since our approach
does so in a completely unsupervised manner.

Quantitative Evaluation of Skill-Tuple Distribution
Matching: To quantitatively measure how well our ap-
proach can match the distributions of skill-tuples across
robots, we evaluate the following unsupervised metrics. We
first evaluate the forward and backward GMM densities £ ¢
and L,. We also compute the Chamfer distance ( s

) between the skill-tuple spaces, which represents the
nearest neighbor distances across two point sets. Together,
these three metrics specify how close the skill-tuple dis-
tributions across domains are. We evaluate the following
supervised metrics, using the manually annotated semantic
labels associated with 50 skills in each domain. We reiter-
ate these labels are unseen at train time, and used only for
evaluation. We evaluate how accurately the learnt correspon-
dences preserve semantics across domains, by measuring
how well the semantic labels associated with a set of skills
in the source domain match with those in the target domain,
reported as the label accuracy in Table 1. We also evaluate a
supervised Z error - i.e. the average distance in latent space
between the translated source domain skills, and the nearest
target domain skills with the same semantic label.


https://sites.google.com/view/translatingrobotskills/home
https://sites.google.com/view/translatingrobotskills/home

Translating Robot Skills: Learning Unsupervised Skill Correspondences Across Robots

Table 2: Evaluating Task-Strategy Transfer: Evaluating average rewards obtained by translating a source domain demonstration to the

target domain via our approach, with and without finetuning, against a hierarchical RL baseline, adapted from

(

),

across 3 tasks. Rewards for the HRL baseline, and our approach with finetuning are averaged across 10 episodes. Results on additional
domain pairs are shared in supplementary material. * - While we evaluate rewards of target domain demonstrations here for comparison,
our approach is intended for situations where such demonstrations are unavailable on the target domain.

Domain Downstream Task
Pair Approach: . '
Reach Reach Push Push Slide Slide
(Source) (Target) (Source) (Target) (Source) (Target)

Franka Demonstration 32.6 34.8 41.9 42.1 39.6 37.8
to Sawyer HRL [1] 11.2 10.5 14.3 16.3 12.3 11.5
Ours (Zero Shot) 33.7 39.5 39.7
Ours (Fine-tune) 35.1 40.8 43.1
Baxter-L Demonstration 36.4 34.8 45.7 42.1 434 37.8
to Sawyer HRL [1] 9.7 10.5 13.3 16.3 13.6 11.5
Ours (Zero Shot) 37.1 40.9 39.1
Ours (Fine-tune) 38.3 42.3 40.6
Baxter-R Demonstration 35.9 32.6 45.9 41.9 44.5 39.6
to Franka HRL [1] 10.1 11.2 12.9 14.3 12.4 12.3
Ours (Zero Shot) 36.1 42.0 37.4
Ours (Fine-tune) 374 43.6 39.1

We compare our approach against the following align-
ment baselines in Table 1. Our first baseline is Domain-
adversarial training ( s ), where we match
skill-tuple distributions by training the translation model
to fool a discriminator network trained to identify domains
given skill-tuples. We compare against Cycle-GAN (

s ), where we train two translation models be-
tween skills from source and target domains to be cycle-
consistent with one another, while also optimizing a domain-
adversarial objective ( , ). Finally, we also
compare against a State-based Imitation approach ( ,

), where we transfer trajectories across domains by
copying end-effector states across robots, using inverse kine-
matics to retrieve the closest feasible joint state.

Analysis of Qualitative Results of Skill-Tuple Distribu-
tion Matching: From Table 1, we observe that our approach
is notable able to learn correspondences that achieves a
much higher semantic label transfer accuracy, consistent
with our approach learning good coarse correspondences.
The baseline approaches in contrast, are only able to achieve
random-level label transfer accuracy, indicating their in-
ability to learn correct correspondences. For example, the
domain adversarial baseline ends up mapping several dif-
ferent types of skills in the target domain to single modes
of skills in the target domain, across all domain pairs. The
Cycle-GAN baseline somewhat mitigates this approach, but
takes a shortcut in the learning and simply places a single
source skill nearby every mode of target skill. In contrast,
our approach explicitly optimizes for distribution matching,

and achieves significantly better unsupervised distribution
matching metrics than the implicit baseline approaches.

Further, the state-based imitation baseline relies on Inverse
Kinematics (IK) on the target agent. Since the agents have
differing workspaces from one another, IK often fails to re-
cover feasible joint states. Even when successful, for redun-
dant 7-DoF robots, there are multiple possible IK solutions
to choose from, often leading to wildly different trajecto-
ries (and strategies) than those demonstrated. Bypassing
these issues with an IK based approach require constructing
involved engineering pipelines for each pair of robots or
agents, which is infeasible. Not only is our approach able to
bypass this agent-pair specific engineering effort, but is also
able to outperform this IK based approach on all metrics
presented in Table 1, 3, and 4.

4.2. Transferring task strategies across domains

As mentioned in the introduction, these learnt correspon-
dences allow a robot to adopt a demonstrator’s task strategy
for itself, by translating a demonstrated task strategy (speci-
fied as a sequence of skills) from the source domain to the
target robot. We evaluate how well the learnt correspon-
dences help transfer task strategies across robots as follows.

Task Strategy Transfer Setup: We consider a set of tasks
adapted from ( ), described in the ap-
pendix. We then select a demonstration for this task present
in the source dataset, and encode this instance of a “task
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strategy” as a sequence of skills via its respective domain
skill-encoder gs. We then evaluate how well the transla-
tion of this task strategy performs on the same tasks in the
target domain, both without fine-tuning (i.e., in a zero-shot
manner), and after fine-tuning for 50 episodes. We eval-
uate this transfer against a hierarchical RL baseline, i.e.
a high-level policy trained in the target domain over 500
episodes, and report our results in Table 2, as well on ad-
ditional domain pairs in Table 5 in the supplement. While
we report the performance of a demonstrated trajectory for
the same task in the target domain for comparison pur-
poses, we note that our approach is intended for the setting
where such target domain demonstrations are unavailable
or difficult to procure. We also provide visualizations of
the rollouts from the original and translated strategies in
https://sites.google.com/view/translatingrobotskills/home.

Analysing results on task strategy transfer: The demon-
strations (Row 1 of Tables 2 and 5) in both domains success-
fully solve each task. The reward values of these demonstra-
tions serve as benchmarks of when the task is solved. The
Hierarchical RL baseline rarely solves tasks, and instead
achieves moderate rewards from moving towards solving
the task, such as reaching halfway to the object.

We observe that the task strategies translated by our method
are able to achieve appreciable task performance across all
domain pairs and tasks, solving these tasks even without
fine-tuning these strategies. Without fine-tuning, we see that
the translated task strategies follow a semantically reason-
able sequence of skills given the target task, achieving an
appreciable task reward, but often reach slightly differing
goal states than desired. Given our translation model only
observes skill encodings, and no additional state informa-
tion, this is expected. Upon fine-tuning these translated
task strategies in the target domain, we observe a consistent
increase in task performance, since fine-tuning allows for
picking slightly different (but semantically similar) skills
that reach more appropriate goal locations, etc.

Despite these marginal differences, our translated task strate-
gies are often able to achieve performance on par with
demonstrations in the target domain, and outperform hi-
erarchical RL on the target domain. Our approach is signifi-
cantly faster to converge than hierarchical RL, needing 10
times less training episodes to achieve superior performance,
because our approach bypasses the inefficient random ex-
ploration needed to learn appropriate skill sequences for a
given task. These results suggest that our approach does
indeed learn correspondences that facilitate transferring task
strategies across robots, and could serve as a viable alterna-
tive to learning policies from scratch when target domain
demonstrations are unavailable.

4.3. Additional Comparisons and Discussion

We provide several additional points of discussion and com-
parisons against the baselines in the appendix. Specifically,
we discuss the relative training time of our approach versus
the baseline approaches, assumptions of learning, validity of
the premise, ablations, and limitations. We direct the reader
to the appendix for these details.

5. Conclusion

We introduce a purely unsupervised approach to learn skill
correspondences across differently embodied agents from
different domains. Our approach learns semantically mean-
ingful correspondences across multiple robot-robot and
human-robot domain pairs, and helps transfer task-strategies
across domains, without the need for any fine-tuning, de-
spite being completely unsupervised. We believe that our
approach could enable learning of correspondences across
more general temporal abstractions, such as between skills
and language instructions, or between skills and human
video demonstrations in the wild. This is useful when the
learner robot cannot currently solve the demonstrated task,
or would benefit from learning a new strategy to do so. One
practical scenario for this is robots could learn to solve new
tasks by watching large collections of unlabelled datasets
of humans performing tasks. Our work serves as a step-
ping stone to such future research. More broadly, our work
takes small steps towards — (1) greater technical equity in
robotics, by sharing large-scale training data across multi-
ple different robots; and (2) democratizing robot program-
ming, by enabling non-expert users specify task strategies
to robots.
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A. Appendix

We present additional details regarding our approach, results, discussion, and implementation details here.

A.1. Algorithm

We present the full algorithm for learning unsupervised skill correspondences below:

Algorithm 1 Translating Robot Skills
Require: D., D, q,,q.,7g, T,
{Require demonstration datasets, trained skill encoders & decoders for source & target domains }
Ensure: T, . (. |z,) {Output translation model}
0: Initialize T, ..( . |z,) {Initialize translation model}
Xy < BUILDSKILLTUPLESPACE(Source) {Construct source skill-tuple space}
X, < BUILDSKILLTUPLESPACE(Target) {Construct target skill-tuple space}
Do () Zi]\fl p( . |z!. ;) {Update target GMM density via Equation (4) }
for i € [1,2, ..., Niterations) do
X, T, (. |X;) {Update translated-source skill-tuple space}
De_r (T) Zivjl p( . |2l .. ;) {Update translated-source GMM density via Equation (5) }
xg ~ X, z,. ~ X, {Get batch of source and target skill-tuples}
sy ~ T, (. |zy) {Translate source skill-tuple to target domain }
Ly < logp,(z, ) {Evaluate forward objective}
Ly « logpg_,.(x,) {Evaluate backward objective}
L <+ Ly + Ly {Evaluate full objective }
Update T .. via VL {Update translation model with gradient ascent}

xT

PR

—T

Sub-routine: Build Skill-Tuple Space

Require: Domain M
Ensure: Skill-Tuple space X,
0: function BUILDSKILLTUPLESPACE(Domain M)
0: X,, < {} {Initialize empty skill-tuple space}
forie[1,2,..,N,] do
Tu.i ~ D,, {Retrieve batch of trajectories from domain dataset}

{at, ltil_l — (2t 2t Ith\l—l {Assemble skill tuples}

M’ M
[7|—1

0
0
0: {L, ,‘;ll ~ qy (. |7u.i) {Encode trajectories as sequence of skills via domain encoder}
0
0 X, « X, u{z! },2 " {Add skill-tuples to skill-tuple space}

0

return X,
=0

A.2. Additional Results

We now present additional results from our approach left out of our main paper owing to space constraints.

A.2.1. QUANTITATIVE EVALUATION OF SKILL-TUPLE DISTRIBUTION MATCHING

The first part of these results is additional quantitative evaluations of skill-tuple distribution matching on the remaining robot
domain pairs. We present a continuation to Table 1 in Table 3 below.

In addition to results on the robot domain pairs Table 3, we also present quantitative results on the domain pairs translating
from the humans to the robots. To this end, we present a further continuation of Table 1 and Table 3 in Table 4, on the
human to robot domain pairs respectively.
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Table 3: Continuation of Table 1: Evaluating Skill-Tuple Distribution Matching via our approach against various baselines, on the
remaining robot domain pairs. Baselines are adapted from (1): ( ), (2): ( ), (3): ( ). Lower is
better for all metrics except the label accuracy.

Domain . Chamfer Cycle Label Supervised
Pair Approach: Ly Lo Distance Error  Accuracy Z Error

DomAd [1] 38.1 434 20.1 17.4 10.3% 15.2
Baxter-R  Cycle GAN [2] 32.1 39.8 17.0 9.2 14.2% 14.9
to Baxter-L State Im [3] 453 49.1 31.0 24.8 32.8% 12.3
Ours 143 20.1 8.2 10.2 73.8% 8.1
DomAd [1] 61.8 83.2 24.8 223 9.5% 23.6
Baxter-L  Cycle GAN [2] 47.2 58.2 20.7 16.2 15.3% 18.9
to Franka State Im [3] 78.0 924 32.5 28.5 17.2% 25.9
Ours 23.2 151 9.5 11.3 64.1% 11.9
DomAd [1] 54.8 80.2 21.2 24.8 11.1% 19.1
Baxter-R  Cycle GAN [2] 47.3 78.5 16.7 10.3 16.8% 20.1
to Sawyer State Im [3] 725 854 33.9 27.7 20.1% 23.0
Ours 154 36.5 7.2 10.1 64.6% 12.1

We note that we do not compute the supervised Z error or the semantic label accuracy on this set of human-robot domain
pairs. This is because the skills that the various humans demonstrate in the GRAB dataset are distinct from the skills
executed in the robot datasets; as a result, it is not easy to compare the label spaces across human and robot datasets.

Table 4: Continuation of Table 1: Evaluating Skill-Tuple Distribution Matching via our approach against various baselines, on the human
to robot translation domain pairs. Baselines are adapted from (1): ( ), (2): ( ), (3): ( ). Lower
is better for all metrics.

Domain . Chamfer Cycle
Pair Approach: Ly = Distance  Error

DomAd [1] 46.9 61.8 20.3 279

Human Cycle GAN [2] 34.7 533 18.8 10.4
to Baxter-L. State Im [3] 54.8 734 24.9 34.1
Ours 16.6 19.0 94 9.8

DomAd [1] 386 524 26.3 31.7

Human Cycle GAN [2] 40.8 452 19.4 10.8
to Baxter-R State Im [3] 53.7 68.9 323 384
Ours 16.6 16.0 9.7 10.3

DomAd [1] 683 774 23.6 19.3

Human Cycle GAN [2] 54.1 623 17.4 10.9
to Franka State Im [3] 59.8 78.7 25.2 21.4
Ours 27.8 249 10.1 11.3

DomAd [1] 53.8 62.3 19.8 17.8

Human Cycle GAN [2] 47.5 57.6 19.2 13.6
to Sawyer State Im [3] 659 750 21.8 22.3
Ours 179 37.2 10.4 11.7
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A.2.2. QUANTITATIVE EVALUATION OF TASK-STRATEGY TRANSFER

The second set of results we present are additional quantitative evaluations of task strategy transfer on the remaining robot
domain pairs. We present a continuation to Table 2 in Table 5 below.

Table 5: Continuation of Table 2: Evaluating Task-Strategy Transfer on remaining robot domain pairs: Evaluating average rewards over

10 episodes obtained via our approach with and without finetuning against a hierarchical RL baseline, adapted from ( )
across 3 tasks. Source domain results are shared across approaches, and are trained via ( ).
Domain Downstream Task
Pai Approach:
air Reach Reach Push Push Slide Slide
(Source) (Target) (Source) (Target) (Source) (Target)
Baxter-R Demonstration 35.9 36.4 45.9 45.7 44.5 43.4
to Baxter-L HRL [1] 10.1 9.7 12.9 13.3 12.4 13.6
Ours (Zero Shot) 34.1 42.1 43.9
Ours (Fine-tune) 35.9 44.6 45.3
Baxter-L Demonstration 36.4 32.6 45.7 41.9 43.4 39.6
to Franka HRL [1] 9.7 11.2 13.3 14.3 13.6 12.3
Ours (Zero Shot) 35.2 42.5 38.3
Ours (Fine-tune) 36.7 43.1 39.8
Baxter-R Demonstration 359 34.8 45.9 42.1 44.5 37.8
to Sawver HRL [1] 10.1 10.5 12.9 16.3 124 11.5
Ye' " Ours (Zero Shot) 34.7 44.1 39.0
Ours (Fine-tune) 37.1 46.5 40.3
A.2.3. RUNTIME OF TRANSFER APPROACHES

An important consideration in transfer learning is the training or runtime of transfer learning approaches, compared to
learning from scratch in the target domain. Here, we present the observed runtime till convergence of the various transfer
approaches, as well as against learning from scratch in the target domain.

1. Number of training iterations and runtime of the various alignment approaches used in Table 1: Note that the State

Imitation baseline does not require any training. Our approach requires roughly 40-50k training iterations to converge
to a good translation model. This corresponds to a runtime of 3 hours. In contrast, both the domain adversarial
training and Cycle GAN approaches require on the order of 300-400k training iterations for their adversarial training
to converge, which corresponds to a runtime of 20-24 hours of train time. Since our approach avoids the alternating
adversarial training, this drastically helps our approach quickly converge to translation models that also perform better.

2. Number of RL training episodes required for the various transfer approaches used in Table 2: Without fine-tuning,

A3.
A.3.

our approach requires 0 RL episodes. With fine-tuning, our approach is trained for 50 RL episodes, as mentioned in
section 4.2. This corresponds to roughly 30 minutes of train time. We observe no increase in performance upon further
training. The hierarchical RL baseline (adapted from Kulkarni et. al. 2016), requires 500 RL episodes to converge,
which corresponds to about 5 hours of training time.

Additional Discussion

1. ASSUMPTIONS OF LEARNING

1. Assumptions of datasets: As stated in our main paper, our choice of robots is dictated by the availability of demonstration

datasets on a particular robot. Further, the demonstration datasets ideally also exhibit the following traits. The
demonstration datasets need to be directed., i.e. they need to contain demonstrations of the robots solving a set of tasks,
rather than containing random play data in an environment. While it is possible to learn skills from such play data,
learning correspondences of skills from such play data is difficult. This is because our approach relies on directed
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sequences of skills to learn correspondences. Random play data often contains random sequences of skills, and so
observe skills in contexts that they do not originally occur. This misleads our approach, which seeks to exploit context
to learn correspondences.

2. Assumptions about learnt skill spaces: As stated in the analysis of our methods translations of skills, our model is able
to learn good coarse correspondences, between clusters of skills in the original skill spaces. One trait of the original
skill spaces that allows for this is the disentangled representation of the skills afforded by the skill-learning pipeline.
Since similar semantic skills that occur in similar contexts are placed in similar clusters in the original skill space, this
allows our approach to learn correct correspondences between clusters of skills.

3. Validity of premise: Our fundamental insight is that differently embodied agents adopt similar task strategies for similar
tasks. We believe this premise holds true across a wide variety of robotic applications; we discuss a few of these
applications here, and discuss when this premise is valid and when it fails.

(a) Consider the example of two robot manipulators placing an object at a particular location, one equipped with a
mechanical gripper, and the other equipped with a suction cup “gripper”. Irrespective of gripper morphology, both
robots would follow the same strategy of first reaching towards the object, “gripping” the object (by pinching it
with the mechanical gripper, or by sucking on to it), lifting the object up, and then finally placing it at the particular
location and releasing its grasp. We see our premise still holds in this example, enabling successful transfer of
skills across these robots.

(b) Consider the example of a wheeled robot and a legged robot navigating through a maze, each equipped with skills
of moving in each of the 4 cardinal directions for a distance of 2 meters. Both of these robots would likely follow
the same waypoints to navigate the maze, and hence use the same sequence of locomotion skills or strategy to
navigate the maze. This implies similar skills would be observed in similar contexts, allowing our approach to
successfully exploit this information to successfully transfer skill across these morphologies. We note that other
works also use similar ideas; notably Hejna et. al. (2020) address morphological transfer in robot locomotion
using a similar idea of high-level strategies in locomotion being shared across robots.

(c) Despite our premise holding across a wide variety of robotic applications, it would likely not hold for drastically
different morphological robots. For example, consider a serial robot manipulator and a gantry robot addressing an
object placing task in the presence of obstacles. The gantry robot may be able to reach positions in the workspace
that a serial manipulator cannot. This enables the gantry robot to simply grasp and place the desired object, while
the serial manipulator may need to rearrange the obstacles to reach the desired object at all. Such widely different
morphologies may necessitate the use of widely differing strategies across robots, invaliding our premise. We
would like to emphasize that these are extreme cases under which our premise does not hold true. We believe
our premise is still valid in a wide variety of applications, and could facilitate knowledge transfer across many
morphologies that would help accelerate robot learning.

A.3.2. ABLATION STUDIES

To accurately assess our contribution, we would also like to quantify how much each of the following components in our
approach contribute to successfully learning correspondences:

1. The forward objective, L.
2. The backward objective, L.
3. The use of sequential information, i.e. matching skill-tuple distributions as opposed to matching skill distributions.

4. Learning a translation model across frozen skill spaces, as opposed to directly optimizing the skill representation itself.

We do so by removing each of these components individually, while keeping the rest of the method as is, and train our
approach on all domain pairs. We observe the following.

1. Without forward objective Ly, i.e., only optimizing the backward objective £;, we observe the translation model is
able to cover each of the modes of the target skill-tuple by translated source skills. However, since there is no objective
that encourages how realistic the translated source skills are, we observe that there are several modes of translated skills
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that are not observed in the target skills space. This results in spurious correspondences. For example, this translation
model learns to map reaching skills to z’s that are decoded into random jerky motions on the target robot, that are out
of distribution for the target robot decoder.

2. Without backward objective £;,: While only optimizing the forward objective L, we observe that each of the translated
skills appear very realistic with respect to the target domain, i.e. each of the translated skills look like a skill in the
target domain. However, these models end up suffering from the same issue as the GAN based approaches or the
domain adversarial style training, where several modes of the target skill space go unrepresented by target skills. This
limits the ability of the learnt correspondences to effectively transfer strategies or represent source motions, since many
of the target robot skills are never chosen by the translation model. Together, these ablations indicate the importance of
both directions of our approach in learning successful correspondences.

3. Without sequential information: We can also optimize our objective defined in terms of skills themselves, rather than
skill-tuples. While matching skill distributions, as opposed to skill-tuple distributions, we observe that the densities of
skill distributions can be matched well by our objective. However, without access to sequential information, the model
learns correspondences that are often wrong. For example, it learns to map reaching skills on the Baxter right hand to
returning skills on the Baxter left hand, and vice versa. Skills in different contexts are often mapped to each other,
since there is no contrary sequential information that the model has access to to suggest otherwise. This suggests that
as described in our main paper, learning with access to sequential information and matching skill ruple distributions is
also key to the success of our approach.

4. By directly optimizing the skill-representations, rather than training a translation model with fixed skill spaces:
Instead of freezing the source and target skill spaces, we can also directly optimize the skill representations based
on our objective. One may also think of this as maintaining a translation model that is simply an identity function.
When allowing either or both of the source or target skill spaces to be finetuned, we must also optimize the original
reconstruction style objective that is used in ( ). Despite this, we observe a collapse of the skill
space into a unimodal distribution, that is both unable to reconstruct skills in either domain, and be mapped across
domains. This suggests freezing the representations and training a separate translation model is key to our approach.

A.4. Implementation Details
A.4.1. DATASETS AND PREPROCESSING

We broadly follow ( ) in their preprocessing of the datasets. We partition the MIME dataset into two
disjoint sets with solely left-handed and right-handed trajectories respectively. Each single-handed dataset also roughly
contains 2000 demonstrations across 16 tasks. We treat each single-handed dataset as the respective dataset for the Baxter
left-hand robot and the Baxter right-hand robot. For human data, ( s ), we select a subset of the full body
joints relevant to the arms and the pelvis. We then normalize the joint positions with respect to the pelvis, to correct for
motion of the human as compared to the static robots. All data is normalized prior to being fed into our pipeline, by min-max
normalization.

A.4.2. NETWORK ARCHITECTURES

We parameterize the various functions involved, namely the source and target domain encoders and low-level policies ¢ and

m respectively, and the learnt translation model T} .. as neural networks, with following specific architectures.

1. Variational encoders ¢: In each domain, the variational encoder g is parameterized as a 4 layer LSTM network, with a
hidden size of 48 and ReLu activation layers. We further use an input layer from the appropriate input dimensions prior
to the LSTM, and two output layers to predict a Gaussian mean and variance of the skill encodings predicted by the
variational encoders.

2. Low-level policies 7: In each domain, the low level policies 7 are parameterized as 3 layer LSTM networks, with
hidden sizes of 48 and ReLu activation layers. As above, we use appropriately sized input layers prior to the LSTM,
and two output layers after the LSTM to predict a Gaussian mean and variance of the low-level actions output by the
policy.
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3. Translation model T} ,..: The translation model is parameterized as a simple 4 layer MLP, with a hidden size of 48
units, and ReLu activation layers. We similarly use two output layers to predict a Gaussian mean and variance of the

translated skill encodings z,_, ..
4. Latent Skill Encoding Dimension: We use a skill encoding dimension of 16 across all domains / robots.

5. RL High-level policy: While training RL, we parameterize the high-level policy as a 4 layer MLP, with a hidden size of
48 units, and ReLu activation layers. As above, we use two output layers to predict a Gaussian mean and variance of
the predicted skill encodings, in whichever domain we train the policy in.

A.4.3. TRAINING DETAILS

While training the variational encoders and low-level policies, we follow the training procedure specified by

( ). We then freeze the variational encoders and low-level policies obtained, before training our translation models.
While training our translation models, we simply optimize £ = L; + L using the Adam optimizer ( , ),
implemented in Pytorch. We use the default parameters of Adam, i.e. a learning rate of 10~%.

A.4.4. RL TRAINING DETAILS

While training the downstream RL, we implement a hierarchical version of Proximal Policy Optimization ( ,

), by adapting ( ). This mirrors the hierarchical RL setup of ( ). We fix the low-level
policies provided to the algorithm, and only train the high-level policies that predict the skill encodings fed into the low-level
policies. The hierarchical RL baseline ( ) is trained for 500 episodes, which we found to be sufficient
for the algorithm’s performance to saturate. The fine-tuning approach was allowed a budget of 50 episodes to adapt the
translated task strategy. The results were evaluated against a fixed random seed of 0.

A.4.5. RL TASKS

We train on the following set of tasks adapted from ( ). In particular, we create instances of these tasks
on each of the different robots. The only differences between the environments across different robots comes in the form of
different initialization states for the objects concerned,

1. Reach: The robot must execute a sequence of skills to reach a block placed on the table. The robot gets a shaped reward
based on the distance from the block, and a binary reward upon reaching within a threshold distance of the block.

2. Push: The robot must execute a sequence of skills to push a red block and a green block together. The reward received
has a shaped component based on the distances of the end effector from the red block, as well as a binary reward based
on whether the blocks are within a threshold distance of one another.

3. Slide: The robot must execute a sequence of skills to push a red block within a threshold distance of a green block
placed farther away. The reward received is based on the distance of the end effector from the red block, as well as a
binary reward based on whether the blocks are within a threshold distance of one another.

A.4.6. HYPERPARAMETERS

We provide a list of the various hyperparameters use during training of the translation model itself, and the downstream RL
training.

1. Number of GMM Kernels Ng and N.: For each of the forward and backward GMMs, we use 500 kernels to
parameterize the GMM.

2. GMM Kernel variance o2: For both forward and backward GMMs, we use a Gaussian Kernel variance of 0.5.

3. Relative weighting of forward and backward losses: We weight the forward and backward losses equally during
training.

4. Learning Rate: For training our translation model, we use the Adam optimizer with a learning rate of 10~4.
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5. Batch Size: For our training, we use a batch size of 32.
6. Number of iterations: We train our translation models over 8000 epochs for each domain pair.
7. Random Seed: We set the random seed for our training to 0 manually.

8. Epsilon Noise: We add in epsilon noise to our training during sampling from the learnt networks. Here, we use an
initial epsilon value of 0.3, and decay the epsilon value to 0.1 over 200 epochs.

While training downstream RL, we adopt the following hyperparameters:

1. Random Seed: When training downstream RL, we report results across 3 different seed values, 0, 1, 2.

2. Epsilon Noise: We follow an epsilon-greedy exploration process during RL training, and use an initial epsilon value of
0.7, and decay the epsilon value to 0.3 over 200 epochs.

3. PPO Parameters: We follow the default PPO parameters used in ( ).



	Introduction
	Related Work
	Approach
	Pre-requisites
	Problem Setting
	Using sequential information of skills
	Distributional perspective on learning translations

	Experiments
	Learning meaningful skill correspondences
	Transferring task strategies across domains
	Additional Comparisons and Discussion

	Conclusion
	Appendix
	Algorithm
	Additional Results
	Quantitative Evaluation of Skill-Tuple Distribution Matching
	Quantitative Evaluation of Task-Strategy Transfer
	Runtime of transfer approaches

	Additional Discussion
	Assumptions of Learning
	Ablation Studies

	Implementation Details
	Datasets and Preprocessing
	Network Architectures
	Training Details
	RL Training Details
	RL Tasks
	Hyperparameters



