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Abstract
The application of an ensemble of neural net-
works is becoming an imminent tool for advanc-
ing state-of-the-art deep reinforcement learning
algorithms. However, training these large num-
bers of neural networks in the ensemble has an
exceedingly high computation cost which may be-
come a hindrance in training large-scale systems.
In this paper, we propose DNS: a Determinantal
Point Process based Neural Network Sampler that
specifically uses k-DPP to sample a subset of neu-
ral networks for backpropagation at every train-
ing step thus significantly reducing the training
time and computation cost. We integrated DNS in
REDQ for continuous control tasks and evaluated
on MuJoCo environments. Our experiments show
that DNS augmented REDQ matches the baseline
REDQ in terms of average cumulative reward and
achieves this using less than 50% computation
when measured in FLOPS. The code is available
at https://github.com/IntelLabs/DNS.

1. Introduction
In the past decade, reinforcement learning (RL) algorithms
powered by high-capacity function approximators such as
deep neural networks have been used to master complex
sequential decision problems such as Atari games (Mnih
et al., 2015), boards games like Chess, Go, and Shogi (Silver
et al., 2016; 2017; 2018) and robotic manipulation (Liu
et al., 2021). Despite showing impressive results, deep
reinforcement learning (DRL) algorithms have a number of
problems such as sample inefficiency (Łukasz Kaiser et al.,
2020), overestimation bias (van Hasselt, 2010; Hado van
Hasselt et al., 2016; Lan et al., 2020; Anschel et al., 2017;
Fujimoto et al., 2018) and an imbalance between exploration
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and exploitation (Lee et al., 2020; Osband et al., 2016).

Considering the success of ensembles in supervised learn-
ing, the use of an ensemble of neural networks is becoming
popular in deep reinforcement learning (DRL) to address the
issues mentioned above. For example, in (Lan et al., 2020;
Anschel et al., 2017; Fujimoto et al., 2018) have used ensem-
ble to address the overestimation bias problem. In (Chen
et al., 2021) proposed REDQ that uses an ensemble with a
high update-to-data ratio to address the sample inefficiency
problem. Similarly (Lee et al., 2020) have used ensemble
for efficient exploration.

Despite ensembles providing elegant theoretical and practi-
cal solutions, they introduce new practical problems such as
high computation costs and long training times. The high
computation cost problem is especially evident in an actor-
critic setting where DRL algorithms use a large number of
critic networks. One such example is the REDQ algorithm
that uses ten critic networks and updates all of them in every
training step which leads to higher computation cost as well
as longer wall-clock time.

To address this issue, we present DNS: a Determinantal
Point Process-based Neural Network Sampler that specifi-
cally uses k-DPP (Kulesza & Taskar, 2011) to sample a sub-
set of neural networks for backpropagation at every training
step. DNS uses Centered Kernel Alignment (CKA) (Korn-
blith et al., 2019) values to form the similarity matrix which
is then used by the k-DPP to sample the subset on neural
networks for backpropagation. The motivation for sampling
a subset of networks came from a hypothesis which we show
in Section 4.1 that the Q-values from the critics converge
prematurely during training thus eliminating the need of
training all the critics at every training step.

Additionally, we show that if the CKA matrix is not positive
semi-definite, the closest positive semi-definite matrix is just
a diagonal perturbation of the CKA matrix and its resulting
kernel matrix is still Hermitian positive semi-definite.

We applied DNS on REDQ, evaluated on MuJoCo envi-
ronments (Todorov et al., 2012) and, showed that a simple
sampling technique can significantly reduce the training
time and computation cost while maintaining performance
as if training all the networks in the ensemble.
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To summarize, our contributions are the following:

1. We empirically show that neural network-based value-
function approximators collapse prematurely during
training in ensemble reinforcement learning.

2. To address this issue, we propose a Determinantal Point
Process based Neural Network Sampler that samples a
subset of value-function approximators for backpropa-
gation at every training step.

3. We apply DNS on REDQ, which uses an ensemble of
ten critic networks. Our experiments show that DNS
sampling achieves similar or better results than REDQ
using less than 50% computation when measured in
FLOPS.

4. We also provide a theoretical analysis and proof that
shows that k-DPP sampling of action-value functions
leads to lower action-value minimization variance than
random sampling k action-values. Additionally, we
show how sufficiency conditions for k-DPP sampling
can easily be met for the Deep RL use case.

2. Related Work
Ensembles in Deep Reinforcement Learning: The ap-
plication of an ensemble of neural networks in deep rein-
forcement learning has been studied in several recent studies
for different purposes. In (Fujimoto et al., 2018; Anschel
et al., 2017; Lan et al., 2020; Chen et al., 2021) have used
an ensemble to address the overestimation bias in deep Q-
learning based methods for both continuous and discrete
control tasks. Most recently proposed TOP (Moskovitz
et al., 2021) proposed a method that learns to balance op-
timistic and pessimistic value estimation online. Similarly,
Bootstrapped DQN and extensions (Osband et al., 2016;
Chen et al., 2017) have used an ensemble of neural net-
works for efficient exploration. In (Chen et al., 2021; Gupta,
2015) have used a large number of ensembles to provide
sample efficient reinforcement learning algorithms. The
use of ensemble is rapidly growing in offline reinforcement
learning to address issues such as error propagation and
uncertainty estimations. The error propagation problem in
offline reinforcement learning is addressed in (Kumar et al.,
2019) using ensemble. Recently proposed methods such
as (An et al., 2021; Ghasemipour et al., 2022) have used a
large number of ensembles to measure uncertainty in offline
RL settings. The application of ensemble is not only limited
to the critics but several recent papers have used ensembles
in the policy domain as well (Lee et al., 2020; Zhang & Yao,
2019).

Determinantal Point Process in Machine Learning: De-
terminantal Point Processes (DPPs) have emerged as pow-

erful models in the machine learning community in appli-
cations requiring information diversity, coverage, and to
reduce redundancy such as text summarization (Kulesza &
Taskar, 2012). Applications of DPPs include video sum-
marization (Gong et al., 2014; Sharghi et al., 2016), pose
estimation (Mai et al., 2022) and wardrobes creation (Hsiao
& Grauman, 2018). More recently DPPs have been used in
reinforcement learning to promote behavior diversity (Pac-
chiano et al., 2020). k-DPPs (Kulesza & Taskar, 2011), an
extension of DPP has been adopted in many applications
such as image search and stochastic gradient descent using
diversified fixed size mini-batches (Zhang et al., 2017).

3. Background
REDQ: REDQ (Chen et al., 2021) is an off-policy actor-
critic method based on max-min RL framework. REDQ uses
an ensemble of neural networks to model the critic. One key
feature of REDQ is in-target minimization that samples a
subset of neural networks to create the target value to train
the critics networks. The target value y is calculated as

y = r + γ

(
min
i∈M

Qϕtarg,i (s
′, ã′)− α log πθ (ã

′ | s′)
)
,

where M is the number of target networks. The policy
gradient is written as

∇θ
1

|B|
∑
s∈B

(
1

N

N∑
i=1

Qϕi
(s, ãθ(s))− α log πθ (ãθ(s)|s)

)
,

where N is the number of critic networks.

Centered Kernel Alignment: Centered Kernel Align-
ment (CKA) (Cristianini et al., 2002; Cortes et al., 2012;
Kornblith et al., 2019) is an invertible linear transforma-
tion invariant statistic for measuring meaningful multivari-
ate similarity between representations of higher dimension.
CKA is a normalized form of Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2005). Formally, CKA is
defined as:

Let X ∈ Rn×p1 denote a matrix of activations of p1 neu-
rons for n examples and Y ∈ Rn×p2 denote a matrix of
activations of p2 neurons for the same n examples. Further-
more, we consider Aij = a (xi, xj) and Bij = b (yi, yj)
where k and l are two kernels.

CKA (A,B) =
HSIC (A,B)√

HSIC (A,A) · HSIC (B,B)

HSIC is a test statistic for determining whether two sets of
variables are independent. The empirical estimator of HSIC
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(a) Ant-v2 (b) HalfCheetah-v2 (c) Walker-v2

Figure 1. Q-value plots of three MuJoCo environments accumulated over four different seeds. Each curve in the plot represents the mean
of the Q-values from ten critics and shaded area represents 95% confidence interval band. Notice that each curve has a variance in the
Q-values in the beginning of the training but it quickly disappears as training continues.

is defined as:

HSIC (A,B) =
1

(n− 1)2
Tr (AHBH)

where H is the centering matrix Hn = In −
1

n
11T .

Determinantal Point Processes: A Determinantal point
process (DPP) (Macchi, 1975) is a random point process
useful for the combinatorial problem of selecting a diverse
sample from a set. In particular, a DPP for a given finite
set defines a probability distribution over subsets, where
subsets containing diverse items have high probability and
are thus more likely to be selected. We briefly discuss finite
determinantal point processes here, for in-depth discussions
refer (Hough et al., 2006; Kulesza & Taskar, 2012; Li et al.,
2016; Dereziński et al., 2019).

Definition 3.1. A point process X on discrete set S
and with Hermitian positive semi-definite marginal kernel
K:S2 → C, K ⪯ 1 (all eigenvalues of K are at most 1) is
called determinantal iff

P (X ⊇ (xi, . . . , xn)) = det(K(xi, xj))1≤i,j≤n (1)

for any n ∈ Z+ and any xi, . . . , xn ∈ S or equivalently, iff

P (X ⊇ x) = det(Kx) (2)

for any x ⊂ S , where Kx is the submatrix of K indexed by
x× x.

Consequently, DPPs are a repulsive distribution over set S,
generating subsets that exhibit diversity.

Furthermore, for the case when I −K invertible, the DPP
X is called an L-ensemble with kernel K := I−(I+L)−1

and distribution

P (X = x) = det(Lx)det(I +L)−1 (3)

for any x ⊂ S , where Lx is the sub-matrix of L indexed by
x× x.

Lemma 1. (Collings, 1983) Let D be an N ×N diagonal
matrix and let M be an arbitrary N × N matrix. The
determinant of (D +M) is :

det(D +M) =
∑
S⊆S

det(DS)det(MS). (4)

Thus (3) can be re-written in normalized form as:

P (X = x) = det(Lx)(
∑
x⊆S

det(Lx))
−1. (5)

In this paper, we only considers DPPs that are L-ensembles
because of their advantages such as:

i. While (2) gives the probability that a set is contained
in the DPP, (3) gives the exact probability that a sam-
pled set is from the DPP and is thus more relevant for
set selection tasks requiring samples from different re-
gions in a feature space. From (3), more diverse sets
have higher probability and are thus more likely to be
selected.

ii. There is no requirement that all eigenvalues of L are
less than or equal to 1.

Since standard DPP sampling does not provide the flexibility
of sampling a pre-specified size, in this work we focus on
k-Determinantal Point Processes (k-DPPs). A k-DPP on
discrete set S is a distribution over all subsets of S with
cardinality k and is thus a conditioning of a standard DPP
on the event that a subset X of S has a fixed size. A k-DPP
thus gives probabilities

P (k)(X = x) = det(Lx)(
∑
x⊆S
|x|=k

det(Lx))
−1, (6)
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where |x| = k and L is a positive semi-definite ker-
nel.(Kulesza & Taskar, 2011) Because k-DPPs only model
contents of a set, they are less costly than standard DPPs
and are useful in situations where sample size is constrained,
for example by empirical bounds or hardware restrictions
(Zhang et al., 2017).

4. DNS: Determinantal Point Process Based
Neural Network Sampler

In this section, we propose DNS: Determinantal Point Pro-
cess Based Neural Network Sampler that samples a subset
of critic networks for backpropagation at training time. In
principal DNS can be used with any off-policy algorithm
that uses the same target value to train the critics such as
REDQ (Chen et al., 2021), TOP (Moskovitz et al., 2021)
MaxminDQN (Lan et al., 2020), EnsembleDQN (Anschel
et al., 2017). For the exposition, we describe only the REDQ
version in this paper.

This section is organized as follows:

1. We empirically show that the Q-values from the critic
networks collapse prematurely during training time.

2. we present the k-DPP based sampling algorithm to
sample the indices for critic networks to train.

4.1. Empirical Evidence of Early Collapse of Q-values

The work on this paper starts with a conjecture that the Q-
values from the critic networks collapse prematurely. To
verify our hypothesis, we trained REDQ on HalfCheetah-
v2, Ant-v2, and Walker2d-v2 on four different seeds and
measured the Q-values from all the ten critics. As shown
in Figure 1, it took around fifteen training steps for all
the ten critics from having distinct Q-values to collapse
to almost identical values in nearly every run for all three
environments. Note that each curve in the plot represents
the mean value of all ten critics and the shaded area around
the curve represents a 95% confidence interval.

A counterargument can be made here that in Figure 1 we
did not allow enough training steps that might induce any
variance in the Q-values. To address this, we measured the
Q-values at the tail end of the training. As shown in Figure 2,
the Q-values have completely collapsed in all the runs across
all three environments. From this evidence, we can conclude
that longer training reduces the variance in the Q-values.

4.2. Compute Efficient Neural Network Sampling

The motivation behind the idea of training a subset of critic
networks came from the observation in Section 4.1 that if
all the critic networks collapse early in the training, we can
only train a subset of critic networks at every training step.

This will allow us to force diversity in the Q-values which
recently have been shown to be a key component in ensem-
ble reinforcement learning (Sheikh et al., 2022). To sample
a diverse set of critics, we use k-DPP (Kulesza & Taskar,
2011) which is a derivative of DPPs (Macchi, 1975). The
advantage of k-DPP over DPP is that k-DPP allows us to
have control over the size of the sampled neural networks
while standard DPP automatically selects the size of the
subset. One key component required for using the k-DPP
is a similarity matrix. Since we are interested in sampling
critic networks with diverse Q-values, we created the simi-
larity matrix by measuring the pairwise CKA similarity of
all the Q-values. Formally, the similarity matrix L ∈ RN×N

is defined as:

L = CKA((Qϕi
(s, a), Qϕj

(s, a))1≤i,j≤N . (7)

The similarity matrix L is used by the k-DPP to sample the
indices of the diverse critics to train.

Formally, we consider a REDQ agent with N number of
critic networks parameterized by {ϕi}Ni=1. At every training
step, we sample a batch of experience B from replay buffer
D . Using state-action (s, a) ∈ B, we fetch the Q-values
Qϕi

(s, a) for i = 1, 2, . . . , N . Using the Q-values, we cre-
ate the similarity matrix L by measuring the pairwise CKA
similarity using Equation (7). The similarity matrix L is
then used by k-DPP to sample a diverse set of critic net-
works of size k to train. The rest of the training process is
identical to the baseline REDQ which we invite the readers
to see in Algorithm 1. Note that the output of the k-DPP is
indices of the critic networks.

4.3. Formal Theoretical Analysis

In DNS we utilize CKA values as entries of the similarity
matrix L ∈ RN×N

:

L = CKA((Qϕi(s, a), Qϕj (s, a))1≤i,j≤N .

Since not all similarity matrices are positive semi-definite, L
can be approximated with the closest positive semi-definite
matrix such that the relative similarity strengths among point
pairs are preserved.
Proposition 1. The nearest positive semi-definite matrix to
a symmetric matrix to L ∈ RN×N

is a diagonal perturbation
of L:

∼
L = L+D,

where D = diag((λi + |λi|)/2), and λi, i ∈ {1, . . . , N}
are eigenvalues from the spectral decomposition of L.

Proof. The nearest positive semi-definite matrix
∼
L to a ma-

trix L can be computed via a spectral decomposition of
B = (L+LT )/2 = V ΛV T = V diag(λi)V

T as:
∼
L = V diag(di)V

T ,
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(a) Ant-v2 (b) HalfCheetah-v2 (c) Walker-v2

Figure 2. Q-value plots of three MuJoCo environments accumulated over four different seeds at the tail end of the training. Notice that
the Q-values from the critics have completely collapsed and have zero variance.

(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2 (d) Walker2d-v2

Figure 3. Training curves with 95% confidence interval of baseline REDQ, random sampling and DNS.

where

di =

{
λi, λi ≥ 0

0, λi < 0

or equivalently as:

∼
L = (B +H)/2, (8)

where H = V diag(|λi|)V T (Higham, 1988). Since L
is symmetric, B = L = V diag(λi)V

T and H =

V diag(|λi|)V T . It follows from (8) that
∼
L = L + D

where D = (diag(λi) + diag(|λi|))/2 = diag((λi +
|λi|)/2).

Next, recall that under the tabular version of REDQ a sub-
set of action-value functions are updated to Ql

t+1(s, a) =
Ql

t(s, a) + α[YMQ −Ql
t(s, a)] and at t+ 1 an action a is

sampled according to the minimum of a random sample M
of N Q functions, such that |M| =M , i.e. according to
min
i∈M

Qi
t+1(s, a). In REDQ, M = 2.

For i ∈M, Let Ii ∈ {0, 1} be a random variable indicating
if Qi(s, a) was updated, i.e. Ii ∼Bernoulli(pi). Then

Qi
t+1(s, a) = Qi

t(s, a) + αIi[Y
MQ −Qi

t(s, a)]

= Qπ
t (s, a)+ε

i
t(s, a)+αIi[Y

MQ−Qπ
t (s, a)−εit(s, a)]

(9)

Furthermore, assume that approximation errors εit(s, a)
are identically distributed U(−τ ,τ) for each fixed (s, a).
The theorem below characterizes the relationship between
k-DPP sampling and the variance of min

i∈M
Qi

t+1(s, a) and
1
M

∑
i∈MQi

t+1(s, a).

Theorem 1. Under the conditions above and for setM of
M random samples of N Q functions,

V ar Qmin = V ar(min
i∈M

Qi
t+1(s, a)|YMQ)

decreases if for some i, j ∈M Qi
t(s, a) and Qj

t (s, a) were
sampled pre-update according to k-DPP. Variance reduction
can also be shown for the sample mean

V ar Qavg = V ar(
1

M

∑
i∈M

Qi
t+1(s, a)|YMQ).

Additionally, V ar Qmin and V ar Qavg are lower under
k-DPP than under k-random sampling.

Theorem 1 shows why k-DPP sampling boosts performance
over k-random sampling. For the special case that all N Q
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Table 1. Max average return for 10 runs of 300K time steps. Maximum value for each task is bolded. ± corresponds to a single standard
deviation over runs

Environment Baseline Random DNS

Ant-v2 2543.1 ± 2595.7 2666.8 ± 2262.6 3167.2 ± 2484.7

HalfCheetah-v2 9818.8 ± 1445.2 9474.3 ± 991.1 9931.0 ± 819.1

Hopper-v2 2544.2 ± 1468.21 2374.9 ± 1405.8 2967.8 ± 1128.9

Walker2d-v2 2414.4 ± 1580.0 1946.4 ± 1287.9 2802.3 ± 1272.1

(a) Computation cost of the backpropagation method in terms of
petaFLOPS

(b) Average wall-clock training time in hours

Figure 4. Both bar graphs represent computation cost of the experiments shown in Figure 3 in terms of FLOPS and wall-clock time.

functions are close to being dissimilar, k-DPP sampling k of
the N Q-functions approaches uniform k-random sampling
with PK = 1

(Nk)
for all sets of K size k. We summarize

this in the corollary below and note that under the k-DPP
scheme, just as in k-random sampling some variance is
retained, which is beneficial for exploration.

Corollary 1. If all N Q-functions are completely dissim-
ilar, k-DPP sampling is equivalent to k-random uniform
sampling with each set K with cardinality k having equal
probability PK = 1

(Nk)
.

We show the proofs of Theorem 1 in the appendix. Corollary
1 follows from the fact that when the network activations
are completely dissimilar, the off-diagonal elements of the
L-matrix are 0 since CKA values are zero. Thus in this case
the L-matrix is just the identity matrix and the resulting
sampled item probabilities are equal by equation (5).

5. Experiments
We designed our experiments to answer the following ques-
tions:

1. Can DNS match the performance baseline REDQ while
training only a subset of critic networks?

2. Is DNS better than random sampling?

3. Is DNS better than diversity regularization?

4. Does choice of k matter for DNS?

5.1. Experimental Setup

We evaluate DNS on several different continuous control
tasks from MuJoCo (Todorov et al., 2012) and compare
DNS with baseline REDQ where all the ten critics are
trained at every training step and random sampling of neural
networks for training. For DNS and random sampling, we
sampled between two and five networks for our experiments.
Following the setup, we report the highest returns after
300K environment interactions on Ant-v2, HalfCheetah-v2,
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(a) Ant with two and three
neural networks

(b) Ant with four and five
neural networks

(c) Walker2d with two and
three neural networks

(d) Walker2d with four and five
neural networks

Figure 5. Training curves for Ant-v2 and Walker-v2 environments for varying values of k for both DNS and random sampling.

(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2 (d) Walker2d-v2

Figure 6. Training plots comparing DNS with MED-RL, a regularization method that uses Gini coefficient to maximize diversity.

Hopper-v2, and Walker2d-v2 environments. We report the
mean and the standard deviation across ten runs in Figure 3.
For clarity, the results are also shown in Table 1. From Fig-
ure 3 and table 1, we can see that DNS consistently outper-
forms REDQ and random sampling on Ant-v2, Hopper-v2,
and Walker2d-v2 and matches the performance of REDQ
on HalfCheetah-v2 environment. Note that the goal of this
paper is to match the performance of REDQ while reducing
the computation cost. For that reason, we did not perform
any hyperparameter tuning. All the hyperparameters such
as learning rate, batch size, neural network size, and the
seeds were kept fixed across all the experiments. The only
hyperparameter that has been tuned in this paper is k which
samples the number of neural networks.

Details of the hyperparameters used in our experiments are
shown in Table 2.

5.2. Computational Analysis

We measured the computation cost of the experiments
shown in Figure 3 to verify that sampling a subset of critic
networks at training indeed reduces the computation cost.
We measured the computation cost in terms of wall-clock
time which is a subjective metric and depends on the comput-
ing infrastructure and in FLOPS which regard as hardware
independent metric. Since we are interested in reducing the
backpropagation steps, we wrapped the Backward() func-

tion in Pytorch’s profiler and measured the FLOPS needed
to compute the Backward() function. We then multiplied
the obtained FLOPS by the total number of training steps.
The resulting plot is shown in Figure 4a.

Similarly for measuring the wall-clock time, we wrapped
the whole training procedure by CodeCarbon (Schmidt et al.,
2021). Since wall-clock time is subjective and can be af-
fected by multiple factors, we calculated the average with
standard deviation. The resulting plot is shown in Figure 4b.
From Figure 4, we can see that DNS achieved better per-
formance than baseline REDQ in at least 50% FLOPS. The
key point to note is that DNS achieved 15% more average
cumulative reward in less than 25% of FLOPS as compared
to baseline REDQ on the Walker2d-v2 environment.

5.3. Is DNS Better than Random Sampling?

To address the question of whether random sampling is bet-
ter than DNS, we plotted the training curves for Ant-v2 and
Walker2d-v2 environments for varying values of k ranging
between 2 and 5 in Figure 5. To avoid confusion, we split
the plots in two figures for each environment. Figures 5a
and 5c shows the training plots for k = 2 and k = 3 and
Figures 5b and 5d shows the training plots for k = 4 and
k = 5. From Figure 5, we can see that for every value of k,
DNS outperforms random sampling in both environments.
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(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2 (d) Walker2d-v2

Figure 7. Training curves showing the effect of k on DNS

5.4. Is DNS Better than Diversity Regularization?

Recently (Sheikh et al., 2022) proposed MED-RL that uses
economics-inspired regularizers such as Gini and Theil co-
efficients to maximize diversity between the neural net-
works. Since k-DPP is an alternate way of inducing di-
versity, we compared DNS with MED-RL (Gini) where we
augmented REDQ with the Gini as proposed in (Sheikh
et al., 2022). Figure 6 shows the training curve for the MED-
RL and DNS where we can see that DNS clearly outper-
forms MED-RL in Ant-v2 and Hopper-v2 environments and
matches the performance of MED-RL in the HalfCheetah-
v2 environment. One quick point to note is that our results of
MED-RL do not match with the results proposed in (Sheikh
et al., 2022). We attribute this discrepancy to multiple fac-
tors such as different learning rates and they have shown
results for five seeds only whereas we have shown results
for ten seeds.

5.5. Does choice of k matter?

To analyze the effect of the choice of k, we performed an
ablation study in which we trained DNS on varying values
of k for all four MuJoCo environments and plotted the
training curves in Figure 7. For the Ant-v2 environment,
k = 2 and k = 4 performed similar to baseline REDQ. For
HalfCheetah-v2 and Walker2d environments, most values
of k under-performed when compared with REDQ while
for Hopper-v2, k = 3 outperformed REDQ significantly.

6. Implementation Details and
Hyperparameters

For REDQ, we used the code provided by the authors
https://github.com/watchernyu/REDQ. For k-DPP we used
the DPPy package https://github.com/guilgautier/DPPy.
The complete list of hyperparmeters is given in Table 2.

6.1. Computing Infrastructure

All the experiments were performed on a Kubernetes man-
aged cluster with Nvidia V100 GPUs and Intel Skylake

Table 2. Hyperparameters for continuous control tasks
Hyperparameter Value
Target weight τ 1e−3

Actor learning rate 3e−4

Critic learning rate 3e−4

Replay buffer 1e6

Batch size 256
Exploration steps 25000

Optimizer Adam
Hidden Llayer size 256

Number of critics (REDQ) 10
Regularization weight 1e−8

CPUs. Each experiment was run as an individual Kuber-
netes job with 5 CPUs, 16GB of RAM, and 1 GPU.

7. Conclusion
In this paper, we proposed DNS: a Determinantal Point Pro-
cess based Neural Network Sampler that specifically uses
k-DPP to sample a subset of neural networks for backprop-
agation at every training step. This sampling allowed us to
reduce the computation cost by 50% during training. We
evaluated DNS on MuJoCo environments and compared
our results with baseline REDQ and random sampling. Ad-
ditionally, DNS outperformed MED-RL, a regularization
method that maximizes diversity between the ensemble of
neural networks in deep reinforcement learning.
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Supplementary

A. Algorithm

Algorithm 1 DNS: REDQ version

Initialize policy parameters θ, N Q-function parameters ϕi, i = 1, . . . , N , empty replay buffer D. Set target parameters
ϕtarg,i ← ϕi, for i = 1, 2, . . . , N
repeat

Take one action at ∼ πθ(·|st). Observe reward rt, new state st+1.
Add data to buffer: D ← D ∪ {(st, at, rt, st+1)}
for G updates do

Sample a mini-batch B = {(s, a, r, s′)} from D
Fetch Qϕi

(s, a) for i = 1, 2, . . . , N
Compute similarity matrix L:

L = CKAi,j∈N (Qϕi
(s, a), Qϕj

(s, a))

Sample a set K of k distinct indices from {1, 2, . . . , N}:

K = DPP (L, k)

Sample a setM of M distinct indices from {1, 2, . . . , N}
Compute the Q target y (same for all of the k Q-functions):

y = r + γ

(
min
i∈M

Qϕtarg,i (s
′, ã′)− α log πθ (ã

′ | s′)
)
, ã′ ∼ πθ (· | s′)

for i ∈ K do
Update ϕi with gradient descent using

∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

(Qϕi
(s, a)− y)2

Update target networks with ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi
end for

end for
Update policy parameters θ with gradient ascent using

∇θ
1

|B|
∑
s∈B

(
1

N

N∑
i=1

Qϕi (s, ãθ(s))− α log πθ (ãθ(s)|s)

)
, ãθ(s) ∼ πθ(· | s)

until

B. Proofs
B.1. Proof of Theorem 1

Lemma 1. Let Xi ∼U(a, b) and Yi ∼B(1, pi). Then for Zi = Xi + cYi(d − Xi), Zijmin = min(Zi, Zj), d ∈ (a, b),
c ∈ (0, 1) we have:

(i) EeZit = (1− pi)( e
tb−eta

t(b−a) ) + pie
cdt( e

(1−c)tb−e(1−c)ta

t(1−c)(b−a) ) and E[Zi] = 1− pi)( e
tb−eta

t(b−a) ) + pie
cdt( e

(1−c)tb−e(1−c)ta

t(1−c)(b−a) )

(ii) The distributions of Zi and Zijmin are characterized by:

FZi
(z) =

(1− pi)
a− b

((z − b)1(b,∞)(z)− (z − a)1(a,∞)(z)) (10)
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+
pi

(1− c)(a− b)
((z − (dc− b(c− 1)))1(dc−b(c−1),∞)(z) (11)

− (z − (dc− a(c− 1)))1(dc−a(c−1),∞)(z)) (12)

and

FZijmin(z) =
2(1− pi)
a− b

β(z, b, a) +
2pi

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1)) (13)

− (
(1− pi|j)
a− b

β(z, b, a) (14)

+
pi|j

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1)))(

(1− pi)
a− b

β(z, b, a) (15)

+
pi

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1)) (16)

respectively, where
pi = P (Yi = 1) and pi|j = P (Yi = 1|Yj = 1),

β(z, θ, α) = ((z − θ)1(θ,∞)(z)− (z − α)1(α,∞)(z)), θ ≥ α

Proof. (i) The moment generating function of Zi = Xi + cYi(d−Xi)

EeZit = Ee(Xi+cYi(d−Xi))t = E[Ee(Xi+cYi(d−Xi))t|Xi]

= E[eXitE[eYic(d−X)t|X]] = E[eXit[1− pi + pie
c(d−Xi)t]] = (1− pi)E[eXit] + pie

cdteX(1−c)t

= (1− pi)(
etb − eta

t(b− a)
) + pie

cdt(
e(1−c)tb − e(1−c)ta

t(1− c)(b− a)
). (17)

(ii) It follows from (i) that

L{f}(t) = Ee−Zit = (1− pi)( e
−tb−e−ta

t(a−b) ) + pie
−cdt( e

(c−1)tb−e(c−1)ta

t(1−c)(a−b) )

and

FZi
(z) = L−1{1

t
L{f}(t) }(z)

= L−1{ (1− pi)(
e−tb − e−ta

t2(a− b)
) + pie

−cdt(
e(c−1)tb − e(c−1)ta

t2(1− c)(a− b)
) }(z)

= L−1{ (1− pi)
a− b

(
e−tb − e−ta

t2
) +

pi
(1− c)(a− b)

e−cdt(
e(c−1)tb − e(c−1)ta

t2
) }(z)

=
(1− pi)
a− b

L−1{ (e
−tb − e−ta

t2
)}(z) + pi

(1− c)(a− b)
L−1{ e−cdt(

e(c−1)tb − e(c−1)ta

t2
) }(z)

=
(1− pi)
a− b

(L−1{ e
−tb

t2
)}(z)− L−1{ e

−ta

t2
)}(z))

+
pi

(1− c)(a− b)
(L−1{ e

−t(dc−b(c−1))

t2
)}(z)− L−1{ e

−t(dc−a(c−1)

t2
)}(z))

=
(1− pi)
a− b

((z − b)1(z>b) − (z − a)1(z>a))

+
pi

(1− c)(a− b)
((z − (dc− b(c− 1)))1(z>(dc−b(c−1))) − (z − (dc− a(c− 1)))1(z>(dc−a(c−1))))

=
(1− pi)
a− b

((z − b)1(b,∞)(z)− (z − a)1(a,∞)(z))

+
pi

(1− c)(a− b)
((z − (dc− b(c− 1)))1(dc−b(c−1),∞)(z)− (z − (dc− a(c− 1)))1(dc−a(c−1),∞)(z))

(18)
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Notice that

E[Zi] = (1− pi)(
a+ b

2
) +

pi
(1− c)(b− a)

[
1

2
(c− 1)(b− a)[(c− 1)(a+ b)− 2cd]]

= (1− pi)(
a+ b

2
) +

pi
2
[(1− c)(a+ b) + 2cd]

= (1− cpi)(
a+ b

2
) + cdpi.

Furthermore we can derive the variance Var(Zi) = E[Z2
i ]− (E[Zi])

2 using

(E[Zi])
2 = (1− cpi)2(

a+ b

2
)2 + (1− cpi)(a+ b)cdpi + (cdpi)

2

and

E[Z2
i ] = (1− pi)(

a2 + ab+ b2

3
) +

pi
3
[(1− c)2(a2 + ab+ b2) + 3cd((a+ b)(1− c) + cd)]

= (1− pi)(
a2 + ab+ b2

3
) +

pi
3
[(1− c)2(a2 + ab+ b2) + 3cd((a+ b)(1− c) + cd)]

= (1− 2cpi + pic
2)(

a2 + ab+ b2

3
) + cdpi((a+ b)(1− c) + cd)

(iii) Since Zi are identically distributed but not necessarily independent, the distribution of Zijmin = min(Zi, Zj) is
characterized by

FZijmin
(z ) = FZi

(z) + FZj
(z)− FZiZj

(z, z) = 2FZi
(z)− FZiZj

(z, z)

where
FZiZj

(z, z) = P (Zj ≤ z, Zj ≤ z) = FZi|Zj
(z)FZj

(z)

is the joint distribution of Zi and Zj . Hence,

FZijmin(z ) =
2(1− pi)
a− b

((z − b)1(b,∞)(z)− (z − a)1(a,∞)(z))

+
2pi

(1− c)(a− b)
((z − (dc− b(c− 1)))1(dc−b(c−1),∞)(z)− (z − (dc− a(c− 1)))1(dc−a(c−1),∞)(z))

− (
(1− pi|j)
a− b

((z − b)1(b,∞)(z)− (z − a)1(a,∞)(z))

+
pi|j

(1− c)(a− b)
((z − (dc− b(c− 1)))1(dc−b(c−1),∞)(z)

− (z − (dc− a(c− 1)))1(dc−a(c−1),∞)(z)))(
(1− pi)
a− b

((z − b)1(b,∞)(z)− (z − a)1(a,∞)(z))

+
pi

(1− c)(a− b)
((z − (dc− b(c− 1)))1(dc−b(c−1),∞)(z)− (z − (dc− a(c− 1)))1(dc−a(c−1),∞)(z))

=
2(1− pi)
a− b

β(z, b, a) +
2pi

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1))− (

(1− pi|j)
a− b

β(z, b, a)

+
pi|j

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1)))(

(1− pi)
a− b

β(z, b, a)

+
pi

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1))

where,

pi = P (Yi = 1) = pj , pi|j = P (Yi = 1|Yj = 1), β(z, θ, α) = ((z − θ)1(θ,∞)(z)− (z − α)1(α,∞)(z)), θ ≥ α.
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Notice that

d

dz
[β(z, θ, α)] = (z − θ)δ(z − θ) + 1(θ,∞)(z)− (z − α)δ(z − α)− 1(α,∞)(z)

= (z − θ)δ(z − θ)− (z − α)δ(z − α) + 1(θ,α)(z) = 1(θ,α)(z)

where δ(x) is the Dirac delta function, implying that

fZijmin
(z) =

d

dz
[FZijmin

(z)]

=
2(1− pi)
a− b

1(a,b)(z) +
2pi

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

− (
(1− pi|j)
a− b

β(z, b, a) +
pi|j

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1)))(

(1− pi)
a− b

1(a,b)(z)

+
pi

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z))

− (
(1− pi|j)
a− b

1(a,b)(z) +
pi|j

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z))(

(1− pi)
a− b

β(z, b, a)

+
pi

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1))

=
2(1− pi)
a− b

1(a,b)(z) +
2pi

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

−
(1− pi|j)
a− b

β(z, b, a)
(1− pi)
a− b

1(a,b)(z)−
(1− pi|j)
a− b

β(z, b, a)
pi

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

−
pi|j

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1))

(1− pi)
a− b

1(a,b)(z)

−
pi|j

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1))

pi
(1− c)(a− b)

1(dc−b(c−1),dc−a(c−1))(z)

−
(1− pi|j)
a− b

1(a,b)(z)
(1− pi)
a− b

β(z, b, a)−
(1− pi|j)
a− b

1(a,b)(z)
pi

(1− c)(a− b)
β(z, dc− b(c− 1), dc− a(c− 1))

−
pi|j

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

(1− pi)
a− b

β(z, b, a)

−
pi|j

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

pi
(1− c)(a− b)

β(z, dc− b(c− 1), dc− a(c− 1))

=
2(1− pi)
a− b

1(a,b)(z) +
2pi

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

−
(1− pi|j)
a− b

(a− b) (1− pi)
a− b

1(a,b)(z)−
(1− pi)
a− b

(a− z) pi
(1− c)(a− b)

1(dc−b(c−1),dc−a(c−1))(z)

−
pi|j

(1− c)(a− b)
(dc− a(c− 1)− z) (1− pi)

a− b
1(a,b)(z)

−
pi|j

(1− c)(a− b)
(c− 1)(b− a) pi

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

−
(1− pi|j)
a− b

1(a,b)(z)
(1− pi)
a− b

(a− b)−
(1− pi|j)
a− b

1(a,b)(z)
pi

(1− c)(a− b)
(dc− a(c− 1)− z)

−
pi|j

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

(1− pi)
a− b

(a− z)

−
pi|j

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)

pi
(1− c)(a− b)

(c− 1)(b− a)

=
2(1− pi)
a− b

1(a,b)(z) +
2pi)

(1− c)(a− b)
1(dc−b(c−1),dc−a(c−1))(z)
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−
(1− pi|j)
a− b

(1− pi)
a− b

(a− b)1(a,b)(z)−
(1− pi|j)
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From this we arrive at

EZ2
ijmin =

∫ ∞

−∞
x2fZijmin

(x)dx

=
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x3

3
|ba +

2pi
(1− c)(a− b)

x3
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4
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(1− c)(a− b)
x3

3
|dc−a(c−1)
dc−b(c−1)

−
(1− pi|j)
a− b

(1− pi)
a− b

(a− b)x
3

3
|ba −

(1− pi|j)
a− b

pi
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and
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∫ ∞

−∞
xfZijmin(x)dx =
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dc−b(c−1)



DNS: Determinantal Point Process Based Neural Network Sampler for Ensemble Reinforcement Learning

Next we prove Theorem 1.

Proof. Recall that
Qi

t+1(s, a) = Qπ
t (s, a) + (εit(s, a) + αIi[Y

MQ −Qπ
t (s, a)− εit(s, a)]

where εit(s, a) identically distributed U(−τ ,τ), Ii ∼Bernoulli(pi) . Hence,

V arQavg = V ar(
1

M

∑
i∈M

Qi
t+1(s, a) |YMQ)

=
1

M2
V ar(

∑
i∈M

Qi
t+1(s, a)|YMQ)

=
1

M2
[
∑
i∈M

V ar(Qi
t+1(s, a) |YMQ) +

∑
i ̸=j

Cov(Qi
t+1(s, a) |YMQ, Qj

t+1(s, a) |YMQ)]

=
1

M2
[
∑
i∈M

V ar(Qi
t+1(s, a) |YMQ) +

∑
i ̸=j

(E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]

− E[Qi
t+1(s, a)|YMQ]E[Qj

t+1(s, a) |YMQ])]

Consider |M| = ∈, Then

V arQavg =
1

4
[V ar(Qi

t+1(s, a) |YMQ) + V ar(Qj
t+1(s, a)|YMQ)

+ E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]

− E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]]

=
1

4
[2V ar(Qi

t+1(s, a) |YMQ) + E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]

− E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]]

Thus by Lemma 1,

V arQavg =
1

4
[2V ar(Qi

t+1(s, a) |YMQ) + E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]

− E[Qi
t+1(s, a) |YMQ]E[Qj

t+1(s, a) |YMQ]]

=
1

4
[2V ar(Qi

t+1(s, a) |YMQ) + (α(YMQ −Qπ
t (s, a)))

2(pipj|i − pipj)]

=
1

4
[2V ar(Qi

t+1(s, a) |YMQ) + (α(YMQ −Qπ
t (s, a)))

2(pij − p2i )]

= ψ + φ(pipj|i − p2i )

where ψ = 1
2V ar(Q

i
t+1(s, a) |YMQ), φ = 1

4α(YMQ −Qπ
t (s, a))

2

Notice that ψ,φ ≥ 0. So V arQavg breaks down to

V arQavg =

{
ψ, if none of Qi

t(s, a), Q
i
t+1(s, a) were updated or if they were updated by random sampling

ψ + φ(pij − p2i ), if both Qi
t(s, a) and Qi

t+1(s, a) were updated according to k-DPP

Since k-DPP is a repulsive process, ifQi
t(s, a), Q

i
t+1(s, a) are close pij < pipj = p2i , and as they get further apart, because

of our choice of kernel based on CKA, pij → pipj and pi → 1
N such that even when points are farther apart, variance is

still reduced. Proof for general M follows by induction and similar process can be followed to prove case for V arQmin.


