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Abstract
We study the problem of designing an adaptive
strategy for querying a noisy zeroth-order-oracle
to efficiently learn about the optimizer of an un-
known function f . To make the problem tractable,
we assume that f lies in the reproducing kernel
Hilbert space (RKHS) associated with a known
kernel K, with its norm bounded by M < ∞.
Prior results, working in a minimax framework,
have characterized the worst-case (over all func-
tions in the problem class) limits on regret achiev-
able by any algorithm, and have constructed al-
gorithms with matching (modulo polylogarithmic
factors) worst-case performance for the Matérn
family of kernels. These results suffer from two
drawbacks. First, the minimax lower bound gives
limited information about the limits of regret
achievable by the commonly used algorithms on
a specific problem instance f . Second, the ex-
isting upper bound analysis fails to adapt to eas-
ier problem instances within the function class.
Our work takes steps to address both these issues.
First, we derive instance-dependent regret lower
bounds for algorithms with uniformly (over the
function class) vanishing normalized cumulative
regret. Our result, valid for several practically
relevant kernelized bandits algorithms, such as,
GP-UCB, GP-TS and SupKernelUCB, identi-
fies a fundamental complexity measure associated
with every problem instance. We then address
the second issue, by proposing a new minimax
near-optimal algorithm which also adapts to easier
problem instances.

1. Introduction
We consider the problem of optimizing a function f : X =
[0, 1]d 7→ R by adaptively gathering information about it
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via noisy zeroth-order-oracle queries. To make the problem
tractable, we assume that (1) f lies in the reproducing ker-
nel Hilbert space (RKHS) associated with a given positive-
definite kernel K, and (2) the RKHS norm of f is bounded
by a known constant M < ∞. The function f can be ac-
cessed through noisy zeroth-order-oracle queries that return
yx = f(x) + η at a query point x ∈ X , with η denoting
the additive observation noise. Given a total budget n, the
goal of an agent is to design an adaptive querying strategy,
denoted by A, to select a sequence of query points (xt)

n
t=1,

that incur a small cumulative regretRn(A, f), defined as

Rn(A, f) :=

n∑
t=1

f(x∗)− f(xt), x∗ ∈ arg max
x∈X

f(x).

The cumulative regret forces the agent to address the
exploration-exploitation trade-off and prevents it from
querying too many points from the sub-optimal regions
of the domain.

The problem described above is referred to as the kernelized
bandit or agnostic Gaussian Process bandit problem (Srini-
vas et al., 2012). Prior theoretical works in this area have
focused on establishing lower and upper bounds on the per-
formance achievable by algorithms in the minimax setting.
These results characterize the worst-case limits, over all
functions in the given RKHS, of performance achievable
by any adaptive sampling algorithm (see Section 1.1 for
details). The minimax framework does not account for the
fact that there may exist functions that are easier to opti-
mize than others in the same function class. As a result,
the minimax regret bounds may not accurately reflect the
performance of carefully designed adaptive strategies in the
typical, non-adversarial, problem instances. In this paper,
we take a step towards addressing this issue and present the
first instance-dependent analysis for kernelized bandits.

In this paper, we focus on the RKHS corresponding to the
Matérn family of kernels, denoted by {HKν : ν > 0}.
These kernels are highly relevant for practical applications
and allow a graded control over the smoothness of its ele-
ments (through a smoothness parameter ν > 0) as described
by Stein (2012). We believe that our arguments can be ex-
tended to Squared-Exponential (SE) kernels by using the
Fourier domain constructions of Scarlett et al. (2017), al-
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though the intermediate steps may be more complicated.
Furthermore, we also restrict our attention primarily to ana-
lyzing the cumulative regret, and leave the extension of our
work to the pure exploration setting for future work (see Sec-
tion 5 for further discussion).

The rest of this paper is organized as follows: we discuss
the limitations of the existing minimax analysis and present
an overview of our contributions in Section 1.1. We for-
mally state the problem and the required assumptions in Sec-
tion 2, and in Section 3 we derive the instance-dependent
lower bounds of the regret achievable by a ‘uniformly good’
class of algorithms (this class includes all the existing algo-
rithms analyzed in the literature including GP-UCB, GP-TS,
SupKernelUCB). Finally, in Section 4.1, we propose a
new algorithm that achieves the best of both worlds: it
matches the minimax lower bounds (up to polylogarithmic
factors) for the Matérn family of kernels in the worst case,
and can also exploit some additional structure present in
the given problem instance to achieve regret tighter than the
minimax lower bound for those instances.

1.1. Overview of Results

For a given class of functions, H, the minimax ex-
pected cumulative regret is defined as R∗n(H) :=
infA supf∈H E [Rn (f,A)]. For the RKHS associated
with Matérn kernels with smoothness parameter ν > 0,
prior work has established a minimax rate R∗n(HKν ) =
Θ
(
n(ν+d)/(ν+2d)

)
, ignoring polylogarithmic factors in n.

In particular, the worst-case algorithm independent lower
bound of the order Ω

(
n(ν+d)/(2ν+d)

)
for the Matérn ker-

nels with smoothness parameter ν > 0 was established
by Scarlett et al. (2017). On the other hand, Vakili et al.
(2021a) recently derived tighter bounds on the mutual in-
formation gain (or equivalently the effective dimension) as-
sociated with Matérn kernels, that in turn implied that the
SupKernelUCB algorithm of Valko et al. (2013) matches
(up to polylogarithmic terms) the above-stated lower bound,
hence showing its near-optimality.

While the existing theoretical results provide a rather com-
plete understanding of the minimax regret for Matérn family
of kernels, they suffer from two drawbacks:

1. The minimax lower bounds are obtained by construct-
ing a suitable subset of ‘hard’ problem, and then show-
ing that there exists no algorithm that can perform well
on all of those problems simultaneously. These results
tell us that for any algorithm, there exists at least one
hard problem instance on which that algorithm must
incur a certain regret. However, such results do not
tell us what are the limits of performance for carefully
designed, ‘good’ algorithms (such as GP-UCB; precise
meaning of ‘good’ is stated in Definition 2) on specific,

non-adversarial, problem instances.

2. The existing analysis of most of the algorithms de-
pend on global properties of the given function class,
such as the dimension, kernel parameters and RKHS
norm. Consider, for example, the GP-UCB algorithm
for which Srinivas et al. (2012) derived the following
upper bound on the regret Rn = Õ (

√
nγn), where

γn is the maximum information gain for the given ker-
nel K formally defined in (2). Since γn is a property
associated with the kernel itself, the existing theory
does not adapt to any simplifying structure that may be
present in the specific problem instance.

Our main contributions make progress towards addressing
the two issues stated above. In particular, we first derive
an instance-dependent lower bound for algorithms with uni-
formly bounded normalized cumulative regret, and then we
propose an algorithm that achieves near-optimal worst case
performance but also can exploit some additional structure
present in problem instances.

First, we consider the following question: Suppose we
are given an algorithm A that is known to have O (na0)
worst-case regret over all functions in the RKHS associ-
ated with Matérn kernel Kν (denoted byHKν ). Then, what
values of expected regret can A achieve for a given func-
tion f in HKν? We answer this question by identifying a
lower-complexity term Cf that characterizes the per-instance
achievable limit (precise statement in Theorem 1).

Main Result 1 (Lower Bound). Suppose an algorithm A
has a worst-case regret O (na0) over functions in HKν .
Then, for a given f with ‖f‖HKν < M , we have:

E[Rn(f,A)] = Ω
(
Cf (n−(1−a0))

)
,

where Cf (∆) :=
∑
k≥0mk/(2

k+2∆) for any ∆ > 0,
and mk denotes the 2wk = O

(
(∆2k)1/ν

)
packing num-

ber (see Definition 15 in Appendix A) of the annular set
Zk = {x ∈ X : 2k∆ ≤ f(x∗)− f(x) < 2k+1∆}.

To interpret the term Cf , let us deconstruct each element,
mk/(2

k+2∆), in its defining sum. Consider a ball (de-
noted by E) of radius wk = O((2k∆)1/ν) contained in
the region Zk. By construction of Zk, every point in E is
at most 2k+1∆ (and at least 2k∆) suboptimal for f . We
first show that, if ∆ > n−(1−a0), then A must spend at
least Ω

(
1/(2k+1∆)2

)
queries in the region E. This implies

that the total number of queries in the region Zk is at least
Ω(mk/(2

k+1∆)2), owing to the fact that mk disjoint balls
of radius wk can be packed in the region Zk. This in turn,
implies that the total regret incurred by these queries is lower
bounded by Ω

(
2k∆mk/(2

k+1∆)2
)

= Ω
(
mk/(2

k+2∆)
)
.

Further details of this argument are in Section 3 and in Ap-
pendix B.1.
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The previous result can be specialized for minimax-optimal
case by setting a0 = a∗ν := (ν + d)/(2ν + d), to obtain
the per-instance performance limit of minimax optimal al-
gorithms. Furthermore, with a careful choice of the prob-
lem instance f , we can also recover the minimax lower
bound (see Remark 4). This motivates our next question:
Can we construct a minimax-optimal algorithm, that adapts,
and incurs smaller regret on easier problem instances? We
address this question, by constructing a new algorithm A1

in Section 4.1, for which we show the following (see Theo-
rem 2 for a more precise statement).

Main Result 2 (Upper Bound). We construct an algorithm,
A1, that is minimax near-optimal for functions inHKν , and
satisfies (with a∗ν = (ν + d)/(2ν + d))

E[Rn (f,A1)] = Õ
(
Cf (n−(1−a∗ν))

)
,

where Cf (∆) :=
∑
k≥0 m̃k/(2

kξ∆) for ∆ > 0 and
ξ = min{1, ν}. The term m̃k is the 2w̃k = O

(
(2kξ∆)1/ξ

)
packing number of the set Z̃k = {x : f(x∗) − f(x) =
O(2kξ∆)}.

Similar to Cf , the upper-complexity term Cf can also be
interpreted in terms of the number of queries made by our
proposed algorithm A1 in the regions Z̃k. In general, the
term Cf is larger than Cf . This is mainly due to two reasons:

• We have stated our lower bound result for algorithms
with a worst-case O(na0) regret over the entire func-
tion classHKν . However, the proof only requires the
regret guarantee to hold uniformly for a small class of
local perturbations. Thus, it is possible to refine the
result by imposing a uniform regret condition only in a
small neighborhood of f (with radius shrinking with n
at an appropriate rate). We leave the investigation of
such refined lower bounds to future work.

• The packing radius w̃k used in Cf is smaller than the
analogous term wk used in Cf , due to the presence of
ξ = min{1, ν} instead of ν.

Despite these issues, in Proposition 2 we identify conditions
under which Cf is strictly tighter than the minimax rate,
thus proving that A1 can adapt to easier problem instances.

In the case of functions where the abstract packing numbers
mk and m̃k can be well-estimated, the above results give us
explicit (in n) regret bounds. For example, if the function
f ≈ ‖x − x∗‖b for some b > ν in the neighborhood of
its maximizer x∗ (formally stated in Definition 4), then we
can obtain explicit instance dependent lower (Proposition 1)
and upper (Proposition 2) bound. In Figure 1, we plot the
variation of the exponent of the regret bound (i.e., α if re-
gret is ≈ nα) with dimension for the existing upper bounds

for different algorithms (dashed) and their corresponding
instance-dependent lower bounds (solid-lines, same color)
as well as the instance-dependent upper bound of our algo-
rithm A1 for ν = 1.1 and b = 1.2.

Figure 1. Plot of the variation of the exponent of different regret
upper and lower bounds (i.e., α, if regret ≈ nα) with dimension,
on an instance f ∈ HKν , satisfying f ≈ (x − x∗)b near its
optimum. This “local growth” property of f , formally stated
in Definition 4, allows us to obtain closed form estimates of Cf
and Cf . The dashed lines denote upper bounds, and the solid lines
of the same color represent the corresponding instance-dependent
lower bounds derived in Proposition 1. Note that the solid blue
line represents the instance dependent lower bound for both, A1

and SupKernelUCB, as they are both minimax near-optimal.

1.2. Related Work

Minimax lower bounds for kernelized bandits. Scarlett et al.
(2017) derived the first algorithm-independent minimax
lower bound on the regret for the kernelized bandits problem
with SE and Matérn kernels. For Matérn kernel Kν , they
obtain an algorithm-independent minimax lower bound of
Ω
(
n(d+ν)/(d+2ν)

)
. Their result proceeds by first construct-

ing a finite class of hard problem instances, and then using a
reduction to multiple hypothesis testing and a change of mea-
sure argument. However, the hard functions employed by
Scarlett et al. (2017) are of the needle-in-haystack type, and
may not be representative of the typical functions belonging
to the RKHS. Thus, the resulting regret lower bound may
provide a pessimistic limit for the achievable performance
of algorithms on the specific problem instance encountered.

Instance-dependent lower bounds for linear bandits. In-
stance dependent lower bounds have been derived for the
related problem of linear bandits with finitely many arms,
either in the pure-exploration (Degenne et al., 2020) or
regret-minimization (Tirinzoni et al., 2020) settings. At a
high level, the proofs of these results, as well as our Theo-
rem 1, proceed in two steps: (i) given a problem instance,
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identify a suitable class of alternative problem instances,
and (ii) obtain a lower bound on the number of queries that
any uniformly good algorithm must allocate to the alter-
natives. For the case of finite domains considered in the
above-mentioned works, the alternative classes are quite nat-
urally defined in terms of instances with different optimal
arm. This is not the case in our setting due to the contin-
uous nature of the domain X = [0, 1]d. We address this
by presenting a perturbation argument to construct suitable
alternatives depending on the problem instance as well as
the budget n to derive our instance-dependent lower bounds.

Kernelized bandit algorithms. Srinivas et al. (2012) pro-
posed the GP-UCB algorithm motivated by the Upper Con-
fidence Bound (UCB) strategy for multi-armed bandits
(MABs) (Auer et al., 2002), which proceeds by selecting
query points (xt)t≥1 that maximize the UCB of f of the
form µt(x) + βtσ(t)(x) over a sequence of finite discretiza-
tions of the domain X for suitable factors (βt)t≥1. For
this algorithm, Srinivas et al. (2012) derived the following
high-probability upper bound onRn

Rn = Õ
(√
nγn

)
. (1)

In the above display γn is the maximum information gain
associated with the kernel K, defined as

γn := max
S⊂X :|S|=n

I(yS ; f), for f ∼ GP (0,K), (2)

where yS = (y1, . . . , yn) is the vector of observations at
points in S = (x1, . . . , xn) and I(yS ; f) denotes the mu-
tual information between the observations yS and the func-
tion f assumed to be a sample from a zero-mean Gaussian
Process GP (0,K). To obtain explicit (in n) regret bounds
from (1), Srinivas et al. (2012) also derived upper bounds
on γn for the SE and Matérn families. More recently, Vak-
ili et al. (2021a) derived tighter bounds on γn for these
families using a different approach than that employed by
Srinivas et al. (2012). In particular, for the Matérn fam-
ily, this implies the following regret bound for GP-UCB:
Rn = Õ

(
n(3d/2+ν)/(d+2ν)

)
where ν is the smoothness

parameter. Chowdhury and Gopalan (2017) derived that
the same upper bound for the Thompson Sampling based
randomized algorithm, GP-TS.

The regret bounds of GP-UCB and GP-TS for Matérn ker-
nels, are not sublinear when ν < d/2. Janz et al. (2020)
addressed this issue by proposing an algorithm (referred to
as π−GP-UCB), which adaptively partitions the input space
and fits independent GP models in each element of the par-
tition. This yields an alternative bound on γn, and results in
a sublinear regret bound of the formRn = Õ (neν ), where
eν = d(2d+3)+2ν/d(2d+4)+4ν, for ν > 1 and d ≥ 1.

Valko et al. (2013) proposed the SupKernelUCB algo-
rithm that proceeds by dividing the queried points into

batches which consist of conditionally independent obser-
vations. Although initially proposed for finite domains, the
algorithm easily extends to continuous domains by using suf-
ficiently fine discretizations. Valko et al. (2013) showed that
the SupKernelUCB algorithm achieves a regret bound of
Rn = Õ

(√
nγn

)
; tighter than the bound for GP-UCB (and

GP-TS) by a factor of
√
γn. By plugging in the recently

derived bounds on γn for Matérn kernels by Vakili et al.
(2021a), this implies that the SupKernelUCB algorithm
achieves a regret bound Rn = Õ

(
n(d+ν)/(d+2ν)

)
, match-

ing the minimax lower bounds.

Despite being minimax near-optimal, SupKernelUCB of-
ten performs poorly in practice. Recent works, such as (Sal-
gia et al., 2021; Li and Scarlett, 2022), address this by de-
signing algorithms that are minimax near-optimal, and also
perform well on common benchmarks. Finally, we note that
another minimax near-optimal kernelized bandit algorithm
was recently proposed by Camilleri et al. (2021) using a
sampling strategy based on G-optimal designs.

2. Preliminaries
In this section, we introduce some definitions and notations
required to formally state the problem. Additional defini-
tions are deferred to Appendix A.

As stated in the introduction, we consider the problem
of optimizing a black-box function f : X 7→ R, where
X = [0, 1]d that can be accessed through noisy zeroth
order oracle queries. The task of the learner (or agent)
is to design an adaptive strategy to select query points
{xt : 1 ≤ t ≤ n}, that incur a small cumulative regret
Rn(f,A) =

∑n
t=1 f(x∗)− f(xt). To formally present the

problem statement, we need a precise definition of adaptive
querying strategies and the exact assumptions made on the
objective function and observation noise.

We begin with a definition of adaptive querying strategy.
Definition 1 (Adaptive Strategy). An adaptive querying
strategy A consists of a sequence of mappings (At)

∞
t=1

where At : (X × Y)
t−1 × U t 7→ X , where U = [0, 1]

represents the range of additional randomness (used in ran-
domized algorithms such as GP-TS).

For the rest of the paper, we will use the terms adaptive
strategy and algorithm interchangeably. Next, we introduce
the assumptions on the objective function and observation
noise under which our theoretical results will be stated.
Assumption 1. The objective function f lies in the RKHS
HK associated with a known kernel K, and its RKHS norm
‖f‖HK is bounded by a known constant M <∞.

The above assumption is standard in the kernelized bandits
literature, and informally it states that the unknown function
has low complexity, where the complexity is quantified in
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terms of the RKHS norm. As stated in the introduction,
we will restrict our discussion to Matérn kernels in this
paper (formally defined in Appendix A).
Assumption 2a. The zeroth-order-oracle returns y(xt) =
f(xt) + ηt for a query point xt ∈ X , where {ηt : t ≥ 1} is
an i.i.d. sequence of N(0, σ2) random variables.
Assumption 2b. The zeroth-order-oracle returns y(xt) =
f(xt) + ηt for a query point xt ∈ X , where {ηt : t ≥ 1} is
an i.i.d. sequence of σ2-sub-Gaussian random variables.

These two assumptions state that the observation noise has
light tails, and hence we can construct tight confidence in-
tervals for the unknown functions based on the noisy obser-
vations. We will use Assumption 2a in the statement of our
lower bound, while the more general Assumption 2b will be
used to state the upper bound result. Note that imposing the
N(0, σ2) requirement for stating the lower bounds is pri-
marily to simplify the presentation. This is further discussed
in Remark 9 in Appendix B.2.1, and relies on the fact that
we can obtain closed form expressions for KL-divergence
involving Gaussian random variables, which simplifies the
expression of the lower-complexity term (see Definition 3).

We now present the formal problem statement.
Problem Statement 1. Suppose Assumptions 1 and ei-
ther 2a or 2b hold with known values of M and σ2. Then,
given a total querying budget n, design an adaptive strategy
A to select query points x1, . . . , xn, which incur a small
cumulative regretRn (A, f) :=

∑n
t=1 f(x∗)− f(xt).

Notations. We end this section, by listing some of the
notations that will be used in the rest of the paper. As
mentioned earlier, X = [0, 1]d for some d ≥ 1 repre-
sents the domain and f : X 7→ R is the unknown ob-
jective function. We will use x∗ to represent an optimal
point of f , i.e., x∗ ∈ arg maxx∈X f(x). For any x ∈ X
and r > 0, we use B(x, r) to denote the `2 open ball
{z ∈ X : ‖z − x‖2 < r} and B(x, r1, r2) to denote the
annular region {z ∈ X : r1 < ‖z − x‖ < r2}. For a func-
tion f and constants u > 0 and c > 1, we use X̃ (f, u, c) to
denote the set {x ∈ X : u ≤ f(x∗)− f(x) ≤ cu}.

3. Lower Bounds
In order to derive instance-dependent bounds on the regret,
we need to restrict our attention to ‘uniformly-good’ algo-
rithms that perform well for all elements of the given prob-
lem class. A restriction of this kind is necessary to obtain
non-trivial instance-dependent regret bounds. Otherwise,
for every problem instance f , there exists a trivial algorithm
that always queries x∗ ∈ arg maxx∈X f(x), and incurs no
regret on f , but suffers a linear regret for all functions for
which x∗ is strictly suboptimal.

We begin by presenting a definition of a0-consistent algo-

rithms that formally characterize the meaning of ‘uniformly
good’ algorithms required for obtaining instance-dependent
lower bound. This definition is motivated by a similar no-
tion of consistent policies used in multi-armed bandits (see
Lattimore and Szepesvári, 2020, Definition 16.1).
Definition 2 (a0-consistency). An algorithm A is said to
be a0-consistent over a function class F , if for all a > a0

and f ∈ F , the following holds:

lim
n→∞

E [Rn (A, f)]

na
= 0.

Remark 1. Note that when F is the RKHS associated with a
Matérn kernel, then all the existing algorithms discussed in
Section 1.2 satisfy the condition above with some a0 < 1. In
particular, this condition is satisfied by GP-UCB and GP-TS
with a0 = min{1, (ν + 3d/2)/(2ν + d)}, by π−GP-UCB
with a0 = (d(2d + 3) + 2ν)/(d(2d + 4) + 4ν) and by
SupKernelUCB with a0 = (ν + d)/(2ν + d).

The rest of this section is organized as follows. In Sec-
tion 3.1, we first present a general lower bound that char-
acterizes the regret achievable by an algorithm on a given
function f , in terms of the lower complexity term Cf in-
troduced in Definition 3. This abstract complexity term
depends on the packing number of certain near-optimal
regions associated with f , as well as the exponent a0 of
the uniform regret condition for a0−consistent algorithms.
In Section 3.2, we consider the special case of functions
satisfying a local growth condition (Definition 4), for which
the term Cf can be well-estimated to get an explicit lower
bound in terms of the query budget n.

3.1. General lower bound

We now obtain a general instance-dependent lower bound
for a0-consistent algorithms. First, we introduce a notion of
complexity associated with a function f ∈ HKν (M), that
will be used to state the main result.
Definition 3 (Lower-Complexity). Let f ∈ HKν (M) with
‖f‖Kν = (1−λ)M for some ν > 0,M > 0 and λ ∈ (0, 1).
Fix ∆ > 0, and introduce the set Zk := X̃ (f, 2k∆, 2) =
{x ∈ X : 2k∆ ≤ f(x∗)− f(x) < 2k+1∆}. Introduce the
radius wk =

(
3× 2k∆Mν/(λM)

)1/ν
(with Mν denoting

the norm of the bump function introduced in Definition 17
in Appendix B.1.2) and let mk denote the 2wk-packing
number of the set Zk. Finally, define the complexity term

Cf (∆) :=
∑
k≥0

mk

2k+2∆
≥ m0

4∆
. (3)

Note that our notation Cf (∆) suppresses the ν,M and λ
dependence of Cf .

We now present an instance-dependent lower bound on the
expected cumulative regret of any a0-consistent algorithm
A in terms of the complexity term introduced above.
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Theorem 1. Let f ∈ HKν (M) with ‖f‖Kν = (1 − λ)M
for ν > 0,M > 0 and λ ∈ (0, 1). Consider any a0-
consistent algorithm (with a0 < 1) over the family of func-
tionsHKν (M), denoted byA, and fix any a > a0. Then, the
expected cumulative regret of A on the instance f satisfies

E [Rn (A, f)] ≥ 7 log 2

4
σ2Cf

(
n−(1−a)

)
,

for n large enough (exact condition in equation 13 in Ap-
pendix B).

Theorem 1 follows as a consequence of a more general
statement, presented and proved in Appendix B. We also
present a detailed overview of the argument involved in
proving Theorem 1 in Appendix B.1. The high level idea is
to first construct a perturbed version of f by adding a bump
function (see Definition 17 in Appendix B.1.2) supported
on a ball E that is contained in a region Zk for some k ≥
1 (see Definition 3). Then, using the a0-consistency of A,
we obtain a lower bound on the number of times A must
query the region E. By identifying the total number of
disjoint balls that can be packed in different regions of the
input space, and adding their contributions to the regret, we
obtain the final result.
Remark 2. The lower bound in Theorem 1 based on the
complexity term of eq. (3) has a natural interpretation.
For any k ≥ 0, the set Zk denotes the ‘annular’ region
where the suboptimality f(x∗) − f(x) is between 2k∆n

and 2k+1∆n, with ∆n := n−(1−a). Then, the term wk =(
2k+1∆n/(λM)

)1/ν
denotes the radius of the smallest ball

that can support a scaled bump function (see Definition 17)
that ensures the resulting perturbed version of f still remains
inHKν (M) and also satisfies the properties stated in Defini-
tion 16 in Appendix B.1.1. As we show in Appendix B.1.1,
for any such perturbation of f , the algorithm A must spend
roughly 1/(2k+1∆n)2 samples to distinguish between f
and its perturbation. The regret incurred in the process is
lower bounded by 2k∆n×

(
1/(2k+1∆n)2

)
= 1/(2k+2∆n),

that is, suboptimality (≥ 2k∆n) times the number of queries
in that region (≥ 1/(2k+1∆n)2). Since mk disjoint balls
of radius wk can be packed into Zk, the expression of the
complexity term in (3) follows.

The strict inequality in the definition of the complexity term
in (3) immediately implies the following weaker, but more
interpretable, version of the above statement.

Corollary 1. Consider an a0-consistent algorithm A, and
fix any a > a0. Under the same assumptions as Theorem 1,
and with w0 :=

(
3(n−(1−a))/(λM)

)1/ν
, let m0 denote the

2w0-packing number of the set Z0 := {x ∈ X : n−(1−a) ≤
f(x∗)− f(x) < 2n−(1−a)}. Then, we have the following:

E [Rn (f,A)] = Ω
(
σ2m0 n

(1−a)
)
.

Remark 3. Corollary 1 states that a key quantity charac-
terizing the regret achievable by a uniformly good algo-
rithm is the packing number of an annular near-optimal
region associated with the given function. Informally,
we can write m0 ≈ w−d̃0 ≈ n(1−a)d̃/ν , where d̃ :=
lim infn→∞ log(m0)/ log(1/w0). The term d̃ is reminis-
cent of the concepts of near-optimality dimension and zoom-
ing dimension used in prior works in bandits in metric
spaces (Bubeck et al., 2011; Kleinberg et al., 2019) as well
as in Gaussian Process bandits (Shekhar and Javidi, 2018).
These works use such notions to obtain instance-dependent
upper bounds on the regret of algorithms that non-uniformly
discretize the domain. This connection also motivates our
approach in designing Algorithm 1 in Section 4.1.
Remark 4. As a sanity check, we note that Corollary 1
recovers the minimax lower bound by considering f to be
a scaled bump function g introduced in Definition 17, and
A to be a minimax near-optimal algorithm. In particular,
by defining f(·) = 2∆ng(·/w0), the region Z0 contains
the whole domain with a ball of radius w0 removed. This
implies that m0 ≈ w−d0 = n(1−a)d/ν for a > a∗ν = (d +
ν)/(d+ 2ν), and thus E[Rn(f,A)] = Ω (nα) for any α <
(1− a∗ν)

(
1 + d

ν

)
= ν

d+2ν ×
d+ν
ν = d+ν

d+2ν = a∗ν .

In the next section, we specialize the above results to func-
tions that satisfy an additional ‘local growth’ condition, for
which the complexity terms can be explicitly lower bounded
in terms of more interpretable parameters.

3.2. Lower bound under growth condition

In this section, we consider the class of functions satisfying
the following additional assumption.

Definition 4 (Growth Condition). We say that the objective
function f satisfies the local growth condition with param-
eters (c, c̄, b, %0) if for all x ∈ B(x∗, %0) ∩ X , we have
c‖x − x∗‖b ≤ f(x∗) − f(x) ≤ c̄‖x − x∗‖b. We shall de-
note by F (c, c̄, b, %0) the class of all functions satisfying
this property.

Similar conditions have been used in analyzing the per-
formance of first order stochastic optimization algorithms
by Ramdas and Singh (2013) and in characterizing the
minimax rates of active learning algorithms by Castro and
Nowak (2008).

As an example, consider the case when the function f has
continuous second order derivatives and its optimizer x∗ lies
in the interior of the domain. Then, if the Hessian of f at x∗

is non-singular, we can find a %0 > 0 such that for all x in
B(x∗, %0), the spectral norm of the Hessian of f is between
c and c̄. Then the function f satisfies the growth condition
with exponent 2 and constants c and c̄ depending on the
minimum and maximum norm of the Hessian in B(x∗, %0).
We now state the main result of this section.
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Proposition 1. Introduce the function class G :=
HKν (M) ∩ F (c, c̄, b, %0) for some ν > 0 and b > ν. Let
A be an a0-consistent algorithm with a0 < 1 for the func-
tion class HKν (M). Then for any a > a0 and f ∈ G with
‖f‖HKν < M , we have the following:

lim inf
n→∞

E [Rn (A, f)]

nα
> 0 for any α < (1− a0)

(
1 +

d

ν

(
1− ν

b

))
.

Since most of the commonly used algorithms, such as
GP-UCB, GP-TS, SupKernelUCB and π−GP-UCB, dis-
cussed further in Section 1.2, satisfy a0-consistency intro-
duced in Definition 2, we can use Theorem 1 to obtain the
instance-dependent lower bounds for these algorithms.
Corollary 2. Proposition 1 implies that E[Rn(A, f)] =
Ω(nα), when f ∈ G, b > ν and

• A is the SupKernelUCB algorithm, ν > 1 and α <(
ν+d(1−ν/b)

2ν+d

)
, or

• A is either GP-UCB or GP-TS, ν > d/2, and α <(
1− d

2ν

) ν+d(1−ν/b)
2ν+d , or

• A is the π−GP-UCB algorithm, ν > 1 and α <(
1 + d

2ν

) ν+d(1−ν/b)
2ν+d(d+2) .

The results of the above corollary are presented for some
specific ν = 1.1 and b = 1.2 in Figure 1. As we can see,
algorithms with tighter uniform regret bound (i.e., smaller
a0) incur higher instance-dependent lower bounds.

4. Instance-Dependent Upper Bound
As mentioned in the introduction, the prior theoretical analy-
sis of the existing kernelized bandits algorithms upper bound
their regret in terms of quantities such as the maximum in-
formation gain, γn, defined in (2). Since γn is a property
associated with the kernel K, such results do not adapt to
the hardness of the specific problem instance within the
associated RKHS – they predict the same performance guar-
antees for the ‘easiest’ as well as the ‘hardest’ problem in
the class. As a result, the ability of the existing algorithms to
adapt to the complexity of problems with the same problem
class is unknown.

Our results in this section take a step towards addressing
this issue. In particular, we describe a new algorithm for
kernelized bandits in Section 4.1, and show in Section 4.2
that this algorithm is minimax near-optimal and also admits
tighter upper bounds for easier problem instances.

4.1. Proposed Algorithm

We first introduce a standard notion of a sequence of nested
partitions of the input space, often used in prior works, such

Algorithm 1: Breadthwise Exploration with Adaptive
Discretization (A1)
Input: n, the querying budget
Kν , the kernel belonging to the Matérn family
M , upper bound on the RKHS norm
v1, v2, ρ, parameters of the tree of partitions
τ , regularization parameter used in posterior
computation.

1 Initialize: t = 1, flag← True, Et ← ∅, Yt ← ∅,
Pt ← {x0,1}, L = M log n and ξ = min{ν, 1}.

2 for t = 1, 2, . . . , n do
3 while flag do
4 βt, {(µt(x), σt(x)) : x ∈ Pt} =

ComputePosterior (Pt, Et,Yt, τ)
5 xt ∈ arg maxx∈Pt σt(x),

Ut = maxx∈Pt σt(x)

6 if 1/
√
n < Ut < L

(
v1ρ

ht
)ξ then

7 Pt, ht ←
RefinePartition(Pt, βt, {(µt(x), σt(x)) :
x ∈ Pt})

8 Et ← ∅, Yt ← ∅
9 else

10 yt ← f(xt) + ηt, Et ← Et ∪ {xt},
Yt ← Yt ∪ {yt};

11 flag← False

12 end
13 end
14 flag← True;
15 end

as (Bubeck et al., 2011; Munos, 2011; Wang et al., 2014;
Shekhar and Javidi, 2018), to design algorithms for zeroth
order optimization.

Definition 5 (tree of partitions). We say that a sequence of
subsets ofX , denoted by (Xh)h≥0, forms a tree of partitions
of X , if it satisfies the following properties:

• For all h ≥ 0, we have Xh = {xh,i : 1 ≤ i ≤ 2h}.
Furthermore, for every xh,i ∈ Xh is associated a
cell Xh,i. For i 6= j, Xh,i and Xh,j are disjoint,
and ∪2h

i=1Xh,i = X . Moreover, for any h, i we have
{xh+1,2i−1, xh+1,2i} ∈ Xh+1 ∩ Xh,i.

• There exist constants 0 < v2 ≤ 1 ≤ v1 and ρ ∈ (0, 1)
such that

B(xh,i, v2ρ
h) ⊂ Xh,i ⊂ B(xh,i, v1ρ

h).

Next, we introduce two subroutines that will be
employed by the algorithm. The first subroutine,
called ComputePosterior, computes the posterior
mean and posterior covariance function of the surrogate
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Gaussian Process (GP) model used for approximating the
unknown objective function in the algorithm.

Definition 6 (ComputePosterior). Given a subset
Pt ⊂ X , a multi-set of points belonging to Pt, de-
noted by Et = {x1, . . . , xt−1}, at which the function f
was evaluated, the corresponding noisy function evalua-
tions Yt = {y1, . . . , yt−1} and a constant τ > 0, the
ComputePosterior subroutine returns the terms βt,
and {(µt(x), σt(x)) : x ∈ Pt}, which are defined as fol-
lows:

Σt = Kt + τI, where Kt = [K(xi, xj)]xi,xj∈Et

kt(x) = [K(x, x1), . . . ,K(x, xt−1)]T , yt = [y1, . . . , yt−1]T

βt =
√

2 log (|Pt|n3) /t

µt(x) = kt(x)TΣ−1
t yt

σt(x) = τ−1/2
√
K(x, x)− kt(x)TΣ−1

t kt(x).

As we describe later, our algorithm proceeds by adaptively
discretizing the input space based on the observations gath-
ered – the granularity of the partition becoming finer in the
near-optimal regions of the input space, aimed at mimick-
ing the discretization of the space involved in defining the
complexity term in Definition 3. Our second subroutine,
called RefinePartition, presents the formal steps in-
volved in updating the discretization used in the algorithm.

Definition 7 (RefinePartition). This subroutine
takes in as inputs, Pt, ht, βt and {(µt(x), σt(x)) : x ∈ Pt};
and returns an updated partition Pt and level ht. First
compute lt := maxx∈Pt µt(x)− βtσt(x) and define P̃t =
{x ∈ Pt : µt(x) + βtσt(x) > lt}. Next, define the new
Pt as Pt = ∪xht,i∈P̃t{xht+1,2i−1, xht+1,2i}, and update
ht ← ht + 1.

We now present an outline of the steps of our proposed
algorithm below. The formal pseudocode is in Algorithm 1.

Outline of Algorithm 1. At any time t ≥ 1, the algorithm
maintains a set of active points denoted by Pt. These points
satisfy the following two properties: (i) Pt ⊂ Xht for some
ht ≥ 0; i.e., all the active points lie in the same ‘depth’
(i.e., ht) of the tree of partitions, and (ii) any optimizer
x∗ of f must lie in the region ∪xht,i∈PtXht,i. The algo-
rithm evaluates the function at points in the active set, and
computes the posterior mean and standard deviation by call-
ing the ComputePosterior subroutine. The algorithm
then compares the maximum posterior standard deviation
(for points in Pt) with an upper bound on the variation
in function value in the cell Xht,i associated with an ac-
tive point xht,i ∈ Pt. If the maximum posterior standard
deviation is larger than L(v1ρ

h)ξ, then the algorithm eval-
uates the function at the corresponding active point with
the largest σt(x). Otherwise, it concludes that the active

points in Pt have been sufficiently well explored, and it
moves to the next level of the partition tree by calling the
RefinePartition subroutine. The above process con-
tinues until the querying budget is exhausted.
Remark 5. Algorithm 1 carefully combines two key ideas
from kernelized bandits literature: (i) it divides the evalu-
ated points into subsets (according to their level h in the
tree) which satisfy a conditional independence property,
similar to SupKernelUCB of Valko et al. (2013), and (ii)
adaptively partitions the input space to zoom into the near-
optimal regions, similar to the algorithms in (Shekhar and
Javidi, 2018; 2020). The first property allows us to construct
tighter confidence intervals, which results in the algorithm
achieving the minimax regret rate. As a result, applying
Theorem 1 to this algorithm provides us with the best (i.e.,
the highest) instance-dependent lower bounds. Additionally,
the second property allows the algorithm to exploit the ‘eas-
ier’ problem instances when the objective function satisfies
the growth condition with small b, and results in improved
regret bound in these problem instances. This is proved
in Theorem 2 and Proposition 2.

4.2. Regret Bound for Algorithm 1 (A1)

In this section, we analyze the performance of Algorithm 1
on individual problem instances lying in the RKHS asso-
ciated with Matérn kernels. To do so, we introduce the
following complexity measure associated with a problem
instance f .
Definition 8 (Upper-Complexity). Consider a function f ∈
HKν with ν > 0, and define ξ = min{1, ν}. For given
constants ∆, ρ ∈ (0, 1) and c1, c2 > 0, introduce the set
Z̃k := {x ∈ X : f(x∗)− f(x) ≤ c1(1/ρ)kξ∆} for k ≥ 0,
and let m̃k denote the 2w̃k := 2c2

(
(1/ρ)kξ∆

)1/ξ
packing

number of the set Z̃k. Define the upper-complexity term as
follows:

Cf (∆) :=
∑
k≥0

m̃k

(1/ρ)kξ∆
.

Note that the notation Cf (∆) suppresses the ν, ρ, c1 and c2
dependence of the complexity term.
Remark 6 (Comparison of Cf and Cf ). The upper-
complexity term introduced above has a similar form as
the corresponding lower-complexity term (Cf ), introduced
earlier in Definition 3: both complexity measures sum over
terms involving a packing number of a near-optimal set in
the numerator, and an exponentially growing term times
∆ in the denominator. Despite this similarity, the upper-
complexity term is, in general, larger than the corresponding
lower-complexity term. This is because w̃k is proportional
to ∆1/ξ, while wk (in Definition 3) is proportional to ∆1/ν .
Since ν ≥ ξ := min{1, ν}, and ∆ < 1, the term m̃k repre-
sents a much tighter packing than the corresponding term,
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mk in Definition 3. Another, less important, factor in Cf
being larger than Cf is that the set Z̃k is usually larger than
the corresponding ‘annular’ set Zk used in defining Cf .

We now state the main result of this section stating
that the algorithm A1 is minimax near-optimal, and its
instance-dependent regret can be characterized by the upper-
complexity term defined above.

Theorem 2. For the class of functions f ∈ HKν (M), the
algorithmA1 is a0-consistent with a0 = a∗ν = (ν+d)/(ν+
2d). Furthermore, A1 also satisfies the following instance-
dependent upper bound on the expected regret:

E [Rn (A1, f)] = Õ
(
Cf (∆n)

)
,

where ∆n = min{n−(1−a∗ν), ρHnξ}, where Hn is defined
precisely in Lemma 7 in Appendix D. The Õ(·) term sup-
presses polylogarithmic factors in n.

Again, it is instructive to specialize the above result to the
special case of an instance f that also satisfy the additional
local-growth condition around its optima.

Proposition 2. Consider a function f satisfying Assump-
tion 1 with K = Kν , and Assumption 2b with parameter σ2,
that also satisfies the growth condition (introduced in Defi-
nition 4) with an exponent b. Then, the cumulative regret of
Algorithm 1 satisfies the following, with ξ = min{1, ν}:

E [Rn (A1, f)] = Õ(na), where

a := min

(
d+ ν

d+ 2ν
,
d(1− ξ/b)+ + ξ

d(1− ξ/b)+ + 2ξ

)
.

The notation (z)+ refers to max{0, z} and the notation Õ
hides the polylogarithmic factors in the upper bound.

The proof of this result is given in Appendix D. In particular,
this result implies that for an instance f with local growth
exponent b > 0, for all values of d ≥ 1 and 0 < ν <

1
1− 1

b

, the regret achieved by Algorithm 1 is tighter than the
minimax rate (achieved by SupKernelUCB). Furthermore,
for a fixed ν > 0, the amount of possible improvement
increases with decreasing values of b.

While the regret achieved by A1 is better than those of ex-
isting algorithms, it is still larger than the corresponding
instance-dependent lower bound as shown in Figure 1. The
key reason is that A1 uses the Hölder continuity (with expo-
nent ξ) of the elements ofHKν to adaptively discretize the
domain, which leads to the ξ (instead of ν) dependence of
the complexity term Cf . This looseness can be avoided if we
can construct tighter X -uniform confidence intervals (Vakili
et al., 2021b) for f .

5. Conclusion
In this paper, we initiated the instance-dependent analysis
of the kernelized bandits problem. This investigation was
motivated by the practical question of identifying the limits
of performance achievable by commonly used algorithms,
such as GP-UCB, on typical, non-adversarial, problem in-
stances. We first obtained a general complexity measure that
characterizes the fundamental hardness of a specific prob-
lem instance. Then, we specialized this result to problem-
instances satisfying an additional local growth condition,
to obtain explicit lower bounds in terms of the budget n.
Finally, we introduced a new algorithm that achieves the
best of both worlds: it matches the worst case performance
limit (modulo polylogarithmic terms) established by prior
work, but also has the ability to adapt to the easier problem
instances.

The results of this paper lead to several interesting questions
for future work, and we describe two key directions below:

• A natural next step is to investigate whether we
can design an algorithm that is both minimax near-
optimal and instance-optimal for the Matérn fam-
ily. More specifically, with a0 = a∗ν := (d +
ν)/(d + 2ν), can we design an algorithm that sat-
isfies supf∈HKν (M) E[Rn (A, f)] = Õ(na0), and

E [Rn(A, f)] = Õ
(
Cf (∆n)

)
with ∆n = n−(1−a)

for any a > a0 simultaneously (recall that Cf denotes
the complexity term introduced in Definition 3). From
a technical point of view, achieving this will be sig-
nificantly aided by deriving tight time and X -uniform
confidence intervals for the GP model.

• Another interesting line of work is to adapt the ideas
used in this paper to problems such as kernel level-
set estimation, and optimization in other function
spaces (Singh, 2021; Liu et al., 2021). The lower-
bound technique of our paper can be easily generalized
to these cases, as we discuss briefly in ??. However, de-
signing algorithms that match the so-obtained instance-
dependent lower bounds may require new techniques.

• Finally, the focus in this paper was on obtaining
instance-dependent bounds for the cumulative regret
Rn. It is interesting to explore whether similar results
can be obtained for simple regret in the pure explo-
ration setting.
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A. Additional Definitions
In this section, we list the definitions of several technical terms that have been used in stating the main results of the paper.
We begin with the definition of a positive definite kernel, that will then be used in defining an RKHS.

Definition 9 (Positive Definite Kernel). For a non-empty set X , a symmetric function K : X × X 7→ [0,∞) is called
a positive-definite kernel, if for any m ∈ N, any x1, . . . , xm ∈ X and c1, c2, . . . , cm ∈ R, the following is true:∑m
i=1

∑m
j=1 ciK(xi, xj)cj ≥ 0.

In this paper, we will focus primarily on a family of kernels, referred to the Matérn family, that are parameterized by a
smoothness parameter ν > 0.

Definition 10 (Matérn kernels). For ν > 0 and θ > 0, the Matérn kernel Kν : X × X 7→ R is defined as

Kν (x, z) =
1

2ν−1Γ(ν)

(√
2ν‖x− z‖

θ

)ν
Jν

(√
2ν‖x− z‖

θ

)
,

where Jν denotes the modified Bessel function of the second kind of order ν.

The RKHS associated with Matérn kernels consist of functions with a ‘finite degree of smoothness’ (Kanagawa et al., 2018)
as opposed to the infinitely differentiable functions lying the RKHS associated with the SE kernels. Due to this property, the
Matérn kernels are commonly used in practical problems (Stein, 2012, § 1.7) as they provide a reasonable trade-off between
analytical tractability and representation power.

We now present a formal definition of the RKHS associated with a positive definite kernel K.

Definition 11 (RKHS). For a nonempty set X and a positive-definite kernel K, the RKHS associated with K, denoted by
HK , is defined as the Hilbert space of functions on X with an inner product 〈·, ·〉 satisfying the following: (i) for all x ∈ X ,
the function K(·, x) ∈ HK , and (ii) for all x ∈ X and g ∈ HK , we have g(x) = 〈g,K(·, x)〉.

The equality g(x) = 〈g,K(·, x)〉 is referred to as the reproducing property which lends the name to the RKHS. We next
introduce the definition of Gaussian Processes (GPs) that are often used as a surrogate model for estimating functions lying
in an RKHS.

Definition 12 (Gaussian Processes). For a positive definite kernel K : X × X 7→ R, we use GP (0,K) to represent a
stochastic process indexed by X , denoted by {Zx : x ∈ X}, such that for any m ∈ N and x1, . . . , xm ∈ X , the random
vector [Zx1

, . . . , Zxm ] ∼ N(0,Σm) with Σm = [K(xi, xj)]1≤i,j≤m.

Next, we present the formal definition of the probability measure that the noisy zeroth-order-oracle and adaptive sampling
scheme induce on the space ([0, 1]d × R)n. This term is used in Lemma 1.

Definition 13 (Induced Probability Measure). An adaptive sampling strategy A and a function f induces a probability
measure Pf,A (henceforth abbreviated as Pf ) on the measurable space (Ω,F), with Ω = (X × Y)

n and F representing
the Borel σ−algebra on Ω. Recall that we have X = [0, 1]d and Y = R. This measure assigns the probabilities to events
E =

∏n
t=1 (Et,X × Et,Y ) where Et,X ∈ BX and Et,Y ∈ BY .

Pf
(
(Xn, Y n) ∈ E

)
=

n∏
t=1

Pf
(
Yt ∈ Et,Y |Xt, Y t−1

)
PA
(
Xt ∈ Et,X |Xt−1, Y t−1

)
.

Here Pf represents the noisy zeroth-order-oracle and PA is determined by the sampling strategy.

We end this section with the definitions of sub-Gaussian random variables (used in stating Assumption 2b) and packing
numbers (used in defining the complexity terms Cf and Cf ).

Definition 14 (Sub-Gaussianity). A random variable X is said to be sub-Gaussian with parameter σ2 if it satisfies the
following for all t ∈ R:

E[etX ] ≤ exp

(
σ2t2

2

)
.

Definition 15 (Packing number). Given a subset S of a metric space (X , `), the w packing number of S is the cardinality of
the largest E ⊂ S such that any two z, z′ ∈ E satisfy `(e, e′) ≥ w.
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B. Proof of Theorem 1
We present a detailed outline of the proof of Theorem 1 in Appendix B.1, and describe the formal steps of the proof
in Appendix B.2 and Appendix B.3. In particular, Appendix B.2 has the statement and proof of an intermediate result that
gives us a single term in the lower bound of Theorem 1, and Appendix B.3 contains the steps required to obtain the statement
of Theorem 1 from the intermediate result.

B.1. Overview of the argument

We begin by presenting an informal description of the key ideas involved in the obtaining the main lower bound, formally
stated as Theorem 1 in Section 3.1.

Suppose f is a function lying in HKν (M) and let A be an a0-consistent algorithm for this family of functions. Suppose
E1, E2, . . . , Em are m disjoint subsets of the input space X for some m ≥ 1, with the property that

f(x) ≤ f(x∗)−∆i, for all x ∈ Ei, for all i ∈ [m]. (4)

Now if Ni denotes the (random) number of times the algorithm A queries points in the region Ei in n rounds, then we
immediately have the following regret lower bound.

Ef [Rn (A, f)] ≥
m∑
i=1

∆iEf [Ni] . (5)

The expression in (5) suggests that one way of lower bounding the regret incurred by A on the function f is to lower bound
the expected number of samples it allocates in these suboptimal regions, Ef [Ni] for 1 ≤ i ≤ m. We approach this task
by considering functions that are slightly perturbed versions of f , denoted by f̃i, that also lie in the same RKHS. The
perturbed function f̃i shall differ from f only in the region Ei, but this difference should be substantial enough to ensure
that the maximizer of f̃i lies in Ei. This fact makes f̃i operationally distinct from f , for which the region Ei is at least
∆i-suboptimal as assumed in (4). Now, since the algorithm A is a0-consistent for the given function class, it must achieve
o(na) regret (for any a > a0) for all such functions (and in particular, for f and all of f̃i). These two facts will enable us to
bound the number of samples that the algorithm A must spend (on an average) in the suboptimal region Ei when f is the
true function.
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Figure 2. The two figures show a function f (left) and its perturbed version f̃ ) (right). In the left figure, the optimum of f is denoted
by the green ?. The red shaded region corresponds to the set E of Definition 16 that is disjoint from a neighborhood (green shaded
region) of the optimum of f . The gray shaded regions represent the set X̃ (f,∆, c) = {x : ∆ ≤ f(x)− f(x∗) ≤ c∆} for ∆ = 0.2 and
c = 2.5. The figure on the right, f̃ , is then obtained by adding a bump function supported on E to f By construction, in the left figure, the
red-shaded region is at least ∆−suboptimal, while in the right figure the green-shaded region is at-least ∆−suboptimal. The two functions
f , and f̃ will induce statistically similar distributions as they differ only in a small region (shown in red). Hence, if f is the true objective
function, any good algorithm A must spend some queries in the red region to discard the possibility that the objective function is f̃ .

The rest of this section is organized as follows:
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• In Appendix B.1.1, we describe the details of the argument in deriving a lower bound on the expected number of
samples A spends in a suboptimal region for one perturbed function.

• In Appendix B.1.2, we present the details involved in constructing an appropriate collection of perturbed functions. In
particular, this involves carefully balancing several trade-offs in the choice of parameters such as ∆i and Ei, such that
the resulting lower bound is tightest.

B.1.1. A PERTURBATION ARGUMENT

Suppose f ∈ HKν (M) and A is an a0-consistent algorithm. Let f̃ be another function in HKν (M) that is an
(E, c,∆)−perturbation of f , as defined below.

Definition 16 ((E, c,∆)−perturbation). We say that a function f̃ ∈ HKν (M) is an (E, c,∆)-perturbation of another
function f ∈ HKν (M), if it satisfies the following properties:

(P1) f̃ differs from f only in a region E of the input space, i.e., f̃(x) = f(x) for all x ∈ X \ E.

(P2) The function f achieves its maximum value (denoted by f∗) at a point x∗ ∈ X \ E. On the other hand, f̃ achieves its
maximum value f̃∗ at a point x̃∗ lying in the region E.

(P3) There exist constants c > 1 and ∆ > 0 such that the following conditions are satisfied:

|f(x)− f̃(x)| ≤ c∆, for all x ∈ E, (6)
f∗ − f(x) ≥ ∆, for all x ∈ E.
f̃∗ − f̃(x) ≥ ∆, for all x ∈ X \ E.

Remark 7. In this section, we do not address the issue of existence of a function f̃ satisfying all the properties, as well as the
possible values of c, ∆ and choices of the region E. We present the argument under the assumption that such an f̃ exits for
some fixed c, ∆ and E. The trade-offs involved in constructing such f̃ will be discussed in Appendix B.1.2.

Similar to the more general case of (5), the definition above motivates a simple decomposition of the regret in terms of the
number of queries made by A in the region E in which f and f̃ differ. In particular, if N denotes the (random) number of
times A queries points in E, then we immediately have the following:

Ef [Rn (A, f)] ≥ Ef [N ] ∆, and Ef̃
[
Rn(A, f̃)

]
≥ Ef̃ [n−N ] ∆.

To obtain a lower bound on Ef [N ], we will use the following two key properties of the pair (f, f̃) as encoded by the formal
statements in Definition 16.

• From a statistical point of view, the two problem instances are close. In particular, f and f̃ only differ over the region
E, and furthermore their deviation is upper bounded by c∆. This allows us to upper bound the KL divergence between
their induced probability distributions Pf and Pf̃ (see Definition 13) in terms of Ef [N ].

• In an operational sense, the two problem instances f̃ and f are sufficiently distinct. This is a consequence of
properties (P2) and (P3) in Definition 16, which say that the optimizer of f (resp. f̃ ) lies in the region X \ E (resp. E)
that is known to be at least ∆−suboptimal for f̃ (resp. f ). This, along with the a0-consistency of A will be used to
lower-bound the KL-divergence between Pf and Pf̃ by a constant.

Combining the two inequalities will give us the required lower bound on Ef [N ], and consequently on Ef [Rn (A, f)]. We
now describe the steps.

Step 1: Upper bound on DKL(Pf ,Pf̃). Recall that the pairs (f,A) and (f̃ ,A) both induce a probability measure on the
n−fold product of input-observation space Ω := (X × R)n. Denote the two probability measures by Pf and Pf̃ . Then,
assuming that the observation noise is i.i.d. N(0, σ2), it can be show that

DKL

(
Pf ,Pf̃

)
≤ 1

2σ2

(
sup
x∈E

f̃(x)− f(x)

)2

Ef [N ] ≤ c2∆2

2σ2
Ef [N ] . (7)
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To obtain (7), we use the closed-form expression of the KL-divergence between two univariate Gaussian random variables
with the same variance, and the fact that the maximum deviation between f and f̃ is upper bounded by c∆. The details are
presented while proving Lemma 1 in Appendix B.2.1.

The statement of (7) implies that the KL-divergence between Pf and Pf̃ can be controlled by two terms: (i) the maximum
deviation between f̃ and f , a quantity that is bounded by c∆ by assumption, and (ii) the expected number of queries made
by A in the region E for the function f . This quantity cannot be too large either, as the algorithm A is assumed to be
a0−consistent, and the region E is at least ∆−suboptimal for f as stated in (6).

Step 2: Lower Bound on DKL(Pf ,Pf̃). Since the algorithm A is assumed to be a0−consistent, we immediately have
the following two statements for any a > a0:

Ef [N∆] ≤ Ef [Rn (f,A)] = o (na) , and Ef̃ [(n−N) ∆] ≤ Ef̃
[
Rn
(
f̃ ,A

)]
= o (na) .

Together, these two conditions imply that Ef [N ] and Ef̃ [n − N ] cannot be too large. To see this, define a [0, 1] valued
random variable Z = N/n and let p = Ef [Z] and q = Ef̃ [Z]. Note that Z denotes the fraction of samples spent in the
region E by the algorithm A. Then, for large enough values of n, and ∆ fixed, we expect that p ≈ 0 and q ≈ 1. This in
turn implies that the KL-divergence between two Bernoulli random variables with expected values p and q respectively is
non-zero. More specifically, we can show that there exists a constant C > 0 such that

0 < C ≤ dKL(p, q) = dKL

(
Ef
[
N

n

]
, Ef̃

[
N

n

])
, (8)

where dKL(p, q) = p log(p/q) + (1− p) log ((1− p)/(1− q)) denotes the KL-divergence between two Bernoulli random
variables. The next step in obtaining a lower bound on Ef [N ] is the observation that

dKL

(
Ef
[
N

n

]
, Ef̃

[
N

n

])
≤ DKL

(
Pf , Pf̃

)
. (9)

This is a consequence of data-processing inequality, as shown by Garivier et al. (2019).

Step 3: Lower bound Ef [N ]. Finally, we can use (9) to link the statements of (7) and (8), and obtain the inequality

C <
c2∆2

2σ2
Ef [N ] , which implies Ef [N ] ≥ 2Cσ2

c2∆2
.

Multiplying this term with ∆ gives us one term in the regret decomposition of (5).

B.1.2. CONSTRUCTING AN (E, c,∆) PERTURBED FUNCTION

Next, we introduce the definition of a bump function used in (Cai and Scarlett, 2021, Lemma 4) that will be used to construct
the local perturbations (satisfying the conditions of Definition 16) in our lower bound proof.

Definition 17 (bump function g). Define the function g(x) = exp
(

1− 1
1−‖x‖2

)
1{‖x‖<1}, which satisfies the following

properties:

• g is supported on the ball B(0, 1).

• supx∈B(0,1) g(x) = g(0) = 1.

• ‖g‖HKν := Mν <∞ for some constant Mν depending on ν.

• if g̃(·) = g( ·w ) for some w > 0, then ‖g̃‖HKν ≤ (1/w)νMν .

We now discuss the details of constructing a function f̃ satisfying the conditions of Definition 16. Here is the summary for a
fixed a ∈ (a0, 1).

• The term ∆ should not be smaller than n−(1−a).
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• An appropriate choice of the set E is a ball B(z, w) for a point z ∈ X \ X ∗ and radius w > 0. Recall that
X ∗ = {x∗ ∈ X : f(x∗) = f∗ := maxx∈X f(x)}.

• We define the perturbed function f̃ = f + g̃ where g̃(·) = (c+ 1)g
( ·−z
w

)
for some w > 0. Here g is the bump function

introduced in Definition 17. The specific constraints on w are discussed below.

We now discuss these choices in more details.

Choice of ∆. The term ∆ parametrizes the amount of perturbation between f and f̃ . ∆ should be large enough to ensure
that f̃ and f are distinguishable from the point of view of the algorithm A. In particular, fix any a > a0. Then for this value
of a, ∆ must be larger than n−(1−a). This is because, if ∆ < n−(1−a), then the algorithm may spend all n of its samples in
the region E under f as well as f̃ without violating the o(na) requirement on regret.

Choice of z and w. The terms z and w must be such that B(z, w) ⊂ X̃ (f,∆, c) := {x ∈ X : ∆ ≤ f∗ − f(x) ≤ c∆}.
Thus z and w must be selected to ensure that the ball of radius w around z is fully contained in the annular region X̃ (f,∆, c)
in which the sub-optimality of f , (i.e., f∗ − f(x)) is between ∆ and c∆. Furthermore, the radius w must be large enough to
satisfy the condition stated in (10) below.

Defining f̃ . Having defined the region E, we then construct the perturbed version of f , by adding a shifted and scaled bump
function to it. In particular, we add g̃ = (c + 1)∆g

( ·−z
w

)
to f . Note that, by assumption, the RKHS norm of f satisfies

‖f‖HKν < M . Since we require the perturbed function to also lie in the classHKν (M), a sufficient condition for that is

‖g̃‖HKν ≤
(c+ 1)∆

wν
‖g‖HKν =

(c+ 1)∆

wν
Mν ≤M − ‖f‖HKν ⇒ w ≥

(
(c+ 1)∆Mν

M − ‖f‖HKν

)1/ν

. (10)

Remark 8. Note that the expression for w in (10) implicitly assumes that for this value of c and ∆ the region X̃ (f,∆, c) is
large enough to contain a ball of this (or larger) radius. Our result, Theorem 3, holds under this assumption. In case this
condition is violated, Theorem 3 reduces to the trivial lower bound Ef [Rn (f,A)] ≥ 0.

B.2. An intermediate one-step result

Proposition 3. Consider the kernelized bandit problem with a budget n and objective function f ∈ HKν (M) with
‖f‖HKν = (1 − λ)M for some λ ∈ (0, 1). Let A denote an a0-consistent algorithm for the class HKν (M), and fix an
a > a0. For constants ∆ ≥ 16n−(1−a) and c > 1, introduce the set Z = {x ∈ X : ∆ ≤ f(x∗)− f(x) < c∆}, and with
w = ((c+ 1)∆Mν/(Mλ))

1/ν , use m(Z, w) to denote the 2w packing number of Z . Then, the following is true for n large
enough (exact condition in equation 13 below):

E [Rn (A, f)] ≥ 7 log 2

4

m(Z, w)σ2

c2∆
. (11)

Proof. Let {zi : 1 ≤ i ≤ m(Z, w)} denote the points that form the maximal 2w packing set of Z with cardinality
m = m(Z, w). By definition of Z , the region B(zi, w) is at least ∆-suboptimal for f . Building upon this fact, the proof of
the result follows in these three steps:

• First, we show that we can construct m perturbed functions, denoted by {fi : 1 ≤ i ≤ m(Z, w)}, as introduced
in Definition 16. The function fi differs from f only in the region B(zi, w), and in fact, it achieves its maximum value
in that region.

• Next, for each such perturbed function, we obtain a lower bound on the number of samples that the algorithm A must
spend in B(zi, w).

• Finally, the result follows by using the regret decomposition Equation (5), again using the fact that the points in B(z, w)
are ∆-suboptimal for f .

We now present the details of the steps outlined above. For every i ∈ {1, . . . ,m}, define the function fi = f + gi, where
gi = (c+ 1)∆g

( ·−zi
w

)
is the scaled and shifted version of the bump function introduced in Definition 17. Now the choice
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of the radius (or scale parameter) w in the definition of fi according to (10) implies that

‖gi‖HKν ≤
(c+ 1)∆

wν
Mν ≤ λM.

This implies the following:

• The function fi satisfies ‖fi‖HKν ≤ ‖f‖HKν + ‖gi‖HKν ≤M . Thus, the function fi lies in the classHKν (M), and
hence A achieves a regret o (na) for any a > a0 on fi for all 1 ≤ i ≤ m.

• The functions f and fi have well separated optimal regions. More formally, if x∗ and x∗i denote the maximizers of f
and fi respectively, the following are true:

f(x∗)− f(x) ≥ ∆, for all x ∈ B(zi, w),

fi(x
∗
i )− fi(x) ≥ ∆, for all x 6∈ B(zi, w).

• The functions f and fi differ from each other only in the region B(zi, w) and furthermore, they satisfy the following
uniform deviation bound:

sup
x∈X
|f(x)− fi(x)| ≤ c∆.

To summarize the above three points, the function fi is a
(
B(zi, w),∆, c

)
-perturbation of f . Next, we show that any

a0-consistent algorithm must allocate at least a certain number of points to the region B(zi, w) when the true underlying
function is f , in order to gather enough evidence to reject fi.

Lemma 1. Let Ni(A, n) denote the number of times the algorithm A queries the oracle at points in the region B(zi, w).
Then we have the following bound:

Ef [Ni(A, n)] ≥ 2σ2

c2∆2

(
(1− pn,i) log

(
1

1− qn,i

)
− log 2

)
, where (12)

pn,i :=
Ef [Ni(A, n)]

n
and qn,i :=

Efi [Ni(A, n)]

n
.

In the above display, Ef denotes the expectation w.r.t. the probability measure induced by the pair (f,A), and similarly Efi
denotes the probability measure induced by the pair (fi,A) for 1 ≤ i ≤ m.

The proof of (12) follows by relating the regret incurred by A on f and fi respectively to a pair of multi-armed bandit
problems with (m+ 1) arms, and then applying the fundamental information inequality (Garivier et al., 2019, § 2). The
details of this proof are deferred to Appendix B.2.1

Next, we simplify the expression obtained in Lemma 1 by appealing to the a0-consistency of the algorithmA. In the process,
we also clarify the meaning of the assumption that “n is large enough” in the statement of Theorem 3. In particular, we
require that n is large enough to ensure the following to hold simultaneously

Ef [Rn (A, f)] ≤ 2na, and Efi [Rn (A, fi)] ≤ 2na, for all i ∈ [m]. (13)

More specifically, using the notation f0 = f , we note that due to the a0-consistency of A, and the fact that all the functions
{fi : 0 ≤ i ≤ m} lie inHKν (M), we must have limn→∞ Efi [Rn(A, fi)]/na = 0. Hence, there must exist a finite n0 such
that for all n ≥ n0, we have Efi [Rn(A, fi)] ≤ 2na for all i ∈ {0, 1, . . . ,m}.

Next, we observe that

1− pn,i = 1− Ef [Ni(A, n)]

n
= 1− ∆Ef [Ni(A, n)]

∆n

≥ 1− Ef [Rn(A, f)]

∆n
≥ 1− Ef [Rn(A, f)]

16n1−(1−a)
(14)

≥ 7

8
. (15)
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In the above display,
(14) uses the fact that Ni (A, n) ∆ ≤ Rn (A, f), and that ∆ ≥ 16n−(1−a),
(15) uses the assumption made in (13) that n is large enough to ensure that E0 [Rn (A, f)] ≤ 2na.

Similarly, for the qn,i dependent term, we have

1

1− qn,i
=

n

n− Efi [Ni(A, n)]
=

n∆

(n− Efi [Ni(A, n)]) ∆
≥ n∆

Efi [Rn (A, fi)]
≥ n∆

2na
(16)

=
n1−a∆

2
. (17)

In the above display, (16) uses the assumption that n is large enough to ensure that Efi [Rn (A, fi)] ≤ 2na.

Putting (15) and (17) back in (12), we get

Ef [Ni (A, n)] ≥ 2σ2

c2∆2

(
7

8
log

(
∆n1−a

2 28/7

))
≥ 7 log 2

4

σ2

c2∆2
.

Finally, the result stated in (11) follows by repeating the argument of Lemma 1 for all the different values of i ∈ {1, . . . ,m},
and noting that Ef [Rn (A, f)] ≥

∑m
i=1 ∆Ef [Ni(A, n)] from the decomposition inequality (5).

B.2.1. PROOF OF LEMMA 1

To prove this result, we need to introduce some additional notation. We use Ht to denote the observations up to, and
including, time t for t ∈ {1, 2, . . . , n}. For a given n ≥ 1, introduce the sample space Ω = (X × Y)

n, and let F0 denote a
sigma algebra of subsets of Ω. For a given function f and an querying strategy A, we use Pf,A to denote the probability
measure on Ω induced by the pair (f,A). We will drop the A dependence of Pf,A, and simply use P(f) in the sequel.

The first step is to obtain an upper bound on the KL-divergence between the measures P(f) and P(fi) induced on the space
Ω, for a common algorithm A. In particular, suppose (X1, Y1, . . . , Xn, Yn) denote the query-observation pairs collected by
the algorithm A up to time n. Then we have the following:

Dn := DKL

(
P(f), P(fi)

)
= Dn−1 +DKL

(
P(f)
Xn,Yn|Hn−1

,P(fi)
Xn,Yn|Hn−1

)
(18)

= Dn−1 +DKL

(
P(f)
Xn|Hn−1

,P(fi)
Xn|Hn−1

)
+DKL

(
P(f)
Yn|Hn−1,Xn

,P(fi)
Yn|Hn−1,Xn

)
(19)

= Dn−1 + 0 +DKL

(
P(f)
Yn|Hn−1,Xn

,P(fi)
Yn|Hn−1,Xn

)
(20)

= Dn−1 + Ef

[
(f(Xn)− fi(Xn))

2

2σ2

]
(21)

≤ Dn−1 + Ef
[
1{Xn∈B(zi,w)}

c2∆2

2σ2

]
(22)

In the above display,

• (18) and (19) follow from the chain rule for KL-divergence (Polyanskiy and Wu, 2014, Theorem 2.2),

• (20) uses the fact that conditioned onHn−1, the distribution of Xn is the same for both the problem instances, that is
they are both selected according to the mapping An : (X × Y)

n−1 7→ X , where A = (At)
n
t=1 is the common strategy,

• (21) uses the fact that condition on Xn, Yn is distributed as N
(
f(Xn), σ2

)
and N

(
fi(Xn), σ2

)
under the two

distributions P(f) and P(fi) respectively, and

• (22) uses the fact that, by construction, f and fi only differ in the region B(zi, w), and furthermore, in this region we
have maxx∈B(zi,w) |f(x)− fi(x)| ≤ c∆
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Repeating the steps involved in obtaining (22) n− 1 times, we get the following upper bound on the term Dn:

Dn ≤
c2∆2

2σ2

n∑
t=1

Ef
[
1{Xt∈B(zi,w)}

]
=
c2∆2

2σ2
Ef

[
n∑
t=1

1{Xt∈B(zi,w)}

]

=
c2∆2

2σ2
Ef [Ni (A, n)] .

Recall that the term Ni(A, n) denotes the number of times the algorithm A queries points from the region B(zi, w) in the
first n rounds.

Now, suppose Z : Ω 7→ [0, 1] be any measurable [0, 1] valued random variable. Then by (Garivier et al., 2019, Lemma 1),
we get the following result:

DKL (Pf , Pfi) ≥ dKL (Ef [Z] , Ef ′ [Z]) ,

where dKL(p, q) for p, q ∈ [0, 1] denotes the KL-divergence between two Bernoulli random variables with means p and q
respectively.

To complete the proof, we select Z := Ni(A,n)
n , and using the fact (Garivier et al., 2019, Eq. (11)) that dKL(p, q) ≥

−(1− p) log(1− q)− log 2, we get the required inequality

Ef
[
Ni(Ã, n)

] c2∆2

2σ2
≥ − (1− pn,i) log (1− qn,i)− log 2, where

pn,i = Ef [Z] , and qn,i = Efi [Z] .

Remark 9. The only point at which we exploit the assumption that the observation noise is distributed as N(0, σ2) (i.e.,
Assumption 2a) is in obtaining the inequality (21). Due to this assumption on the noise, we get a closed form expression
for an upper bound on the KL-divergence in (22), i.e.,

(
c2∆2

)
/2σ2. In general, if we only assumed that the observation

noise was σ2 sub-Gaussian, then the same result would hold true with the previous closed-form upper bound replaced by the
expression supx∈B(zi,w) DKL

(
Pf,Yn|Xn=x, Pfi,Yn|Xn=x

)
.

B.3. Concluding Theorem 1 from Proposition 3

Theorem 1 follows by repeated application of the result in Proposition 3 to different regions of the input space. More
specifically, introduce the following notation:

• As in the previous section, we fix an a > a0, and choose c = 2 and ∆ = 16n−(1−a).

• For k ≥ 0, set Zk = {x ∈ X : 2k∆ ≤ f(x∗) − f(x) < 2k+1∆}. With wk :=
(
(3× 2k∆Mν)/(λM)

)1/ν
, we use

mk to denote the 2wk packing number of Zk.

Since, f ∈ HKν (M), we know that the set Zk is an empty set for all k larger than a finite value k0. More specifically, we
have k0 =

⌈
log2

(
supx∈X f(x∗)−f(x)

∆

)⌉
≤
⌈
log2

(
2MKν(0)

∆

)⌉
.

Finally, the statement of Theorem 1 follows by k0 + 1 repeated applications of the intermediate statement proved in Proposi-
tion 3 using Z = Zk, ∆ = 2k∆, c = 2, and wk =

(
(3× 2k∆Mν)/(λM)

)1/ν
for k = 0, 1, . . . , k0.

C. Proof of Proposition 1
To prove this statement, we appeal to the one-step result obtained in Proposition 3. In particular, we apply Proposition 3
with the following parameters:

• We set ∆ = ∆n = 16n−(1−a), and c = cn := 21/dc̄
c where c̄ and c are the parameters introduced in Definition 4.

• The set Z of Proposition 3 now becomes {x ∈ X : ∆n ≤ f(x∗)− f(x) < cn∆n}.
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• We set the radius of the balls to w = wn =
(

(cn+1)∆nMν

Mλ

)1/ν

, where λ = 1 − ‖f‖HKν /M , and use m(Z, wn) to
denote the 2wn packing number of the set Z .

With these parameters, Proposition 3 gives us the following lower bound on the regret:

E [Rn (A, f)] = Ω

(
σ2m(Z, wn)

∆nc2n

)
. (23)

To conclude the statement of Proposition 1, we will show that m = m(Z, wn) = Ω

(
∆

d
ν (1− νb )
n

)
. First, we introduce the

following terms:

r0 :=

(
∆n

c

)1/b

, r1 :=

(
cn∆n

c̄

)1/b

where cn =
21/dc̄

c
as before. (24)

Next, we use Definition 4 to obtain the following result about Z .

Lemma 2. With r0 and r1 introduced in (24) and X̃ (f,∆, c) defined above, we have

Z ⊃ B(x∗, r0, r1) := {x ∈ X : r0 ≤ ‖x− x∗‖ < r1}

Proof. Suppose x ∈ B(x∗, r0, r1). Then we have the following:

‖x− x∗‖ ≥ r0 :=

(
∆n

c

)1/b

⇒ f(x∗)− f(x) ≥ crb0
⇒ f(x∗)− f(x) ≥ ∆n. (25)

Similarly, we also have the following:

‖x− x∗‖ ≤ r1 :=

(
cn∆n

c̄

)1/b

,

⇒ f(x∗)− f(x) ≤ c̄rb1

⇒ f(x∗)− f(x) ≤ c̄
(
cn∆n

c̄

)
⇒ f(x∗)− f(x) ≤ cn∆n. (26)

Together, (25) and (26) imply that if x ∈ B(x∗, r0, r1) then x ∈ Z .

The above statement implies that the 2wn packing number of Z can be lower-bounded by the 2wn packing number of the
smaller set B(x∗, r0, r1). Let us denote the 2wn-packing number of B(x∗, r0, r1) with m̃. Then, by using the fact that the
2wn packing number is lower bounded by the 2w covering number, and employing the standard volume arguments (van
Handel, 2014, Lemma 5.13), we conclude that there exists a constant 0 < C1 <∞ such that

m(Z, wn) ≥ m (B(x∗, r0, r1), wn) ≥ C1

(
∆

1/b
n

∆
1/ν
n

)d
= C1∆

d
ν (1− νb )
n .

The ∆
1/b
n and the ∆

1/ν
n terms in the above display arise from the definitions of r1 − r0 and wn (defined at the beginning of

this proof) respectively. Plugging the lower bound on m(Z, wn) back in (23) gives us the required result.
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D. Proof of Theorem 2
We first recall a simple embedding result from Shekhar and Javidi (2020) which is crucial in the adaptive partitioning
approach used in our algorithm.
Fact 1. Suppose f ∈ HKν (M) with 0 < M < ∞. Then, we have |f(x) − f(z)| ≤ MCK‖x − z‖ξ for ξ := min{1, ν}
and for some constant CK depending on K for all x, z ∈ X .

Instead of obtaining the bounds on the term CK in the statement above, we assume that n is large enough to ensure that
CK ≤ log n to simplify the presentation.

We now present the following independence result about the points queried by the algorithm.
Proposition 4. Suppose Pt ⊂ Xh is the active set of points for Algorithm 1 at some time t. Let t0 < t denote the
time at which a point from Pt was first queried, and let Et denote the multi-set of points {xt0 , . . . , xt−1} queried by
the algorithm. Then the collection of random variables (yt0 , . . . , yt−1) are mutually independent, conditioned on the
observations xt0 , . . . , xt−1.

Proof. Using P to represent the joint distribution of the random variables, we proceed as follows:

P (yt0 , . . . , yt−1|xt0 , . . . , xt−1) =
P (yt0 , . . . , yt−1, xt0 , . . . , xt−1)

P (xt0 , . . . , xt−1)

=

∏t−1
s=t0

P (xs|xt0 , . . . , xs−1, yt0 , . . . , ys−1)P (ys|xt0 , . . . , xs, yt0 , . . . , ys−1)

P (xt0 , . . . , xt−1)

(a)
=

∏t−1
s=t0

P (xs|xt0 , . . . , xs−1)P (ys|xs)
P (xt0 , . . . , xt−1)

=
P (xt0 , . . . xt−1)

(∏t−1
s=t0

P (ys|xs)
)

P (xt0 , . . . , xt−1)

(b)
=

t−1∏
s=t0

P (ys|xt0 , . . . , xt−1) .

In the above display,
(a) uses the fact that at any s ≥ t0, the query point xs only depends on the previous query points xt0 , . . . , xs−1 and not on
the observations; and the fact that conditioned on xs, the observation ys is independent of the query points xt0 , . . . , xs−1

and observations yt0 , . . . , ys−1.
(b) uses the fact that conditioned on xs the observation ys is independent of xt0 , . . . , xs−1, xs+1, . . . , xt−1.

The equality (b) implies the conditional independence of the observations given the query points belonging to the current
active set Pt, as required.

Having obtained the conditional independence property of the query points, we now present the key concentration result that
leads to the required regret bounds.
Lemma 3. For some t ≥ 1, let Pt, t0 and Et be the same as in Proposition 4. Then, for a given δ ∈ (0, 1), the following is
true:

P

(
∃x ∈ Pt, s.t. |f(x)− µt(x)| > βtσt(x)

)
≤ δt :=

6δ

t2π2
,

where βt =

√
2σ2 log

(
|Pt|π2t2

3δ

)
Recall that the terms µt(·) and σt(·) represent the posterior mean and standard-deviation functions computed by the
subroutine ComputePosterior introduced in Definition 6.

Proof. To prove this result, we rely on the following facts derived by Valko et al. (2013) while proving their Lemma 2. For
x ∈ Pt, there exists αt0 , . . . , αt−1 ∈ R (depending on x) such that the following holds:
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f(x)− µt(x) =

t−1∑
i=t0

αi (yi − f(xi)) +Bx

with
t−1∑
i=t0

α2
i ≤ σt(x)2 and |Bx| ≤ τ−1/2Mσt(x),

for all x ∈ Pt. Recall that τ is the regularization parameter used in the subroutine ComputePosterior, while M is the
upper bound on the RKHS norm of f .

Now, we use the conditional independence property derived in Proposition 4 along with the conditional σ2-sub-Gaussianity
of the observation noise to get the required concentration result.

In particular, for a given t ≥ 1 and a fixed x ∈ Pt, we have

P (f(x)− µt(x) > βtσt(x)) = E

[
P

(
t−1∑
i=t0

αi (yi − f(xi)) > βtσt(x)| (xi)t−1
i=t0

)]

≤ E

[
E

[
exp

(
λ

t−1∑
i=t0

αi(yi − f(xi))

)
e−λβtσt(x) | (xi)t−1

i=t0

]]
(27)

= E

[
t−1∏
i=t0

E
[
exp (λαi (yi − f(xi))) |(xi)t−1

i=t0

]]
(28)

≤ exp

(
λ2σ2

2

t−1∑
i=t0

α2
i − λβtσt(x)

)
(29)

≤ exp

(
λ2σ2

2
σt(x)2 − λβtσt(x)

)
(30)

= exp

(
− β2

t

2σ2

)
. (31)

In the above display,
(27) follows by an application of Chernoff’s inequality with some constant λ > 0 to be selected later,
(28) follows from the conditional independence property derived in Proposition 4,
(29) uses the fact that, conditioned on xi, the random variable yi − f(xi) is zero-mean σ2 sub-Gaussian,
(30) uses the fact that

∑t−1
i=t0

α2
i ≤ σt(x)2, and

(31) follows by selecting λ = βt/(σ
2σt(x)).

Repeating the argument of the previous display with µt(x)− f(x), in the place of f(x)− µt(x), gives us that

P (|f(x)− µt(x)| > βtσt(x)) ≤ 2 exp

(
− β2

t

2σ2

)
.

Next, using the fact that βt >
√

2σ2 log
(
|Pt|π2t2

3δ

)
, we have by a union bound over x ∈ Pt:

P (∃x ∈ Pt, s.t. |f(x)− µt(x)| > βtσt(x)) ≤
∑
x∈Pt

2 exp

(
− β2

t

2σ2

)

< 2 exp

(
− log

(
|Pt|π2t2

3δ

))
=

6δ

π2t2
:= δt.
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Since
∑n
t=1 δt < δ, we note that the following event E , occurs with probability at least 1− δ

E := ∩nt=1 ∩x∈Pt {|f(x)− µt(x)| ≤ βtσt(x)}. (32)

Throughout the rest of the proof, we will work under the event E with δ = 1/n. Hence, the expected regret of the algorithm
A1 can then be upper bounded by

E[Rn(A1, f)] = E[Rn(A1, f)1{E}] + E[Rn(A1, f)1{Ec}] (33)
≤ E[Rn(A1, f)1{E}] + P (Ec)× n× sup

x∈X
(f(x∗)− f(x))

≤ E[Rn(A1, f)1{E}] + 2‖f‖HKν diam(X )

≤ E[Rn(A1, f)1{E}] +O(1).

Since the second term is upper bounded by a constant, it suffices to show that the required upper bounds hold for the regret
incurred under the event E .

We now obtain a result about the sub-optimality of the points queried by the algorithm.

Lemma 4. Suppose event E introduced in (32) occurs, and the algorithm queries a point xt ∈ Pt ⊂ Xh for some h ≥ 1.
Then we have

f(x∗)− f(xt) ≤
(

7Lvξ1ρ
−ξ
)
ρhξ = O

(
ρhξ
)
.

Proof. Since h ≥ 1, the set Pt must have been formed by a call to the RefinePartition subroutine. Let xt = xh,i for
some i ∈ {1, . . . , 2h} and furthermore, denote its parent node by xh′,i′ where h′ = h− 1 and i′ = di/2e. Assume that the
active set Pt was formed by a call to the RefinePartition subroutine at some time t0 < t. Then the following must be
true:

f(xh,i) = f(xt) ≥ f(xh′,i′)− 2

︷ ︸︸ ︷
L(v1ρ

h′)ξ

:=Vh′

≥ µt0(xh′,i′)− 2βt0σt0(xh′,i′)− Vh′ (34)

≥ µt0(xh′,i′) + βt0σt0(xh′,i′)− 3Vh′ (35)
≥ max
x∈Pt0

(µt0(x)− βt0σt0(x))− 3Vh′ (36)

≥ (f(x∗)− 4Vh′)− 3Vh′ = f(x∗)− 7Vh′ . (37)

In the above display,

• the first inequality in (34) uses the fact that f is (L, ξ) Hölder continuous, while that second inequality uses the fact
that under the event E , we have f(xh′,i′) ≥ µt0(xh′,i′)− βt0σt0(xh′,i′),

• (35) follows by adding and subtracting 2βt0σt0(xh′,i′), and then using the fact that 2βt0σt0(xh′,i′) must be smaller
than 2Vh′ := L(v1ρ

h′)ξ, due to line 6 in Algorithm 1,

• (36) then uses the fact µt0(xh′,i′) + βt0σt0(xh′,i′) must be larger than the highest lower bound, maxx∈Pt0 µt0(x)−
βt0σt0(x) in order for xh,i to be included in the updated Pt0 returned by RefinePartition,

• and finally, (37) uses the fact that f(x∗)− 2Vh′ ≥ maxx∈Pt0 µt0(x)− βt0σt0(x). To see this, suppose xh′,j denotes
the point in Pt0 such that x∗ ∈ Xh′,j . Then we must have the following:

max
x∈Pt0

µt0(x)− βt0σt0(x) ≥µt0 (xh′,j)− βt0σt0 (xh′,j) ≥ f(xh′,j)− 2βt0(xh′,j)

≥f(x∗)− 2Vh′ − 2βt0(xh′,j) ≥ f(x∗)− 4Vh′ .
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The previous lemma gives us a bound on the suboptimality of any point queried by the algorithm at a time t in terms of the
parameter ρ and the depth of the cell h. Now, let Nh denote the number of times the algorithm queries a point at level h, i.e.,
lying in the subset Xh. Then we have the following regret decomposition (assuming the event E defined in (32) occurs):

Rn(A1, f) =

n∑
t=1

f(x∗)− f(xt) = O

∑
h≥0

Nhρ
h

 .

To complete the proof, it remains to get an upper bound on the term Nh, which we do in two ways: one in terms of the
maximum information gain γn, and the other in terms of the upper-complexity term Cf introduced in Definition 8. The
former will imply the minimax near-optimality of A1, while the latter will lead to improved regret (beyond the minimax
value) on some easier problem instances.

We now present the γn based upper bound on Nh. As an immediate consequence of this bound, we also observe that A1 is
minimax near-optimal.

Lemma 5. The number of queries made by A1 at level h of the tree satisfies Nh = Õ
(
ρ−2hξγn

)
. As a consequence of this,

we obtain the following upper bound on the regret:

E [Rn(A1, f)] = Õ (
√
nγn) = Õ

(
na
∗
ν

)
, with a∗ν =

ν + d

2ν + d
.

Proof. This result follows by using (Valko et al., 2013, Lemma 4 and 5) to get that Nh = Õ
(
ρ−hξβn

√
γnNh

)
. Dividing

both sides by
√
Nh and taking the square gives the upper bound on Nh.

Next, under event E , we haveRn = O
(∑hmax

h=0 ρhξNh

)
= Õ

(∑hmax

h=0 βn
√
γnNh

)
= Õ

(
hmax

√
γnn

)
= Õ

(√
γnn

)
. In

the last two equalities, we used the fact that βn = O
(√

log n
)

and hmax = log n, and hence are absorbed by the hidden
polylogarithmic leading constant in the notation Õ (·).

Lemma 6. Assume that the event E holds, and let Nh denote the number of queries made by A1 at level h. Introduce the
set Wh := {x ∈ X : f(x∗)− f(x) ≤ (7Lvξ1ρ

−ξ)ρhξ}, and let mh = m
(
Wh, 2v2ρ

h
)

denote the 2v2ρ
h-packing number of

the set Wh. Then, Nh is upper bounded by Õ
(
ρ−2hξmh

)
.

Proof. Suppose a point xh,i ∈ Xh is evaluated nh,i times before a call to RefinePartition is made. Then we must
have that

nh,i =

⌈
β2
nτ

2

L2v2ξ
1 ρ2hξ

⌉
. (38)

This is due to the following fact: suppose that at time t, the point xh,i has been evaluated s times. Then by (Shekhar and
Javidi, 2018, Proposition 3) we know that the posterior standard deviation at xh,i must satisfy σt(xh,i) ≤ τ/

√
s. Plugging

s← nh,i from (38) in this bound implies that after nh,i evaluations, the condition βtσt(xh,i) < L(v1ρ
h)ξ is satisfied, and

hence the point xh,i will not be evaluated anymore. Furthermore, we also know that if Pt ⊂ Xh, then it also satisfies the

following two properties: (i) Pt ⊂ Zh :=
{
x ∈ X : f(x∗)− f(x) ≤

(
7Lvξ1ρ

−ξ
)
ρhξ
}

, and (ii) any two points in Pt are

separated by a distance of 2v2ρ
h. Together, these two facts imply that Pt must be a packing set of Zh, and thus we can upper

bound |Pt| with mh, the 2v2ρ
h packing number of Zh. As a consequence, we have Nh ≤ nh,imh = Õ

(
ρ−2hξmh

)
.

It remains to show that the expected regret of A1 is upper bounded by the upper-complexity term Cf .

Lemma 7. Introduce the term Hn = max{H :
∑H
h=0 ρ

−2hξmh ≤ n}, and define ∆n = min{n−(1−a∗ν), ρHnξ}. Then, we
have

E[Rn (A1, f)] = Õ
(
Cf (∆n)

)
.
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Proof. We will work under the event E introduced in (32), that occurs with probability at least 1− 1/n. The proof of this
result follows by employing the upper bound on Nh derived in Lemma 6, and rearranging the resulting terms to form the
upper-complexity term.

In particular, we note thatRn (A1, f) ≤
∑Hn
h=0 Õ

(
ρhξNh

)
. Now, due to the upper bound on Nh obtained in Lemma 6, we

haveRn (A1, f) = Õ
(∑Hn

h=0 ρ
−hξmh

)
. To rewrite this in terms of Cf , note that ∆n ≤ ρHnξ, and for k ≥ 0, define

Z̃k = WHn−k = {x : f(x∗)− f(x) ≤ (7Lvξ1ρ
−ξ)ρ(Hn−k)ξ}

= {x : f(x∗)− f(x) ≤ (7Lvξ1ρ
−ξ)ρ−ξkρHnξ}

= {x : f(x∗)− f(x) ≤ (7Lvξ1ρ
−ξ)ρ−ξk∆n}.

Having defined Z̃k, we note that the term m̃k in the definition of Cf is the same as mHn−h = m
(
Z̃k, v2ρ

Hn−k
)

: the

2v2ρ
Hn−k-packing number of Z̃k. Finally, noting that ρHn−kξ = (ρ−ξk)∆n, we have the following:

Hn∑
h=0

ρ−ξhmh =

Hn∑
k=0

ρ−ξ(Hn−k)m̃k =

Hn∑
k=0

m̃k

(1/ρξ)k∆n
= Cf (∆n).

This completes the proof.

E. Proof of Proposition 2
As shown in (33), it suffices to get the bound on the regret under the 1 − 1/n probability event E introduced in (32).
When the objective function, f , satisfies the local growth condition with exponent b, we can show that the regions
Wh = {x : f(x∗)− f(x) ≤ (7Lvξ1ρ

−ξ)ρhξ} is contained in a ball centered at the optimal point x∗. In particular, due to
the local-growth condition, it follows that Wh ⊂ B

(
x∗, c′ρhξ/b

)
for some constant c′. As mh = m

(
Wh, v2ρ

h
)

is the
2v2ρ

h-packing number of the setWh, we can bound it from above by using volume arguments to get thatmh =
(
ρhd(1−ξ/b)).

Combining this with the result of Lemma 6, we get that

Rn (A1, f) = Õ

(
hmax∑
h=0

ρ−hξρ−hd(1−ξ/b)

)
.

Introducing the term d̃ := d(1−ξ/b), we haveRn (A1, f) = Õ
(∑hmax

h=0 ρ−h(ξ+d̃)
)

. Proceeding as in the proof of Lemma 7,

introduce the term H̃n = max{H ≤ hmax :
∑H
h=0 ρ

−h(2ξ+d̃)}, we see that ρ−H̃n = Õ
(
n1/(2ξ+d̃)

)
. This gives us the

following:

Rn (A1, f) = Õ

(
Hn∑
h=0

ρ−h(ξ+d̃) + ρHnξn

)
= Õ

(
n(ξ+d̃))/(2ξ+d̃)

)
.

F. Extension to Lipschitz Bandits
We note that the ideas used in obtaining the instance-dependent lower bound in Theorem 1 can also be applied to related
problems, such as Lipschitz bandits and kernelized level-set estimation. In this section, we state the analogous result for
the Lipschitz bandit problem. Here, the goal is to design an adaptive querying strategy to optimize an unknown Lipschitz
continuous objective function f with a Lipschitz constant bounded above by L, via noisy zeroth-order queries. For this
problem, we can prove an analog of Theorem 1.

Definition 18. Let f be a (1 − λ)L-Lipschitz function for some λ ∈ (0, 1). Fix a ∆ > 0, and introduce the set
Zk := {x ∈ X : 2k∆ ≤ f(x∗)− f(x) < 2k+1∆}. Introduce the radius wk = 3× 2k∆/(λL), and let mk denote the 2wk
packing number of the set Zk for k ≥ 0. Then, we can define the following complexity term:

C(Lip)
f (∆, L, λ) :=

∑
k≥0

mk

2k+2∆
≥ m0

4∆
.



Instance-dependent Regret Analysis of Kernelized Bandits

Then, proceeding as in the proof of Theorem 1, we can obtain the following lower bound.

Proposition 5. For a (1− λ)L-Lipschitz function f , the expected regret of an a0-consistent (for the family of L-Lipschitz
functions) algorithm A satisfies the following for any a > a0:

E [Rn (A, f)] = Ω
(
σ2C(Lip)

f

(
n−(1−a), L, λ

))
.

The general steps involved in obtaining this statement are similar to those used in the proof of Theorem 1, and we omit the
details. In particular, the main difference is that we now use the bump function of the form g(x) = max{0, L(1− ‖x‖)}.
We can check that this function is L-Lipschitz and supported on the unit ball.

G. Additional Figures

Figure 3. The two figures plot the variation of the exponent of different regret upper and lower bounds (i.e., α, if regret ≈ nα) with
dimension, on a problem instance f ∈ HKν , satisfying f ≈ (x− x∗)b near its optimum.


