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Abstract

Active learning has become a prevalent technique
for designing label-efficient algorithms, where the
central principle is to only query and fit “infor-
mative” labeled instances. It is, however, known
that an active learning algorithm may incur unfair-
ness due to such instance selection procedure. In
this paper, we henceforth study metric-fair active
learning of homogeneous halfspaces, and show
that under the distribution-dependent PAC learn-
ing model, fairness and label efficiency can be
achieved simultaneously. We further propose two
extensions of our main results: 1) we show that
it is possible to make the algorithm robust to the
adversarial noise — one of the most challenging
noise models in learning theory; and 2) it is possi-
ble to significantly improve the label complexity
when the underlying halfspace is sparse.

1. Introduction

Deep learning has become the driving force behind modern
artificial intelligence. However, it requires massive amount
of labeled data for model training. Though there is a massive
amount of unlabeled data available in many applications,
the labels are typically precious and expensive to acquire,
especially in the areas of medicine and physiology. In this
regard, active learning was broadly utilized as a paradigm
to learn a good model with significantly fewer labels by de-
signing strategies to adaptively select informative instances
to annotate (Cohn et al., 1994; Dasgupta et al., 2005; Balcan
et al., 2006; Dasgupta, 2009).

On the other hand, recently practitioners from different dis-
ciplines highlighted the ethical and legal challenges posed
by machine learning systems which are with potential to dis-
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criminate against specific population groups (Chouldechova
& Roth, 2020). The rising concern is that the designed al-
gorithms achieve appealing prediction accuracy, yet cannot
recognize ethical or moral feelings, and they will likely out-
put a solution that treats vulnerable groups unfairly. For
instance, Apple’s credit card has been investigated by finan-
cial regulators after customers discovered that the lending
algorithms were discriminating against women. In this light,
there is a growing interest in incorporating different fairness
criteria into algorithmic design, aiming to guarantee that
similar individuals or groups will be treated equally (Dwork
et al., 2012; Zemel et al., 2013; Hardt et al., 2016; Yona &
Rothblum, 2018; Liu et al., 2018; Dwork & Ilvento, 2019;
Liu et al., 2019; Dwork et al., 2020a;b; Ding et al., 2021).

In this paper, we study the two properties that seemingly
are odd with each other, and propose the first provable ac-
tive learning algorithm to address the general concern that
the instance selection paradigm in active learning may lead
to unfairness. Our goal is three-fold: 1) designing a com-
putationally efficient algorithm that learns the underlying
hypothesis class under the probably approximately correct
(PAC) model of Valiant (1984); 2) significantly reducing the
label complexity using active learning techniques; and 3)
ensuring fairness on the unseen data, i.e. generalization abil-
ity of the fairness guarantee. The first two objectives have
been broadly studied in the literature and were achieved
by many active learning algorithms (Balcan et al., 2007,
Awasthi et al., 2017); hence our main contribution falls into
the design of a new family of active learning algorithms that
additionally satisfy the fairness guarantee.

1.1. Formal setup

We study efficient PAC learning of homogeneous halfspaces
(Valiant, 1984), which is arguably one of the most important
problems in learning theory (Rosenblatt, 1958). Denote by
X := R? the instance space and by ) := {—1,1} the label
space. The class of homogeneous halfspaces is given by
H = {z > sign(w-x),w € R? ||w||, = 1}. Let D be the
joint distribution on X x ) and denote by D x the marginal
distribution on X. For any hypothesis w € H, we define the
error rate as errp (w) := Pr(, ,)p (sign(w - z) # y).

Let EXp be the sample generation oracle such that each
time the learner makes a call, it returns a labeled instance
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(z,y) that is randomly drawn from D. In the active learn-
ing setting, however, each time EXp is called, a labeled
instance (z, y) is still randomly drawn from D, but the or-
acle only returns the instance x. The learner must make
another call to a label revealing oracle EX}/, to obtain the
label y. Let € € (0, 1) be the target classification error rate,
and § € (0, 1) be the failure probability. We say H is PAC
learnable if there exists a learning algorithm .4, quantities
n;‘}é and méé satisfying the following: given any € and 9,
by making néé calls to EXp and méa calls to EXE, A out-
puts a halfspace w with errp () < mingey errp(w) + €
with probability at least 1 — § (over the draw of the data
and the internal randomness of .A). The minimum of ng‘}(s
and m;‘}d over all possible algorithms are termed the sample
complexity and label complexity, respectively.

In addition to the PAC guarantee, we also aim to establish
fairness guarantee. We consider the notion of approximate
metric-fairness due to Yona & Rothblum (2018), yet with a
slight modification.

Definition 1 (Approximate metric-fairness). Given a metric
¢ : X x X —[0,1], let the fairness error be

fe(w;Dx) :==Prp xpy (Jw-z—w-2'| > ((2,2")).

A hypothesis w is said to be a-approximately metric-fair if
fe(w; Dx) < a. We call « the fairness error rate.

‘We note that when oo = 0, Definition 1 reduces to the notion
of perfect metric-fairness (Dwork et al., 2012). That is, for
all (z,2") € X x X,

|w-z—w-a'| <((z,2") almost surely.

Yet, as shown in Yona & Rothblum (2018), even a perfectly
metric-fair hypothesis exists and has zero error rate, for
some simple learning problem, it cannot be found in polyno-
mial time by any perfectly metric-fair algorithm. Therefore,
throughout the paper, we will only consider finding a hy-
pothesis with the property of approximate metric-fairness,
which relaxes the perfectness in such a way that for an o
fraction of the pairs, the metric-fairness property may not
hold. It is also worth mentioning that Yona & Rothblum
(2018) considered a slightly more general definition where
w is said metric-fair if |w -z — w - 2’| < ((x, ') + 7 for
some slack parameter v > 0. We find such relaxation seems
unnecessary and our analysis will be different in the way
that we design a computationally efficient learning algo-
rithm. Specifically, we will utilize a different fairness loss
function; see Section 3.

Now we are in the position to state the probably approxi-
mately correct and fair (PACF) learning problem.

Definition 2 (PACF learning). A learning algorithm PACF-
learns a hypothesis class H if for any underlying distribution

D, target classification error rate ¢ € (0,1), confidence
0 € (0, 1), fairness metric {(+,-) : X x X — [0, 1], fairness
error rate « € (0, 1), it randomly draws a number of samples
from D and with probability 1 — § over the draw, outputs a
halfspace  satisfying: 1) errp () < min,eye errp(w)+
¢; and 2) fe(0; Dx) < a, where H* C H consists of all
halfspaces that are c-approximately metric-fair.

It is worth mentioning that in terms of classification error,
Yona & Rothblum (2018) competed with the best hypoth-
esis in a subclass H* ¢ where ¢, € (0, «) (but the most
interesting regime is €, = ©(«)), known as relaxed PACF
learning. In this work, we alternatively make a realizable
assumption that there exists a perfectly metric-fair target
halfspace w* in H® to avoid the relaxation of PACF learn-
ability. This naturally interpolates the settings in Dwork et al.
(2012) and Yona & Rothblum (2018) and thus our results
can be thought of as circumventing the computational hard-
ness of finding the perfectly metric-fair hypothesis while
permitting simpler technical analysis.

1.2. Main results

The main contribution of this paper is a metric-fair active
learning algorithm that fortifies state-of-the-art active learn-
ing algorithms with the PACF guarantee. In this section, we
summarize our main results; readers are referred to Section 5
for a more comprehensive discussion.

We will present a basic PACF algorithm with label efficiency.
Then we will show how to improve this basic algorithm so
that it can tolerate the adversarial label noise (Kearns et al.,
1992) and can learn sparse halfspaces (Littlestone, 1987).

All of our analysis hinges on a mild assumption on the
marginal distribution D x.

Assumption 1. The marginal distribution D x is isotropic
log-concave on X'; namely, it has zero mean, unit covariance
matrix, and the logarithm of its density function is concave.

Observe that the family of isotropic log-concave distribu-
tions is fairly standard and general (Lovadsz & Vempala,
2007b; Vempala, 2010; Balcan & Long, 2013). Without any
assumptions on the distribution, active learning may fail to
provide any improvement over passive learning in terms of
label efficiency; see an example given by Dasgupta (2005).

Our first result concerns label-efficient PACF learning in
the noise-free setting, where there is a perfect hypothesis
w* € H that incurs zero error rate.

Theorem 3. If Assumption 1 is satisfied and there exists
w* € H with errp(w*) = 0 and f;(w*;Dx) = 0, then
there is an efficient algorithm that PACF learns ‘H. In addi-
tion, the label complexity is O(d . polylog(%7 é))

Observe that the obtained label complexity significantly im-
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Table 1. Comparison to most relevant works. Compared to Zhang (2018), our algorithms can produce metric-fair hypotheses. Compared
to Yona & Rothblum (2018), we have exponential improvement on the dependence of € and «, and are robust to adversarial noise. We
remark that the PACF learnability of halfspaces was not set out in Yona & Rothblum (2018) but their results implied what we list here.

Work Label Complexity Metric Fairness  Noise Tolerance
Zhang (2018) polylog(1) - O(t - polylog(d)) X v
Yona & Rothblum (2018) % - -1 - O(t - polylog(d)) v X
This Work (Theorem 4)  polylog(2, 1) - O(d) v v
This Work (Theorem 5) polylog(%7 %) - O(t - polylog(d)) 4 v

proves upon the one of Yona & Rothblum (2018): theirs
is proportional to ﬁ while we have a poly-logarithmic
dependence on both 1 and 1. This is due to our new algo-
rithmic design and the distributional assumption we made.

We then consider a more challenging setting where no per-
fect halfspace exists in H with zero error rate, known as
the adversarial noise (Haussler, 1992; Kearns et al., 1992).
Note that this is a very challenging label noise and only
recently have efficient algorithms been established, though
without fairness guarantees (Awasthi et al., 2017; Yan &
Zhang, 2017; Shen, 2021a).

Assumption 2. The distribution D is said to satisfy the n-
adversarial-noise condition if there is a halfspace w* € ‘H
with errp (w*) < n.

Theorem 4. If Assumptions 1 and 2 are satisfied, and
fc(w*;Dx) = 0, then there is a polynomial-time algo-
rithm that PACF learns H if n < O(¢). In addition, the
label complexity is O(d . polylog(%, é))

Lastly, the margin-based active learning framework allows
us to explore learning of structured halfspaces. In particular,
we are interested in learning of ¢-sparse halfspaces and the
goal is to obtain label complexity that is sublinear in the
dimension d, a property termed attribute-efficiency (Little-
stone, 1987). Such property was also broadly studied in
statistics and signal processing communities (Chen et al.,
1998; Tibshirani, 1996; Candes & Tao, 2005).

Assumption 3. The hypothesis class consists of s-sparse
halfspaces, i.e. H = {z — sign(w - z),w € R, ||wl|, =
L, [|lwll, < t}, where ||w]|, counts the number of non-zero
elements of w.

Theorem 5 (Theorem 9, informal). If Assumptions 1, 2
and 3 are satisfied and f¢(w*; Dx) = 0, then there is a
polynomial-time algorithm that PACF learns H if n < O(e).
In addition, the label complexity is O(t - polylog(d, 1, 1)).
Observe that both Theorem 3 and Theorem 4 are just special
cases of the above result. Without the fairness constraint,
the setting of Theorem 5 has been studied in Zhang (2018).
In fact, our high-level idea of algorithmic design is inspired
by that work. The crucial difference lies in the incorporation

of the metric-fairness and hence, a new theoretical analysis
on the generalization ability of metric fairness in the margin-
based active learning framework. We summarize our results
and some closely related prior works in Table 1.

1.3. Overview of our techniques

We sketch the main techniques in this section. From a high
level, we leverage the metric-fairness into the celebrated
margin-based active learning framework to achieve perfor-
mance guarantees stated in Theorem 5.

1) Metric-fair learning via convex fairness loss. Given
the definition of metric-fairness, it is natural to consider
an indicator function as the loss to evaluate whether the
fairness constraint is violated for a hypothesis w on a pair
(x,2') € X x X:

1 if jw-z—w-a'| > ((z,2),

0 otherwise.

fe(w; (2,2)) = {

Yet, such loss function is discrete that is often computa-
tionally hard to optimize. Thus, we consider the following
surrogate loss that is amenable for optimization:

fE (w; (2, 2"))
=max {0,G(|w-z—w-2| - {(x,2)) + 1},

which is an hinge-loss type upper bound of f(w; (x, "))
and very importantly, is convex with respect to w. Now
given a set 1" of instances drawn independently from D, it
is possible to (arbitrarily) group each two instances to form
aset M(T) C X x X and examine the empirical fairness
loss induced by M (T):

Yoo fEwi(aa)).

(z,x")EM(T)

Note that M (T") can be thought of as a set of instance pairs
independently drawn from X x X', sometimes called a graph
matching of 7' by imaging the instances in 7" as the nodes
of a graph. This would allow us to establish generalization
guarantee of metric-fairness, similar to Yona & Rothblum
(2018). In our algorithm, we will mainly consider a con-
straint for the above empirical loss function which can be
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evaluated in polynomial time. This is one of the primary
components when the algorithm produces a new iterate. By
enforcing such convex fairness constraint in all iterations,
we obtain the fairness guarantee for all iterates, and hence
the final output of the algorithm.

2) Margin-based active learning with fairness: entan-
gling unlabeled and labeled data. The margin-based ac-
tive learning framework of Balcan et al. (2007) proceeds
in an iterative fashion, where in each phase it minimizes
an empirical hinge loss to produce a new iterate. The key
aspect that differentiates it from passive learning is that in
each phase, it draws a bulk of instances from Dx but only
queries the labels of those residing a band B, known as lo-
calized sampling. In addition, it searches the new iterate in
a localized hypothesis space, which is roughly a trust region
of the target halfspace w*. As the algorithm proceeds, such
localized hypothesis space shrinks at a geometric rate, hence
after a few phases, a good hypothesis can be returned.

We make several key observations. First, the labels are
queried only during empirical hinge loss minimization, and
the number of labeled instances is such that the empirical
hinge loss is a good approximation to the expected loss.
Second, the instances are drawn at the beginning of each
phase and will be used to construct the surrogate fairness
constraint. It turns out that such unlabeled and labeled in-
stances are interleaved during hinge loss minimization, i.e.
labeled samples are used to define the hinge loss, while
unlabeled ones are used to construct the constraint. Yet, we
show that the size of unlabeled samples and the necessary
size of labels are almost independent. Therefore, different
from prior active learning algorithms, after localized sam-
pling, we also perform a random sampling of the remaining
instances and query their labels. This ensures that we only
make necessary label queries, and is the key to obtain the
poly-logarithmic dependence on L.

Our treatment on adversarial noise is rather standard. It turns
out that the framework inherently is robust to the adversarial
noise as long as the noise rate 7 < O(e), as set out in
Awasthi et al. (2017). Technically speaking, this comes
from the fact that the expected error within the localized
sampling region is only constant away from the error rate
of w*, which suffices to establish the desired bound on
classification error rate. Moreover, we can show that the
additional fairness constraint will not hurt such analysis.

Finally, in order to incorporate the sparsity structure of the
underlying halfspace, we consider enforcing an additional
£1-norm constraint in the localized hypothesis space. This
narrows down the search space and hence improves the label
complexity. At a technical level, the additional ¢;-norm
constraint significantly reduces the Rademacher complexity
(Kakade et al., 2008). Since the ¢;-norm constraint may
promote a non-sparse halfspace, at the end of each phase,

we will perform hard thresholding to ensure sparsity. This
will increase the error rate by a constant factor but we can
show that overall, it can still be well-controlled, which is a
key observation made in Zhang (2018).

1.4. Roadmap

We discuss more related works in Section 2, including fair-
ness and active learning. A concrete problem setup is pre-
sented in Section 3. We elaborate on our main algorithms in
Section 4, followed by performance guarantees in Section 5.
We conclude the paper in Section 6, and defer all proof
details to the appendix.

2. Related Works

In this section, we provide a brief review of learning with
fairness and active learning.

Fairness. There are two important fairness criteria: statis-
tical fairness and individual fairness. Statistical fairness
seeks to stabilize a small number of protected demographic
groups (e.g. kids) and then requires some statistical met-
ric be equal across all these groups. The algorithms use a
variety of metrics, the most popular of which are the raw
positive classification rate (Feldman et al., 2015), the false
positive and false negative classification rates (Hardt et al.,
2016; Kleinberg et al., 2017), and the positive predictive
value (Kleinberg et al., 2017). However, statistical fairness
does not provide adequate protection for individuals or a
structured subgroup since it examines whether the protected
groups receive an average benefit.

In contrast to statistical fairness, individual fairness focuses
on specific individuals rather than an average across pop-
ulations. Dwork et al. (2012) suggested that for each pair
of individuals, a metric should be used in such a way that
similar individuals should be treated similarly; this is the
concept of individual fairness. Based on the notion of indi-
vidual fairness, a series of algorithms have been developed
that integrates the online learning setting and guarantees the
individual fairness via an oracle to evaluate fairness viola-
tions (Kim et al., 2018; Kearns et al., 2018; Gillen et al.,
2018). A very elegant work due to Yona & Rothblum (2018)
presented generalization guarantee of fairness under the no-
tion of approximate metric-fairness. For a comprehensive
discussion on fairness in machine learning, we refer readers
to a recent survey article by Mehrabi et al. (2021).

Active learning. Active learning concerns the scenario
where unlabeled data are abundant but labeling could be
very expensive. The study of active learning was initiated
by Cohn et al. (1994). It, however, turns out that in general,
even for the very simple problem of learning halfspaces,
active learning may not be able to provide any improve-
ment on label complexity compared to passive learning
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(Dasgupta, 2005). In this regard, distributional assumptions
on the unlabeled data are often made, such as uniform dis-
tribution on a unit ball (Balcan et al., 2007). One line of
research considers combining empirical risk minimization
with active learning and demonstrates surprising properties
beyond label efficiency, such as noise tolerance (Awasthi
et al., 2017; Shen, 2021b). Another line of research designs
more sophisticated algorithms for improved noise tolerance
(Yan & Zhang, 2017; Zhang et al., 2020; Diakonikolas et al.,
2020bsa; Shen, 2021a; Zhang & Li, 2021).

Interestingly, Awasthi et al. (2016); Zhang (2018) observed
that the margin-based active learning framework inherently
is compatible with attribute-efficiency, an important prop-
erty that has been investigated in learning theory and statis-
tics (Blum, 1990; Blum et al., 1991; Donoho, 2006; Tropp &
Wright, 2010; Shen & Li, 2018). The objective of attribute-
efficient learning is to learn a sparse model that improves
the performance guarantee on sample and label complexity,
typically with the hope of obtaining bounds that are logarith-
mic in the dimension. More recently, Shen & Zhang (2021)
developed an attribute-efficient active learning algorithm
that is robust to the malicious noise where both instances
and labels can be adversarially corrupted (Valiant, 1985).

3. Preliminaries

For a vector w € R%, we denote its ¢> and ¢;-norm by ||w|,
and ||w|,, respectively. We use ||w||, to count the number
of non-zero elements of w. We will denote by Bs(w,r)
the ¢5-ball centering at w with radius r, and by B (w, p)
the ¢1-ball centering at w with radius p. We define the
angle between two vectors w1, wy in R? as 0(wy, wy) =

arccos (M)
w15 lwll,

The letter ¢ and its subscript variants such as c1, co, c3 are
reserved for specific constants. The letters x and ¢ are also
reserved constants. Readers may refer to Appendix A for
the detailed values. The capital letter K and its subscript
variants are also constants, but their values may change from
appearance to appearance.

Recall that we denote the instance space by X C R?, the
label space by ) and the class of t-sparse homogeneous
halfspaces by H = {z + sign(w - z) : w € R, |Jw]|, =
L, |lw||, < t}. Note that a halfspace is non-sparse if ¢ = d.
Hence, this is a more general definition of the underlying
hypothesis class.

In our algorithm, we will often choose unlabeled instances
from Dx conditional on a sampling region B := {z € RY :
|w - 2| < b}. This can be done by repeatedly calling EX p
until seeing an instance x lying in B; this process is referred
to as rejection sampling. The distribution of D x conditional
on the event z € B is denoted by Dx|p.

We will consider a scaled hinge loss as a proxy to the 0/1
classification error,

l; (w; (x,y)) ‘= max {O, e }

T

)

Note that even with the scaling parameter 7 > 0, such hinge
loss still upper bounds the 0/1 classification error.

The expected scaled hinge loss for some distribution D over
X x Y is thus given by

0w D) =By plle(w; (59). @)

Further, we will consider the empirical scaled hinge loss
with respect to a sample set S C X x ),

L (w; S) == ﬁ Z L (w; (2, y)). 3)

(z,y)€S

In the sequel, we summarize useful definitions for fairness.

Definition 6 (Metric-fairness loss). The metric-fairness loss
on a pair (x, z’) with respect to a metric ¢ : X x X — [0, 1]
is as follows:

fe(w; (z,2")) = 1{‘10 cx—w - x’] > ((x,2") + 7},
“)
where 1{ E'} is the indicator function which outputs 1 if the
event I holds and 0 otherwise.

The expected metric-fairness loss with respect to the distri-
bution Dx is thus given by

fe(w; Dx) :=E(z2)~pxxDx [fc(w; (@,2")].  (5)

We will establish uniform convergence of metric-fairness
loss through Rademacher complexity. One key requirement
is that the empirical pairs (z, ') need to be independent
draws according to Dx X Dx. However, in our algorithmic
design, we will not do so. Rather, we draw a set T' of
instances and construct the set of pairs through the notion
of matching in graph theory by thinking of 7" as a fully
connected graph with instances being the vertices, an elegant
idea due to Yona & Rothblum (2018).

Definition 7 (Matching). Given a set T of instances in X, a
matching M (T') is a set of instance pairs without common
instances. In addition, all instances in 1" are contained in
one pair in M (7).

Equipped with a matching M (T'), it is possible to eval-
uate the degree of violation of the fairness constraint
for a given hypothesis w on a given set T'. For ex-
ample, we may consider the empirical metric-fairness

loss fc(w; M(T)) := m Z(m,z’)GJ\I(T) fe(w; (z,2")).
However, f¢(w;(z,2’)) is a nonconvex function that
is intractable to optimize. Yona & Rothblum (2018)
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considered a function of the form fc (w; (z,2")) =
max {0, |w -z —w- 2’| — ((x,2’)} which is convex but
not always an upper bound of the 0/1 metric-fairness
loss (4). This resulted in technical complications in their
uniform convergence.

We propose to use the following surrogate function.

Definition 8 (Surrogate metric-fairness loss). The surrogate
metric-fairness loss on a pair (x, z) with respect to a metric
¢: X x X —[0,1] is as follows:

FE (w; (2,2"))
= max {O,G(’w ST —w - x’| —((z,2")) + 1}, (6)

where G > 0 is a parameter.

It is easy to see that the surrogate loss is convex with re-
spect to w and is always an upper bound of the 0/1 loss in
Definition 6. Thus, given an instance set ', we can build an
arbitrary matching M (T') and consider the convex fairness
loss over M (T') as follows:

fga(wyM(T)) = |M1T)‘ Z

(z,x")eM(T)

fg(w7 (x,2)).
)

Since our algorithm and analysis hold for any matching of
T, we will often write & (w; T') in place of f& (w; M(T)).

4. Main Algorithms

We describe the main algorithms in this section. For the
purpose of exposition, we will start with a basic algorithm
that works under the noise-free data and without sparsity
pattern of the underlying halfspace. We then present an
attribute-efficient algorithm when the hypothesis class is
t-sparse halfspaces. For both algorithms, there is no partic-
ular treatment on the adversarial noise; it only enters our
theoretical analysis.

4.1. Hyper-parameter setting

Our algorithms proceed in phases. In each phase k, we set
=275 by =i, pp = V21, T = K- bi, (8)

where py, is used only in Algorithm 2. The failure probability

O = m We will draw a set of instances 7}, by
calling EXp for ny times, where
1 1 4 d
=K (— + —)tlog” —. 9
ng 1(a2+b;€) og o 9

We will then query the label of some instances in 7}, by
calling EXE for my, times, where

d
my = Ko ~tlog3— -log d. (10)
Oé(;k

Algorithm 1 Active Learning of Halfspaces with Approxi-
mate Metric-Fairness
Require: Target classification error rate e, failure proba-
bility 4, fairness metric function ((-, -), fairness error
rate o, sample generation oracle EX p, label revealing
oracle EXE.
Ensure: A halfspace o with errp () < € and is also a-
approximately metric-fair.
1: kmax < log(#cle).
2: fork=1,2,...,knax do
Ty, < independently draw nj instances from Dx.
Build a matching M (T};) and construct W,
Sy, < randomly sample my instances in T3 N By and
query their labels.
6:  Find wi € W such that

Al

lr, (wy; Sk) < argmin £, (w; Sk) + k.
weWy,

7: end for
return w < wyg

max *

Recall k,¢ > 0 are reserved constants (see Appendix A),
and K1, Ko > 0 are constants that we will not particularly
track their values. It is also worth noting that n; and my
are referred to as the sample size and label size at phase k.

4.2. Active learning of general halfspaces with fairness

Our algorithm proceeds in multiple phases. Fix a phase
k > 1. The basic metric-fair active learning, Algorithm 1,
consists of two major stages: sampling from a region By,
called localized sampling, and minimizing a hinge loss un-
der certain constraint set Wj,. Since the sample generation
oracle only returns instances drawn from D x, we need to
call it sufficient times to obtain an instance set 7T}, and
identify those in By.

The localized sampling region By, is defined as follows:

R4 =1
By i= F=Lo gy
{z|wg—1 x| <bp} Ek>2.

Intuitively, as the algorithm proceeds, the iterate w1 will
be very close to the target halfspace w*, and thus only
instances close to the decision boundary of wy_ are infor-
mative in the sense that wy_; may disagree with w* on their
labels — this is why we only query the labels in the band By,.
Note that such setting is standard in margin-based active
learning (Awasthi et al., 2017).

The design of W}, is more delicate, as we need to ensure
that the iterates are metric-fair. Without the fairness consid-
eration, it is known in the active learning literature that we
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can choose Wy, same as Qy,, where

B5(0,1) k=1,
= 12
Qk {BQ(O, 1) n Bg(wk_l,Tk) k Z 2. ( )

The constraint set Qj, has two properties with a high prob-
ability: 1) it is shrinking; and 2) the target halfspace w*
keeps lying in Wy, for all k£ > 1 (see Proposition 21).

To account for the fairness property, we need additional
constraint. We will consider

Mi={weR!: ST < T} (13

Recall that ff *(w;Ty) is a convex function that upper
bounds the 0/1 fairness error. This will be a useful fact
for us to show generalization ability of the metric-fairness
property. The parameter G, > 0 can be adaptively se-
lected. Yet, we find that G, = 1 works in our analysis.
It is unclear whether a more involved choice would im-
prove the performance guarantees; we leave it as our future
study. We would also like to mention that Yona & Roth-
blum (2018) proposed to use a surrogate loss fc (w; Ty) ==

WlTk” >onmry) max{0, [w -z —w- 2’| — ((z,2")}. This

is convex as well but the trouble is that it is not always an
upper bound of the 0/1 fairness error defined in Definition 6.
Thus, there are technical complications in the analysis of
Yona & Rothblum (2018).

Consequently, we will consider a constraint set for the can-
didate halfspaces as follows:

Wi = My N Q. (14)

Note that any w € Wy, is §-approximately metric-fair on
the instance set 1}.

Then we need to find a good halfspace wy. To this end, we
minimize the hinge loss ¢, (w; Sy). The labeled instance
set S, is chosen in a very involved manner. Given T}, drawn
at the beginning, we first identify those residing By, de-
noted by T}, := Ty N Bj. While prior works query the
labels of all instances in T,g (Balcan et al., 2007; Zhang,
2018), we will first perform a random sampling from 77, to
form an instance set of size my, and query EXE on their
labels. As will be clear in the analysis, my, is orders of
magnitude smaller than the size of T}, — a key step to ensure
the announced label complexity. In fact, had we not per-
formed the random sampling, our label complexity would
be proportional to %, which is exponentially more than
what we obtained. Technically speaking, the reason that we
only need a small amount of labeled data is that m;, labeled
instances suffice to guarantee uniform convergence to the
expected hinge loss, which will imply a small classification
error. On the other spectrum, we do need a large amount of
unlabeled data (i.e. T}) to guarantee uniform convergence

to the expected fairness error. Therefore, the algorithm en-
tangles the unlabeled and labeled data yet disentangles their
sizes. Such idea of random sampling also appeared in a very
recent work of Shen & Zhang (2021) but was motivated in
a quite different context: in that work, they need to draw a
bulk of instances T}, to detect malicious instances (Valiant,
1985), and then sample a small amount for labeling to obtain
near-optimal label complexity.

Equipped with the labeled instance set Sy and the convex
constraint set W}, we optimize the empirical hinge loss up to
a constant £ > 0, which is computationally efficient. Here,
the hinge loss is parameterized by a Lipschitz coefficient
Tk, that shrinks exponentially with respect to the iteration
number k; this will be useful to control the label complexity.
A potential trouble is that whether such convex program is
feasible. We give an affirmative answer; in fact, we show
that the target halfspace is a feasible solution, namely, w* €
W, for all phases k. Observe that this immediately implies
that after O(log 1) iterations, we have |wj, — w*||l, < €
due to the shrinking /5-norm constraint we imposed in Q
and the setting 7, = ©(27F).

Notably, a natural characteristic of our algorithm is its noise
tolerance. When the label is corrupted by adversarial noise
during the training phase, the shrinking sampling region
By, well-controls the amplitude of the noise. Therefore,
Algorithm 1 simultaneously guarantees the metric fairness
and tolerance to the adversarial noise .

4.3. Active learning of sparse halfspaces with fairness

Now we present Algorithm 2, which leverages the prior
knowledge that the underlying hypothesis class is t-sparse
halfspaces to achieve attribute efficiency.

Inspired by Zhang (2018), we modify the constraint set Qj
in (12) as follows to incorporate the sparsity structure:

0, — B2(0,1) N B (0, V1) k=1,
"o N Ba(wi—1,7r%) N Br(wg—1,p5) k> 2.
(15)

The key difference from the O that we used in Algorithm 1
is that the constraint set Qj belongs to the intersection be-
tween ¢1-norm ball and ¢>-norm balls centering at wy_1,
which will be useful to establish label complexity that is
logarithmic in the dimension. Furthermore, we also nar-
row down the constraint set Q;. such that it is a subset of
Q; for all £ > 1. This will simplify our analysis for the
generalization of metric-fairness (but not vital).

It is worth mentioning that the solution of hinge loss min-
imization vy, is not always t-sparse. For technical reasons,
we will perform a hard thresholding step P;(vy) which sets
all but the ¢ largest (in magnitude) elements of vy, to zero,
followed by an ¢s-normalization. We note that though hard
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Algorithm 2 Active Learning of Sparse Halfspaces with
Approximate Metric-Fairness
Require: Sparsity parameter ¢, target classification error
rate ¢, failure probability ¢, fairness metric function
(-, ), fairness error rate v, sample generation oracle
EXp, label revealing oracle EX%
Ensure: A halfspace @ with errp(w) < € and is also a-
approximately metric-fair.
1: kmax 1og(12;701€).
2: fork=1,2,..., knax do
3. T+ 1ndependently draw n;, instances from D x.
4
5

Build a matching M (T};) and construct Wi
Sy < randomly sample my, instances in T}, N By, and
query their labels.

6:  Find vy, € W}, such that

Ly, (vg; Sg) < argmin ., (w; Sk) + &
weWy,

. Py (vk)
T wWg 7”&(%)”2.
8: end for

return W < vy

max *

thresholding is a non-convex projection, it is still possible
to control the resultant deviation; see Proposition 21.

Another notable aspect of Algorithm 2 is that the returned
hypothesis is vy, rather than wy, . . Though it is possible
to show that wy,_ . enjoys PAC guarantee as well as vy,
does, we find it technically difficult to prove its fairness guar-
antee, due to the non-convexity nature of the hard thresh-
olding operation. Therefore, the returned halfspace is not
t-sparse, yet with PACF guarantee and attribute-efficiency.

max

5. Performance Guarantees

We provide the performance guarantee for our algorithms
in this section. Since Algorithm 1 is a special case of Algo-
rithm 2, we state the main results of the latter first, and the
guarantees of Algorithm 1 follow as an immediate corollary.

Theorem 9 (Main result). Suppose Assumptions 1, 2, 3
are satisfied, and w* is such that fc(w*; Dx) = 0. For
any given €,0,« € (0,1), if n < coe for sufficiently small
constant cy > 0, then the following holds. With proba-
bility 1 — 9§, Algorithm 2 runs in polynomial time and re-
turns a halfspace © such that err p () < e. In addition, W
is a- approxtmately metrlc fazr The sample complexity is
O((al2 + 1) tlog 5 ' log = ) and the label complexity is

O(t log -logd - log )

Observe that the fairness metric {(-, -) enters our analysis
through its maximal value, which is assumed to be 1 in
Definition 1. It is straightforward to reproduce our analysis

for any universally bounded metric function; we leave it to
interested readers.

Corollary 10. Suppose Assumptions I and 2 are satisfied,
and w* is such that fc(w*;Dx) = 0. For any given
6,0, € (0,1), if n < coe for sufficiently small con-
stant co > 0, then the following holds. With probability
1 — 9, Algorithm 1 runs in polynomial time and returns
a halfspace W such that errp(w) < e In addition, W
is a—approximately metric fair The sample complexity is
O((% + i) dlog 5 +log ¢ ) and the label complexity is
O(dlog® % logd - log €).

5.1. Proof sketch of Theorem 9

To prove our main result, we show the generalization bound
of metric fair loss and then establish the PAC guarantee.

To begin with, we demonstrate a generalization bound of
our metric fair loss fCGk (w; (z, 2")).

Lemma 11 (Lemma 14, informal). Consider phase k of
Algorithm 2. Let Zy, = max(y zyepm(1y) § (2, 2"), Xp 1=
maxgery, 2] M == Gr(2VEXy + Zy). If T > K -
ﬁ (GiX}tlogd+ GiZE +117) log %for some constant
K > 0, then with probability 1 — §' over the draw of Ty,
the following holds for any o > 0:

*(w; Dx) —

sup ch fC (w; Ty)| < .

wijwl|, <VE

Such maximal difference between empirical and expected
loss functions follows from uniform convergence via
Rademacher complexity (Bartlett & Mendelson, 2001). The
primary challenge is to estimate the Rademacher complex-
ity for the underlying hypothesis class. We show that it is
possible to upper bound the maximal value of the function
fCG *(w; (x,2")) in view of the constraint set W}, and our
distributional assumption on Dx. This in conjunction with
the fact that it is G;-Lipschitz implies the desired result.

By setting o/ = § in Lemma 11 and combining with
the constraint fCG *(w;Ty) < § and the observation that
ff’“ (w; (x,2")) is always an upper bound of the 0/1 fair-
ness error f¢(w; (z,2')), we obtain the approximate metric-
fairness guarantee; see Appendix B for the full proof.

Theorem 12 (Generalization of fairness). Consider phase k
of Algorithm 2. With probability 1 — &y over the draw of Ty,
all w € Wy, are a-approximately metric fair with respect
t0 ((-,-) provided that |Ty,| > K - L (t 1og )for some
constant K > 0. In particular, the hmge loss mlmmlzer Vg
is a-approximately metric-fair.

We now discuss the PAC guarantee stated in Theorem 9.
Let Tk = T} N By, and we imagine that 7}, is labeled by
EXY p- In this way, the samples in T}, are independent draws
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from Dy, the distribution D conditional on the event x €
By,. Consequently, Sy, is a subset that is randomly sampled
from T,g. We show that with the setting of nj and my, the
following inequalities hold:

sup |£7'k (w7Sk> - ET}@ (vak/:)| < K,

wEQy
Sup [0y, (wTY) — £, (w3 Dy)| < s,
weQy

sup |€r, (w; Dy) — Ly, (w; DX‘Bk) <k,

weQy
where L, (w; Dx|5,) = Exnpy 5, [br, (w5 (2, sign(w” -
x)))]. The first inequality shows that the random sampling
of Sy, from T}, preserves the hinge loss, which is crucial for
obtaining improved label complexity since we only need to
annotate S, whose size is m,, that is much less that ’Tlg|
(which is roughly ©(bgny)). The second inequality is not
surprising due to uniform convergence. The last inequality
is very useful to handle the adversarial noise, since it asserts
that the hinge loss on the corrupted distribution Dy, does not
deviate far from that on the clean distribution. Combining
them, we can show that L, (w; Dx|p, ) = £, (w; Sy) up to
a constant additive factor. This suffices to establish the PAC
guarantee in view of standard results from margin-based
active learning; see Appendix C.

Combining the PAC guarantee and Theorem 12, we obtain
the PACF guarantee. Finally, recall that the sample com-
plexity refers to the total number of calls to EXp, which
is the sum of all ny, := |T}|; the label complexity refers
to the total number of calls to EX%, which is the sum of
all my, := |Sk|. This completes the proof of Theorem 9 by
observing our setting on ng and my, in Section 4.1.

6. Conclusion and Future Works

In this paper, we presented the first computationally efficient
active learning algorithm with the property of approximate
metric-fairness. The core idea is to interleave unlabeled
and labeled data in a delicate way to obtain exponential
improvement on the label complexity while retaining metric-
fairness for the potential hypotheses. Our analysis is based
on the presumption that a perfectly metric-fair hypothesis
exists in the given hypothesis class. It would be useful
to consider a weaker condition that such target hypothesis
is only approximately metric-fair. It is also important to
investigate whether we can improve the sample complexity
in terms of the dependence on the fairness error rate, say
proportional to .
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A. Summary of Useful Notations and Reserved Parameters

We recall the following fairness loss functions on a pair (z,z') € X X X
fe(w; (z,2") = 1{‘w cx—w-a| = ((z,2) > 0},
fca(w; (xz,2')) = maX{O, G(|w S —w - m’| —((z,2")) + 1}.

Note that the latter is always an upper bound of the former, and that the latter is convex with respect to w.

Given a set T of instances drawn from the distribution Dx and its matching M (T'), we defined

1
fc(w§ M(T)> = ’M(T)’ (m’m,gw(T) fC(w5 (xa m/))a fC(w§ DX) = E(I,I’)NDX xDx [fC(w; (m, SC/))]

Note that since M (T') is a matching, we have | M (T')| = 3 |T|. Since an arbitrary matching works in our analysis, we often
omit the specification and write

fe(w;T) = fe(w; M(T)).
Likewise, we can define f&(w; T) and f¢ (w; Dx).

We recall the following scaled hinge loss functions on a pair (z,y) in X x Y-

ZT(w; (m,y)) = max {O, - 2 x}

T

Given a distribution D on X’ x ), let

éT(w; D) = E(w,y)ND[ET(w; (:L'7 y))}

Further, we will consider the hinge loss with respect to a set .S of labeled instances,

G S)i= = 3 L(wi (@),
g

| (z,y)€S

For a given phase k > 1, we collect useful notations in Table 2.

Table 2. Notations used in phase k& of Algorithm 2.

By, the band {z : |wi—1 - x| < by}

Dx\p,  the marginal distribution of Dx conditioned on the even = € By,

Dy, the joint distribution D conditioned on the even z € By,

Ts a set of instances drawn from D x

Ty Ty, N By, (to appear in our analysis)

Sk a subset of T}, and is labeled by EX},

M(Ty) amatching of Ty by viewing it as a graph

O {w: fwlly < 1wl € VA w = wiilly < 1w — wially < i}

M {w: fE(w; Ty) < §}
Wy Qr N My,

X maxyer, ||,

Constants. We clarify the choices of absolute constants. The constants ¢y, co, 3, C4, C5, cg are specified in Lemma 23,
Lemma 24, and Lemma 25. The constant £ < 575~ and ¢ are jointly chosen. Let g(a) := [rega + S exp (— $2)] co.
We set k = exp(—a) and plug into g(a). It then is easy to see that g(a) is continuous and tends to zero as a goes to infinity.
Thus, there must exist ¢ such that g(¢) < J5; in addition, ¢ is an absolute constant since all coefficients in g(a) are constants.

We then let £ = min{exp(—2), 217;752}
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B. Approximate Metric-Fairness Guarantee

Recall that W, = My, N Q. We will first show that the target halfspace w* € M. Hence, the hinge loss minimization
problem is always feasible. We then show that as long as we draw sufficient number of instances, any feasible solution is
approximate metric-fair (Theorem 12).

Lemma 13. Consider any phase k of Algorithm 2. The target halfspace w* is contained M.

Proof. Since we consider the realizable setting, we have f:(w*; Dx) = 0. Namely,

w-z—w-2'| < ((x,2') holds

almost surely. This implies that fCG F(w*; Ty) = 0 < § almost surely. O
The following theorem states that with our constructed constraint set Wy, any w € Wy, is a-approximate metric fair.

B.1. Proof of Theorem 12

dny

Proof. We will mainly use the result in Lemma 14. By our setting, we have G, = 1, Z, = 1, X, = O(log Tk)' Therefore,
when nj, > Q(%(t log3 d) log i) we have

sup
weWy,

JE (w3 Dx) = JE (i )| < 5. (16)

We now upper bound the expected metric-fairness loss when instances are drawn from Dx in phase k. Note that for all
w € W}, we have

fC(U);DX) = E(m’f’)NDXXDX [fC(w; (‘Tv‘rl))]
é E(.’I:,.’[’)/\/D}(XDX [fgk (U/; (‘T,x/))]
o
< EH W) + 5
< a,

where the first inequality follows from our construction of fCG (w; (2, 2")) which always upper bounds f¢(w; (x,’)), the

second inequality follows from (16), and the last inequality follows from the construction of the constraint W}, which

G
ensures f; Mw; Ty) < 5. O

B.2. Uniform convergence of metric-fairness loss

Lemma 14 (Formal statement of Lemma 11). Consider phase k of Algorithm 2. Let Z, := max(, z/ye (1) (¢, 2') and
let n be the size of T},. With probability 1 — &' over the draw of T}, the following holds:

[2tlog(2d | Z2 /8log(2/¢’
sup fCGk(w;DX)—f?’“(w;Tk)‘ <AGE Xk ﬁ-l-ﬂ;k =k 410, M,
willwl, <VE " " "

where 11, = G, (2Vt Xy, + Zy) + 1. Therefore, for any o/ > 0,

sup ’ffk(w;Dx) - ff’“(w;Tk)’ <a
wilwll, <V

as soonasn > K - (a%)z (GiX}Ptlogd + G Z} + 112) log 4, for some constant K > 0.
Proof. We consider the following hypothesis class:
Gi={(z,2") = |w-z—w-2'| - ((x,2) :we Wy}.
Observe that fCG"' = qo g, where g € G and ¢(a) = max{0, Gy - a + 1}. Let F be the hypothesis class of ¢ o g. Since ¢(-)

is a G-Lipschitz function, it is known that
Rn(F) < G- Rn(9),
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where R, () denotes the empirical Rademacher complexity of a sample set with size n. Let £ := {z — w-z : ||w||; < V/t}.
By Claim 2.17 of Yona & Rothblum (2018), we have

Rn(G) < 4R (L) +2\/ MAX (e entry) CHE )

n

To upper bound R,,(£), we make use of Theorem 1 of Kakade et al. (2008) by observing that ||w||, < v/¢. This implies

'Rn(ﬁ) < UMmaX ||x||Oo < Xk‘ /M’ (17)
n x€Ty, n

where we recall that X}, is an upper bound of the infinity norm of z in T}.

Putting together, we have

Ron(F) < 4Gy, Xy | 220820 loi(Qd) + 2Gk\/ R o) (18)
Lastly, we need to upper bound H fCG k . as follows:
Hngk - < Gp-lal +1 < Gp(2VtXy + Zy) + 1.
By standard uniform convergence via Rademacher complexity, e.g. Lemma 27, we obtain the claimed result. O
C. PAC Guarantee

We aim to show that for any phase %, the distance between the new iterate wy, and the target halfspace w* is half of that of
wg—1 and w*. Thus, after O(log %) iterations, we have an iterate with classification error rate lower than e.

Define the expected hinge loss with respect to clean samples in By, as

Ly (w; Dx|B,) = EanDy s, [fri (w3 (2, sign(w™ - 2)))]. (19)

Our key tool is a crucial observation from margin-based active learning framework (Balcan et al., 2007; Awasthi et al., 2017;
Zhang et al., 2020), which states that in each phase, it suffices to find an iterate wj whose error rate within the band By, is a
small constant.

We first recall that Dy, is the joint distribution D on X x ) conditioned on the event x € Bj. In our analysis, we need the
following notion:
T]g =T, N By. (20)

We will imagine that 7}, is labeled by EX};. This is only for analysis purpose; in our algorithm 7}, was never involved. Now
S}, is a randomly sampled subset of T}, with size my,. Again, we remark that the number of labels we need in phase k is my,.

Due to random sampling with replacement, we have
B [r, (w; Sk)] = Lr (w3 Ty)- 1)

Using standard uniform convergence via Rademacher complexity, we can show that ¢, (w; S) is close to £, (w; T},). For
example, below is implied by Proposition 36 of Shen & Zhang (2021).

Lemma 15. With probability 1 — §', the following holds:

)

X, be\ [log(1/s X, [2log(2d
sup |y, (w3 Sk) — L, (w3 T})| < (1+p’“ L. ’“) 0g(L/0") | prXe [2108(2d)
weQy, Th Tk my T my,

where X}, := max ety 2] oo
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The following lemma shares the same merit as above, but the expectation is taken over Dy.
Lemma 16 (Lemma 13 of Zhang (2018)). Consider any phase k of Algorithm 2. Let n), := |T,g | With probability 1 — dy,

rd tlog(2d/9
sup |y, (w; Tg) — £y, (w; Dy)| < K - logni~ M
wEQy €0k nk

Lastly, it was shown that as long as the adversarial noise rate is O(¢), the expected hinge loss over the noisy joint distribution
Dy, is a good proxy of the expected hinge loss over the correctly labeled instances in By. This was originally discovered by
Awasthi et al. (2017).

Lemma 17 (Lemma 3.8 of Awasthi et al. (2017)). Consider any phase k of Algorithm 2. The following holds for arbitrarily
small constant k > 0, provided that the adversarial noise n < Ke for sufficiently small constant K > 0:

sup |lr, (w; D) — Ly, (w; Dx|B, )| < K.
wEQy

Combining Lemma 15, Lemma 16, and Lemma 17, we can show the following useful result.

Proposition 18. Consider any phase k of Algorithm 2. With probability 1 — 6k, the following holds for arbitrarily small
constant k. > 0:
sup |lr, (w; Sg) — Ly, (w; Dx B, )| < 3K,
wE Qg
provided that my, > Kt log3 md gnd ny, > Kt log for sufficiently large constant K1 > 0, and the adversarial noise
rate 1 < Koe for sufficiently small constant Ko > 0.

Proof. Due to our hyper-parameter setting, we have p, = O(v/t7},) and by, = (")(Tk). In addition, using the sub-exponential

tail bound of isotropic log-concave distributions, we can show that max,ery ||z, < maxzer, ||lz[l,, < O( k4 ) holds
with probability 1 — ¢’ (see Lemma 26). Thus, by Lemma 15 for any constant x > 0, when my, > K 1t10g‘3 ""d for large
enough constant K > 0, we have that with probability 1 — 9%,

sup |0z, (w3 S) — £r, (w; T})| < k.

weQk
In addition, when nj, > Kt log , Lemma 16 implies that

sup |lr, (w3 Ty) — by, (w; Dy)| < k.

wEQy
The above two inequalities combined with Lemma 17 and the triangle inequality gives the desired result. O

Therefore, we obtain the following key result for the error rate of v on Dy p, .

Proposition 19. Consider any phase k of Algorithm 2. With probability 1 — 0y, the following holds for arbitrarily small
constant k > 0:

Pro py s, (sign(vy - ) # sign(w” - z)) < 8k,
provided that my, > Kt 1og3 "’“d and nj, > Kyt log for sufficiently large constant K1 > 0, and the adversarial noise
rate 1 < Kse for sufficiently small constant Ko > 0.
Proof. Denote by v}, the global optimum of the hinge loss minimization problem of Algorithm 2.
‘We have

PIINDX\Bk (Sign(vk ’ CL‘) # sign(w” - 1‘)) < Ly, (vi; DX|Bk-)

(a)
< lry (vi; Sk) + 3K
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(b
< ;. (vy; Sk) + 4k

(¢)
< Uy (w*; Sk) + 4k

(d)
< LTk(w*; DXlBk) + 7K

< 8k.

In the above expression, the first step follows from the fact that the hinge loss is an upper bound of the 0/1 loss, Steps (a)
and (d) follow from Proposition 18, Step (b) follows from the definition of vy, Step (c) follows from the fact that v; is
the global minimizer of ¢, (w; Sy), and the last step follows from Lemma 3.7 of Awasthi et al. (2017) which states that
L., (w*; Dx|pg, ) can be made to be an arbitrarily small constant « provided that 7j, = by [

Finally, we establish the classification error guarantee of v on Dx. This is fairly standard due to Balcan et al. (2007). The
only minor difference in our analysis is that we need to incorporate the fairness constraint.

In view of Lemma 23, it is more convenient to show the angle between vy and w*.

Proposition 20. Consider any phase k of Algorithm 2. Assume that w* € Wy. Then with probability 1 — 0y, 0(vg, w*) <

2=k=87 provided that mj, > Kitlog® %kd and nj, > Kitlog* % for sufficiently large constant K1 > 0, and the

adversarial noise rate n < Kse for sufficiently small constant Ko > 0.

Proof. For k =1, note that w* € W; and we draw samples from D x. Thus, Proposition 19 implies
Pry~py (sign(vg - ) # sign(w™ - z)) < 8k. (22)

Lemma 23 tells
O(vy,, w*) < 8rkey < 2797, (23)

due to the setting of &.
For any £ > 2, we have
Propy (sign(vy - x) # sign(w” - ), « € By) = Proapy , (sign(vy - z) # sign(w” - 2)) - Pro~py (z € By)
< 8kcgby = 8kcglry, 24)
where the inequality follows from Proposition 19 and Lemma 25.
On the other hand,
O(vr, w*) < mllog — ™|y < w(llve — wi—1lly + lw* — we—1lly) < 277,

where the first inequality is a folklore and the last inequality holds as both vy, and w* are in Wj,. Therefore, since we set
b, = ¢ry, with & > %, we have by, > %9(1};@, w*). In view of Lemma 24, we have

) ) caby by
Pr,. ) * ), x| > bi) < e30(vg, w* S L. W) PY _
TeoDy (Sign(vg - ) # sign(w™ - x), vk - 2| > by) < e30(vg, w )exp( 29(%710*)) < 2¢37ry exp( 47rrk)
= 2c3Tr) €Xp ( — %TC)
This combined with (24) gives that for any £ > 2,
Prypy (sign(vy - z) # sign(w* - z)) < [8&066 + 2cgmexp ( — %)} Tk (25)
T

Combining (25), Lemma 23, and the setting r, = 2—k=3 we obtain that

* _ C3Tl cyC —k
H(Uk, w ) [KZCGC exp ( )} Co

Recall that  is a constant such that the coefficient of 27* is less than 55 (see Appendix A). This completes the proof. [
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Proposition 21. Consider any phase k of Algorithm 2. If 0(vg, w*) < 27%=87, then w* € Wy, 1 with certainty.

Proof. The proof follows from some standard algebraic calculations. We will use the following fact: let S be some set, and
ITIs(w) be the ¢5-projection onto S. Suppose w* € S. Then for any w, we have

|[Ts (w) — w*[|, < [[Ts(w) —w][, + lw = w*]ly < 2[lw —w",. (26)
We first show that ||wy, — w* ||y < rpy1. Let O = vg/ ||vgk|,. we have

ok = wlly = [Peten)/ [Puton)], = ]

= [P0/ [[Pet@n)]l,
< 2[[Pe(x) — ],

< 4o — w* |,

< g—k—4

2

= Tk+1,

where the first and second inequalities use (26), in the third inequality, we use ||0;, — w*||, = 2sin M < O(vg, w*) <
27 k=81 < 27F=6 By the sparsity of wy, and w*, and our choice py,1 = V/2try,1, we always have

o — w*[l; < V2 |lwk = wlly < V2resn = i

Since w* has unit £5-norm and is t-sparse, we also have ||w*||, < 1 and ||w*||; < v/t. Therefore, w* € Q1. Since we
assumed that w* has zero fairness error, we have w* € My1. Thus, w* € Wi, 1. O

D. PACF Guarantee, Sample Complexity, and Label Complexity

Theorem 22 (Restatement of Theorem 9). With probability 1 — 0§, Algorithm 2 runs in polynomial time and returns a
halfspace w such that errp (W) < e. In addition, W is «- approxlmately metric-fair. The sample complexity is O(( + %) .
tlog 5 - log ¢ ) and the label complexity is O(t log < -logd -log 1).

Proof. Note that w* € W;. For any phase k, it follows from Proposition 20 and Theorem 12 that the following holds
simultaneously with probability 1 — 6;: 0(vg, w*) < 27%=87, and v}, is a-approximately metric-fair.

By iteratively applying Proposition 20 and Proposition 21, we have that with probability 1 — Z o 0 > 1 =0, v

max

such that 0(vy, ., w*) < 2 *max=87 and it is a-approximately metric-fair.
Using Lemma 23,
Pr (sign(v - x) # sign(w* - z)) < l9(1; w*) < T _°¢
z~Dx kmax — c1 kmax> — e - lenax+8 27

due to the choice of ky,ax. Now using triangle inequality and our assumption that errp (w*) < ¢ge for sufficiently small
constant ¢y > 0, we have

. : * * €
Pr(a,y)nD (180 (Vb - ) # Y) < Pranpy (5180(Vker - 2) # sign(w” - 2)) +errp(w’) < 5 +coe < e.

The classification error guarantee and fairness error guarantee follow in view of w = vy,

Next, we show the sample complexity. For any phase &, to ensure falrness we required |Ty| > K- ag -t log 1n Theorem 12.
On the other hand, Proposition 20 holds when ’T’ ‘ > Kt log where T, = Tk N By. Since the densny of the band
By, is ©(by) (see Lemma 25), by the Chernoff bound, it sufﬁces to set |Th| > Q& (|TY| +log 1)) > Q( - tlog* &)
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Hence, in order to fulfill both Theorem 12 and Proposition 20, we need [T | > Q((Z + bi)t log* o5 L), Consequently, the
total number of instances needed by Algorithm 2 is

kmax

1 d o1
Z|Tk|>ﬂ((—+ =) - tlog" = log ). 27)

k=1

Lastly, we analyze the label complexity. Note that labels are needed only when we solve the hinge loss minimization problem.
Hence, the number of labels in each phase k is my, which is required to be my, > Q(¢ log® "’“d) > Q(t log - log d).
Consequently, the total number of labels needed by Algorithm 2 is

kmax

ka>9(tlog % logd - log — ) (28)
k=1

The proof is complete. O

E. Auxiliary Lemmas

Throughout this section, we always assume that D x is isotropic log-concave.

Lemma 23 (Vempala (2010)). There exist constants c1, ca > 0 such that the following holds:
¢1 Proopy (sign(u - ) # sign(v - z)) < 0(u,v) < ca Prywpy (sign(u - z) # sign(v - x)).

Lemma 24 (Theorem 21 of Balcan & Long (2013)). There are absolute constants cs, c4 > 0 such that the following holds
for all isotropic log-concave distributions Dx. Let u and v be two unit vectors in R and assume that 0(u,v) = 0 < 7/2.
Then for any b > i@, we have

b
Prop, (sign(u - z) # sign(v- @) and |v- x| > b) < c30 - exp ( — %)
Lemma 25 (Lovasz & Vempala (2007a)). There exist constants cs,cg > 0 such that the following holds. For any unit
vector v and positive real number b,

esb < Pryopy (Jv-z| <b) < cgb.
Lemma 26 (Lemma 20 of Awasthi et al. (2016)). Let T be the set of instances drawn from D x. With probability 1 — 6,
max,er ||z, < O(log 544)
Lemma 27 (Bartlett & Mendelson (2001)). Consider a loss function L : Y x A — [0, 1] and a dominating cost function
¢: Y xA—[0,1]. Let F be a class of functions mapping from X to A and let (X;,Y;)!_, be independently selected

according to the probability measure P. Then, for any integer n and any 0 < § < 1, with probability at least 1 — § over a
sample set S of length n, every f in F satisfies

BIEY OO € 30 600, (X0) 4 R 0. 7) + 1/ B,

(X,Y)es

where ¢ o F = {(z,y) = oy, f(x)) — ¢(y,0) : f € F} and ¢(y, a) is an upper bound of L(y, a).



