
Global Optimization of K-Center Clustering

Mingfei Shi * 1 Kaixun Hua * 1 Jiayang Ren 1 Yankai Cao 1

Abstract

k-center problem is a well-known clustering
method and can be formulated as a mixed-integer
nonlinear programming problem. This work pro-
vides a practical global optimization algorithm for
this task based on a reduced-space spatial branch
and bound scheme. This algorithm can guaran-
tee convergence to the global optimum by only
branching on the centers of clusters, which is in-
dependent of the dataset’s cardinality. In addition,
a set of feasibility-based bounds tightening tech-
niques are proposed to narrow down the domain
of centers and significantly accelerate the con-
vergence. To demonstrate the capacity of this
algorithm, we present computational results on 32
datasets. Notably, for the dataset with 14 million
samples and 3 features, the serial implementation
of the algorithm can converge to an optimality
gap of 0.1% within 2 hours. Compared with a
heuristic method, the global optimum obtained by
our algorithm can reduce the objective function
on average by 30.4%.

1. Introduction
Clustering is a fundamental unsupervised machine learning
task that plays a vital role in various fields of applications,
such as customer grouping (Aggarwal et al., 2004), data
summarization (Kleindessner et al., 2019; Hesabi et al.,
2015), and facility location determination (Hansen et al.,
2009). Clustering aims to aggregate similar data into one
cluster and separate those in diverse into different clusters
(Pan et al., 2013). Cluster analysis can be formulated as
an optimization problem. Various objective functions are
designed and lead to different algorithms to find clusters
(Madhulatha, 2012).

*Equal contribution 1Department of Chemical and Biolog-
ical Engineering, University of British Columbia, Vancouver,
British Columbia, Canada. Correspondence to: Yankai Cao
<yankai.cao@ubc.ca>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

This paper focuses on one of the most fundamental centroid-
based clustering problems called the k-center problem. It
picks a subset of k samples as centers to represent k clusters,
and each sample is assigned to its closest center to form the
cluster. The distance from a sample to its closest center is
called the within-cluster distance. The objective of the k-
center problem is to minimize the maximum within-cluster
distance of the dataset (Kaufman & Rousseeuw, 2009). As
an NP-hard problem (Gonzalez, 1985), there is no way to
achieve an optimal solution in a polynomial-time unless
P = NP (Garey & Johnson, 1979). Therefore, many
heuristic approximation algorithms are developed to obtain
a near-optimal solution quickly.

The 2-approximation greedy algorithm is one of the most
effective heuristic ways to solve the k-center problem (Gon-
zalez, 1985). It starts from a randomly selected center, and
then the new centers are chosen as the farthest points to the
previously selected centers. Alpert & Kahng (1997) applied
a complete-linkage-based algorithm that can outperform
traditional algorithms with proper ordering heuristics for
sample. However, the experiments in (Aloise & Contardo,
2018) showed that it seldom finds optimal solutions. Para-
metric pruning (Hochbaum & Shmoys, 1985) transferred the
k-center problem as finding a minimum dominating set in a
pruned graph. It developed corresponding heuristics to solve
the dominating set problems. An experimental comparison
of these heuristic algorithms indicated the 2-approximation
greedy algorithm as the fastest in practical (Mihelič & Ro-
bic, 2005). Nevertheless, none of the above algorithms can
guarantee a global optimal solution for the k-center prob-
lem.

The exact algorithms that attempt to solve the k-center prob-
lem to global optimum lie in many directions. Early seminal
works focus on reducing searching space for the optimal
solution. For example, Daskin (2000) proposed an iterative
algorithm that solves the k-center problem by performing
a binary search over possible solution values. In each itera-
tion, a set-covering problem is solved. Elloumi et al. (2004)
leveraged the binary search scheme, designed a new integer
linear programming formulation of the k-center problem,
and generated tighter lower bounds than pure LP relaxations.
It was the first algorithm that could solve a dataset of size
up to 1817 samples. Another direction to attain global op-
timum includes adopting a constraint programming frame-

Global Optimization of K-Center Clustering

work. Duong et al. (2017) proposed a general constraint
clustering algorithm that can solve the datasets with up to
5000 samples in 50 seconds. Calik & Tansel (2013) intro-
duces a block of covering constraints for the formulation of
k-center problem and updates the lower and upper bounds
in the same iteration. However, their algorithm does not per-
form well on large datasets (Contardo et al., 2019). Recently,
the strategy of iteratively solving reduced subproblems has
been proposed by researchers to solve the k-center problem
to global optimality on large datasets. Aloise & Contardo
(2018) presented a sampling-based exact algorithm, which
alternates between an exact procedure on a small sample of
points and a heuristic procedure to test the optimality of the
current solution. Their computational experiment shows that
this algorithm can obtain a reasonable solution for a dataset
containing 581,012 observations within 4 hours. However,
this work does not report the optimality gap, an important in-
dex to evaluate the solution quality. Chen & Handler (1987)
and Chen & Chen (2009) proposed an iterative algorithm
based on relaxation but only considered a small subset of the
data samples. They set up heuristics to iteratively update the
subset samples to approach the global optimal. Moreover,
Contardo et al. (2019) designed a row generation algorithm
that iteratively solves a smaller subproblem, and reported
the solution of a dataset with 1 million samples to a gap
of 6% within 9 hours. However, none of these methods
provides a convergence guarantee that the algorithm will
converge to an arbitrarily small gap within a finite number
of steps. Therefore, these methods often lead to a nontrivial
optimality gap, especially for large datasets.

In this paper, we proposed a different approach to solve the
k-center problem on extremely large datasets, by adopting a
reduced-space BB scheme recently proposed for two-stage
stochastic programming problems (Cao & Zavala, 2019).
This reduced-space BB scheme has already been success-
fully applied for the k-means clustering problem (Hua et al.,
2021), in which the reduced-space BB scheme is combined
with Lagrangian decomposition to guarantee convergence
to the global ϵ-optimal solutions. This method can solve
the k-means problem on a dataset with 210,000 samples
(200 cores, 2.6% optimality gap within the runtime of 4
hours). Because the objective of k-center is to minimize
the maximum within-cluster distance, instead of the average
within-cluster distance, we cannot adopt the Lagrangian
decomposition approach to compute the lower bound. Also,
because of the “centers on samples” constraint in the k-
center problem (k-means clustering does not have this con-
straint), the direct application of Hua’s algorithm will lead
to infeasible solutions. To address these challenges, we pro-
pose a tailored reduced-space BB clustering algorithm for
the k-center problem and design several feasibility-based
bounds tightening (FBBT) methods to reduce the search
space of our BB algorithm efficiently. The novelty of our

BB clustering algorithm is that by only branching on the
space of centers, we can assure the convergence of our al-
gorithm to the exact global optimum within a finite number
of steps for the task of k-center clustering. Note that a clas-
sic BB algorithm is unable to solve the k-center problem
with large datasets because it needs to branch on all integer
variables, the dimension of which scales with the number of
samples.

We highlight our contributions as follows:

• We design an exact global optimization algorithm
based on a reduced-space spatial branch and bound
scheme for the k-center clustering problem. We pro-
pose a decomposable approach to compute lower
bounds. The lower bound can be analytically derived
in a closed-form. The whole algorithm does not need to
rely on solvers to solve any optimization sub-problems.
We prove that our algorithm is guaranteed to converge
to the global optimum by only branching on the centers
of clusters.

• We design several bounds tightening techniques to sig-
nificantly reduce the search space of the BB algorithm
and accelerate the solution process. We demonstrate
that the assignment of clusters can be determined for
many samples without knowing the optimal solution.
Bounds tightening techniques coupled with the decom-
posable lower bounding techniques enable our algo-
rithm to be extremely scalable.

• We provide an open-source Julia implementation of
the algorithm and perform extensive computational
experiments on 32 datasets. Our algorithm is sig-
nificantly faster than the off-the-shelf global optimal
solvers and provides much better solutions than heuris-
tic approaches. Notably, for the dataset with 14 million
samples and 3 features, the serial implementation of
the algorithm can obtain the global solution to an opti-
mality gap of 0.1% within 2 hours.

2. k-center Formulation
To formulate k-center problem, given a dataset with S sam-
ples and A attributes, denoted as X = {x1, . . . , xS} ∈
RA×S , in which xi = [xi,1, ..., xi,A] ∈ RA is the ith sam-
ple and xi,a is the ath attribute of ith sample, the k-center
problem can be defined as:

min
µ∈X

max
s∈S

min
k∈K

||xs − µk||22 (1)

where s ∈ S := {1, · · · , S} is the data sample set, k ∈
K := {1, · · · ,K} is the cluster set, µ := [µ1, · · · , µK]
represents the center of each cluster. µ are the variables
to be determined. We use µ ∈ X to denote the “centers

Global Optimization of K-Center Clustering

on samples” constraint that the center of each cluster is
restricted to some data samples.

Problem 1 can be reformulated as a problem with the form:

z = min
µ∈M0∩X

max
s∈S

Qs(µ). (2)

where Qs(µ) = min
k∈K

||xs − µk||22. We denote a closed set

M0 := {µ |
¯
µ ≤ µ ≤ µ̄} in Equation 2 as the domain of

centers, where
¯
µ represents the lower bound of centers and

µ̄ is the upper bound, i.e.,
¯
µk
a = min

s
Xs,a, µ̄k

a = max
s

Xs,a,

∀k ∈ K, a ∈ {1, · · · , A}. Here the constraint µ ∈ M0

can be inferred directly from data, and thus does not affect
optimal solution. It is introduced to simplify the discussion
of the BB framework. Since µ ∈ M0 ∩ X , which is a
finite set, we can attain the value of z in Problem 2. This
formulation will be utilized in Section 3.1 to introduce the
lower bounding problem in the branch and bound scheme.

Alternatively, the k-center problem also can be represented
as a standard optimization problem with the following ex-
tensive form:

min
µ,d,b,λ

d∗ (3a)

s.t. dks ≥ ||xs − µk||22 (3b)

−N1(1− bks) ≤ d∗s − dks ≤ 0 (3c)
d∗ ≥ d∗s (3d)∑
k∈K

bks = 1 (3e)

bks ∈ {0, 1} (3f)

−N2(1− λk
s) ≤ xs − µk ≤ N2(1− λk

s) (3g)∑
s∈S

λk
s = 1 (3h)

λk
s ∈ {0, 1} (3i)

bks ≥ λk
s (3j)

s ∈ S, k ∈ K (3k)

where dks represents the distance between sample xs and
center µk, d∗s denotes the distance between xs and the center
of its cluster, N1 and N2 are both arbitrary large values. bks
and λk

s are two binary variables. bks is equal to 1 if sample
xs belongs to the kth cluster, and 0 otherwise. λk

s is equal
to 1 if µk, which is the center of the kth cluster, is chosen
on xs, and 0 otherwise.

Constraint 3c is a big M formulation and ensures that d∗s =
dks if bks = 1 and d∗s ≤ dks otherwise, and Constraint 3e
guarantees that sample xs belongs to only one cluster. We
also adopt Constraint 3g, 3h and 3j to represent µ ∈ X , the
restriction that centers are selected on data samples for each
cluster. Specifically, Constraint 3g uses a big M formula

to make sure that µk = xs if λk
s = 1, and Constraint

3h confirms that each center can only be selected on one
sample. Constraint 3j ensures that if xs is the center of the
kth cluster, then obviously it is assigned to the kth cluster.
Problem 3 is a convex mixed-integer nonlinear problem
and can be solved by optimization solvers such as CPLEX
(Cplex, 2020) or Gurobi (Optimization, 2020). However,
within a certain time limit (e.g. 4 hours), these all-purpose
solvers can only deal with small datasets.

3. Reduced-space Branch and Bound Scheme
In this section, we introduce a reduced-space BB algorithm
for k-center problem with tailored lower bounding and upper
bounding methods.

3.1. Lower Bounds

At each node in a BB algorithm, we deal with a subset
of M0, which is denoted as M , and solve the following
problem with respect to M :

z(M) = min
µ∈M∩X

max
s∈S

Qs(µ) (4)

This problem is referred as the primal node problem. It
can be equivalently reformulated as the following problem
by duplicating µ across samples and enforcing them to be
equal. This gives the lifted form:

min
µs∈M∩X

max
s∈S

Qs(µs) (5a)

s.t. µs = µs+1, s ∈ {1, · · · , S − 1} (5b)

By removing the “centers on samples” constraint µ ∈ X and
the Constraints 5b, we attain a lower bounding formulation
as follow:

β(M) := min
µs∈M

max
s∈S

Qs(µs). (6)

With constraints relaxed, the feasible region of Problem 6
is a superset of the primal feasible region. Therefore, it is
obvious that β(M) ≤ z(M).

In Problem 6, since each sample is independent, it is obvious
that:

β(M) = max
s∈S

min
µs∈M

Qs(µs). (7)

Clearly, it can be decomposed into S subproblems of the
form:

βs(M) = min
µ∈M

Qs(µ), (8)

with β(M) = max
s∈S

βs(M). Denote Mk := {µk :
¯
µk ≤

µk ≤ µ̄k} where
¯
µk and µ̄k are the lower and upper bound

Global Optimization of K-Center Clustering

of µk respectively. Since Qs(µ) = min
k∈K

||xs − µk||22, we

have
βs(M) = min

k∈K
min

µk∈Mk
||xs − µk||22, (9)

which can be further decomposed into K subsubproblems:

βk
s (M

k) = min
µk∈Mk

||xs − µk||22. (10)

with βs(M)=min
k

βk
s (M

k). It can be easily derived

that the analytical solution to Problem 10 is: µk
a =

mid{
¯
µk
a, xs,a, µ̄

k
a},∀a ∈ {1, · · · , A}.

3.2. Upper Bounds

An upper bounds of Problem 4 can be obtained by fixing the
centers at a candidate feasible solution µ̂ ∈ M ∩X . In this
way, we can compute the upper bound base on the following
equation:

α(M) = max
s∈S

Qs(µ̂). (11)

It is easy to see that z(M) ≤ α(M), ∀µ̂ ∈ M∩X . Since the
closed-form expression of Qs(µ̂) is given, the computation
of the upper bound is cheap, with no need to solve any
optimization problems, for a given candidate solution.

In our implementation, we use two methods to obtain candi-
date solutions. At the root node, we use a heuristic method
called Farthest First Traversal to obtain a candidate solution
µ̂ ∈ M0 ∩ X . Using this method, we first randomly pick
an initial point and then select each following point to be
as far as possible from the set of previously selected points.
Algorithm 1 describes the details of farthest first traversal,
where d(xs, T) represents the minimum distance from sam-
ple xs to any sample in set T . We use FFT (M0) to denote
the upper bound obtained using this approach. At a child
node with center region M , for each cluster, we select the
data sample which is closest to the middle point of Mk as
µ̂k, and obtain the corresponding upper bound α(M).

Algorithm 1 Farthest First Traversal
Initialization
Randomly pick s ∈ S;
Denote T as the set of K points selected by farthest first traver-
sal;
Set T ← {xs};
while |T | < K do

Compute xs ∈ arg max
xs∈X

d(xs, T) to find xs which is the

farthest away from set T ;
T ← T ∪ {xs};

end while

3.3. Branch and Bound Scheme and Convergence
Analysis

We tailor the reduced-space branch and bound scheme to
solve Problem 2. The details of the algorithm are given in

Algorithm 2. In the algorithm, We denote relint(.) as the
relative interior of a set.

Algorithm 2 Branch and Bound Scheme
Initialization
Initialize the iteration index i← 0;
Set M← {M0}, and tolerance ϵ > 0;
Compute initial upper and lower bounds αi = FFT (M0),
βi = β(M0);
while M ̸= ∅ do

Node Selection
Select a set M satisfying β(M) = βi from M and delete it
from M;
Update i← i+ 1;
Branching
Find two subsets M1 and M2 s.t. relint(M1) ∩
relint(M2) = ∅ and M1 ∪M2 = M ;
Update M← M ∪ {M1}, if Mk

1 ∩X ̸= ∅, ∀k ∈ K
Update M← M ∪ {M2}, if Mk

2 ∩X ̸= ∅, ∀k ∈ K
Bounding
Compute upper and lower bound α(M1), β(M1), α(M2),
β(M2);
Let βi ← min{β(M ′) | M ′ ∈ M};
αi ← min{αi−1, α(M1), α(M2)};
Remove all M ′ from M if β(M ′) ≥ αi;
If βi − αi ≤ ϵ, STOP;

end while

We can also establish the convergence of the branch-and-
bound scheme in Algorithm 2. Along BB process, it can
generate a monotonically nonincreasing sequence {αi} and
a monotonically nondecreasing sequence {βi}. We can
show that they both converge to z in a finite number of
steps.
Lemma 3.1. Algorithm 2 terminates in a finite number of
steps.

The proof of the convergence becomes obvious by noticing
that the number of feasible solutions is finite because of
the “centers on samples” constraint µ ∈ X . Since we add a
partition M to the node set M only if Mk∩X ̸= ∅,∀k ∈ K,
the BB procedure will not generate any infinitely decreasing
sequence of successively refined partition elements. In the
worse case, a sequence of successively refined partition ele-
ments will end at a leaf node in which |Mk ∩X| = 1,∀k ∈
K. Since each leaf node corresponds to a feasible solution,
the number of leaf nodes is finite and so the number of total
nodes visited in a BB procedure is finite. Moreover, at a leaf
node M , it can be shown that β(M) = α(M). Therefore,
the BB procedure will terminate in a finite number of steps
by only branching on µ, with the lower bound and upper
bound converging to the optimal solution.

Note that the convergence of the k-center problem here is
stronger than the convergence analysis in (Cao & Zavala,
2019) for two-stage nonlinear optimization problems or
the convergence proof in (Hua et al., 2021) for k-means
clustering problem. Both Cao & Zavala (2019) and Hua et al.

Global Optimization of K-Center Clustering

(2021) guarantee the convergence in the sense of lim
i→∞

αi =

lim
i→∞

βi = z. In a finite number of steps, they can only

produce a global ϵ-optimal solution. While for the k-center
problem, the algorithm can obtain an exact optimal solution
(e.g. ϵ = 0) in a finite number of steps, because the number
of feasible solutions is finite.

4. Bounds Tightening Techniques
Although the lower bound introduced in Section 3.1 is
enough to guarantee convergence, it might not be very tight,
leading to a tremendous amount of iterations. Therefore,
here we propose bounds tightening techniques to reduce the
search space and speed up the BB procedure. Since Algo-
rithm 2 only branches on the space of centers µ, we focus on
reducing the region of µ to accelerate the solution process,
while guaranteeing the optimal solution of the problem is
not excluded.

4.1. Cluster Assignment

In this subsection, we propose several strategies to decide
the assignment of some samples (e.g. which cluster the
sample is assigned to), that is to determine the value of bks
in Problem 3 for some s and k, before finding the optimal
solution of the whole problem. This information will be
used in the next subsection to reduce the region of µ.

Denote α as the current best upper bound of the optimal
value achieved using methods described in Section 3.2.
Then from Objective 3a and Constraint 3c in Formulation
3, we have d∗s ≤ α. Based on Constraint 3b and 3c, we can
conclude that if bks = 1, then ||xs − µk||22 ≤ α. Therefore,
we have Lemma 4.1.

Lemma 4.1. If sample xs is in the kth cluster, then ||xs −
µk||22 ≤ α, where α is an upper bound of the k-center
problem.

Lemma 4.1 tells us that if ||xs − µk||22 > α, then we can
infer bks = 0, that is sample xs cannot be assigned to the kth
cluster. Besides inferring from the distance between samples
and centers, cluster assignments may also be determined
from the distance of two data samples, as shown in the
following Lemma 4.2.

Lemma 4.2. If two samples xi and xj are in the same
cluster, then ||xi − xj ||22 ≤ 4α where α is an upper bound
of the k-center problem.

Lemma 4.2 is obvious by noticing that if xi and xj all
belong to the kth cluster, then based on Lemma 4.1 we have
||xi−µk||22 ≤ α and ||xj −µk||22 ≤ α. Thus ||xi−xj ||22 =
||xi−µk+µk−xj ||22 ≤ (||xi−µk||2+||µk−xj ||2)2 ≤ 4α.
Lemma 4.2 tells us that if ||xi − xj ||22 > 4α, then xi and xj

are not in the same cluster.

Based on these two Lemmas, the followings are three ap-
proaches to assign samples to clusters.

4.1.1. K FARTHEST POINTS

By Lemma 4.2, if there are K points and the distance
between any two of these points xi and xj satisfying
||xi − xj ||22 > 4α, then we can conclude that each point
belongs to a distinct cluster. If we can find the K points
satisfying this property at the root node, we can arbitrarily
assign these points to different clusters. In other words,
we can denote the cluster containing the kth point as kth
cluster. We call these K points as initial seeds. In order
to find these initial seeds, every two samples must be as
far as possible. Therefore, in our implementation, we use
the heuristic Farthest First Traversal (FFT) (Algorithm 1) to
obtain K farthest points. For about half of the case studies
shown in Section 5, we can obtain the initial seeds using
FFT. However, for other datasets, initial seeds can not be
obtained using FFT, or maybe the initial seeds do not even
exist.

× x1

× x2

×x3

||x1 − x2||22 > 4α ||x2 − x3||22 > 4α

||x3 − x1||22 > 4α

Figure 1. K farthest points with 3 clusters. In this example, ||x1−
x2||22 > 4α, ||x2−x3||22 > 4α and ||x3−x1||22 > 4α. Therefore,
we can arbitrarily assign x1, x2, x3 to different 3 clusters.

4.1.2. CENTER BASED ASSIGNMENT

By Lemma 4.1, if ||xs − µk||22 > α, then we can conclude
that xs is not in cluster k, or bks = 0. If we can determine
that bks = 0,∀k ∈ K \ {k′}, then bk

′

s = 1. However, the
value of µ here is not known before solving the overall
problem. One observation is that if the node M contains the
optimal solution, then we have βk

s (M
k) = min

µk∈Mk
||xs −

µk||22 ≤ ||xs − µk||22. Therefore, if βk
s (M

k) > α. then by
Lemma 4.1, sample xs is definitely not in the kth cluster
and bks = 0. In summary, for sample xs, if ∀k ∈ K \ {k′},
βk
s (M

k) > α, then xs is assigned to cluster k′ with bk
′

s = 1.
Figure 2 illustrates an example in two-dimensional space
with a total of three clusters.

This center based method can be adopted at every node of
the BB scheme. Since βk

s (M
k) is already computed when

obtaining the lower bound, there is no additional cost of
distance computation or solving any optimization problem.
Nevertheless, we do not need to apply this method at the
root node, since M1 = · · · = MK initially. As the BB

Global Optimization of K-Center Clustering

× xs

M1

M2

M3

β2
s (M

2) > α

β3
s (M

3) > α

Figure 2. Center based assignment with 3 clusters. In this example,
β2
s (M

2) > α (b2s = 0) and β3
s (M

3) > α (b3s = 0). Therefore,
we assign xs to the first cluster (b1s = 1).

scheme continues branching on µ, Mk becomes more and
more different from those of other clusters, then the cluster
of more samples can be determined.

4.1.3. SAMPLE BASED ASSIGNMENT

Besides using centers as a benchmark to allocate data points,
assigned samples also give us the assignment of undeter-
mined samples. By Lemma 4.2, if ||xi − xj ||22 > 4α, then
xi and xj are not in the same cluster. If we already know
that xj belongs to cluster k, then obviously xi cannot be
assigned to cluster k, or bki = 0. Using this relation, if all
the other K − 1 clusters are excluded, xi will be assigned
to the only one cluster left. An example of the sample based
assignment is depicted in Figure 3.

There is a prerequisite to using this method. For each cluster,
there must be at least one sample that has already been
assigned to the cluster. Based on this condition, sample
based assignment is utilized only after the algorithm has
already determined at least one sample for each cluster.

× x1

× x2

×x3

× xs

M1 M2

M3

||xs − x1||22 > 4α

||xs − x2||22 > 4α

Figure 3. Sample based assignment with 3 clusters. Assume we
have already known that x1, x2, x3 belong to cluster 1, 2 and 3,
respectively. xs is the sample to be determined. In this example,
||xs − x1||22 > 4α (b1s = 0) and ||xs − x2||22 > 4α (b2s = 0).
Therefore, xs is assigned to cluster 3 (b3s = 1).

4.2. Feasibility-Based Bounds Tightening

In this subsection we adopt the Feasibility-Based Bounds
Tightening (FBBT) technique to reduce the space of µ.

4.2.1. BALL-BASED BOUNDS TIGHTENING

For a sample j, denote Bα(xj)={x| ||x − xj ||22 ≤ α} as
the ball with center xj and radius

√
α. By using meth-

ods described in subsection 4.1, assume we already know
that sample j belongs to cluster k, by Lemma 4.1, then

µk ∈ Bα(xj). We use J k
A to denote the index of all sam-

ples assigned to cluster k, i.e., J k
A = {j ∈ S | bkj = 1},

then µk ∈ Bα(xj),∀j ∈ J k
A. Besides this, we also know

that µk ∈ Mk ∩ X . Denote Sk
+ as the index set of sam-

ples satisfy all these constraints, Sk
+(M) := {s ∈ S |xs ∈

Mk, xs ∈ Bα(xj),∀j ∈ J k
A}. In this way, we can ob-

tain a tightened box containing all feasible solutions of kth
medoid, M̂k={µk|ˆ

¯
µk ≤ µk ≤ ˆ̄µk}, with the bounds of

ath attribute in kth medoid to be ˆ
¯
µk
a
= min

s∈Sk
+(M)

xk
s,a and

ˆ̄µk
s= max

s∈Sk
+(M)

xk
s,a. Figure 4 gives an example of bounds

tightening using this method. One challenge of this ball-
based bounds tightening method is that it need to compute
the distance of xs and xj for all s ∈ S and j ∈ J k

A. If
we know the assignments of most of the samples, we need
to do at most S2 times of distance calculation. Note that
we only need to do S ∗K times of distance calculation to
compute a lower bound. To reduce the computational time,
in our implementation, we set a threshold on the maximum
number of balls (default: 50) utilized to tighten bounds.

×

×

×

×

×

×

×

×
×

×xi

×xj Mk

×

×

Bα(xi)

Bα(xj)

√
α

√
α

Figure 4. Ball-based bounds tightening in two-dimensional space.
In this example, suppose it is determined that two points xi and xj

belong to the kth cluster. We first compute the index set of samples
within all balls and original box, Sk

+(M) := {s ∈ S |xs ∈
Mk ∩ Bα(xi) ∩ Bα(xj)}. We then generate the smallest box
containing these samples in Sk

+(M). The red rectangle is the
tightened bounds we obtain.

4.2.2. BOX-BASED BOUNDS TIGHTENING

Another strategy to reduce the computation burden is based
on the relaxation of Bα(xj). For any ball Bα(xj), the
closed set Rα(xj) = {x | xj −

√
α ≤ x ≤ xj +

√
α}

is the smallest box containing Bα(xj). Then we have
µk ∈ Rα(xj),∀j ∈ J k

A. Since Rα(xj) and Mk are
all boxes, we can easily compute the tighten bounds
M̂k=

⋂
j∈J k

A
Rα(xj) ∩ Mk. Figure 5 gives an example

of box-based bounds tightening using this method. Obvi-
ously, the bounds generated in Figure 4 is much tighter

Global Optimization of K-Center Clustering

while the method in Figure 5 is much faster. Consequently,
if |J k

A| is small for all clusters, the ball-based bounds tight-
ening method gives more satisfactory results. While if |J k

A|
is large for any k, box-based bounds tightening provides a
cheaper alternative.

×

×

×

×

×

×

×

×
×

×xi

×xj Mk

×

×

Bα(xi)

Bα(xj)

Rα(xi)

Rα(xj)

√
α

√
α

Figure 5. Box-based bounds tightening in two-dimensional space.
In this example, we first generate two boxes with Rα(xi) :=
{x| xi −

√
α ≤ x ≤ xi +

√
α} and Rα(xj) = {x| xj −√

α ≤ x ≤ xj +
√
α}. We then create a tighten bounds with

M̂k=Rα(xi)∩Rα(xj)∩Mk. The red rectangle is the tightened
bounds we obtain.

4.3. Symmetry Breaking

Another way to get tighter bounds is based on the symmetry
breaking constraints. We add the condition µ1

1 ≤ µ2
1 ≤

· · · ≤ µK
1 in the BB algorithm 2, in which µk

a denotes ath
attribute of kth center. This constraint can also help the
algorithm to reduce the search space. For example with
Mk={µ|

¯
µ ≤ µ ≤ µ̄} as the original box of µ, we can

update
¯
µK
1 to be max(

¯
µ1
1,
¯
µ2
1, · · · ,

¯
µK
1). Note that both

symmetry breaking constraints and FFT-based inital seeds
serve the function of breaking symmetry by providing a
certain order for the clusters, so they cannot be combined
together. In our implementation, symmetric breaking is used
only when initial seeds are not found from FFT at the root
node.

5. Computational Experiments
The branch and bound scheme is tested with different meth-
ods, including closed-form solution (BB+CF) and closed-
form with FBBT (BB+CF+FBBT). We compare the numer-
ical results of our algorithm with the state-of-art global
optimizer CPLEX 20.1.0 (Cplex, 2020) and the heuristic
algorithm, Farthest First Traversal. Since the initial point
is selected randomly in FFT, we run 100 trails of FFT with
different initialization to avoid this randomness and obtain
the best (FFT (BEST)) and average (FFT (AVERAGE))

Table 1. Computational results on synthetic datasets

DATASET METHOD UB NODES
GAP
(%)

TIME
(S)

SYN-3002

FFT (AVERAGE) 152.79 - - -
FFT (BEST) 118.72 - - -
CPLEX+Q 82.71 86880 100 14400
CPLEX+L3 66.97 36797 8.55 73

CPLEX+L3+CUT 61.75 1330122 0.83 7668
BB+CF 61.75 55191 ≤ 0.1 46

BB+CF+FBBT 61.75 17 ≤ 0.1 12

SYN-12001

FFT (AVERAGE) 216.58 - - -
FFT (BEST) 135.83 - - -
CPLEX+Q 84.81 1343190 1.61 14400
CPLEX+L3 92.68 10021665 15.78 14400

CPLEX+L3+CUT 92.68 336524 16.55 14400
BB+CF 84.81 1155375 ≤ 0.1 3609

BB+CF+FBBT 84.81 i3 ≤ 0.1 11

SYN-21001

FFT (AVERAGE) 191.36 - - -
FFT (BEST) 153.22 - - -
CPLEX+Q 216.85 4083121 71.89 14400
CPLEX+L3 144.78 2566049 36.53 14400

CPLEX+L3+CUT 235.4 153026 100 14400
BB+CF 95.10 1495899 ≤ 0.1 11606

BB+CF+FBBT 95.10 i3 ≤ 0.1 11

SYN-42,0002

FFT (AVERAGE) 290.13 - - -
FFT (BEST) 194.67 - - -
CPLEX+Q NO FEASIBLE SOLUTION
CPLEX+L3 378.14 39353 100 14400

CPLEX+L3+CUT 800.45 14 100 14400
BB+CF 142.33 172702 7.14 14400

BB+CF+FBBT 142.33 103 ≤ 0.1 18

SYN-210,0001

FFT (AVERAGE) 300.98 - - -
FFT (BEST) 215.00 - - -
CPLEX+Q NO FEASIBLE SOLUTION
CPLEX+L3 NO FEASIBLE SOLUTION

CPLEX+L3+CUT NO FEASIBLE SOLUTION
BB+CF 168.57 43626 7.56 14400

BB+CF+FBBT 168.57 i3 ≤ 0.1 16
1 CAN ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
2 CAN NOT ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
3 SOLVED AT THE ROOT NODE.

results. We test the performance of our algorithm and
CPLEX on the Niagara Compute Canada with a time limit
of 4 hours. In all the experiments, the number of Clus-
ter K is set to 3. All experiments are implemented in
Julia 1.6.1 and the complete code files can be found in
https://github.com/YankaiGroup/Kcenter.

The computational results are compared by three criteria, in-
cluding upper bound (UB), optimality gap, and the number
of solved BB nodes. UB measures the best feasible solu-
tion. The optimality gap represents the relative difference
between the best lower bound (LB) and UB. It is defined as
Gap = UB−LB

LB . The optimality gap is a unique property
for the deterministic global optimization algorithm. The
heuristic algorithm (FFT) does not have such a property.
The number of solved nodes is the iteration number of BB
scheme before the termination.

5.1. Numerical Results on Synthetic Datasets

We first consider numerical results on artificially generated
datasets from (Hua et al., 2021). To illustrate the perfor-
mance of the algorithms, we consider synthetic datasets with
different numbers of samples. All datasets are generated
with 3 Gaussian clusters randomly. Each data sample has
two attributes.

https://github.com/YankaiGroup/Kcenter

Global Optimization of K-Center Clustering

Table 1 compares the performance of our reduced space
BB algorithm, heuristic algorithm FFT, and CPLEX. FFT
(BEST) fails to get the lowest UB in all the datasets. The di-
rect usage of CPLEX on Problem 3 (CPLEX+Q) can not con-
verge to a small optimality gap (≤ 0.1%) within 4 hours on
all the synthetic datasets. Compared with FFT and CPLEX,
our algorithms can obtain the best upper bounds and reach
a satisfactory gap (≤ 0.1%) in all the datasets within the
run-time of 4 hours.

Table 2. Computational results on small-scale datasets (S ≤
1, 000)

DATA-
SET

SAM-
PLE

DIM-
ENSION

METHOD UB NODES
GAP
(%)

TIME
(S)

IRIS1 150 4

FFT (AVERAGE) 4.79 - - -
FFT (BEST) 3.66 - - -
CPLEX+Q 2.04 1512876 ≤0.1 548

BB+CF 2.04 12967 ≤0.1 17
BB+CF+FBBT 2.04 i3 ≤0.1 14

SEEDS1 210 7

FFT (AVERAGE) 24.54 - - -
FFT (BEST) 14.95 - - -
CPLEX+Q 10.44 1093710 8.11 14430

BB+CF 10.44 7155 ≤0.1 17
BB+CF+FBBT 10.44 19 ≤0.1 15

GLASS2 214 9

FFT (AVERAGE) 41.23 - - -
FFT (BEST) 27.52 - - -
CPLEX+Q OUT OF MEMORY

BB+CF 27.52 5559 ≤0.1 15
BB+CF+FBBT 27.52 191 ≤0.1 14

BM1 249 6

FFT (AVERAGE) 22890.61 - - -
FFT (BEST) 15245.0 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 10539.0 14187 ≤0.1 22
BB+CF+FBBT 10539.0 47 ≤0.1 15

UK2 258 5

FFT (AVERAGE) 0.96 - - -
FFT (BEST) 0.72 - - -
CPLEX+Q OUT OF MEMORY

BB+CF 0.53 315495 ≤0.1 258
BB+CF+FBBT 0.53 17770 ≤0.1 25

HF1 299 12

FFT (AVERAGE) 4.82× 1010 - - -
FFT (BEST) 2.53× 1010 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 1.72× 1010 339 ≤0.1 10
BB+CF+FBBT 1.72× 1010 i3 ≤0.1 12

WHO2 440 8

FFT (AVERAGE) 5.77× 109 - - -
FFT (BEST) 4.50× 109 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 3.49× 109 3407 ≤0.1 15
BB+CF+FBBT 3.49× 109 383 ≤0.1 15

HCV2 602 12

FFT (AVERAGE) 216190.32 - - -
FFT (BEST) 174716.17 - - -
CPLEX+Q 141440.68 - ≤0.1 965

BB+CF 141440.68 291 ≤0.1 10
BB+CF+FBBT 141440.68 39 ≤0.1 14

ABS2 740 21

FFT (AVERAGE) 26395.93 - - -
FFT (BEST) 18311.19 - - -
CPLEX+Q 18647.59 940299 55.33 14400

BB+CF 13905.40 33449 ≤ 0.1 153
BB+CF+FBBT 13905.40 585 ≤0.1 16

TR2 980 10

FFT (AVERAGE) 10.44 - - -
FFT (BEST) 8.01 - - -
CPLEX+Q 8.32 1556105 54.48 14400

BB+CF 5.94 741851 ≤0.1 2953
BB+CF+FBBT 5.94 39118 ≤0.1 128

SGC1 1000 21

FFT (AVERAGE) 1.96× 107 - - -
FFT (BEST) 1.33× 107 - - -
CPLEX+Q 1.44× 107 48015 100 14400

BB+CF 9.45× 106 411 ≤0.1 12
BB+CF+FBBT 9.45× 106 i3 ≤0.1 12

1 CAN ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
2 CAN NOT ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
3 SOLVED AT THE ROOT NODE.

To make the comparison fair, we also show another two
version of using CPLEX. In the first version (CPLEX+L3),
Equation 3b in Problem 3 is linearized by adding three
supporting hyperplane for each sample. However, after lin-
earization, CPLEX still struggles for datasets with more
than 1,200 samples. Moreover, three supporting hyper-
plane is not enough to obtain a solution close to the orig-
inal optimal solution. But adding supporting hyperplanes

will increase the computaional time. In the second version
(CPLEX+L3+CUT), we manually add a callback of user
cuts to enforce µk ∈ Mk for each BB node, but CPLEX’s
performance is not improved. We suspect that CPLEX has
already inferred this from Constraint 3g. As these two ver-
sions does not significantly improve the performance of
CPLEX, we do not show their performance in the following
numerical experiments.

5.2. Numerical Results on Real-world datasets

We then evaluate the performance of our algorithms on 30
datasets from UCI Machine Learning Repository (Dua &
Graff, 2017), one dataset called PR2392 from (Padberg &
Rinaldi, 1991), and one dataset called HEMI from (Wang
et al., 2022). The number of samples varies from 150 to
14,057,567. The number of attribute ranges from 2 to 68.

Table 2 demonstrates the computational performance of
datasets with less than 1000 samples. Table 3 shows the
results of datasets with more than 1000 samples. In Table 4,
we illustrate the numerical results of datasets with millions
of samples.

In these tables, even the best results of FFT can be far away
from optimal. This is true even for very small datasets. For
example, for IRIS dataset, FFT (BEST) obtains the best
UB of 3.66 while our algorithm and CPLEX+Q give a UB
of 2.04 with ≤ 0.1% gap. Compared with FFT (BEST),
our algrorithm can reduce the UB by 30.4%, on average for
these 32 datasets.

For small datasets, our algorithms obtain the same UB as
CPLEX. However, CPLEX+Q takes significantly more com-
putational time than our algorithms. For all datasets with
more than 740 samples, CPLEX+Q cannot even close the
optimality gap to ≤ 50% within 4 hours. For comparison,
our algorithms, BB+CF and BB+CF+FBBT can all generate
the best UB and a satisfactory gap (≤ 0.1%) for the majority
of the datasets.

The comparison of these two versions highlights the im-
portance of FBBT, which can significantly reduce the com-
putational time and the number of BB nodes to solve the
problems. Remarkably, it can even solve several datasets in
the root node (NODES=i3). Moreover, the number of nodes
needed to reach the optimal solution is much smaller when
initial seeds are found, which shows that the initial seeds can
be essential for cluster assignment and bounds tightening.
For about half of the datasets, initial seeds can be obtained
from FFT. Both versions of our algorithms maintain a bal-
anced memory usage during the whole execution process,
while for datasets with size over 50,000 samples, CPLEX+Q
returns the out of memory error.

For most of the datasets with millions of samples in Table
4, BB+CF+FBBT can converge to small gaps (≤ 0.1%) and

Global Optimization of K-Center Clustering

provide the best optimal solution after 4 hours of running.
To the best of our knowledge, it is the first time that the
k-center problem is solved under a relatively small gap (≤
0.1%) within 4 hours on datasets over 14 million samples.

Table 3. Computational results on large-scale datasets
(1, 000<S<1, 000, 000)

DATA-
SET

SAM-
PLE

DIM-
ENSION

METHOD UB NODES
GAP
(%)

TIME
(S)

HEMI1 1955 7

FFT (AVERAGE) 149300.03 - - -
FFT (BEST) 105657.63 - - -
CPLEX+Q 407892.47 141533 100 14400

BB+CF 64872.92 1275 ≤0.1 18
BB+CF+FBBT 64872.92 13 ≤0.1 15

PR23922 2392 2

FFT (AVERAGE) 6.96× 107 - - -
FFT (BEST) 3.99× 107 - - -
CPLEX+Q 5.30× 107 151218 100 14400

BB+CF 2.93× 107 59327 ≤0.1 297
BB+CF+FBBT 2.93× 107 241 ≤0.1 16

TRR2 5454 24

FFT (AVERAGE) 136.19 - - -
FFT (BEST) 101.55 - - -
CPLEX+Q 166.61 0 100 14400

BB+CF 89.78 357283 271.06 14400
BB+CF+FBBT 88.30 277504 178.99 14400

AC2 7195 22

FFT (AVERAGE) 4.27 - - -
FFT (BEST) 3.59 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 2.75 313564 74.30 14400
BB+CF+FBBT 2.78 267412 63.65 14400

RDS CNT1 10000 4

FFT (AVERAGE) 38772.90 - - -
FFT (BEST) 20449.0 - - -
CPLEX+Q 56644.01 35753 100 14400

BB+CF 13924.00 639 ≤0.1 25
BB+CF+FBBT 13924.00 i3 ≤0.1 13

HTRU21 17898 8

FFT (AVERAGE) 90363.45 - - -
FFT (BEST) 71117.75 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 52367.35 11247 ≤0.1 627
BB+CF+FBBT 52367.35 69 ≤0.1 12

GT2 36733 11

FFT (AVERAGE) 6068.98 - - -
FFT (BEST) 4565.01 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 3071.83 135677 38.06 14400
BB+CF+FBBT 2976.81 20708 ≤0.1 2053

RDS2 50000 3

FFT (AVERAGE) 0.13 - - -
FFT (BEST) 0.11 - - -
CPLEX+Q NO FEASIBLE SOLUTION

BB+CF 0.08 131874 5.01 14400
BB+CF+FBBT 0.08 519 0.61 55

KEGG2 53413 23

FFT (AVERAGE) 1.09× 107 - - -
FFT (BEST) 8.14× 106 - - -
CPLEX+Q OUT OF MEMORY

BB+CF 4.98× 106 87 ≤0.1 41
BB+CF+FBBT 4.98× 106 25 ≤0.1 22

RNG AGR1 199843 7

FFT (AVERAGE) 7.01× 1010 - - -
FFT (BEST) 4.78× 1010 - - -
CPLEX+Q OUT OF MEMORY

BB+CF 3.16× 1010 36749 5.05 14400
BB+CF+FBBT 3.14× 1010 1627 ≤0.1 159

URBANGB1360177 2

FFT (AVERAGE) 15.11 - - -
FFT (BEST) 10.75 - - -
CPLEX+Q OUT OF MEMORY

BB+CF 5.48 16323 ≤ 0.1 10713
BB+CF+FBBT 5.48 117 ≤0.1 40

SPNET3D1 434876 3

FFT (AVERAGE) 1191.77 - - -
FFT (BEST) 827.39 - - -
CPLEX+Q OUT OF MEMORY

BB+CF 569.91 21814 0.32 14400
BB+CF+FBBT 569.80 85 ≤0.1 29

1 CAN ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
2 CAN NOT ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
3 SOLVED AT THE ROOT NODE.

6. Conclusion
This paper propose a global optimization algorithm for k-
center problem using the branch and bound scheme. In our

reduced-space algorithm, only the centers of clusters need
to be branched. We prove that this algorithm converges to a
global optimal solution. We also adopt the feasibility-based
bounds tightening techniques to tighten bounds, which have
accelerated the convergence of branch and bound scheme.
We test 32 datasets, even including 6 datasets with millions
of samples. Our algorithm is able to solve datasets with up
to 14 million samples in 4 hours and get an small optimality
gap. For the largest case, we can attain an optimality gap
of ≤ 0.1% within 2 hours for the dataset with 14,057,567
samples and 3 attributes.

Table 4. Computational results on datasets with millions of sam-
ples

DATASET SAMPLE
DIM-

ENSION
METHOD UB NODES

GAP
(%)

TIME
(S)

USC19901 2,458,285 68

FFT (AVERAGE) 4.23× 1011 - - -
FFT (BEST) 2.44× 1011 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 1.69× 1011 916 3.75 14400
BB+CF+FBBT 1.68× 1011 i3 ≤0.1 317

GAS

METHANE1 4,178,504 18

FFT (AVERAGE) 2.18× 108 - - -
FFT (BEST) 1.60× 108 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 1.04× 108 1220 45.08 14400
BB+CF+FBBT 1.02× 108 33 ≤0.1 679

GAS CO2 4,208,261 18

FFT (AVERAGE) 1.28× 109 - - -
FFT (BEST) 8.81× 108 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 5.66× 108 1095 14.66 14400
BB+CF+FBBT 5.46× 108 62 ≤0.1 878

KDDCUP2 4,898,431 38

FFT (AVERAGE) 4.71× 1017 - - -
FFT (BEST) 4.71× 1017 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 2.25× 1017 63 ≤0.1 2461
BB+CF+FBBT 2.25× 1017 37 ≤ 0.1 928

HIGGS2 11,000,000 29

FFT (AVERAGE) 463.41 - - -
FFT (BEST) 368.35 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 247.03 368 211.88 14400
BB+CF+FBBT 237.91 290 189.90 14400

BIGCROSS2 11,620,300 56

FFT (AVERAGE) 2.27× 107 - - -
FFT (BEST) 1.43× 107 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 1.09× 107 148 48.99 14400
BB+CF+FBBT 9.97× 106 211 24.61 14400

PHONES-
ACCELERO-

METER1
13,062,475 6

FFT (AVERAGE) 4.48× 1028 - - -
FFT (BEST) 2.04× 1028 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 1.46× 1028 51 ≤0.1 2038
BB+CF+FBBT 1.46× 1028 i3 ≤0.1 276

PHONES-
GYROSCOPE113,932,632 6

FFT (AVERAGE) 4.51× 1028 - - -
FFT (BEST) 2.03× 1028 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 1.46× 1028 51 ≤0.1 2195
BB+CF+FBBT 1.46× 1028 i3 ≤0.1 305

AADP2 14,057,567 3

FFT (AVERAGE) 3900.94 - - -
FFT (BEST) 3824.00 - - -
CPLEX+Q CAN NOT BE SOLVED

BB+CF 2660.10 602 55.91 14400
BB+CF+FBBT 2546.92 196 ≤0.1 4321

1 CAN ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
2 CAN NOT ASSIGN INITIAL CLUSTER THROUGH FFT AT THE ROOT NODE.
3 SOLVED AT THE ROOT NODE.

Acknowledgement
We gratefully acknowledge the computing resources pro-
vided by SciNet (www.scinethpc.ca) and Compute Canada
(www.computecanada.ca).

Global Optimization of K-Center Clustering

References
Aggarwal, C. C., Wolf, J. L., and Yu, P. S.-l. Method for

targeted advertising on the web based on accumulated
self-learning data, clustering users and semantic node
graph techniques, March 30 2004. US Patent 6,714,975.

Aloise, D. and Contardo, C. A sampling-based exact algo-
rithm for the solution of the minimax diameter clustering
problem. Journal of Global Optimization, 71(3):613–630,
2018.

Alpert, C. J. and Kahng, A. B. Splitting an ordering into a
partition to minimize diameter. Journal of Classification,
14(1):51–74, 1997.

Calik, H. and Tansel, B. C. Double bound method for
solving the p-center location problem. Computers &
operations research, 40(12):2991–2999, 2013.

Cao, Y. and Zavala, V. M. A scalable global optimization
algorithm for stochastic nonlinear programs. Journal of
Global Optimization, 75(2):393–416, 2019.

Chen, D. and Chen, R. New relaxation-based algorithms
for the optimal solution of the continuous and discrete
p-center problems. Computers & Operations Research,
36(5):1646–1655, 2009.

Chen, R. and Handler, G. Y. Relaxation method for the
solution of the minimax location-allocation problem in
euclidean space. Naval Research Logistics (NRL), 34(6):
775–788, 1987.

Contardo, C., Iori, M., and Kramer, R. A scalable exact
algorithm for the vertex p-center problem. Computers &
Operations Research, 103:211–220, 2019.

Cplex, I. I. V20.1.0: User’s Manual for CPLEX. Interna-
tional Business Machines Corporation, 2020.

Daskin, M. S. A new approach to solving the vertex p-center
problem to optimality: Algorithm and computational re-
sults. Communications of the Operations Research Soci-
ety of Japan, 45(9):428–436, 2000.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Duong, K.-C., Vrain, C., et al. Constrained clustering by
constraint programming. Artificial Intelligence, 244:70–
94, 2017.

Elloumi, S., Labbé, M., and Pochet, Y. A new formu-
lation and resolution method for the p-center problem.
INFORMS Journal on Computing, 16(1):84–94, 2004.

Garey, M. R. and Johnson, D. S. Computers and intractabil-
ity, volume 174. freeman San Francisco, 1979.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical Computer Science, 38:
293–306, 1985.

Hansen, P., Brimberg, J., Urošević, D., and Mladenović, N.
Solving large p-median clustering problems by primal–
dual variable neighborhood search. Data Mining and
Knowledge Discovery, 19(3):351–375, 2009.

Hesabi, Z. R., Tari, Z., Goscinski, A., Fahad, A., Khalil,
I., and Queiroz, C. Data summarization techniques for
big data—a survey. In Handbook on Data Centers, pp.
1109–1152. Springer, 2015.

Hochbaum, D. S. and Shmoys, D. B. A best possible heuris-
tic for the k-center problem. Mathematics of Operations
Research, 10(2):180–184, 1985.

Hua, K., Shi, M., and Cao, Y. A Scalable Deterministic
Global Optimization Algorithm for Clustering Problems.
In International Conference on Machine Learning, pp.
4391–4401. PMLR, 2021.

Kaufman, L. and Rousseeuw, P. J. Finding groups in data:
an introduction to cluster analysis, volume 344. John
Wiley & Sons, 2009.

Kleindessner, M., Awasthi, P., and Morgenstern, J. Fair
k-center clustering for data summarization. In Interna-
tional Conference on Machine Learning, pp. 3448–3457.
PMLR, 2019.

Madhulatha, T. S. An overview on clustering methods.
arXiv preprint arXiv:1205.1117, 2012.

Mihelič, J. and Robic, B. Solving the k-center problem
efficiently with a dominating set algorithm. CIT, 13:
225–234, 09 2005.

Optimization, G. Gurobi optimizer 9.0 reference manual,
2020.

Padberg, M. and Rinaldi, G. A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman
problems. SIAM review, 33(1):60–100, 1991.

Pan, W., Shen, X., and Liu, B. Cluster analysis: Unsuper-
vised learning via supervised learning with a non-convex
penalty. Journal of Machine Learning Research, 14(7),
2013.

Wang, E., Ballachay, R., Cai, G., Cao, Y., and Trajano, H.
Machine learning for biorefining: Towards a universal
kinetic model of wood deconstruction. Under Review,
2022.

http://archive.ics.uci.edu/ml

Global Optimization of K-Center Clustering

A. An illustrative example of branch and bound scheme with FBBT
The following is an example of k-center clustering solved by branch and bound scheme in Algorithm 2. This example
have 6 samples in 2-dimensional space and we need to divide the samples into 2 clusters. Denote the dataset X =
{x1, x2, x3, x4, x5, x6}, with x1=(−1, 1), x2=(−1, 0), x3=(0, 0), x4=(2, 0), x5=(3, 0), and x6=(4, 0).

STEP 1: Compute initial upper bound. Use FFT method (Algorithm 1) to find 2 points x1=(−1, 1) and x5=(3, 0). With
x1 and x5 as centers, we can compute the initial upper bound α = 2. Note here FFT may return a different set of points
depending on the selection of initial points. We normally repeat FFT for several trials and select the one with the best α.

STEP2.1: Assign initial seeds. Since the two points returned by FFT satisfying ||x1 − x5||22 = 17 > 4α, then we can
conclude that each point belongs to a distinct cluster. We can arbitrarily assign x1 to cluster 1 and x5 to cluster 2.

STEP 2.2: Sample based Assignment. Since ||x2 − x5||22 = 16 > 4α, then x2 and x5 are not in the same cluster. Given x5

was assigned to cluster 2, we have x2 in cluster 1. Similarly, we have x3 in cluster 1, x4 and x6 in cluster 2. Note here the
assignment of all samples are determined at the root node.

STEP 3: Ball-based bounds tightening. Since x4 and x6 are in cluster 2, using ball-based bounds tightening as illustrated in
Figure 6, M2 = {(3, 0)}, i.e., the center of cluster 2 is (3, 0). For cluster 1, we can only attain M1 = {µ1| − 1 ≤ µ1

1 ≤
0, 0 ≤ µ1

2 ≤ 1}.

×
x2

(−1, 0)

×
x1

(−1, 1)

×
x3

(0, 0)

×
x4

(2, 0)

×
x5

(3, 0)
×
x6

(4, 0)

√
α

√
α

Figure 6. Ball-based bounds tightening for cluster 2.

STEP 4: Compute initial lower bound. Following Equation 7, we can get β = 1.

STEP 5: Branch and bound.

ITERATION 1: For cluster 1, find two subsets M1
1 = {µ1| − 1 ≤ µ1

1 ≤ 0.5, 0 ≤ µ1
2 ≤ 1} and M1

2 = {µ1| − 0.5 ≤ µ1
1 ≤

0, 0 ≤ µ1
2 ≤ 1}.For the first child node, M1

1 ∩X = {x1, x2}. Randomly pick x2 as the center for cluster 1 and we have
α = 1.

With α = β = 1, we can conclude that the optimal value is 1 and the optimal centers are x2 and x5.

