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Abstract
We consider the problem of computing bounds
for causal inference problems with unobserved
confounders, where identifiability does not hold.
Existing non-parametric approaches for comput-
ing such bounds use linear programming (LP)
formulations that quickly become intractable for
existing solvers because the size of the LP grows
exponentially in the number of edges in the un-
derlying causal graph. We show that this LP can
be significantly pruned by carefully considering
the structure of the causal query, allowing us to
compute bounds for significantly larger causal in-
ference problems as compared to what is possible
using existing techniques. This pruning proce-
dure also allows us to compute the bounds in
closed form for a special class of causal graphs
and queries, which includes a well-studied fam-
ily of problems where multiple confounded treat-
ments influence a outcome.We also propose a very
efficient greedy heuristic that produces very high
quality bounds, and scales to problems that are
several orders of magnitude larger than those for
which the pruned LP can be solved.

1. Introduction
In most real world applications of causal inference (Im-
bens & Rubin, 2015; Pearl, 2009) there exist variables that
are critical to the identification of causal effects, but are
either unknown or unmeasured, i.e. there are unobserved
confounders. While it is impossible to precisely identify
causal effects in the presence of unobserved confounders, it
is possible to obtain bounds on the causal query.

There have been multiple such attempts to bound causal
effects for small special graphs. Evans (2012) bound the
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causal effects in the special case where any two observed
variables are neither adjacent in the graph, nor share a latent
parent. Richardson et al. (2014) bound the causal effect
of a treatment on a parameter of interest by invoking addi-
tional (untestable) assumptions and assess how inference
about the treatment effect changes as these assumptions are
varied. Kilbertus et al. (2020) and Zhang & Bareinboim
(2021) develop algorithms to compute causal bounds for ex-
tensions of the instrumental variable model in a continuous
setting. Geiger & Meek (2013) bound causal effects in a
model under specific parametric assumptions. Finkelstein &
Shpitser (2020) develop a method for obtaining bounds on
causal parameters using rules of probability and restrictions
on counterfactuals implied by causal graphs.

While fewer in number, there have also been attempts to
bound causal effects in large general graphs. Poderini et al.
(2020) propose techniques to compute bounds in special
large graphs with multiple instruments and observed vari-
ables. Finkelstein et al. (2021) propose a method for partial
identification in a class of measurement error models, and
Duarte et al. (2021) propose a polynomial programming
based approach to solve general causal inference problems,
but their procedure is computationally intensive for large
graphs.

In this work, we extend the class of large graphs for which
causal effects can be bounded. In particular, we focus on a
class of causal inference problems where causal bounds can
be obtained using linear programming (LP) (Balke & Pearl,
1994; Zhang & Bareinboim, 2017; Pearl, 2009; Sjölander
et al., 2014). Recently, Sachs et al. (2020; 2021) identified
a large problem class for which LPs can be used to com-
pute causal bounds, and have developed an algorithm for
formulating the objective function and the constraints of the
corresponding LP. This problem class is a generalization of
the instrumental variable setting, and is thus widely appli-
cable. However, as we describe later, the size of the LP is
exponential in the number of edges in the causal graph, and
therefore, the straightforward formulation of the LP can be
tractably solved only for very small causal graphs. In this
work, we show how to use the structure of the causal query
and the underlying graph to significantly reduce the size of
the LP, and as a consequence, significantly increase the size
of the graphs for which the LP method remains tractable.
Our main contributions are as follows:
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(a) We show that an exponential number of variables in the
LP can be aggregated to reduce the size of the problem
without impacting the quality of the bound. See Sec-
tion 3.1 for details. The reduction in size can be very
substantial – compare |R| with |H| in Table 1 (details
in Section 3.1).

(b) Although we show there exists a much smaller LP that
can be solved to compute the bounds, we get a compu-
tational advantage only if this pruned LP can be con-
structed efficiently. Theorems 3.4 and 3.6 establish that
one can construct the pruned LP without first construct-
ing the original LP. These results critically leverage the
structure of the LP corresponding to a causal inference
problem. In particular, they leverage the fact that all pos-
sible functions mapping the parents pa(V ) to a variable
V are allowed. Note that, without this second result, the
savings implied by the pruned LP cannot be realized.
See Section 3.1 for details.

(c) Next, we show that the structural results that help us
construct the pruned LP allow us to compute the bounds
in closed form for a special class of causal inference
problems. This class of problems includes as a special
case the problems considered by Wang & Blei (2021;
2019a), where multiple confounded treatments influ-
ence a outcome. Moreover, we are able to compute
these bounds even when there are causal relationships
between the treatments. See Section 3.2.1 for details.

(d) Finally, we propose a simple greedy heuristic to com-
pute optimal solutions for the pruned LPs. We show
that this heuristic allows us to compute approximate
bounds for much larger scale graphs with very minimal
degradation in performance. See Section 4 for details.

Although we work with causal graphs with binary variables
in this paper, generalizing our results to categorical variables
is straightforward.

The organization of the rest of this paper is as follows. In
Section 2, we present the intuition behind our contributions
using a running example. In Section 3 we introduce the
formalism in Sachs et al. (2020; 2021). In Section 3.1 we
introduce our main structural results for pruning the LPs. In
Section 3.2 we show that the LP bounds can be computed
in closed form for a large class of problems, and in Sec-
tion 3.2.1 we show an example of this class of problems. In
Section 4 we introduce our greedy heuristic and benchmark
its performance. Section 5 discusses possible extensions.

2. Example
Consider the causal graph in Figure 1 withX,Y, Z ∈ {0, 1}.
Suppose the data given is pxy.z = P(X = x, Y = y|Z = z)
and the goal is to compute a lower bound for the causal

X YZ U

Figure 1: Causal Graph for Query Q

query Q = P(Y = 1|do(X = 1)). Here, U is a potentially
high dimensional unobserved confounder that is difficult
to model directly. Response function variables circumvent
this difficulty by modelling the impact of U on the relation-
ships between the observed variables. For each fixed value
for the unknown confounder U , the variable X is a func-
tion of Z; thus, confounder U effectively selects one func-
tion from the set F = {f : f is a function from Z → X}.
Similarly, U selects one function from the set G = {g :
g is a function from X → Y }. It is easy to see that |F| =
|G| = 4, and therefore, the elements can be indexed by
r = (rX , rY ) ∈ R = {1, . . . , 4}2, i.e. frX denotes the rX -
th function from F and grY denotes the rY -th function from
G. Thus, the response function variables rX and rY can be
used to model the impact of U , and Z and r ∈ R uniquely
determine X = frX (Z) and Y = grY (X) = grY (frX (Z)).
Note that |R| is exponential in the number of arcs in the
causal graph.

The unknown distribution over the high dimensional U can
be equivalently modeled via the joint distribution qrXrY =
P(rX , rY ). Let

Rxy.z = {(rX , rY ) : frX (z) = x, grY (x) = y}, (1)

denote the set of r-values that map z 7→ (x, y). Hence,
P(X = x, Y = y|Z = z) =

∑
(rX ,rY )∈Rxy.z

qrXrY . Fur-
thermore, let RQ denote the set of r values consistent with
the query Q = P(Y = 1|do(X = 1)) i.e.

RQ = {(rX , rY ) : grY (1) = 1} (2)

Hence, P(Y = 1|do(X = 1)) =
∑

(rX ,rY )∈RQ
qrXrY .

Then the following LP gives a lower bound on the
query (Balke & Pearl, 1994; Sachs et al., 2020):

minq
∑

(rX ,rY )∈RQ
qrXrY

s.t.
∑

(rX ,rY )∈Rxy.z
qrXrY = pxy.z,∀(x, y, z)

q ≥ 0,

(3)

Since r ∈ R uniquely determines the value of (X,Y )
for any fixed value for Z, R = ∪x,y∈{0,1}2Rxy.z is a
partition for the set R for any fixed z. The constraints
in LP (3) imply that 1 =

∑
(x,y)∈{0,1}2 pxy.z =∑

(x,y)∈{0,1}2
∑

(rX ,rY )∈Rxy.z
qrXrY =∑

(rX ,rY )∈R qrXrY . Therefore, we do not include
the constraint

∑
(rX ,rY )∈R qrXrY = 1 in the LP.

Next, we show how to reduce the size of the LP (3) by
aggregating variables. Let h : Z → (X,Y ) denote any
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function Z 7→ (X,Y ). We also refer to h as a hyperarc
since it can be interpreted as an arc in a hypergraph. Let

Rh =


(rX , rY ) ∈ R :(

frX (0), grY (frX (0))
)
= h(0)(

frX (1), grY (frX (1))
)
= h(1)

 (4)

denote the set of r values consistent with the hyperarc
h. Then all r ∈ Rh contribute to the same two con-
straints: (x, y, z) =

(
h(0), 0

)
and (x, y, z) =

(
h(1), 1

)
.

Therefore, since we have minimization objective, we can
set qr = 0 for all r ∈ Rh with objective coefficient
1{r ∈ RQ} > mins∈Rh

1{s ∈ RQ}, and aggregate all
variables qr such that r ∈ Rh, i.e. we can reformulate the
LP in terms of variables qh with the objective coefficient
ch = minr∈Rh

1{r ∈ RQ} = 1{Rh ⊆ RQ}. The causal
graph structure implies that Rh 6= ∅ only for a subset of
hyperarcs. LetH denote the set of valid hyperarcs for which
Rh 6= ∅. Thus, the LP (3) can be reformulated as

minq
∑
h∈H chqh

s.t.
∑
h∈H:h(z)=(x,y) qh = pxy.z,∀(x, y, z)

q ≥ 0,
(5)

where ch = 1{Rh ⊆ RQ}. This reformulation has expo-
nentially fewer variables; however, it is useful only if the
set of valid hyperarcs H and the corresponding costs ch can
be efficiently computed.

2.1. Characterizing Valid Hyperarcs

The challenge here is to avoid iterating over all values in
the set R to produce a value which validates h. Suppose
h(0) = (x0, y0) and h(1) = (x1, y1) for xi, yi ∈ {0, 1},
i = 0, 1. Then the “maps” (may not be functions) fh and
gh implied by h are as follows:

fh(z) =

{
x0 if z = 0

x1 if z = 1
gh(x) =

{
y0 if x = x0

y1 if x = x1

Since R indexes the set of all possible functions in F and G,
h is a valid hyperarc if, and only if, the “maps” fh (resp. gh)
is consistent with some function f ∈ F (resp. g ∈ G). The
latter is true if, and only if, it is not the case that x0 = x1 but
y0 6= y1. Hence, to check the validity of h, it is sufficient
to check if x0 = x1 but y0 6= y1. We extend this notion of
consistency to more complex causal graphs in Section 3.

2.2. Efficiently computing ch

We start with the following definitions.

Definition 2.1 (Complete Consistency). A hyperarc h is
completely consistent with the query Q if Rh ⊆ RQ. A
conditional probability pxy.z is completely consistent with
the query Q if Rxy.z ⊆ RQ.

Thus, ch = 1 if, and only if, h is completely consistent with
the query Q. Next, we describe how to check whether a
hyperarc h is completely consistent. We begin characteriz-
ing complete consistency for conditional probabilities. We
establish that

pxy.z is completely consistent with Q ⇐⇒ y = 1, x = 1.

Clearly, any (rX , rY ) ∈ R11.z maps X = 1 to Y = 1, and
thus, (rX , rY ) ∈ RQ defined in (2). Hence, any conditional
probability of the form p11.z is completely consistent with
Q. To see that this is the only form a completely consistent
probability can take, we consider two cases:

• Suppose x 6= 1 i.e. consider the probability p01.z .
Since (rX , rY ) index the set of all possible functions
F and G, there exists (rX , rY ) such that:

–
(
frX (z), grY (frX (z))

)
= (0, 1), i.e. (rX , rY ) ∈

R01.z , but,
– grY (1) = 0, i.e. (rX , rY ) 6∈ RQ

Hence, there exists (rX , rY ) such that (rX , rY ) ∈
R01.z , but (rX , rY ) 6∈ RQ i.e. p01.z is not completely
consistent.

• Suppose y 6= 1 i.e. consider the probability p10.z .
Then every (rX , rY ) ∈ R10.z maps X = 1 to Y = 0,
and therefore, (rX , rY ) 6∈ RQ. Hence p10.z is not
completely consistent.

Next, we show that the hyperarc h is completely consistent
with Q, if and only if, there exists z such that h(z) = (x, y)
and the conditional probability pxy.z is completely consis-
tent with Q. Thus, for the query Q = P(Y = 1|do(X =
1)), we have that

h is completely consistent with Q (6)

⇐⇒ h(z) = (1, 1) for some z ∈ {0, 1}

First suppose h(z) = (1, 1) for some z ∈ {0, 1}. For
every (rX , rY ) ∈ Rh, (frX (z), grY (frX (z))) = (1, 1)
i.e. (rX , rY ) maps Z = z to (X = 1, Y = 1). Hence,
(rX , rY ) ∈ R11.z . Since p11.z is completely consistent,
(rX , rY ) ∈ RQ. Therefore, Rh ⊆ RQ i.e. h is completely
consistent with Q. In order to establish the reverse direc-
tion, suppose h(z) 6= (1, 1), for all z ∈ {0, 1}. Since R is
exhaustive, there exists r ∈ R such that:

(i) r maps Z = z to (X,Y ) = h(z) 6= (1, 1), for all
z ∈ {0, 1} i.e. r ∈ Rh

(ii) r maps X = 1 to Y 6= 1, i.e. (rX , rY ) 6∈ RQ

Hence h is not completely consistent with Q.
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Figure 2: Causal Graph for Query Q1

To summarize, to compute ch, it is sufficient to check if
h is completely consistent with Q, which can be easily
characterized without enumerating all the elements in R.
In Section 3 we show how to extend this result to more
complex graphs.

2.3. Bounds in Closed Form

Now consider the causal graph in Figure 2. Given data
pxy.z , we show how to compute bounds for the modified
query Q1 = P(Y = 1|do(Z = 1, X = 1)) in closed
form. More precisely, we show that the optimal value of
the pruned LP for this problem is the sum of the completely
consistent probabilities. Retracing the steps above we get
ch = 1 i.e. h is completely consistent with Q1 if and only
if, h(1) = (1, 1). The objective of the pruned LP for the
problem is: ∑

{h∈H:ch=1}

qh

=
∑

{h∈H: h is completely consistent withQ1}

qh

=
∑

{h∈H:h(1)=(1,1)}

qh

= p11.1 (7)

where (7) follows from the constraints of the pruned LP.

As a step towards characterizing graphs and queries for
which such closed form bounds are possible, we understand
why closed form bounds do not exist for the original causal
graph in Figure 1 and the queryQ = P(Y = 1|do(X = 1)).
From (6) we have ch = 1 i.e. h is completely consistent
with Q, if and only if, there exists z ∈ {0, 1} such that
h(z) = (1, 1). The objective of the pruned LP is:∑
{h∈H:ch=1}

qh =
∑

{h∈H:∃z∈{0,1},h(z)=(1,1)}

qh

6=
∑

h∈H:h(0)=(1,1)

qh +
∑

h∈H:h(1)=(1,1)

qh,

since {h ∈ H : h(0) = (1, 1)} ∩ {h ∈ H : h(1) =
(1, 1)} 6= ∅. Hence, we cannot compute closed form bounds
for the query.

Perhaps, the issue was that the “input” variable Z was not
part of the intervention. So, suppose the query is Q2 =
P(Y = 1|do(X = 1, Z = 1)) instead. In this case, the

steps above establish that ch = 1 if and only if, there exists
z ∈ {0, 1} such that h(z) = (1, 1). This is identical to our
condition for ch in Q. Therefore, we will still not be able to
compute closed form bounds. What went wrong? Intuitively,
Z is redundant in the intervention do(X = 1, Z = 1),
since Z’s effects on Y are blocked by intervening on X .
The specification for ch captures this intuition by leaving
Z out when characterizing ch. Hence, it appears that we
need that the “input” variable must be non-redundant in the
intervention in order to compute closed form bounds. Note
that in the causal graph in Figure 2 and queryQ1, the “input”
variable Z is non-redundant in the intervention. Hence, we
could compute closed form bounds. This is the premise of
Assumption 3.10, which characterizes an important subclass
of general causal inference problems for which the bounds
can be computed in closed form.

3. General Causal Inference Problems
Let G denote the causal graph. Let V1, . . . , Vn denote the
variables in G in topologically sorted order. We let N =
{1, . . . , n} denote the set of indices for the variables. We
use lower case letters for the values for the variables, and
the notation Vi = vi denotes that the variable Vi takes the
value vi ∈ {0, 1}. For any subset S ⊆ N , we define VS :=
{Vi : i ∈ S}, and the notation VS = vS denotes the variable
Vi = vi, for all i ∈ S, for some v ∈ {0, 1}|N |. We consider
the following class of “partitioned” causal graphs (Sachs
et al., 2020).

Assumption 3.1 ((Sachs et al., 2020)). The index set N is
partitioned into two sets N = A ∪ B, where VB topologi-
cally follow VA, VA can have a common unobserved con-
founder UA, and VB can have a common unobserved con-
founder UB; however, no pair of variables (Vi, Vj), where
i ∈ A and j ∈ B, can share an unobserved confounder.

In the simple causal graphs discussed in Section 2, VA =
{Z} and VB = {X,Y }.

The conditional probability distribution pvB .vA = P(VB =
vB |VA = vA) is known, and our goal is to compute bounds
for the causal query Q = P(VO = qO|do(VI = qI)), i.e.
the probability of the output event VO = qO given an inter-
vention do(VI = qI).

Assumption 3.2 (Query). A query Q is valid only if O ⊆
B, I ⊂ A∪B, with O ∩ I = ∅, and every variable in VA is
either intervened upon, or redundant for the intervention.

More precisely, let GI denote the mutilated graph after
intervention do(VI = qI), i.e. variables VI no longer have
any incoming arcs. Then, for i ∈ A, either Vi ∈ VI , i.e. it is
intervened upon, or there is no directed path from Vi to any
variable in VB in GI . In the example discussed in Section 2,
VI = {X} and VO = {Y }.
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The presence of unobserved confounders implies that the
values for variables in VB are not completely defined when
VA = vA. However, as we note in Section 2, the unobserved
confounder UB effectively selects a particular function from
all possible functions mapping VA to VB subject to the con-
straints imposed by the graph structure. For j ∈ B, let
pa(Vj) denote the parents of Vj in the causal graph. Anal-
ogous to sets F and G in Section 2, define Fj to be the set
of all possible functions pa(Vj) 7→ Vj . Since each vari-
able Vk ∈ pa(Vj) takes values in {0, 1} and Vj ∈ {0, 1},
the cardinality of the set |Fj | = 22

|pa(Vj)| . Then the ele-
ments of Fj can be indexed by rVj

∈ RVj
= {1, . . . , |Fj |}.

Let the set R =
∏
j∈B RVj index all possible mappings

from pa(Vj) 7→ Vj for all j ∈ B. Note that the cardinality
|R| =

∏
j∈B 22

|pa(Vj)| .

For r ∈ R, let FO(VS = vS , r) denote the value of
VO ⊆ VB when VS = vS provided it is well defined.
Since VA topologically precede VB , setting VA = vA and
choosing r ∈ R completely defines the values for VB ,
i.e. FB(VA = vA, r) is well defined. Let RvB .vA =
{r : FB(VA = vA, r) = vB}. From the definition of
a valid query, it follows that setting VI = qI and se-
lecting r ∈ R uniquely defines the value for VO. Let
RQ = {r ∈ R : FO(VI = qI , r) = qO} denote the set
of r values which are consistent with the query.

Then bounds for the causal query can be obtained by solving
the following pair of linear programs (Balke & Pearl, 1994):

minq /maxq
∑
r∈RQ

qr
s.t.

∑
r∈RvB.vA

qr = pvB .vA , ∀vA, vB ,
q ≥ 0.

(8)

Recall for VA = vA, r ∈ R uniquely determines the value
of VB . Hence, for fixed vA, ∪vBRvB .vA is a partition of
R. Thus, the constraint

∑
r∈R qr =

∑
vB

∑
r∈RvB.vA

qr =∑
vB
pvB .vA = 1 is implied by the other constraints in the

LP, and therefore, is not explicitly added to the LP.

3.1. Pruning the LP

Let h : VA 7→ VB denote any function from VA to VB . We
will call these functions hyperarcs because they correspond
to hyperarcs in appropriately defined hypergraphs, and also
as a short hand for these special functions. Let Rh = {r :
FB(VA = vA, r) = h(vA), ∀vA ∈ {0, 1}|A|} denote the
set of r values which are consistent with the hyperarc h. The
hyperarc h is valid only if Rh 6= ∅. Let H denote the set of
valid hyperarcs and let {qh : h ∈ H} denote a probability
measure over valid hyperarcs. Then the LP to compute the

lower bound αL in terms of variables {qh} is given by

minq
∑
h∈H c

L
hqh

s.t.
∑
{h∈H:h(vA)=vB} qh = pvB .vA ,∀vA, vB

q ≥ 0,
(9)

where cLh = 1{Rh ⊆ RQ}. Similarly, the LP for the upper
bound αU can be reformulated as:

maxq
∑
h∈H c

U
h qh

s.t.
∑
{h∈H:h(vA)=vB} qh = pvB .vA ,∀vA, vB

q ≥ 0
(10)

where cUh = maxr∈Rh
1{r ∈ RQ} = 1{Rh ∩ RQ 6= ∅}.

Both reformulations have exponentially fewer variables;
however, they are useful only if the set of valid hyperarcs
H and the corresponding costs cLh = 1{Rh ⊆ RQ} and
cUh = 1{Rh ∩RQ 6= ∅} can be efficiently computed, i.e. in
particular, without iterating over R.

3.1.1. CHARACTERIZING VALID HYPERARCS

We now show how to efficiently check the validity of hyper-
arc h. We begin by defining functional consistency.

Definition 3.3 (Functional Consistency). For j ∈ B, let
Pj ⊆ N denote the indices of pa(Vj). A hyperarc h is
functionally consistent if for all a, b ∈ {0, 1}|N | such that
h(aA) = aB and h(bA) = bB , and for all j ∈ B,

aPj = bPj =⇒ aj = bj

A hyperarc h partially specifies a function mapping pa(Vj)
to Vj . Functional consistency ensures this partial specifica-
tion is consistent with some binary function pa(Vj)→ Vj .
The following result characterizes valid hyperarcs without
producing a r-value which validates it.

Theorem 3.4 (Validity of h). A hyperarc h is valid if, and
only if, h is functionally consistent.

Proof. It is clear that if a hyperarc is valid, then it is func-
tionally consistent. Suppose a hyperarc is functionally con-
sistent. Then, for each Vj ∈ VB , the partial specification of
a mapping from pa(Vj) to Vj implied by the hyperarc h is
consistent with some binary function pa(Vj)→ Vj . Since,
for each Vj ∈ VB , rVj

indexes the set of all possible func-
tions pa(Vj)→ Vj , it follows that the set of r-values which
are consistent with the mapping h i.e. Rh is non-empty.
Equivalently h is valid.

The first two columns of Table 1 compare |R| with the
maximum possible number of hyperarcs 2|B|2

|A|
for five

different causal inference problems (details in Appendix).
Note that the reduction in size can be several orders of
magnitude, and it increases with the complexity of the causal
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Graph |R| 2|B|
2|A|

|H|
Ex A 1.3× 108 1.0× 106 2.3× 103

Ex B 4.2× 106 1.0× 106 7.1× 104

Ex C 4.2× 106 1.0× 106 4.4× 104

Ex D 6.3× 1057 1.7× 107 9.4× 106

Ex E 3.2× 1032 1.7× 107 9.4× 106

Table 1: LP pruning

graph, see e.g. Examples D and E. Thus, there is a very
significant reduction in size even if all hyperarcs are valid.
The last column in Table 1 lists |H|. Considering only the
valid hyperarcs further decreases the size of the LP by at
least 1 order of magnitude, and sometimes more. The LPs
corresponding to Examples B and C can be solved without
pruning; however, the LP corresponding to Example A can
only be solved after pruning the problem, and the LPs for
Examples D and E are too large even after pruning. In
Section 4 we propose a greedy heuristic to compute bounds
for these problems.

Next, we show how to efficiently compute cLh = 1{Rh ⊆
RQ} and cUh = 1{Rh ∩RQ 6= ∅}.

3.1.2. EFFICIENTLY COMPUTING cLh

Recall that in Section 2.2 we established that cLh for the
simple example can be efficiently computed by checking
whether h is completely consistent withQ. Here, we extend
that result to general causal graphs. Let IC ⊆ I denote the
indices of variables that are critical in the intervention i.e.
for each V ∈ VIC , there is a directed path from V to a vari-
able in VO in GI . Then the following result characterizes
complete consistency of conditional probabilities.

Lemma 3.5 (Complete Consistency of Probability). For
graphs satisfying Assumption 3.1 and queries satisfying
Assumption 3.2, the conditional probability pvB .vA is com-
pletely consistent with Q if and only if, vIC∩A = qIC∩A,
vIC∩B = qIC∩B , and vO = qO.

This result is analogous to the one for the simple example:
the conditional probability pvB .vA is completely consistent
with Q, if and only if, the variable assignments VA = vA
and VB = vB are consistent with the query. Next, we
show that a hyperarc h is completely consistent with the
query Q if and only if, there exists v ∈ {0, 1}|N | such
that h(vA) = vB and the conditional probability pvB .vA is
completely consistent with Q.

Theorem 3.6 (Complete Consistency of Hyperarc). For
graphs satisfying Assumption 3.1 and queries satisfying As-
sumption 3.2, a hyperarc h is completely consistent withQ if,
and only if, there exists v ∈ {0, 1}|N | such that h(vA) = vB ,
and the conditional probability pvB .vA is completely consis-

tent with Q.

To summarize, to compute cLh , it is sufficient to check if
h is completely consistent with Q, which can be easily
characterized without enumerating all the elements in R.

3.1.3. EFFICIENTLY COMPUTING cUh

We now show how to compute cUh = 1{Rh ∩ RQ 6= ∅}
using an efficient algorithm for checking Rh ∩ RQ 6= ∅.
This condition motivates the following definition for strict
inconsistency.

Definition 3.7 (Strict Inconsistency). A hyperarc h is said
to strictly inconsistent with the query Q if Rh ∩ RQ = ∅.
The conditional probability pvB .vA is strictly inconsistent
with the query Q if RvB .vA ∩RQ = ∅.

Hence, cUh = 0, if and only if, h is strictly inconsistent with
Q. The following result characterizes strict inconsistency
for conditional probabilities.

Theorem 3.8 (Strict Inconsistency of Probability). For
graphs satisfying Assumption 3.1 and queries satisfying As-
sumption 3.2, the conditional probability pvB .vA is strictly
inconsistent with the query Q, if and only if, vIC∩A =
qIC∩A, vIC∩B = qIC∩B , and vO 6= qO.

Thus, the conditional probability pvB .vA is strictly incon-
sistent with Q if and only if, the variable assignment
VA = vA, VB = vB is inconsistent with the query. Next,
we show that a hyperarc h is strictly inconsistent with the
query Q if, and only if, there exists v ∈ {0, 1}|N | such
that h(vA) = vB , and the conditional probability pvB .vA is
strictly inconsistent with Q.

Theorem 3.9 (Strict Inconsistency of Hyperarc). For
graphs satisfying Assumption 3.1 and queries satisfying As-
sumption 3.2, the hyperarc h is strictly inconsistent withQ if,
and only if, there exists v ∈ {0, 1}|N | such that h(vA) = vB
and the probability pvB .vA is strictly inconsistent with Q.

To summarize, to compute cUh , it is sufficient to check if
h is strictly inconsistent with Q, and that can be easily
characterized without enumerating all the elements in R.

3.2. Bounds in Closed Form

Recall that for the class of problems identified by (Sachs
et al., 2020), each variable in VA is either in the intervention,
or redundant for the intervention. Now we show that for
a subclass of problems which satisfy Assumption 3.10 i.e.
where the entire set A is involved in the intervention and
all intervention variables are critical, the bounds can be
computed in closed form.

Assumption 3.10. The query Q = P(VO = qO | VI = qI)
satisfies the following:
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S1 A ⊆ I , i.e. the entire set A is involved in the interven-
tion,

S2 there is a directed path from every V ∈ VI to some
variable in VO in GI , i.e. all intervention variables are
critical, or equivalently IC = I .

Theorem 3.11 (Lower Bound for Special Class of Prob-
lems). Suppose the query Q satisfies S1 and S2. Then the
lower bound αL is equal to the sum of the conditional prob-
abilities that are completely consistent with Q.

Proof. Theorem 3.6 implies a hyperarc h is completely
consistent with Q if, and only if, there exists v = (vA, vB)
such that h(vA) = vB , vA∩IC = qA∩IC , vB∩IC = qB∩IC ,
and vO = qO. Therefore, for any Q satisfying S1 and S2,
it follows that a hyperarc h is completely consistent with
Q if, and only if, there exists vB such that h(qA) = vB ,
vB∩I = qB∩I , and vO = qO. Thus, it follows that

αL =
∑

{h∈H:cLh=1}

qh

=
∑

{h∈H: h is completely consistent withQ}

qh (11)

=
∑

{vB :vI∩B=qI∩B ,vO=qO}

∑
{h∈H:h(qA)=vB}

qh(12)

=
∑

{vB :vI∩B=qI∩B ,vO=qO}

pvB .qA (13)

where (11) follows from Definition 2.1, (12) from the dis-
cussion above, and (13) from the constraints of the pruned
LP. By Lemma 3.5, (13) is the sum of the probabilities
completely consistent with Q.

Theorem 3.12 (Upper Bound for Special Class of Prob-
lems). Suppose the query Q satisfies S1 and S2. Then the
upper bound αU is given by the difference of the sum of the
conditional probabilities which are strictly inconsistent with
Q and 1.

Proof. Theorem 3.9 implies that a hyperarc h is strictly
inconsistent withQ if, and only if, there exists v = (vA, vB)
such that h(vA) = vB , vA∩IC = qA∩IC , vB∩IC = qB∩IC ,
and vO 6= qO. Therefore, for any Q satisfying S1 and
S2, it follows that a hyperarc h is strictly inconsistent with
Q if, and only if, there exists vB such that h(qA) = vB ,

vB∩I = qB∩I , and vO 6= qO. Thus, it follows that∑
h∈H:cUh =0

qh

=
∑

{h∈H: h is strictly inconsistent withQ}

qh (14)

=
∑

{vB :vB∩I=qB∩I ,vO 6=qO}

∑
{h∈H:h(qA)=vB}

qh (15)

=
∑

{vB :vB∩I=qB∩I ,vO 6=qO}

pvB .qA (16)

where (14) follows from Definition 3.7, (15) from the discus-
sion above, and (16) from the constraints of the pruned LP.
The result follows by the fact that αU =

∑
h∈H:cUh =1 qh =

1−
∑
h∈H:cUh =0 qh.

3.2.1. EXAMPLE

An important example of the class of problems that satisfy
S1 and S2 is a causal inference problem where multiple
confounded treatments influence an outcome (Ranganath
& Perotte, 2019; Janzing & Schölkopf, 2018; D’Amour,
2019; Tran & Blei, 2017). For example, the setting where
the treatments are medications and procedures, and the out-
come is the progression of the disease in the patient. In
this case, there are many confounders which influence both
the prescribed treatments and outcome. Some of these con-
founders can be measured, e.g. the pre-existing conditions
of the patient, and others are unobserved, e.g. the treatment
preferences of the attending doctor (Wang & Blei, 2019a).
See Figure 3 for the causal graph of the patient response
where

• Ci indicates the presence of pre-existing condition i in
the patient

• UA is an unobserved confounder (e.g. a patient charac-
teristic) which influences the presence of pre-existing
conditions

• Ti, i = 1, . . . , 5, indicates whether the patient was
prescribed treatment i

• UB is an unobserved confounder which influences both
the prescribed treatments and outcome (e.g. doctor
biases, treatment preferences)

• Y indicates the progression of the disease in the patient.
Y = 0 indicates that the disease is mild, and Y = 1
that the disease is lethal.

Wang & Blei (2019a; 2021) introduced the deconfounder
as a method to predict the expected value of the outcome
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T1 T2 T3 T4 T5

Y

C1 C2

UB

UA

Figure 3: Example of G where VA = {C1, C2} and VB =
{T1, T2, T3, T4, T5, Y }

variable under treatment interventions when multiple con-
founded treatments influence an outcome. One of the lim-
itations of the deconfounder approach is that it cannot be
applied in a setting where the treatment variables have
causal relationships between them (Ogburn et al., 2019;
Wang & Blei, 2019b; Imai & Jiang, 2019). For example, in
our context, the side effects of one treatment can influence
the prescription of another treatment (Ogburn et al., 2019),
as implied by arrows T1 → T3, T2 → T3, T3 → T4 and
T3 → T5 in Figure 3. The deconfounder cannot be used
for inference in this setting. However, since the entire set
VA = {C1, C2} is involved in the intervention, and every
node intervened upon is a parent of Y , Theorems (3.11)
and (3.12) can be used to compute bounds for the query
E[Y |do(T = t, C1 = c1, C2 = c2)] in closed form. In
particular,

αL = P(T = t, Y = 1|C1 = c1, C2 = c2)

αU = 1− P(T = t, Y = 0|C1 = c1, C2 = c2)

4. Greedy Heuristic
For problems where even the pruned LPs are intractable, and
the conditions in Section 3.2 are not satisfied, we propose
Algorithm 1 as a greedy heuristic to compute the bounds
αL and αU . This heuristic is motivated by the duals of LPs
(9) and (10), which are given by:

αL = maxλ
∑

(vA,vB)∈{0,1}|A|×{0,1}|B| pvB .vAλvB .vA
s.t.

∑
vA∈{0,1}|A| λh(vA).vA ≤ cLh

(17)

αU = minλ
∑

(vA,vB)∈{0,1}|A|×{0,1}|B| pvB .vAλvB .vA
s.t.

∑
vA∈{0,1}|A| λh(vA).vA ≥ cUh

(18)

We utilize the fact that in our numerical experiments, we
observed that for both dual LPs, there was always an opti-
mal solution that only took values in the set {−1, 0, 1}, and
the fact that in the symbolic bounds introduced by Balke &
Pearl (1994) (see, also (Zhang & Bareinboim, 2017; Pearl,
2009; Sjölander et al., 2014; Sachs et al., 2020)) the con-
straints were combined using coefficients taking values in
{−1, 0, 1}. In fact, we believe that the following conjecture
is true.
Conjecture 4.1 (Dual Integrality). The dual LPs in (17)
and (18) have optimal solutions which only take values in
{−1, 0, 1}.

Graph
% with
αG
L = αL

% with
αG
U = αU

% with
εL ≤ 0.1

% with
εU ≤ 0.1

Ex A 100 100 100 100
Ex B 99 86 99 94
Ex C 100 84 100 86

Table 2: Greedy Solution vs Optimal Solution

Algorithm 1 Greedy Heuristic
Let the permutation which sorts the conditional probabilities
in descending order be i1, . . . , i2|N| .
Function GreedyLowerBound():

Initialize λ = −1.
for j = 1, .., 2|N | do

while λ is feasible do
λij = λij + 1

Function GreedyUpperBound():
Initialize λ = 1.
for j = 1, .., 2|N | do

while λ is feasible do
λij = λij − 1

We benchmark the greedy heuristic by computing bounds
for 100 instances of each of the examples in Appendix A
which do not satisfy the conditions in Section 3.2. Table
2 reports the results for Examples A, B and C for which
the LP can be solved. We see that bounds from the greedy
heuristic matches the LP bounds in most instances for these
problems. Recall that one can compute the optimal bounds
for Example A only after pruning the LP. In Table 2, εL =

1− αG
L

αL
and εU =

αG
U

αU
− 1 denote the relative errors of the

lower and upper bounds, respectively. We see that the lower
bound is always within 10% of the true value, whereas the
upper bound is within 10% for at least 86% of the cases. See
Appendix for the empirical distribution function of errors.

Furthermore, the greedy heuristic yields non-trivial bounds
for Examples D and E, where the corresponding pruned LP
is too large to be solved to optimality (see Table 3).
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Graph αGL αGU

Ex D 0.92 0.93
Ex E 0.87 0.98

Table 3: Greedy Solution for Large Problems

5. Conclusion
In this work, we show how to leverage structural properties
of the LPs corresponding to causal inference problems to sig-
nificantly reduce their size. We also show how to construct
these LPs efficiently. As a direct consequence of our results,
bounds for causal queries can be computed for graphs of
much larger size. We show that there are examples of causal
inference problems for which bounds could be computed
only after the pruning we introduce. Our structural results
also allow us to characterize a set of causal inference prob-
lems for which the bounds can be computed in closed form.
This class includes as a special case extensions of problems
considered in the multiple causes literature (Wang & Blei,
2021; Ranganath & Perotte, 2019; Janzing & Schölkopf,
2018; D’Amour, 2019; Tran & Blei, 2017).

We are currently considering two extensions. The con-
straints in the dual LPs are all packing constraints (for αL)
or covering constraints (for αU ); however, the variables are
free. However, if Conjecture 4.1 is true, the feasible set of
the LP can be assumed to be bounded. This could potentially
be used to compute fast approximation algorithms (Bien-
stock & Iyengar, 2006).

Note that here we do not allow the query to contain obser-
vations about the unit under consideration. We can show
that bounds for queries containing observations can be com-
puted by solving fractional LPs (Bitran & Novaes, 1973).
These fractional LPs are special because the denominator
is restricted to be non-negative. This allows us to homoge-
nize the problem into a LP with one additional constraint.
Therefore, we expect that the structural results presented
here will extend to the setting where the query contains an
observation.
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A. Examples of Causal Inference Problems
In this section, we report the causal graph structure and the data generation process for the 5 examples in Table 1.

Example A

The causal graph for this example is display in Figure 4a. The query is: P (Y = 1|do(X2 = 1, Z1 = 1, Z2 = 1)), and data
generating process used to generate the input data is given by

UA ∼ N(0, 1)

UB ∼ N(0, 1)

Z1 ∼ Bernoulli(logit−1(UA))
Z2 ∼ Bernoulli(logit−1(UA))
S1 ∼ Bernoulli(logit−1(UB))
X1 ∼ Bernoulli(logit−1(UB + S1))

S2 ∼ Bernoulli(logit−1(S1 + UB +X1 + Z2))

X2 ∼ Bernoulli(logit−1(S2 + UB + Z1 + Z2))

Y ∼ Bernoulli(logit−1(UB + S2 +X2 + Z2))

After sampling UA, UB , Z1, Z2 we compute

P(Y,X2, S2, X1, S1|Z2, Z1) = P(Y |UB , S2, X2, Z2)P(X2|S2, Z1, Z2, UB)P(S2|Z2, UB , S1, X1)P(X1|S1, UB)P(S1|UB)

that gives input distribution.

Example B

The causal graph for this example is in Figure 4b and the query is: P (Y = 1|do(A = 1, B = 1, C = 1, F = 1)). The data
generating process used to generate the input information is as follows:

UA ∼ N(0, 1)

UB ∼ N(0, 1)

C ∼ Bernoulli(logit−1(UA))
F ∼ Bernoulli(logit−1(UA))
A ∼ Bernoulli(logit−1(C + F + UB))

B ∼ Bernoulli(logit−1(C + F + UB))

D ∼ Bernoulli(logit−1(A+ UB))

E ∼ Bernoulli(logit−1(A+B + UB))

Y ∼ Bernoulli(logit−1(UB +D + C + E))

After sampling UA, UB , C, F we compute

P(A,B,D,E, Y |C,F ) = P(Y |UB , D,C,E)P(E|A,B,UB)P(D|A,UB)P(B|C,F, UB)P(A|C,F, UB).

that gives the input distribution.

Example C

The causal graph for this example is in Figure 4c and the query is: P (Y = 1|do(M1 = 1,W1 = 1,W3 = 1)). The data
generating process used to generate the input information is as follows:
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Figure 4: Examples of Causal Inference Problems
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UA ∼ N(0, 1)

UB ∼ N(0, 1)

W1 ∼ Bernoulli(logit−1(UA))
W3 ∼ Bernoulli(logit−1(UA))
T ∼ Bernoulli(logit−1(W1 +W3 + UB))

M1 ∼ Bernoulli(logit−1(T +W3 + UB))

M2 ∼ Bernoulli(logit−1(M1 +W1 + UB))

Y ∼ Bernoulli(logit−1(M2 + UB))

X3 ∼ Bernoulli(logit−1(UB + Y +M1 + T ))

After sampling UA, UB ,W1,W3 we compute

P(T,M1,M2, X3, Y |W1,W3) = P(X3|UB , Y,M1, T )P(Y |M2, UB)P(M2|M1,W1, UB)
P(M1|T,W3, UB)P(T |W1,W3, UB)

that gives the input distribution.

Example D

The causal graph for this example is in Figure 4d and the query is: P (Y = 1|do(D = 1, E = 1, F = 1)). The data
generating process used to generate the input information is as follows:

UA ∼ N(0, 1)

UB ∼ N(0, 1)

F ∼ Bernoulli(logit−1(UA))
E ∼ Bernoulli(logit−1(UA))
A ∼ Bernoulli(logit−1(F + E + UB))

B ∼ Bernoulli(logit−1(E + F +A+ UB))

C ∼ Bernoulli(logit−1(B + E + F +A+ UB))

D ∼ Bernoulli(logit−1(B + E + F +A+ C + UB))

Y ∼ Bernoulli(logit−1(E +D + UB))

G ∼ Bernoulli(logit−1(A+B + C +D + Y + E + F + UB))

After sampling UA, UB , E, F we compute

P(G, Y,D,C,B,A|E,F ) = P(G|UB , A,B,C,D, Y,E, F )P(Y |E,D,UB)P(D|B,E, F,A,C, UB)
P(C|B,E, F,A,UB)P(B|E,F,A,UB)P(A|E,F, UB)

that gives the input distribution.
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Example E

The causal graph for this example is in Figure 4e and the query is: P (Y = 1|do(A = 1, B = 1, C = 1, F = 1)). The data
generating process used to generate the input information is as follows:

UA ∼ N(0, 1)

UB ∼ N(0, 1)

A ∼ Bernoulli(logit−1(UA))
B ∼ Bernoulli(logit−1(UA))
C ∼ Bernoulli(logit−1(A+B + UB))

D ∼ Bernoulli(logit−1(A+ C +B + UB))

E ∼ Bernoulli(logit−1(A+B + UB))

F ∼ Bernoulli(logit−1(A+ C +B +D + E +G+ UB))

G ∼ Bernoulli(logit−1(UB +A+B + C +D))

Y ∼ Bernoulli(logit−1(UB +A+ E +B + F ))

After sampling UA, UB , A,B we compute

P(C,D,E, F,G, Y |A,B) = P(C|A,B,UB)P(D|A,C,B,UB)P(E|A,B,UB)P(F |A,C,B,D,E,G,UB)

P(G|A,B,C,D,UB)P(Y |UB , A,E,B, F )

that gives the input distribution.

B. Proof of results
Lemma B.1 (Complete Consistency of Probability). For graphs satisfying Assumption 3.1 and queries satisfying Assump-
tion 3.2, the conditional probability pvB .vA is completely consistent withQ if and only if, vIC∩A = qIC∩A, vIC∩B = qIC∩B ,
and vO = qO.

Proof. Suppose pvB .vA satisfies vIC∩A = qIC∩A, vIC∩B = qIC∩B and vO = qO. Then, every r ∈ RvB .vA maps VIC = qIC
to VO = qO, and thus, r ∈ RQ i.e. RvB .vA ⊆ RQ. Hence, pvB .vA is completely consistent with Q. To see that this is the
only form a completely consistent probability can take, consider two cases:

• Suppose either vIC∩A 6= qA∩IC or vIC∩B 6= qB∩IC i.e. the value of VIC in pvB .vA is not qIC . Since R is exhaustive,
there exists r such that:

– r maps VA = vA to VB = vB i.e. r ∈ RvB .vA . In particular, r maps VIC 6= qIC to VO = qO.
– r maps VIC = qIC to VO 6= qO i.e. r 6∈ RQ

Hence, there exists r such that r ∈ RvB .vA , but r 6∈ RQ i.e. pvB .vA is not completely consistent.

• Suppose vO 6= qO. Then every r ∈ RvB .vA maps VIC = qIC to VO 6= qO, and therefore, r 6∈ RQ. Hence pvB .vA is not
completely consistent.

Theorem 3.6 (Complete Consistency of Hyperarc). For graphs satisfying Assumption 3.1 and queries satisfying Assump-
tion 3.2, a hyperarc h is completely consistent with Q if, and only if, there exists v ∈ {0, 1}|N | such that h(vA) = vB , and
the conditional probability pvB .vA is completely consistent with Q.

Proof. Suppose there exists v ∈ {0, 1}|N | such that h(vA) = vB , and pvB .vA is completely consistent with Q. Since
Rh ⊆ RvB .vA , and pvB .vA is completely consistent with Q, Rh ⊆ RQ i.e. h is completely consistent with Q.
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Suppose h is completely consistent with Q, but there does not exist v ∈ {0, 1}|N | which satisfies Theorem 3.6. That is,
for all v ∈ {0, 1}|N | such that h(vA) = vB and vIC∩A = qIC∩A, we have either vIC∩B 6= qIC∩B or vO 6= qO. Since R is
exhaustive, there exists r ∈ R such that:

(i) r maps VA = vA to VB = vB for all (vA, vB) such that h(vA) = vB i.e. r ∈ Rh

(ii) r maps VIC∩A = qIC∩A, VIC∩B = qIC∩B to VO 6= qO.

Hence h is not completely consistent with Q, a contradiction.

Theorem 3.8 (Strict Inconsistency of Probability). For graphs satisfying Assumption 3.1 and queries satisfying Assump-
tion 3.2, the conditional probability pvB .vA is strictly inconsistent with the query Q, if and only if, vIC∩A = qIC∩A,
vIC∩B = qIC∩B , and vO 6= qO.

Proof. Suppose pvB .vA satisfies vIC∩A = qIC∩A, vIC∩B = qIC∩B and vO 6= qO. Then, any r ∈ RvB .vA maps VIC = qIC
to VO 6= qO, and thus, r 6∈ RQ i.e. RvB .vA ∩RQ = ∅. Hence, pvB .vA is strictly inconsistent with Q. To see that this is the
only form a strictly inconsistent probability can take, consider two cases:

• Suppose either vIC∩A 6= qA∩IC or vIC∩B 6= qB∩IC i.e. the value of VIC in pvB .vA is not qIC . Since R is exhaustive,
there exists r such that:

– r maps VA = vA to VB = vB i.e. r ∈ RvB .vA . In particular, r maps VIC 6= qIC to VO = qO.
– r maps VIC = qIC to VO = qO i.e. r ∈ RQ

Hence, there exists r such that r ∈ RvB .vA , but r ∈ RQ i.e. pvB .vA is not strictly inconsistent.

• Suppose vO = qO. Then every r ∈ RvB .vA maps VIC = qIC to VO = qO, and therefore, r ∈ RQ. Hence pvB .vA is not
strictly inconsistent.

Theorem 3.9 (Strict Inconsistency of Hyperarc). For graphs satisfying Assumption 3.1 and queries satisfying Assumption 3.2,
the hyperarc h is strictly inconsistent with Q if, and only if, there exists v ∈ {0, 1}|N | such that h(vA) = vB and the
probability pvB .vA is strictly inconsistent with Q.

Proof. Suppose there exists v ∈ {0, 1}|N | such that h(vA) = vB , and pvB .vA is strictly inconsistent with Q. Since
Rh ⊆ RvB .vA , and pvB .vA is strictly inconsistent with Q, Rh ∩RQ = ∅ i.e. h is strictly inconsistent with Q.

Suppose h is strictly inconsistent with Q, but there does not exist v ∈ {0, 1}|N | which satisfies Theorem 3.9. That is, for
all v ∈ {0, 1}|N | such that h(vA) = vB and vIC∩A = qIC∩A, we have either vIC∩B 6= qIC∩B or vO = qO. Since R is
exhaustive, there exists r ∈ R such that:

(i) r maps VA = vA to VB = vB for all (vA, vB) such that h(vA) = vB i.e. r ∈ Rh

(ii) r maps VIC∩A = qIC∩A, VIC∩B = qIC∩B to VO = qO.

Hence h is not strictly inconsistent with Q, a contradiction.
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C. Empirical CDF for Error of Greedy Heuristic

(a) Empirical CDF of the Relative Error of
αU for Example B

(b) Empirical CDF for Relative Error of αL

for Example B
(c) Empirical CDF of the Relative Error of
αU for Example C

Figure 5: Empirical Distribution Functions of Errors for Examples


