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Abstract

We consider a fair representation learning per-
spective, where optimal predictors, on top of the
data representation, are ensured to be invariant
with respect to different sub-groups. Specifically,
we formulate this intuition as a bi-level optimiza-
tion, where the representation is learned in the
outer-loop, and invariant optimal group predictors
are updated in the inner-loop. Moreover, the pro-
posed bi-level objective is demonstrated to fulfill
the sufficiency rule, which is desirable in various
practical scenarios but was not commonly studied
in the fair learning. Besides, to avoid the high
computational and memory cost of differentiating
in the inner-loop of bi-level objective, we propose
an implicit path alignment algorithm, which only
relies on the solution of inner optimization and the
implicit differentiation rather than the exact opti-
mization path. We further analyze the error gap
of the implicit approach and empirically validate
the proposed method in both classification and re-
gression settings. Experimental results show the
consistently better trade-off in prediction perfor-
mance and fairness measurement.

1. Introduction
Machine learning has been widely used in the real world
decision-making practice such as job candidate screening
(Raghavan et al., 2020). However, it has been observed
that learning algorithms treated some groups of population
unfavorably, for example, predicting the likelihood of crime
on the grounds of ethnicity, gender or age (Hardt et al.,
2016). To that end, algorithmic fairness, which aims to
mitigate the prediction bias for the protected feature such as
gender, has recently received tremendous attentions.
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With the advancements of deep learning (LeCun et al.,
2015), fair representation learning (Zemel et al., 2013) has
been recently highlighted. Specifically, the learned fair
representation can easily transfer the unbiased prior knowl-
edge to various downstream learning-tasks. For example, in
language understanding, the fair embedding provides both
useful and unbiased representation for different goals such
as translation or recommendation (Chang et al., 2019; Etha-
yarajh, 2020). Besides, it has been investigated in other
scenarios such as computer vision (Kehrenberg et al., 2020)
and intelligent health (Fletcher et al., 2021).

Typically, fair representation learning is realized by intro-
ducing fair constraints during the training. Consequently, a
number of fair notions for various goals have been proposed.
Specifically, most existing approaches in classification or re-
gression use independence or separation rule (see Sec.2 and
references therein) (Madras et al., 2018; Song et al., 2019;
Chzhen et al., 2020). However, in a variety of applications,
independence or separation are not always appropriate, and
other fair notions such as sufficiency rule (Chouldechova,
2017) are preferred. Intuitively, given the output of the
algorithm Ŷ , the sufficiency rule ensures the conditional
expectation of label E[Y |Ŷ ] is invariant across the different
sub-groups (see Sec.2 for the formal definition).

In practice, the negligence of sufficiency rule can lead to
the significant bias in intelligent health. For example, health
systems rely on commercial algorithms to identify and as-
sist patients with complex health needs. Such algorithms
output a score of healthcare needs, where a higher score
indicates that the patient is sicker and requires additional
care. Notably, Obermeyer et al. (2019) reveals a industry-
wide used algorithm that affects millions of patients, ex-
hibits significant racial bias. Under the same predicted score
Ŷ = t, Black patients are considerably sicker than White
patients (Eblack[Y |Ŷ = t] > Ewhite[Y |Ŷ = t]). Obermeyer
et al. (2019) further points out that eliminating this disparity
would increase the percentage of Black patients receiving
additional healthcare from 17.7% to 46.5%.

From the algorithmic perspective, sufficiency rule is gen-
erally non-compatible to independence or separation, as
demonstrated in Sec.2, indicating that existing fair algo-
rithms for independence or separation do not improve or
even worsen the sufficiency rule. Therefore fair represen-
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Figure 1. Illustration of explicit and implicit path. (a) Unfair representation leads to different optimization paths and non-invariant optimal
predictors on the latent space Z . (b) The fair representation learning ensures the invariant optimal predictor w.r.t. different sub-groups
on Z (encouraging h⋆

0 = h⋆
1). Since the gradient based approach is adopted to optimize h, the explicit path alignment aims to learn a

representation λ(x) to enforce the identical optimization path (i.e, identical blue and red curve) w.r.t. h. (c) The proposed implicit path
alignment only requires the last iteration point and approximate the gradient w.r.t. λ from the last update of h (orange arrow).

tation learning w.r.t. the sufficiency rule is important and
promising in both practice and algorithmic development.

In this paper, we propose a framework to address the suffi-
ciency rule via the following principle: given a fixed repre-
sentation function, if the optimal predictor that learned on
the embedding space are invariant to different sub-groups,
then the corresponding representation function is fair. The
principle is further illustrated in Fig. 1(a): when the rep-
resentation function λ : X → Z is unfair and we adopt
gradient descent to learn the predictor h : Z → R. The
optimal predictors of different sub-groups (blue, red) are
not invariant, yielding biased predictions. Intuitively, the
optimal predictor for each subgroup approximates the con-
ditional expectation, which encourages the sufficiency. We
will justify such an principle ensures that learned repre-
sentation could satisfy the sufficiency rule under proper
assumptions, showing in Proposition 3.1.

The aforementioned principle can be naturally formulated
as a bi-level optimization problem, where we aim to ad-
just the representation λ (in the outer-loop) to satisfy the
invariant optimal predictor h (in the inner-loop). Based on
this, when we adopt the gradient-based approach in solv-
ing the bi-level objective, a straightforward solution is to
learn the representation λ to fulfill the identical explicit
gradient-descent directions in learning optimal predictor
h⋆ of different groups, shown in Fig. 1(b). Clearly, if the
inner gradient descent step of each sub-group is identical,
their final predictors (as the approximation of h⋆) will be
surely invariant. However, the corresponding algorithmic
realization is challenging in deep learning: 1) It requires
storing the whole gradient steps, which induces a high mem-
ory burden. 2) the embedding function λ is optimized via
backpropagation from the whole gradient optimization path,
which induces a high computational complexity.

To address this, we propose an implicit path alignment,
shown in Fig. 1(c). Namely, we only consider the final
(t-th) update of the predictor h(t), then we update represen-
tation function λ by approximating its gradient at point h(t)

through the implicit function (Bengio, 2000). By using the

gradient approximation, we do not need to store the whole
gradient steps and conduct the backpropagation through the
entire optimization path. Overall, contributions in this paper
are as follows:

Fair representation learning for the sufficiency rule The
proposed fair-representation approach is proved to satisfy
the sufficiency rule in both classification and regression. We
also find such a criteria is intrinsically consistent with the re-
cent proposed Invariant Risk Minimization (Arjovsky et al.,
2019; Bühlmann, 2020), which aims to preserve the invari-
ant correlations between the embedding (or representation)
and true label. Intuitively, if such correlations are robust
and not influenced by the specific sub-group, the learned
representation is somehow fair.

Efficient algorithm We propose an implicit path alignment
algorithm to learn the fair representation, which address the
prohibitive memory and computational cost in the original
bi-level objective. We analyze the approximation error gap
of the proposed implicit algorithm, which induces a trade-
off between the correct gradient estimation and fairness.

Improved fairness in classification and regression We
evaluate the implicit algorithm in classification and regres-
sion with tabular, computer vision and NLP datasets, where
the implicit algorithm effectively improves the fairness.

2. Sufficiency rule
We denote X ∈ X as the input, Y ∈ Y as the ground
truth label, and Ŷ ∈ Y as algorithm’s output. Following
the previous work in fair representation learning (Madras
et al., 2018), we consider binary protected feature or two
sub-groups with corresponding distributions D0 and D1.
Then according to (Liu et al., 2019), the sufficiency rule is
defined as:

ED0
[Y |Ŷ = t] = ED1

[Y |Ŷ = t], ∀t ∈ Y (1)

Eq.(1) shows that the conditional expectation of ground truth
label Y are identical for D0, D1, given the same prediction
output t. Based on Eq.(1), we propose the sufficiency gap



Fair Representation Learning through Implicit Path Alignment

as the metric to measure the fairness. Since we aim to
evaluate this in both binary classification (Y ∈ {−1, 1})
and regression (Y ∈ R), the sufficiency gaps are separately
defined.

Sufficiency gap in binary classification Based on the
sufficiency rule, the sufficiency gap in binary classification
is naturally defined as:

∆SufC =
1

2

∑
y∈{−1,1}

|D0(Y = y|Ŷ = y)−D1(Y = y|Ŷ = y)|

∆SufC ∈ [0, 1] encourages two sub-groups with identical
Positive predicted value (PPV) and Negative predicted value
(NPV). To better understand this metric, consider the exam-
ple of healthcare system, which outputs only binary score:
High Risk or Low Risk. Obermeyer et al. (2019) essen-
tially revealed Dblack(Y = High Risk|Ŷ = Low Risk) >
Dwhite(Y = High Risk|Ŷ = Low Risk): the severity of ill-
ness in Black patients is actually underestimated. Thus if
∆SufC is small, the racial discrimination will be remedied.

Sufficiency gap in regression Based on (Kuleshov et al.,
2018), the sufficiency gap in regression is defined as:

∆SufR =

∫
t∈Y
|D0(Y ≤ t|Ŷ ≤ t)−D1(Y ≤ t|Ŷ ≤ t)|dt

An illustrative example depicts in Fig. 2. Specifically,
∆SufR ∈ [0, 1] is an approximation of |D0(Y = y|Ŷ =
y)− D1(Y = y|Ŷ = y)|, ∀y ∈ R, since the latter is diffi-
cult to estimate since Y is continuous. We also adopt the
healthcare example to understand this metric: assuming the
health system outputs a real-value healthcare score Ŷ = t
(higher indicates sicker), Obermeyer et al. (2019); Sjoding
et al. (2020) observed Dblack(Y > t|Ŷ ≤ t) > Dwhite(Y >
t|Ŷ ≤ t). Namely, for all the patients with the predicted
healthcare score lower than t, the actual sicker proportion
(Y > t) in Black patients is significantly higher than White
patients. Therefore a small ∆SufR suggests an improved
disparity w.r.t. the sufficient rule.

Relation to other fair rules We briefly compare the Suf-
ficiency rule with widely adopted Independence and Separa-
tion rule in binary classification. The detailed justifications
and comparisons are shown in Appendix.

Independence rule is defined as:

ED0 [Ŷ ] = ED1 [Ŷ ],

In binary classification, the Independence rule is also re-
ferred as demographic parity (DP) (Zemel et al., 2013). We
can further justify that ifD0(Y = y) ̸= D1(Y = y) (i.e, dif-
ferent label distribution in the sub-groups), the Sufficiency
and Independence rule cannot both hold.
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Figure 2. Illustrative example of Sufficiency gap (∆SufR) in re-
gression

Separation Rule is defined as:

ED0
[Ŷ |Y = t] = ED1

[Ŷ |Y = t], ∀t ∈ Y

In binary classification, the Separation rule is also denoted
as Equalized Odds (EO) (Hardt et al., 2016). Barocas et al.
(2019) further justified that if D0(Y = y) ̸= D1(Y = y)
and the joint distribution of (Y, Ŷ ) has positive probability
in D0,D1, the Sufficiency and Separation rule cannot both
hold.

3. Fair representation learning as a bi-level
optimization

We denote the representation function λ that maps the input
X into the latent variable Z ∈ Z , the prediction function h
such that h : Z → R for regression and h : Z → {−1, 1}
for binary classification. We denote the prediction loss as ℓ,
the prediction loss on sub-group D0,D1 is expressed as:

L0(h, λ) = E(x,y)∼D0
ℓ(h ◦ λ(x), y)

L1(h, λ) = E(x,y)∼D1
ℓ(h ◦ λ(x), y)

According to the intuition, we aim to solve the following
bi-level objective:

min
λ
L0(h

⋆
0, λ) + L1(h

⋆
1, λ) (Outer-Loop)

s.t. h⋆
0 = h⋆

1, (Inner-Loop)
h⋆
0 ∈ argmin

h
L0(h, λ), h

⋆
1 ∈ argmin

h
L1(h, λ).

In the outer-loop, we aim to find a representation function
λ for minimizing the prediction error, given the optimal
predictor (h⋆

0, h
⋆
1) on the embedding space Z . As for the

inner-loop, given a fixed representation λ, h⋆
0, h⋆

1 are the
optimal predictor for each sub-group. The constraints h⋆

0 =
h⋆
1 additionally encourage the invariant optimal predictors

from D0, D1.
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Relation to explicit path alignment In deep learning,
we adopt gradient-based approaches to minimize the loss,
therefore h⋆ in the inner-loop is approximated as h(t+1),
the t-th update in the gradient descent: h⋆

0 ≈ h(0) −∑
t∇hL0(h

(t), λ), h⋆
1 ≈ h(0) −

∑
t∇hL1(h

(t), λ), where
h(0) is the common initialization. Thus the invariant optimal
predictor is equivalent to:∑

t

∇hL0(h
(t), λ) =

∑
t

∇hL1(h
(t), λ).

The aforementioned equation suggests learning a representa-
tion λ that ensures the identical optimization path w.r.t. h for
each sub-group, which recovers the explicit path alignment.

Relation to Sufficiency rule We further demonstrate the
relation between the bi-level objective and Sufficiency rule.

Proposition 3.1. If we specify the prediction loss ℓ
as logistic regression loss in the classification log(1 +
exp(−yh(z))) with Y = {−1, 1} and the square loss in
the regression (h(z) − y)2 with Y ⊂ R. Then minimizing
the inner-loop loss is equivalent to:

ED0
[Y |Z = z] = ED1

[Y |Z = z],

ED0
[Y |Ŷ = h⋆(z)] = ED1

[Y |Ŷ = h⋆(z)]

where h⋆ = h⋆
0 = h⋆

1 and z = λ(x).

Proposition 3.1 demonstrates that the objective of inner-loop
loss fulfills the sufficiency rule in both binary classification
and regression.

4. Proposed Algorithms
We propose the implicit alignment in deep learning, where
λ and h are implemented by the neural network. We also
reformulate as the original objective through Lagrangian
relaxation:

min
λ
L0(h

⋆
0, λ) + L1(h

⋆
1, λ) +

κ

2
∥h⋆

0 − h⋆
1∥22

(Outer-Loop)

s.t. h⋆
0 ∈ argmin

h
L0(h, λ), h

⋆
1 ∈ argmin

h
L1(h, λ),

(Inner-Loop)

where the introduced κ > 0 is the coefficient to control the
fairness, with a sufficient large κ ensuring h⋆

0 ≈ h⋆
1. Then

we drive the approximated gradient w.r.t. λ, which contains
the following key elements.

Solving the inner optimization Given a fixed representa-
tion λ, we find hϵ

0, hϵ
1 such that:

∥h⋆
0 − hϵ

0∥ ≤ ϵ, ∥h⋆
1 − hϵ

1∥ ≤ ϵ,

where ϵ is the optimization tolerance. Besides, h⋆
1 and hϵ

1

are essentially the function of λ, i.e., hϵ
1 depends on the

predefined representation function λ. It is worth mentioning
that the optimization tolerance ϵ is realistic. E.g, consider
a fixed representation and one-layer predictor h0, h1, the
optimization will be convex.

Computing the gradient of λ Given the approximate solu-
tion hϵ

0, hϵ
1, we can compute the gradient w.r.t. λ (referred

as ˜grad(λ)) 1 in the outer-loop:

˜grad(λ) =∇λL0(h
ϵ
0, λ) +∇λL1(h

ϵ
1, λ)

(∇λh
ϵ
0)

T
(∇h0

L0(h
ϵ
0, λ) + κ(hϵ

0 − hϵ
1))

+ (∇λh
ϵ
1)

T
(∇h1

L1(h
ϵ
1, λ)− κ(hϵ

0 − hϵ
1)) .

Where∇h0
L0(h

ϵ
0, λ) is the partial derivative in the loss w.r.t.

the first term (about h0), evaluated at hϵ
0. Also∇λL0(h

ϵ
0, λ)

is the partial derivative w.r.t. the second term (about λ).

Implicit function for approximating the gradient In or-
der to compute ˜grad(λ) in autograd, we need to esti-
mate ∇λh

ϵ
0 and ∇λh

ϵ
1. We herein adopt the implicit func-

tion (Bengio, 2000) to approximate∇λh
ϵ
0, which has been

adopted in the hyperparameter optimization (Pedregosa,
2016) and meta-learning (Rajeswaran et al., 2019).

Concretely, if the prediction loss is smooth and there
exist stationary points to achieve optimal, we have:
∇h0
L0(h

⋆
0(λ), λ) = 0,∇h1

L0(h
⋆
1(λ), λ) = 0. Then differ-

entiating w.r.t. λ will induce: d (∇h0
L0(h

⋆
0(λ), λ)) /dλ =

∇2
h0
L0(h

⋆
0, λ)∇λh

⋆
0 + ∇λ∇h0L0(h

⋆
0, λ) = 0.2 Thus we

have ∇λh
⋆
0 = −

(
∇2

h0
L0(h

∗
0, λ)

)−1
(∇λ∇h0

L0(h
∗
0, λ)),

where the Hessian matrix ∇2
h0
L0(h

∗
0, λ) is assumed to be

invertible.

Through the implicit function, we can approximate ∇λh
ϵ
0

as:

∇λh
ϵ
0 ≈ −

(
∇2

h0
L0(h

ϵ
0, λ)

)−1
(∇λ∇h0

L0(h
ϵ
0, λ))

As for ∇λh
ϵ
1, we have the similar result: ∇λh

ϵ
1 ≈

−
(
∇2

h1
L1(h

ϵ
1, λ)

)−1
(∇λ∇h1

L1(h
ϵ
1, λ)).

Efficient and numerical stable gradient estimation Plug-
ging in the approximations, the gradient w.r.t λ is approxi-
mated as:

˜grad(λ) ≈ ∇λL0(h
ϵ
0, λ) − (∇λ∇h0

L0(h
ϵ
0, λ))

T
p0 +

∇λL1(h
ϵ
1, λ)− (∇λ∇h1

L1(h
ϵ
1, λ))

T
p1

Where p0, p1 are denoted as the inverse-Hessian vector
product with:

p0 =
(
∇2

h0
L0(h

ϵ
0, λ)

)−1
(∇h0

L0(h
ϵ
0, λ) + κ(hϵ

0 − hϵ
1))

p1 =
(
∇2

h1
L1(h

ϵ
1, λ)

)−1
(∇h1

L1(h
ϵ
1, λ)− κ(hϵ

0 − hϵ
1)) .

1We denote the ground truth gradient as grad(λ) if we adopt
optimal predictor h⋆

0, h
⋆
1 in the computation.

2d(·)/dλ denotes the total derivative.
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Algorithm 1 Implicit Path Alignment Algorithm
1: Input: Representation function λ, predictor h0, h1,

datasets from two sub-groups D0. D1.
2: for mini-batch of samples from (D0,D1) do
3: Solving the inner-loop optimization with tolerance ϵ.

Obtaining hϵ
0, h

ϵ
1.

4: Solving Eq. (2), (3) with tolerance δ. Obtaining pδ
0

and pδ
1.

5: Computing ˜grad
δ
(λ) (gradient of representation λ)

6: Updating λ through autograd: λ← λ− ˜grad
δ
(λ)

7: end for
8: Return: λ, hϵ

0, hϵ
1

However, the current form is still computationally expensive
due to the computation of inverse Hessian matrix. Then
computing p0 and p1 is equivalent to solve the following
quadratic programming (QP):

argminp̂0

1

2
p̂T
0

(
∇2

h0
L0(h

ϵ
0, λ)

)
p̂0

− p̂T
0 (∇h0L0(h

ϵ
0, λ) + κ(hϵ

0 − hϵ
1)) (2)

argminp̂1

1

2
p̂T
1

(
∇2

h1
L1(h

ϵ
1, λ)

)
p̂1

− p̂T
1 (∇h1

L1(h
ϵ
1, λ)− κ(hϵ

0 − hϵ
1)) (3)

Since it is a typical QP problem and we adopt conjugate
gradient method (Concus et al., 1985; Rajeswaran et al.,
2019), which can be updated efficiently through autograd
via computing the Hessian-vector product. We addition-
ally suppose the optimization error in the QP as δ, i.e.:
∥p0 − pδ

0∥ ≤ δ, ∥p1 − pδ
1∥ ≤ δ, then the gradient w.r.t

representation λ can be finally expressed as:

˜grad
δ
(λ) = ∇λL0(h

ϵ
0, λ) − (∇λ∇h0L0(h

ϵ
0, λ))

T
pδ
0 +

∇λL1(h
ϵ
1, λ)− (∇λ∇h1

L1(h
ϵ
1, λ))

T
pδ
1

The ˜grad
δ
(λ) can be also efficiently estimated through Hes-

sian vector product via autograd without explicitly com-
puting the Hessian matrix.

Proposed algorithm Based on the key elements, the pro-
posed algorithm is shown in Algo. 1.

4.1. The cost of Implicit algorithm: Approximation-Fair
Trade-off

In the proposed objective bi-level loss, a sufficient large
κ encourages the invariant optimal predictor, yielding the
fair results. However, the implicit approach will lead to a
biased estimation of the ground truth gradient. We analyze
the error gap of the approximation in Theorem 4.1.

Theorem 4.1 (Approximation Error Gap). Suppose that
(1) Smooth Predictive Loss. The first-order derivatives
and second-order derivatives of L are Lipschitz con-
tinuous; (2) Non-singular Hessian matrix. We assume
∇h0,h0

L0(h0, λ),∇h1,h1
L1(h1, λ), the Hessian matrix of

the inner optimization problem, are invertible. (3) Bounded
representation and predictor function. We assume the λ
and h are bounded, i.e., ∥λ∥, ∥h∥ are upper bounded by
the predefined positive constants. Then the approximation
error between the ground truth and algorithmic estimated
gradient w.r.t. the representation is be upper bounded by:

∥grad(λ)− ˜grad
δ
(λ)∥ = O(κϵ+ ϵ+ δ).

The proof is delegated in Appendix C. We also discuss the
assumptions to guarantee the convergence of Algorithm 1,
shown in Appendix D.

Theorem 4.1 reveals that the gradient approximation error
depends on the two-level optimization tolerance ϵ, δ and the
coefficient of fair constraints κ. Specifically, the error gap
reveals the inherent trade-off in accurate gradient estimation
and fair-representation learning. If we fix the optimization
tolerance ϵ and δ, a smaller κ indicates a better approxi-
mation of the gradient, which yields weak fair constraints.
Thus the implicit alignment introduces a trade-off in the
prediction performance (i.e., correct approximation of the
gradient) and fairness measurement.

5. Related Work
Fair Machine Learning Below we only list the most re-
lated work and refer to the survey paper (Mehrabi et al.,
2021) for details in the algorithmic fairness. In the clas-
sification, various methods in learning fair representations
have been proposed. Specifically, a common strategy is to
introduce the statistical constraints as the regularization dur-
ing the training, e.g., demographic parity (DP) (Zhang et al.,
2018; Madras et al., 2018; Song et al., 2019; Jiang et al.,
2020; Kehrenberg et al., 2020) that encourages the identical
output of the representation or equalized odds (EO) (Song
et al., 2019; Gupta et al., 2021) that ensures the identical con-
ditional output of the representation, given the ground truth
label Y . Another direction is to disentangle the data for fac-
torizing meaningful representations such as (Locatello et al.,
2019; Kim et al., 2019). Intuitively, the disentangled embed-
ding is independent of the protected feature, thus reflecting
a fair representation w.r.t. the independence rule, which can
be potentially problematic when the label distributions of
sub-groups vary dramatically (Zhao et al., 2019).

The concept of fairness has also been extended to the fields
beyond classification. For instance, in the regression prob-
lem (Komiyama et al., 2018; Agarwal et al., 2019), the
bounded group loss has been proposed as the fair measure:
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if the prediction loss in each sub-group is smaller than ϵ,
the regression is ϵ-level fair. In fact, the fair criteria in our
paper is not equivalent to ϵ-fair. Considering a fixed repre-
sentation function λ, the ϵ-level fair does not guarantee the
optimal and invariant predictor for each sub-group and vice
versa.

The sufficiency rule has also been discussed in the previous
work. Notably, Chouldechova (2017); Liu et al. (2019)
proposed the sufficiency gap in classification for measur-
ing fairness w.r.t. the sufficiency rule. (Liu et al., 2019)
also discussed the relations between the sufficiency gap
and probabilistic calibration (Guo et al., 2017) (referred
as calibration gap). According to Pleiss et al. (2017), the
calibration rule is a stronger condition than sufficiency rule
while it can simultaneously hurt the prediction performance.
Throughout this paper, we only consider the sufficiency rule.
The triple trade-off between the probabilistic calibration,
sufficiency rule and accuracy will be left as future work.

Learning Invariance The analyzed fair-representation
criteria shares a quite similar spirit to the IRM or Invari-
ant Risk Minimization (Arjovsky et al., 2019; Bühlmann,
2020; Creager et al., 2021), where an algorithm IRM v1
is proposed to enable the out-of-distribution (OOD) gener-
alization. The key difference between our work and (Ar-
jovsky et al., 2019) lies in the algorithmic aspect: it has been
theoretically justified that the originally proposed IRM v1
does not necessarily capture the invariance across the en-
vironments (Rosenfeld et al., 2020; Shui et al., 2022). By
contrast, we aim to solve the bi-level objective in the con-
text of deep-learning and propose an efficient and principled
practical algorithm with better empirical performance than
IRM v1. Besides, based on results of (Chen et al., 2021),
the proposed algorithm does not provably guarantee the
OOD generalization property due to the limited sub-groups
(N = 2) considered within the paper.

6. Experiments
6.1. Experimental setup

In the paper, we adopt the aforementioned sufficiency gap
as fair metrics, where Ŷ is denoted as:

Ŷ =

{
hϵ
0 ◦ λ(X), X ∈ D0

hϵ
1 ◦ λ(X), X ∈ D1

Then in the binary classification, we can estimate ∆SufC =
1
2

∑
y∈{−1,+1} |D0(Y = y|Ŷ = y) − D1(Y = y|Ŷ = y)|

from the data.

As for regression, the original form ∆SufR =
∫
t
|D0(Y ≤

t|Ŷ ≤ t) − D1(Y ≤ t|Ŷ ≤ t)| (as shown in Fig. 2, Ap-
pendix) is difficult to estimate due to the integration term.
To address this, we sample multiple values {t1, . . . , tm}

and compute its average differences as the approximation
of the integration. Namely, ∆SufR ≈ 1

m

∑m
i=1 |D0(Y ≤

ti|Ŷ ≤ ti) − D1(Y ≤ ti|Ŷ ≤ ti)|. Concretely, for a
given ti in each group, we compute the percentile (Ŷ0) at
point t: D0(Ŷ0 ≤ ti), then we compute the corresponding
ground truth cumulative distribution (Y ) at the same point ti:
D(Y ≤ ti|Ŷ ≤ ti). Through the aforementioned approxi-
mation, we can estimate |D0(Y ≤ ti|Ŷ ≤ ti) − D1(Y ≤
ti|Ŷ ≤ ti)|.

Baselines We consider the baselines that add fairness
constraints during the training process. Specifically, we
compare our method with (I) Empirical Risk Minimization
(ERM) that trains the model without considering fairness;
(II) Adversarial Debiasing (referred as adv debias) (Zhang
et al., 2018); (III) Fair Mix-up (Chuang & Mroueh, 2021),
a recent data-augmentation and effective approach in the
fair representation learning. In fact, the baselines (II) and
(III) are based on Independence rule or Demographic-Parity
(DP), which is designed to demonstrate the general non-
compatibility in addressing the sufficiency rule.

Besides, we include two additional baselines that have the
similar objective but different algorithmic realizations. (IV)
the original IRM regularization (referred as IRM v1) (Ar-
jovsky et al., 2019), which adds a gradient penalty to en-
courage the invariance among the different groups. (V)
One-step explicit alignment. In the inner-loop optimization,
we suppose to conduct a simple one-step gradient descent
(T = 1) for each sub-group, i.e, h⋆

0 ≈ hinit−∇h0
L0(h0, λ),

h⋆
1 ≈ hinit − ∇h1

L1(h1, λ). Thus in the outer-loop
optimization, we add a gradient-incoherence constraint
to encourage the identical (one-step) optimization path:
minλ ∥∇h0

L0(h0, λ)−∇h1
L1(h1, λ)∥22.

All the results are reported by averaging five repetitions
and additional experimental details are delegated in the
Appendix.

6.2. Toxic Comments

The toxic comments dataset (Jigsaw, 2018) is a binary classi-
fication task in NLP to predict whether comment is toxic or
not. The original label is actually not binary since the com-
ments is decided by multiple annotators, where the labelling
discrepancy generally occurs. To this end, we conduct a
simple strategy to decide comment is toxic if at least one
annotator marks it. In this dataset, a portion of comments
have been labeled with identity attributes, including gender
and race. It has also been revealed that the race identity (e.g.,
black) is correlated with the toxicity label, which can lead to
the predictive discrimination. Thus we adopted the race as
the protected feature by selecting two sub-groups of Black
and Asian. For the sake of computational simplicity, we first
applied the pretrained BERT (Devlin et al., 2018) to extract
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Table 1. Fair Classification. Accuracy and ∆SufC in Toxic comments (left) and CelebA datasets (right)

Toxic comments Accuracy (↑) ∆SufC (↓)
ERM (I) 0.768 ± 0.004 0.173 ± 0.008

Adv debias (II) 0.760 ± 0.008 0.291 ± 0.006
Mixup (III) 0.758 ± 0.003 0.343 ± 0.022

IRM v1 (IV) 0.753 ± 0.004 0.057 ± 0.015
One step (V) 0.755 ± 0.007 0.048 ± 0.008

Implicit 0.760 ± 0.007 0.051 ± 0.012

CelebA Accuracy (↑) ∆SufC (↓)
ERM (I) 0.780 ± 0.015 0.210 ± 0.022

Adv debias (II) 0.785 ± 0.022 0.165 ± 0.028
Mixup (III) 0.792 ± 0.011 0.160 ± 0.010

IRM v1 (IV) 0.795 ± 0.012 0.086 ± 0.015
One step (V) 0.797 ± 0.006 0.086 ± 0.012

Implicit 0.794 ± 0.027 0.074 ± 0.020
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Figure 3. Fair Classification. (a,b) The Accuracy-Fair trade-off curve in Toxic (a) and CelebA (b) dataset. The implicit approach
demonstrated a consistently better trade-off. (c) Running time comparison of Explicit and Implicit alignment in CelebA dataset.
Specifically, solver = 2 indicates that the conjugate-gradient algorithm is executed 2 iterations. The results show that implicit approach
avoids the long back-propagation of the entire inner-optimization path. The time complexity of the explicit approach, on the other hand,
increases linearly with the inner-optimization step.

the word embedding with 748 dimensional vector. Then
we adopt representation function λ as two fully-connected
layers with hidden dimension 200 with Relu activation and
classifier h as a linear predictor. We report the test-set sub-
group average accuracy and sufficiency gap (∆SufC) in
Tab. 1 and Fig. 3(a).

From the results, the Demographic Parity (DP) based fair
constraints are non-compatible with the sufficiency rule.
Specifically, baseline (II,III) even increase ∆SufC with
higher value than ERM. For the baselines that track the
sufficiency rule (IV,V), the sufficiency gap ∆SufC is im-
proved with a similar accuracy, shown in Tab.1. We also
change the regularization coefficient in (IV,V) and κ in the
implicit approach. We observe that the implicit approach
demonstrates a consistent better Accuracy-Fair trade-off,
shown in Fig. 3(a).

6.3. CelebA Dataset

The CelebA dataset (Liu et al., 2015) contains around 200K
images of celebrity faces, where each image is associated
with 40 human-annotated binary attributes including gender,
hair color, young, etc. In this paper, we designate gender as

the protected feature, and attractive as the binary classifica-
tion task. We randomly select around 82K and 18K images
as the training and validation set. Then we adopt representa-
tion function λ as pre-trained ResNet-18 (He et al., 2016)
and classifier h as two-fully connected layers. We report
the test-set sub-group average accuracy and sufficiency gap
(∆SufC) in Tab. 1 and Fig. 3(b).

The results in the CelebA show similar behaviors with
the Toxic comments. Specifically, the DP based fair ap-
proaches (II, III) did not effectively improve ∆SufC , shown
in Tab. 1. In contrast, the sufficiency can be significantly
improved in baselines (IV, V) and implicit approach without
largely losing the accuracy. Specifically, Fig. 3(b) visual-
izes the accuracy-fair trade-off curve, where the later three
approaches show quite similar behaviors.

Ablation: Computational benefits of Implicit Alignment
To show the efficiency of implicit approach in deep neural
network, we empirically evaluated the computing time of
T -inner step explicit alignment and implicit approach. The
experimental results (shown in Fig.3(c)) verified the com-
putational efficiency of Implicit alignment. Notably, a large
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Table 2. Fair Regression. MSE and ∆SufR in Law dataset (left) and NLSY dataset (right)

Law MSE (↓) ∆SufR (↓)
ERM (I) 0.190 ± 0.005 0.160 ± 0.007

Adv debias (II) 0.223 ± 0.008 0.188 ± 0.012
Mixup (III) 0.216 ± 0.012 0.172 ± 0.007

IRM v1 (IV) 0.208 ± 0.006 0.096 ± 0.006
One step (V) 0.204 ± 0.007 0.125 ± 0.010

Implicit 0.198 ± 0.005 0.091 ± 0.011

NLSY MSE (↓) ∆SufR (↓)
ERM (I) 1.939 ± 0.021 0.246 ± 0.019

Adv debias (II) 1.982 ± 0.016 0.252 ± 0.020
Mixup (III) 1.979 ± 0.025 0.246 ± 0.023

IRM v1 (IV) 1.927 ± 0.031 0.077 ± 0.009
One step (V) 1.904 ± 0.027 0.090 ± 0.019

Implicit 1.906 ± 0.019 0.051 ± 0.005
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Figure 4. Illustration of the sufficiency gap (∆SufR) in Law dataset (regression). The ERM and Fair mix-up suffer a high ∆SufR, while
the proposed implicit alignment can significantly mitigate the sufficiency gap.

inner-optimization step does not considerably increase the
whole computational time of implicit approach with differ-
ent iterations of conjugated gradient solver. In contrast, the
corresponding computational time complexity in explicit
alignment linearly scales with the inner-optimization steps,
which is consistent with our analysis.

6.4. Law Dataset

The Law Dataset is a regression task to predict a students
GPA (real value, ranging from [0, 4]), where the data is uti-
lized from the School Admissions Councils National Lon-
gitudinal Bar Passage Study (Wightman, 1998) with 20K
examples. In the regression task, we adopt the square loss
and race as the protected feature (white versus non-white).
We adopt λ as the one fully connected layer with hidden di-
mension 100 and Relu activation and predictor h as a linear
predictor. We report the test-set sub-group average MSE
(Mean Square Error) and sufficiency gap (∆SufR) in Tab. 2
and Fig. 5.

Compared to the classification task, the results show similar
behaviors in the regression. Specifically, the DP based fair
approaches (II, III) still increase ∆SufR in the regression. In
contrast, the gap is significantly improved in our proposed
approach and baseline (IV,V). Specifically, Fig. 4 visualizes
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Figure 5. Law Dataset (regression). MSE-Fair Trade-off curve

the sufficiency-gap of different approaches, where the im-
plicit approach significantly mitigates the sufficiency gap.
In addition, Fig. 5 describes the MSE-sufficiency gap curve,
which further justifies the benefits of implicit approach with
a better trade-off between the prediction performance and
fairness.
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6.5. NLSY Dataset

The National Longitudinal Survey of Youth (NLSY, 2021)
dataset is a regression task with around 7K dataset, which
involves the survey results of the U.S. Bureau of Labor
Statistics. It is intended to gather information on the labor
market activities and other life events of several groups for
predicting the income y of each person. We treat the gender
as the protected feature. We also normalize the output y
by diving the 10, 000, then the final output y ranges around
[0, 8]. The prediction loss is also the square loss. We adopt
representation λ as the two fully connected layers with
hidden dimension 200 and Relu activation and predictor h
as a linear predictor. We report the testset sub-group average
MSE (Mean Square Error) and Sufficiency Gap (∆SufR) in
Tab. 2 and Fig. 6.

Tab. 2 provides similar trends with other datasets. Base-
lines (IV,V) and implicit approach effective control the
sufficiency gap, while the DP based approach generally
fails to improve the gap. Fig. 6 reveals a slightly better
approximation-fair trade off for the implicit approach. Fi-
nally, Fig. 8 (in Appendix) visualizes the sufficiency gap
of different algorithms. The gap is actually significantly
improved while the calibration gap still exists, which is con-
sistent with (Liu et al., 2019). Therefore it can be quite
interesting and promising to analyze the triple trade-off
between the sufficiency gap, probabilistic calibration and
prediction performance in the regression in the future.
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7. Conclusion
We considered the fair representation learning from a novel
perspective through encouraging the invariant optimal pre-
dictors on the top of data representation. We formulated this
problem as a bi-level optimization and proposed an implicit
alignment algorithm. We further demonstrated the bi-level
objective is to fulfil the Sufficiency rule. Then we analyzed

the error gap of the implicit algorithm, which reveal the
trade-off of biased gradient approximation and fairness con-
straints. The empirical results in both classification and
regression settings suggest the consistently improved fair-
ness measurement. Finally, we think the future work can
include developing computationally efficient explicit algo-
rithms for avoiding the biased gradient computation.

Limitations
We considered a novel fair representation learning perspec-
tive to encourage the sufficiency rule. Simultaneously this
work remains several limitations.

In the proposed algorithm, we need a two-step optimization
with tolerance ϵ and δ. As for controlling ϵ (the tolerance
w.r.t. the predictor h), since h is a shallow network with
one or two layers, then optimizing over h will be relatively
easy. As for δ, since the representation λ could be highly
non-convex and high-dimensional, controlling δ would be
quite difficult in theory. In practice, we generally control
the steps in the conjugate gradient while it is unclear the
convergence behavior in the highly non-convex settings.

The current paper mainly focus the binary sensitive attribute
with two subgroups. Although it is feasible to extend the
multi-attribute settings by consider the pair-wise path align-
ment, but it would be promising to consider an efficient
algorithm for the multi-attribute.

The performance and fair trade-off is induced by the efficient
gradient estimation in the bi-level objective. Thus it would
be promising to develop an efficient explicit path approach
for avoiding such a trade-off.

Acknowledgments
The authors appreciate the constructive feedback and sug-
gestions from anonymous Reviewers and Meta-Reviewers.
The authors also would like to thank Gezheng Xu and Jun
Xiao for the discussion and proofreading the manuscript.
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A. Sufficiency rule: comparison with other fair criteria
Sufficiency v.s. Independence We will demonstrate:

If D0(Y = y) ̸= D1(Y = y) (i.e, different label distribution in the sub-groups), the Sufficiency and Independence rule
cannot both hold.

Proof. Since we consider the binary-classification with Y = {−1, 1}, the expectation and conditional can be expressed as
the probability of predicted output.

D0(Ŷ = 1) =
1

2
(1 + ED0

[Ŷ ]), D0(Y = 1|Ŷ = t) =
1

2
(1 + ED0

[Y |Ŷ = t])

Then sufficiency and independence are equivalent to: D0(Ŷ = t) = D1(Ŷ = t) and D0(Y = y|Ŷ = t) = D1(Y = y|Ŷ =
t) both hold for any t, y. Then the joint distribution of Ŷ , Y should be identical:

D0(Ŷ = t, Y = y) = D1(Ŷ = t, Y = y), ∀t, y

Then the marginal distribution D0(Y = y) = D1(Y = y) must holds.

If D0(Y = y) ̸= D1(Y = y), the joint distribution is not equal:

D0(Ŷ = t, Y = y) ̸= D1(Ŷ = t, Y = y), ∀t, y

Since D0(Ŷ = t, Y = y) = D0(Y = y|Ŷ = t)D0(Ŷ = t), thus either D0(Ŷ = t) ̸= D1(Ŷ = t) or D0(Y = y|Ŷ = t) ̸=
D1(Y = y|Ŷ = t) must hold for at least one term. I.e, the sufficiency and Independence could not both hold.

Sufficiency v.s. Separation We will demonstrate:

If D0(Y = y) ̸= D1(Y = y) and joint distribution of (Y, Ŷ ) has positive probability in D0,D1, the Sufficiency and
Separation rule cannot both hold.

Proof. Based on the previous results, if D0(Y = y) ̸= D1(Y = y), then the joint distribution of (Y, Ŷ ) are not identical:

D0(Ŷ = t, Y = y) ̸= D1(Ŷ = t, Y = y), ∀t, y

Then either D0(Ŷ = t) ̸= D1(Ŷ = t) or D0(Y = y|Ŷ = t) ̸= D1(Y = y|Ŷ = t) must hold for at least one term
(conclusion of previous result).

If the sufficiency and separation both hold when D0(Y = y) ̸= D1(Y = y), it must be the following case:

D0(Ŷ = t) ̸= D1(Ŷ = t), D0(Y = y|Ŷ = t) = D1(Y = y|Ŷ = t)

D0(Y = y) ̸= D1(Y = y), D0(Ŷ = t|Y = y) = D1(Ŷ = t|Y = y)

However, we will prove it is impossible in the classification. Based on Bayes rule:

D0(Y = y|Ŷ = t) =
D0(Ŷ = t|Y = y)D0(Y = y)

D0(Ŷ = t)
=
D1(Ŷ = t|Y = y)D1(Y = y)

D1(Ŷ = t)
= D1(Y = y|Ŷ = t)

Thus we should have
D0(Y = y)

D0(Ŷ = t)
=
D1(Y = y)

D1(Ŷ = t)
, ∀t, y

We consider the binary classification by denoting D0(Y = 1) = p,D1(y = 1) = q,D0(Ŷ = 1) = p̂,D1(Ŷ = 1) = q̂, then
we have:

p

p̂
=

q

q̂
,
1− p

p̂
=

1− q

q̂
,

p

1− p̂
=

q

1− q̂
,
1− p

1− p̂
=

1− q

1− q̂

There exists the unique non-zero solution of p = q = p̂ = q̂ = 0.5, which clearly contradicts our assumptions.
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Table 3. Common Fair criteria in classification
General Definition Binary classification Definition Relation

Independence D0(Ŷ ) = D1(Ŷ ) Demographic parity D0(Ŷ = 1) = D1(Ŷ = 1) Equivalent

Separation D0(Ŷ |Y = y) = D1(Ŷ |Y = y),∀y Equalized odds D0(Ŷ = 1|Y = y) = D1(Ŷ = 1|Y = y),∀y Equivalent

Separation Equal opportunity D0(Ŷ = 1|Y = 1) = D1(Ŷ = 1|Y = 1) Relaxation

Sufficiency D0(Y |Ŷ = y) = D1(Y |Ŷ = y),∀y Conditional use accuracy equality D0(Y = y|Ŷ = y) = D1(Y = y|Ŷ = y),∀y Equivalent

Sufficiency Predictive parity D0(Y = 1|Ŷ = 1) = D1(Y = 1|Ŷ = 1) Relaxation

A.1. Comparison Tables

For the sake of completeness, we list common fair criteria for the comparison.

B. Proof Proposition 3.1
We consider the regression and classification separately.

Regression According to the definition, given a fixed and deterministic representation λ, we have

L0(h, λ) = ED0
(h(z)− y)2

Since it is a functional optimization w.r.t. the function h, through using the calculus of variations (Online, 2013),

δL0(h, λ)

δh(z)
= 2

∫
[h(z)− y]D0(z, y)dy = 0

Solving for h(z), and using the sum and product rules of probability, we obtain

h⋆
0(z) =

∫
yD0(z, y)dy

D0(z)
=

∫
yD0(y|Z = z)dy = ED0

[Y |Z = z]

Then we have h⋆
0(z) = ED0

[Y |Z = z]. As for D1, we apply the same strategy with h⋆
1(z) = ED1

[Y |Z = z]. Based on the
invariant optimal predictor, we have ED0 [Y |Z = z] = ED1 [Y |Z = z] with z = λ(x).

Classification According to the definition, we have:

L0(h, λ) = ED0
log(1 + exp(−yh(z)))

Since the optimal predictor on the logistic loss is the log-conditional density ratio: h⋆
0(z) = log

(
D0(Y=1|Z=z)
D0(Y=−1|Z=z)

)
.

Observe that in the binary classification with Y = {−1, 1}, we have D0(Y = 1|Z = z) = 1
2 (1 + ED0 [Y |Z = z]) and

D0(Y = −1|Z = z) = 1
2 (1− ED0 [Y |Z = z]), then we have:

h⋆
0(z) = log

(
1 + ED0

[Y |Z = z]

1− ED0
[Y |Z = z]

)
As forD1, we adopt the same strategy and we have log

(
1+ED0

[Y |Z=z]

1−ED0
[Y |Z=z]

)
= log

(
1+ED1

[Y |Z=z]

1−ED1
[Y |Z=z]

)
, then we have ED0 [Y |Z =

z] = ED1 [Y |Z = z].

As for the predictive parity, since we have ED0
[Y |Z = z] = ED1

[Y |Z = z] and h⋆ = h⋆
1 = h⋆

2, then we have
ED0 [Y |h⋆(z)] = ED1 [Y |h⋆(z)].

C. Approximation Error
Theorem C.1 (Approximation Error Gap). Suppose that (1) Smooth Predictive Loss. The first-order deriva-
tives and second-order derivatives of L are Lipschitz continuous; (2) Non-singular Hessian matrix. We assume
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∇h0,h0
L0(h0, λ),∇h1,h1

L1(h1, λ), the Hessian matrix of the inner optimization problem, are invertible. (3) Bounded
representation and predictor function. We assume the λ and h are bounded, i.e., ∥λ∥, ∥h∥ are upper bounded by the
predefined positive constants. Then the approximation error between the ground truth and algorithmic estimated gradient
w.r.t. the representation is be upper bounded by:

∥grad(λ)− ˜grad
δ
(λ)∥ = O(κϵ+ ϵ+ δ).

Proof. We denote grad(λ) as the ground truth gradient w.r.t. λ in outer-loop loss (given the optimal predictor h⋆
0, h⋆

1). Then
we aim to bound

∥grad(λ)− ˜grad
δ
(λ)∥

We first introduce the following terms for facilitating the proof:

Aϵ
0 = ∇h0

∇λL0(h
ϵ
0, λ), A

ϵ
1 = ∇λ∇h1

L1(h
ϵ
1, λ), A

⋆
0 = ∇λ∇h0

L0(h
⋆
0, λ), A

⋆
1 = ∇λ∇h1

L1(h
⋆
1, λ),

Bϵ
0 = ∇λL0(h

ϵ
0, λ), B

ϵ
1 = ∇λL1(h

ϵ
1, λ), B

⋆
0 = ∇λL0(h

⋆
0, λ), B

⋆
1 = ∇λL1(h

⋆
1, λ),

p⋆
0 =

(
∇2

h0
L0(h

⋆
0, λ)

)−1
(∇h0L0(h

⋆
0, λ) + κ(h⋆

0 − h⋆
1)) ,

p⋆
1 =

(
∇2

h1
L1(h

⋆
1, λ)

)−1
(∇h1L1(h

⋆
1, λ)− κ(h⋆

0 − h⋆
1)) .

Then the approximation error gap can be expressed as:

∥grad(λ)− ˜grad
δ
(λ)∥ = ∥ (B⋆

0 −A⋆
0p

⋆
0 +B⋆

1 −A⋆
1p

⋆
1)−

(
Bϵ

0 −Aϵ
0p

δ
0 +Bϵ

1 −Aϵ
1p

δ
1

)
∥

≤
1∑

i=0

∥B⋆
i −Bϵ

i ∥+
1∑

i=0

∥A⋆
ip

⋆
i −Aδ

ip
δ
i ∥

Due to the symmetric of D0 and D1, we only focus on the term on i = 0, the the upper bound in i = 1 can be derived
analogously.

As for bounding ∥B⋆
0 −Bϵ

0∥, since we assume first order derivative of the loss is Lipschitz functions (with constant L1),
then we have :

∥B⋆
0 −Bϵ

0∥ ≤ L1∥h⋆
0 − hϵ

0∥ ≤ ϵL1

Then the second term can be upper bounded by three terms:

∥A⋆
0p

⋆
0 −Aδ

0p
δ
0∥ ≤ ∥A⋆

0p
⋆
0 −A⋆

0p0∥︸ ︷︷ ︸
(1)

+ ∥A⋆
0p0 −Aϵ

0p0∥︸ ︷︷ ︸
(2)

+ ∥Aϵ
0p0 −Aϵ

0p
δ
0∥︸ ︷︷ ︸

(3)

Before estimating the upper bound, we first demonstrate ∥Aϵ
0∥ and ∥A⋆

0∥ are also bounded.

Since we assume λ and h are bounded (assuming the bounded constant as η and ϕ), the second order derivative are
Lipschitz (with constant L2). Then we consider another fixed point (λ′, h⋆

0(λ
′)) with bounded second order derivative:

A0 = ∇2
h0,λ
L0(h

⋆
0(λ

′), λ′) and ∥A0∥ ≤ A. We have:

∥A⋆
0 −A0∥2 ≤ L2∥[h⋆

0(λ), λ]− [h⋆
0(λ

′), λ′]∥2 ≤ L2

√
η2 + ϕ2

Thus we have ∥A⋆
0∥ ≤ A + L2

√
η2 + ϕ2 = A⋆

sup. As for the second derivative at point hϵ
0, it can be upper bounded

analogously with a similar constant Aϵ
sup.

The upper bound of term (1) We have:

∥A⋆
0p

⋆
0 −A⋆

0p0∥ ≤ ∥A⋆
0∥∥p⋆

0 − p0∥

We have proved ∥A⋆
0∥ is upper bounded by A⋆

sup. We additionally introduce the following auxiliary terms:

P ⋆
0 =

(
∇2

h0
L0(h

⋆
0, λ)

)−1
, P ϵ

0 =
(
∇2

h1
L1(h

⋆
1, λ)

)−1
.

b⋆0 = ∇h0
L0(h

⋆
0, λ) + κ(h⋆

0 − h⋆
1), b

ϵ
0 = ∇h0

L0(h
ϵ
0, λ) + κ(hϵ

0 − hϵ
1)
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Then we have:

∥p⋆
0 − p0∥ = ∥P ⋆

0 b
⋆
0 − P ϵ

0b
ϵ
0∥

≤ ∥P ⋆
0 b

⋆
0 − P ⋆

0 b
ϵ
0∥+ ∥P ⋆

0 b
ϵ
0 − P ϵ

0b
ϵ
0∥

≤ ∥P ⋆
0 ∥∥b⋆0 − bϵ0∥+ ∥bϵ0∥∥P ⋆

0 − P ϵ
0∥

As for the ∥P ⋆
0 ∥, since we assume the Hessian matrix is invertible thus its norm is upper bounded by some constant (denoted

as A−1). As for ∥b⋆0 − bϵ0∥, we have:

∥b⋆0 − bϵ0∥ ≤ ∥∇h0L0(h
⋆
0, λ)−∇h0

L0(h
ϵ
0, λ)∥+ 2κϵ

≤ ϵL1 + 2κϵ

Thus we have ∥P ⋆
0 ∥∥b⋆0 − bϵ0∥ ≤ A−1(ϵL1 + 2κϵ).

As for ∥bϵ0∥, we can easily verify that it is indeed bounded by some constant b. For the first term, we can adopt the same
strategy in proving bounded ∥A⋆

0∥. As for the second term in bϵ0, it is upper bounded by 2κϕ, due to the bounded predictor.

We now demonstrate ∥P ⋆
0 −P ϵ

0∥. Denoting ∆ = (P ⋆
0 )

−1−(P ϵ
0 )

−1, then according to the second order Lipschitz assumption,
we have: ∥∆∥ ≤ ϵL2. Plugging in the result, we have:

∥P ⋆
0 − P ϵ

0∥ = ∥(P ⋆
0 )∆(P ϵ

0 )∥ ≤ ∥P ⋆
0 ∥∥∆∥∥P ϵ

0∥ ≤ (A−1)
2L2ϵ

We still adopt the assumption that the bounded Hessian-inverse matrix by A−1.

Plugging in all the results, we have:

(1) ≤ A1(ϵL1 + 2κϵ) + b(A1)
2L2ϵ := O(κϵ+ ϵ)

The upper bound of term (2) We have:

∥A⋆
0p0 −Aϵ

0p0∥ ≤ ∥p0∥2∥A⋆
0 −Aϵ

0∥

Since we assume the loss is second-order Lipschitz, thus we have

∥A⋆
0 −Aϵ

0∥ = ∥∇λ∇h0L0(h
⋆
0, λ)−∇λ∇h0L0(h

ϵ
0, λ)∥ ≤ L2∥h⋆

0 − hϵ
0∥ ≤ ϵL2

We can also demonstrate ∥p0∥ is bounded. According to the definition we have:

∥p0∥ ≤ ∥
(
∇2

h0
L0(h

ϵ
0, λ)

)−1 ∥∥ (∇h0L0(h
ϵ
0, λ) + κ(hϵ

0 − hϵ
1)) ∥

(i)

≤ A−1(L1∥h⋆
0 − hϵ

0∥2 + 2κϕ)

(ii)

≤ A−1(ϵL1 + 2κϕ)

For (i), we assume: 1) the Hessian matrix is invertible thus its norm is surely upper bounded by some constant (denoted
as A−1), 2) the first-order derivative is Lipschitz (bounded by L1), 3) the predictor h is bounded. For (ii), we adopt the
definition of hϵ

0.

Therefore, the upper bound for Term (2) is formulated as:

(2) ≤ ϵL2A−1(ϵL1 + 2κϕ) := O(κϵ)

The upper bound of term (3) We have:

∥Aϵ
0p0 −Aϵ

0p
δ
0∥ ≤ ∥Aϵ

0∥∥p0 − pδ
0∥ ≤ δAϵ

sup = O(δ)

Through the upper bound in (1)-(3), we finally have the error between the estimated and ground-truth gradient:

∥grad(λ)− ˜grad
δ
(λ)∥ = O(κϵ+ ϵ+ δ)
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D. The Convergence Behavior
For the sake of completeness, we provide the convergence analysis of the proposed algorithm.

Proposition D.1. We execute the implicit alignment algorithm (Algo. 1), obtaining a sequence of λ1, . . . , λk, . . . . Supposing
the fair constraint κ is fixed. The optimization tolerances are summable:

∑
k ϵ

2
k ≤ +∞ and

∑
k δ

2
k ≤ +∞, then λk is

proved to be converged with
lim
k→∞

λk = λ⋆.

If the stationary point λ⋆ is also within the bounded norm, then we have:

grad(λ⋆) = 0.

Proof. We denote the entire outer-loop loss w.r.t. λ as L(λ), by the assumption the β-smooth loss L. Then at iteration k + 1
and k, we have:

L(λk+1) ≤ L(λk)− grad(λk)
T (λk − λk+1) +

β

2
∥λk+1 − λk∥2

= L(λk)−
(

grad(λk)− ˜grad
δ
(λk) + ˜grad

δ
(λk)

)T

(λk − λk+1) +
β

2
∥λk+1 − λk∥2

= L(λk)−
(

grad(λk)− ˜grad
δ
(λk)

)T

(λk − λk+1)− ˜grad
δ
(λk)(λk − λk+1) +

β

2
∥λk+1 − λk∥2

Since we assume the representation is within the bounded norm, the projection onto the convex set are non-expansive
operators (Boyd et al., 2004). Then for any point p, q, we have ∥proj(p)− proj(q)∥2 ≤ (p− q)T (proj(p)− proj(q)). Then

we set λk and λk+1 = λk − 1
β

˜grad
δ
(λk), we have:

∥λk − λk+1∥2 ≤
1

β
( ˜grad

δ
(λk))

T (λk − λk+1)

Plugging into the results, we have:

L(λk+1) ≤ L(λk)−
(

grad(λk)− ˜grad
δ
(λk)

)T

(λk − λk+1)−
β

2
∥λk+1 − λk∥2

≤ L(λk) + ∥grad(λk)− ˜grad
δ
(λk)∥∥λk − λk+1∥ −

β

2
∥λk+1 − λk∥2

Rearranging the inequality, we have:

β

2
∥λk+1 − λk∥2 − ∥grad(λk)− ˜grad

δ
(λk)∥∥λk − λk+1∥+ (L(λk+1)− L(λk)) ≤ 0

Then we have:

∥λk+1 − λk∥ ≤
1

β

(
∥grad(λk)− ˜grad

δ
(λk)∥+

√
∥grad(λk)− ˜grad

δ
(λk)∥2 − 2β (L(λk+1)− L(λk))

)

By denoting Bk = ∥grad(λk)− ˜grad
δ
(λk)∥ and Ck = L(λk+1)− L(λk). Then we have:

∥λk+1 − λk∥2 ≤
1

β2

(
B2

k +B2
k − 2βCk + 2Bk

√
B2

k − 2βCk

)
≤ 1

β2

(
B2

k +B2
k − 2βCk +B2

k +B2
k − 2βCk

)
=

4

β2
[∥grad(λk)− ˜grad

δ
(λk)∥22 − 2β (L(λk+1)− L(λk))]



Fair Representation Learning through Implicit Path Alignment

Taking sum over k, we have:
+∞∑
k=1

∥λk+1 − λk∥2 ≤
4

β2

+∞∑
k=1

∥grad(λk)− ˜grad
δ
(λk)∥22 −

8

β
( lim
k→∞

L(λk+1)− L(λ1))

≤ 4

β2

∑
k

[(C + κ)2ϵ2k + δ2k]−
8

β

(
lim
k→∞

L(λk+1)− L(λ1)

)
< +∞

Since 1) the first term on the right side is finite, because the optimization tolerance is summable; 2) the second term is also
finite, because the loss is assumed to be bounded. Then the upper bound is finite. In order to satisfy this condition, on the
left side we should have:

lim
k→∞

λk+1 − λk = 0

By adopting the definition λk+1 = Proj(λk − ˜grad
δ
(λk)) and limk→∞ ˜grad

δ
(λk) = grad(λk) (Based on theorem 1, the

limit of the optimization tolerance is zero), then we have:

λ⋆ = proj(λ⋆ − grad(λ⋆))

Where λ⋆ = limk→+∞ λk+1 = limk→+∞ λk. Since the projection is on the bounded norm Lnorm and λ⋆ is within the
bounded norm space, thus if λ⋆ − grad(λ⋆) is within the bounded norm space, we have:

grad(λ⋆) = 0

Else if λ⋆ − grad(λ⋆) is outside the bounded norm space, then according to the definition, the projection of λ⋆ − grad(λ⋆)
is surely on the boundary of the Lnorm space, with ∥proj(λ⋆ − grad(λ⋆))∥ = Lnorm. However, we have assumed the λ⋆ is
within the bounded norm space with ∥λ⋆∥ < Lnorm, which leads to the contradiction. Based on these discussions, we finally
have:

grad(λ⋆) = 0

E. Possible extensions to non-binary protected features
For the completeness, it is also possible to extend to binary protected features with distribution D1, . . . , DN . For example,
the bi-level objective can be naturally formulated as

min
λ

N∑
n=1

Ln(h
⋆
n, λ) +

n=N,m=N∑
m=1,n=1,n<m

κn,m

2
∥h⋆

n − h⋆
m∥22

s.t. h⋆
n ∈ argminhLn(h, λ)

Compared with the binary group, we introduce the pair-wise regularization (∥h⋆
n − h⋆

m∥) term to ensure the invariance
between each pair of the sensitive attributes (n,m). However, determining the coefficient κn,m will become practically
challenging, since the hyper-parameter space is much larger O(N2) than the binary case.

If the sensitive attribute is indeed a real value, a simple practical approach is to cluster the continuous attribute into several
discrete groups, then conducting the pair-wise bi-level optimization. At the same time, there may be difficulty in measuring
fairness. E.g, if the sensitive attribute is the ratio of people of certain demographic backgrounds, the corresponding
sufficiency gap will be hard to estimate, since current metrics are defined on the discrete sensitive attribute.

F. Additional Details and Results
F.1. Illustrative example of sufficiency gap

F.2. Correlation Analysis on the benchmark

For the justification propose, we compute the Pearson correlation coefficient (ranging from [−1, 1]) between the binary
group index (or protected feature) A and label Y . Intuitively, if DA=a(Y = y) = DA=a′(Y = y), ∀a, a′, y, the protected
feature (or group index) A is independent of label Y .
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Table 4. Pearson correlation coefficient between the group index and label

Toxic-Comment CelebA Law NLSY

0.30 -0.35 0.18 -0.29

The Pearson correlation coefficient clearly demonstrates the non-independence between the group index and label. i.e, the
label distributions among the sub-groups are different. The experimental results also validated this fact: the demographic
parity based approach could not improve the sufficiency gap due to the different label distributions.

F.3. Additional Details

Toxic Comments We split the training, validation and testing set as 70%, 10% and 20%. We adopt Adam optimizer with
learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each sub-group and we use sampling with replacement to
run the explicit algorithm with maximum epoch 100. The fair coefficient is generally set as κ = 0.1 ∼ 0.001. As for the
inner-optimization step, the iteration number is 20 and the iteration in running conjugate gradient approach is 10.

CelebA The training/validation/test set are around 82K, 18K and 18K. We also adopt the Adam optimizer with learning
rate on λ : 10−5 ∼ 10−4 and h : 10−3. The batch-size is set as 64 for each sub-group and we iterate the whole dataset as
one epoch. The maximum running epoch is set as 20 and the iteration in running conjugate gradient approach is 10.

Law We split the training, validation and testing set as 70%, 10% and 20%. Then we adopt Adam optimizer with learning
rate 10−3 and eps 10−3. The batch-size is set as 500 for each sub-group and we use sampling with replacement to run the
implicit algorithm, with the maximum epoch 100. We adopt the MSE loss in the regression. The fair coefficient is generally
set as κ = 0.1 ∼ 10−4. As for the inner-optimization, the iteration number is 20 and the iteration in running conjugate
gradient is 10. In computing the sufficiency gap in the regression, we sample 33 points to compute the gap.

NLSY We split the training, validation and testing set as 70%, 10% and 20%. Then we adopt Adam optimizer with
learning rate 10−3 and eps 10−3. The batch-size is set as 500 for each sub-group and we use sampling with replacement
to run the implicit algorithm, with maximum epoch 100. We adopt the MSE loss in the regression. The fair coefficient is
generally set as κ = 0.1 ∼ 10−4. As for the inner-optimization, the iteration number is 20 and the iteration in running
conjugate gradient is 10. In computing the sufficiency gap, we sample 33 points to compute the sufficiency gap.

F.4. Additional Empirical results

0 20 40 60 80 100
Training Epoch

0

10

20

30

40

Ev
ol

ut
io

n 
of

 g
ra

di
en

t n
or

m

Figure 7. Gradient Norm evolution w.r.t. representation λ in Toxic comments dataset. We visualize the norm of ˜grad
δ
(λ) at each training

epoch, which suggests a convergence behavior and the gradient finally tends to zero.

Gradient evolution We also visualize the gradient norm of the representation λ in the Toxic dataset, shown in Fig. 7. The
results verify the convergence behavior and the gradient norm finally tends to zero.
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(a) ERM
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(b) Fair Mix-up
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(c) Implicit

Figure 8. Illustration of the sufficiency gap in NLSY dataset. The ERM and mix-up suffer the high predictive sufficiency-gap, while the
proposed implicit alignment can significantly mitigate the sufficiency gap. In contrast, the probability calibration is not improved. This
results also verifies the inequivalence between the sufficiency gap and calibration gap (Liu et al., 2019).

F.5. Discussion with non-deep learning baselines

In order to show the effectiveness of the proposed approach, we additionally compare the FAHT (Zhang & Ntoutsi, 2019), a
decision tree based fair classification approach. We evaluated the empirical performance on Toxic comments dataset.

Table 5. Comparison with Fairness Aware Decision Tree

Method Accuracy (↑) ∆SufC (↓)
FAHT 0.596 0.397
Implicit 0.760 0.051

The implicit approach demonstrates the considerable better results, which may come from two aspects: (1) the Toxic task is
a high-dimensional classification problem (x ∈ R748), where the deep learning based approach is more effective in handling
the high-dim dataset. (2) The FAHT aims to realize the statistical parity (the independence rule), which is not compatible
with the sufficiency. According to the analysis of (Barocas et al., 2019), when the protected feature (A) and label (Y) are not
independent (This has been justified by computing their Pearson Correlation coefficient), the sufficiency and independence
cannot both hold.

F.6. sufficiency Gap in regression

We visualize the sufficiency gap of NLSY dataset.

G. Complementary technical details
We present complementary details that are related to the paper.

G.1. Conjugate Gradient Method

We present the Conjugate Gradient (CG) algorithm in Algo. 2 through autograd. In the conventional CG algorithm with
objective 1

2x
TAX − bX , we need to estimate AX and compute its residual and update X . Since in our problem setting, the

A = ∇2
h0
L0(h

ϵ
0, λ), then computing AX can be realized through Hessian-vector product through autograd, denoted as

function F in the paper. i.e.,∇2
h0
L0(h

ϵ
0, λ)X = F (x).

Below we provided a simple PyTorch code for realizing the Hessian Vector product.

1 import torch
2 def hessain_vector_product(loss,model,vector):
3 # loss: the defined loss
4 # model: the model in computing the Hessian
5 # vector: the required vector in computing Hessian-vector product
6 partial_grad = torch.autograd.grad(loss, model_parameters(), create_graph=True)
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Algorithm 2 Conjugate Gradient Method
Ensure: Function F that computes Hessian-vector product through autograd, initial value X0, bias vector B.

1: Computing Residual: r0 = B − F (X0)
2: Set p0 = r0
3: for inner iterations k do
4: Computing αk ← rTk rk

pT
k F (pk)

5: Xk+1 ← Xk + αkpk
6: rk+1 ← rk − αkF (pk)
7: If rk+1 is sufficiency small, then stop.

8: βk ←
rTk+1rk+1

rTk rk

9: pk+1 ← rk+1 + βkpk
10: end for
11: Return: Xk+1

7 flat_grad = torch.cat([g.contiguous().view(-1) for g in partial_grad])
8 h = torch.sum(flat_grad * vector_to_optimize)
9 hvp = torch.autograd.grad(h, model.parameters())

10 return hvp

Listing 1. Simple demo in computing Hessian vector product

G.2. Calibration Gap in the regression

Based on Kuleshov et al. (2018), we first compute the predicted cumulative distribution (Ŷ0) of at point t: D0(Ŷ0 ≤ t) = α,
then we compute the corresponding ground truth cumulative distribution (Y0) at point t. By changing t, we obtain several
points on function D0(Y ≤ t|Ŷ0 ≤ t) = β. Then the regression is probabilistic calibrated when α ≡ β. From this
perspective, the zero calibration gap can guarantee a zero sufficiency gap. But the inverse is not necessarily true, as our
experimental results suggest, a small sufficiency gap can lead to either small or large calibration gap. Thus it can be quite
promising to explore their inherent relations and trade-off in the fair regression.


