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Abstract
The development of methods to guide the design
of neural networks is an important open chal-
lenge for deep learning theory. As a paradigm
for principled neural architecture design, we pro-
pose the translation of high-performing kernels,
which are better-understood and amenable to first-
principles design, into equivalent network archi-
tectures, which have superior efficiency, flexi-
bility, and feature learning. To this end, we
constructively prove that, with just an appropri-
ate choice of activation function, any positive-
semidefinite dot-product kernel can be realized
as either the NNGP or neural tangent kernel of
a fully-connected neural network with only one
hidden layer. We verify our construction numeri-
cally and demonstrate its utility as a design tool
for finite fully-connected networks in several ex-
periments.

1. Introduction
The field of deep learning theory has recently been trans-
formed by the discovery that, as network widths approach
infinity, models take simple analytical forms amenable to
theoretical analysis. These limiting forms are described by
kernel functions, the most important of which is the neural
tangent kernel (NTK), which describes the training of an
infinite-width model via gradient descent (Jacot et al., 2018;
Lee et al., 2019). Limiting kernels are now known for fully-
connected networks (Daniely et al., 2016; Lee et al., 2018;
Matthews et al., 2018; Jacot et al., 2018; Lee et al., 2019),
convolutional networks (Novak et al., 2019a; Arora et al.,
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2019b), transformers (Hron et al., 2020), and more (Yang,
2019), giving unprecedented insight into commonly-used
network architectures.

However, deep learning theory must ultimately aim not
merely to understand existing architectures but to design
better architectures. Neural network design is famously
unscientific, proceeding via an artful combination of intu-
ition, trial-and-error, and brute-force search that yields little
understanding of why certain architectures perform well or
how we might do better. We argue that theorists should
endeavor to use the many insights gained from the study
of wide networks to develop well-understood methods and
principles to illuminate this process.

We propose that one potential avenue for principled archi-
tecture design is reverse engineering the network-kernel
correspondence: first design a kernel well-suited to the
task at hand, then choose network hyperparameters to (ap-
proximately) realize that kernel as a finite network. This
paradigm promises the best of both model types: kernels
are analytically simple and thus far more amenable to first-
principles design, while neural networks have the advan-
tages of cheaper training/inference, flexibility in training
schemes and regularization, and the ability to learn useful
features and transfer to new tasks.

Despite clear implications for architecture design as well
as fundamental interest, very little work has studied the
problem of achieving a desired kernel with a network archi-
tecture. Here we fully solve this problem for fully-connected
networks (FCNs) on normalized data: we specify the full
set of achievable FCN kernels and provide a construction to
realize any achievable NNGP kernel or NTK with a shallow
(i.e., single-hidden-layer) FCN. We then confirm our results
experimentally and describe two cases in which, by reverse-
engineering a desired NTK, we can design high-performing
FCNs in a principled way.

Our main contributions are as follows:

• We constructively prove that, with just an appropriate
choice of activation function, any positive-semidefinite
dot-product kernel can be realized as the NNGP kernel
or NTK of an FCN with no biases and just one hidden
layer.

https://github.com/james-simon/reverse-engineering
https://github.com/james-simon/reverse-engineering
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• As a surprising corollary, we prove that shallow FCNs
can realize a strictly larger set of dot-product kernels
than FCNs with multiple nonlinear layers can.

• We experimentally verify our construction and demon-
strate our reverse engineering paradigm for the design
of FCNs in two experiments: (a) we engineer a single-
hidden-layer, finite-width FCN that mimics the training
and generalization behavior of a deep ReLU FCN over
a range of network widths, and (b) we design an FCN
that significantly outperforms ReLU FCNs on a syn-
thetic parity problem.

1.1. Related Work

The connection between kernels and infinitely wide net-
works was first revealed by Neal (1996), who showed that
randomly-initialized single-hidden-layer FCNs approach
Gaussian processes with deterministic kernels as their width
increases. Much later, this work was extended to randomly-
initialized deep FCNs (Lee et al., 2018; Matthews et al.,
2018), and the kernels were given the name “neural network
Gaussian process” (NNGP) or “conjugate” kernels. The
related NTK, describing the training of deep FCNs, was
discovered soon thereafter (Jacot et al., 2018). These find-
ings and their extensions to other architectures have enabled
many insights into neural network training (Zou et al., 2018;
Du et al., 2019; Allen-Zhu et al., 2019) and generalization
(Arora et al., 2019a; Bordelon et al., 2020; Simon et al.,
2021). Many studies have analyzed the mapping from net-
work architectures to corresponding kernels, but very few
have considered the inverse mapping, which is the focus of
this work.

Anticipating the NNGP correspondence, Daniely et al.
(2016) considered the kernels represented by wide
randomly-initialized networks of various architectures.
These deep kernels are given by the composition of many
layerwise kernels, and for FCNs, they derive an invertible
mapping between activation function and layerwise kernel.
Many of our results for the NNGP kernel follow from their
work. We note that that study did not consider training or
the NTK, did not discuss achieving a desired kernel as a
design principle, and included no experiments.

Our work has close connections to random-feature models
(Rahimi et al., 2007; Rahimi & Recht, 2008), which use
random feature embeddings to approximate analytical ker-
nels. Shallow networks with frozen first layers are random
feature models approximating NNGP kernels (though here
we chiefly consider the NTK and train all layers in our exper-
iments). Unlike with neural networks, there is a substantial
literature on engineering random features to yield desired
kernels, with feature maps known for arbitrary dot-product
kernels (Kar & Karnick, 2012; Pennington et al., 2015).

In a concurrent study in a spirit similar to ours, Shi et al.
(2021) also explored NTK performance as a principle for ac-
tivation function design. Like us, they decompose activation
functions in a Hermite basis, but optimize the coefficients
to directly minimize NTK test MSE in a black-box fashion,
whereas in our comparable parity problem experiment, we
transparently choose a suitable kernel matching the symme-
try of the problem.

2. Theoretical Background
2.1. Preliminaries and Notation

We study fully connected architectures in this work. An
FCN with L hidden layers of widths {nℓ}Lℓ=1 is defined by
the recurrence relations

z(ℓ) = W (ℓ)x(ℓ−1) + b(ℓ), x(ℓ) = ϕ(z(ℓ)), (1)

starting with the input vector x(0) ∈ Rdin and ending with
the output vector z(L+1) ∈ Rdout . The weight matrices and
bias vectors are defined and initialized as

W (ℓ)∈Rnℓ×nℓ−1 , W
(ℓ)
ij =

σw√
nℓ

ω
(ℓ)
ij , ω

(ℓ)
ij ∼ N (0, 1), (2)

b(ℓ)∈Rnℓ , b
(ℓ)
i =σbβ

(ℓ)
i , β

(ℓ)
i ∼ N (0, 1), (3)

where σw and σb define the initialization scales of the
weights and biases, ω(ℓ)

ij and β
(ℓ)
i are the trainable param-

eters, and n0 = din and nL+1 = dout. It is the trainable
parameters, not the weights and biases themselves, that will
evolve according to gradient descent. This formulation,
commonly called the “NTK parameterization,” effectively
decreases the weight updates by a factor of O(n−1

ℓ ) and al-
lows us to take a sensible infinite-width limit of the network
dynamics. The initialization scales σw, σb can in principle
vary between layers, but we will generally take them to be
layer-independent. We note that setting σb = 0 corresponds
to a network with no biases.

Throughout our analysis, unless stated otherwise, we will
make the following normalization assumption on the data:

Assumption 2.1. Each input xi satisfies |xi| =
√
n0.

Though this assumption is rarely satisfied by natural data,
enforcing it costs only one degree of freedom, and it can be
enforced invertibly by appending one dummy index to each
input before normalization so the number of degrees of free-
dom is preserved. This assumption will greatly simplify our
theoretical analysis of FCN kernels. We will later explore
the consequences of lifting this assumption empirically.

We will use n!! to denote the double factorial, Sn to repre-
sent the n-sphere, and δij to mean 1i=j . We will write the
first derivative of a function f(z) as either f ′(z) or ∂zf(z).
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We will also abbreviate the bivariate centered normal dis-
tribution with diagonal σ2 and correlation coefficient c as

N σ2

c ≡ N
([

0
0

]
,

[
σ2 c σ2

c σ2 σ2

])
. (4)

2.2. Neural Network Kernels

As a neural network’s width approaches infinity, its behavior
and properties become simple and tractable. In particular,
its limiting behavior is described by two kernels in two
different senses.1

The NNGP. A network with all its parameters randomly
initialized will represent a random function, with the prior
over parameters determining the prior over functions. In
the infinite-width limit, this random function is sampled
from a Gaussian process over the input space with mean
zero and covariance given by an NNGP kernel K(NNGP)(·, ·)
(Matthews et al., 2018; Lee et al., 2018). Conditioning
this functional prior on training data corresponds to kernel
(ridge) regression with the NNGP kernel.

The NTK. When performing gradient flow on a train-
ing sample x1, the network output f on another sample
x2 changes at a rate proportional to K(NTK)(x1,x2) ≡
∇θf(x1)·∇θf(x2). Remarkably, knowledge of the model’s
NTK at all times is sufficient to describe training and gener-
alization dynamics, with no knowledge of the model’s inter-
nal structure required. Even more remarkably, for an infinite-
width network, the NTK is both initialization-independent
and fixed throughout training, and in many cases this limit-
ing NTK can be computed in closed form (Jacot et al., 2018).
An ensemble of such wide networks trained for infinite time
is equivalent to kernel regression with the NTK (Jacot et al.,
2018; Lee et al., 2019).

When referring to the kernels of FCN architectures, we
will generally mean their deterministic kernels at infinite
width. We will explicitly note when, in later experiments,
we examine the empirical NTKs of finite networks.

Dot-product kernels. For FCNs, both the limiting
NNGP and limiting NTK kernels are rotation-invariant:
K(x1,x2) = K(|x1|, |x2|, c), with c ≡ x1·x2

|x1||x2| ∈ [−1, 1].
Fixing |x1| and |x2| as per Assumption 2.1, only the third ar-
gument can vary, and the functional form reduces to merely
K(c). We call kernels of this form dot-product kernels. We
note that an FCN’s kernels are independent of din.

We will make use of the following classic result govern-
ing dot-product kernels. The nonnegativity constraints
result from the requirement that the kernel be positive-

1A kernel is essentially a bounded, symmetric, positive-
semidefinite scalar function of two variables. We refer unfamiliar
readers to Shawe-Taylor et al. (2004) for an introduction.

semidefinite.

Theorem 2.2 (Schoenberg (1942)). Any dot product kernel
over S∞ × S∞ must take the form K(c) =

∑∞
i=0 aic

i, with
ai ≥ 0 and

∑∞
i=0 ai <∞.

We will say that a polynomial K : [−1, 1]→ R is positive-
semidefinite (PSD) if it obeys the constraints of Theorem
2.2. We note that the set of allowable dot-product kernels
over Sdin × Sdin with finite din is somewhat larger, with the
conditions on K becoming more restrictive and approaching
those of Theorem 2.2 as din →∞. However, since an FCN’s
kernels are independent of input dimension, they must obey
Theorem 2.2, and we neglect kernels valid only at finite din.

Kernels of 1HL networks. Here we explicitly write the
two kernels of single-hidden-layer (1HL) networks with
activation function ϕ and initialization scales σw, σb (see,
e.g., Appendix E of Lee et al. (2019)). We make use of the
τ -transform, a common functional in the study of infinite-
width networks, defined as

τϕ(c;σ
2) ≡ Ez1,z2∼Nσ2

c
[ϕ(z1)ϕ(z2)] . (5)

When the second argument to τ is 1, we will simply omit it
and write τ(c). We note the following useful identity, which
we prove in Appendix D:

τϕ′(c;σ2) =
∂c
σ2

τϕ(c;σ
2). (6)

In terms of the τ -transform, the NNGP and NTK kernels of
a 1HL network are

K(NNGP)(c) = σ2
wτϕ

(
σ2
wc+ σ2

b

σ2
w + σ2

b

;σ2
w + σ2

b

)
+ σ2

b , (7)

K(NTK)(c) = K(NNGP)(c) (8)

+ (σ2
wc+ σ2

b )τϕ′

(
σ2
wc+ σ2

b

σ2
w + σ2

b

;σ2
w + σ2

b

)
.

2.3. Hermite Polynomials

The Hermite polynomials h0, h1, h2, ... are an orthonor-
mal basis of polynomials obtained by applying the Gram-
Schmidt process to 1, z, z2, ... with respect to the inner prod-
uct ⟨f, g⟩ = 1√

2π

∫∞
−∞ e−z2/2f(z)g(z)dz. As the Hermite

polynomials form a complete basis, any function ϕ that
is square-integrable w.r.t. the Gaussian measure can be
uniquely decomposed as ϕ(z) =

∑∞
k=0 bkhk(z). We defer

a more detailed introduction to the Hermite polynomials
to Appendix C and here just mention two properties that
will be of particular use (see e.g. O’Donnell (2014) and
Wikipedia):

Ez1,z2∼N 1
c
[hk(z1)hℓ(z2)] = ckδkℓ ∀c ∈ [−1, 1], (9)

h′
k(z) =

√
khk−1(z) ∀k ≥ 1. (10)

https://en.wikipedia.org/wiki/Hermite_polynomials
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3. Theoretical Results
We now present our main theoretical results. We note that
the results for NNGP kernels follow from Lemma 11 of
Daniely et al. (2016); we include them for completeness,
but the main new results are those for the NTK.

Theorem 3.1 (Kernel reverse engineering). Any desired
dot product kernel K(c) =

∑∞
k=0 akc

k can be achieved
as

• the NNGP kernel of a single-hidden-layer FCN with
σw = 1, σb = 0 and ϕ(z) =

∑∞
k=0±a

1/2
k hk(z),

• the NTK of a single-hidden-layer FCN with σw =

1, σb = 0 and ϕ(z) =
∑∞

k=0±
(

ak

1+k

)1/2
hk(z),

where we use ± to indicate that the sign of each term
is arbitrary. These are the complete set of activation
functions that give this kernel in a single-hidden-layer
FCN with σw = 1, σb = 0.

Corollary 3.2. Let ϕ(z)←→ K(c) signify that K is the
NNGP kernel or NTK of a single-hidden-layer FCN with
activation function ϕ. If σb = 0 and ϕ(z) ←→ K(c),
then

(a) ϕ′(z)←→ σ−2
w K ′(c).

(b) αϕ(z)←→ α2K(c) for all α ∈ R.

(c) ϕ(−z)←→ K(c).

Corollary 3.3. There are dot-product kernels that can be
the NNGP kernel or NTK of a FCN only if it has exactly
one nonlinear hidden layer.

The proof of Theorem 3.1 is remarkably simple, and we
provide it here. We defer the proofs of Corollaries 3.2 and
3.3 to Appendix D.

Proof of Theorem 3.1. First, we observe from Equations 6,
7 and 8 that a 1HL FCN with σw = 1, σb = 0 has kernels

K(NNGP)(c) = τϕ(c), (11)

K(NTK)(c) = τϕ(c) + cτϕ′(c) = (1 + c∂c)τϕ(c). (12)

Next we observe that, for an activation function ϕ(z) =∑∞
k=0 bkhk(z), Equation 9 lets us evaluate the τ -transforms,

yielding

K(NNGP)(c) = τϕ(c) =

∞∑
k=0

b2kc
k, (13)

K(NTK)(c) = (1 + c∂c)τϕ(c) =

∞∑
k=0

b2k(1 + k)ck. (14)

Equating these kernels with the desired K(c) =
∑∞

k=0 akc
k

and solving for bk completes the proof.

FCNs have maximal kernel expressivity. The traditional
notion of expressivity denotes the set of functions achiev-
able by varying a model’s parameters. Our results can be
understood in terms of a new notion of kernel expressivity,
denoting the set of kernels achievable by varying an archi-
tecture’s hyperparameters. Theorem 3.1 states that, for both
NNGP and NTK kernels, FCNs have the greatest kernel
expressivity we might have hoped for even with just one
hidden layer: they can achieve all dot product kernels on
S∞× S∞ (i.e. those obeying the condition of Theorem 2.2).

Depth is inessential. We emphasize the surprising fact
that, as all achievable dot-product kernels are achievable
with a single hidden layer as per Theorem 3.1, additional
hidden layers do not increase kernel expressivity. In fact,
Corollary 3.3 states that additional nonlinear layers in fact
decrease kernel expressivity.2 These observations contradict
the widespread belief that deeper networks are fundamen-
tally more expressive and flexible (e.g. LeCun et al. (2015);
Poggio et al. (2017); Poole et al. (2016); Schoenholz et al.
(2017); Telgarsky (2016); Raghu et al. (2017); Mhaskar et al.
(2017); Lin et al. (2017); Rolnick & Tegmark (2018)) and
suggest that, at least for wide FCNs, one hidden layer is all
you need.

Biases are unnecessary. It is also surprising that the full
space of achievable dot product kernels can be achieved
with only weights and no biases (i.e. σb = 0). This suggests
that biases are unimportant when the activation function is
chosen well and are merely neuroscience-inspired holdouts
from the early days of deep learning.

NTKs for selected shallow networks. Prior works have
computed τϕ(c) for several choices of ϕ; we reproduce these
expressions in Appendix C. Applying Equation 12, we can
then easily compute the 1HL NTKs for these choices of ϕ:

K
(NTK)
eaz = ea

2(1+c)(1 + a2c), (15)

K
(NTK)
sin(az) = e−a2 (

sinh(a2c) + a2c cosh(a2c)
)
, (16)

K
(NTK)
cos(az) = e−a2 (

cosh(a2c) + a2c sinh(a2c)
)
, (17)

K
(NTK)
ReLU(z) =

1

2π

((
1− c2

)1/2
+ 2c

(
π − cos−1(c)

))
.

(18)

We will revisit the sinusoidal kernels experimentally in Sec-
tion 4.3. We note that the ReLU kernel is bounded but
has divergent slope at c → 1, a hallmark of ReLU NTKs
apparent at all depths.

2We emphasize that Corollary 3.3 is true even permitting deep
networks to use different nonlinearities at different layers. The
proof of this result relies on the fact that certain PSD polynomials
cannot be written as the composition of two other nonlinear PSD
polynomials. We note that additional layers with linear activations
do not decrease kernel expressivity.
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Figure 1. Any dot-product kernel can be realized as the NTK of a single-hidden-layer FCN. (A-G) Various desired kernels (grey
dashed curves) and empirical NTKs of single-hidden-layer networks (solid red curves). (H) The engineered activation functions used in
(A-G), which are all polynomials of degree at most 5.

4. Experimental results for finite networks
Our theory shows that arbitrary dot product NNGP kernels
or NTKs can be achieved in infinitely-wide 1HL networks
with a suitable choice of activation function. Here we ex-
plore the experimental implications for finite networks.

All experiments use JAX (Bradbury et al., 2018) and
neural tangents (Novak et al., 2019b) for network
training and kernel computation. Unless otherwise stated,
all datasets are normalized to satisfy Assumption 2.1. We
report full hyperparameters and provide additional commen-
tary for each experiment in Appendix B.

4.1. Arbitrary NTKs with a Single Hidden Layer

To begin, we illustrate our main result by exhibiting 1HL
networks that approximate desired NTKs. For each of seven
desired kernels K(c), including three kernels of deep net-
works, we compute a 5th-order polynomial fit (i.e. approx-
imate K(c) ≈

∑5
k=0 akc

k) and use Theorem 3.1 to con-
struct a suitable polynomial activation function ϕ. We then
randomly initialize a 1HL network with σw = 1, σb = 0
and width 218 and compute its empirical NTK as a func-
tion of c with toy data

{(√
2 cos(θ),

√
2 sin(θ)

)}π
θ=0

.3 Us-
ing the first point in the sequence as one kernel argument,
c = cos(θ).

The results are shown in Figure 1. In each case, including
when mimicking deep neural networks kernels, we find that
the 1HL network’s empirical NTK is remarkably close to
the target kernel. The seven polynomial activation functions

3The factors of
√
2 serve to enforce Assumption 2.1.

are plotted in Figure 1H.

Discrepancies between target and empirical kernels in Fig-
ure 1 are due to a combination of polynomial fitting error
and finite width fluctuations. We found that these trade off:
using a higher-order polynomial fit for K(c) reduces fitting
error but then generally requires higher width to achieve
the same attenuation of finite-width fluctuations. This is a
consequence of the fact that approximating Ez∼N (0,1)

[
|zk|
]

by random sampling requires exponentially more samples
as k increases. We also note that, as shown in Figure 1B,
the 4HL ReLU kernel has divergent slope at c = 1, mak-
ing low-order polynomial approximations inadequate. In
the next section, we provide a solution for these problems,
designing a trainable shallow network that mimics a deep
ReLU kernel more faithfully and at narrower width.

4.2. Achieving 4HL Behavior with a 1HL Network

When choosing an FCN architecture, it is common practice
to include different depths in the hyperparameter search.
It is of course often the case that the best performance
comes from networks with multiple hidden layers. However,
our main result suggests that, to the extent that these deep
networks operate in the kernel regime, it should be possible
to design a 1HL FCN that both trains and generalizes like a
desired deep FCN, perhaps using far fewer parameters.

Here we demonstrate this capability by designing a 1HL
network that mimics the behavior of a 4HL ReLU network.
This task presents two main difficulties for our Hermite
polynomial activations: (1) ReLU NTKs have divergent
slope at c = 1 and are poorly fit by low-order polynomials,
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Figure 2. A 1HL network with activation function designed to mimic a 4HL ReLU NTK achieves the deep architecture’s training
and generalization behavior with far fewer parameters. (A) The optimized activation function ϕ̃ designed to mimic the infinite-width
NTK of a 4HL ReLU network, with ReLU for comparison. (B) The empirical NTK of a width-210 1HL network with activation function
ϕ̃, with the target deep NTK for comparison. In all subplots, shaded regions show 1σ variation due to random initialization. (C-F)
Train and test MSE and accuracy for the wine-quality-red task throughout training for finite 1HL ReLU, 4HL ReLU, and 1HL ϕ̃
networks. Metrics for the shallow ϕ̃ network closely match those of the deep ReLU network. (G-J). Final train and test MSE and accuracy
for the three architectures with various widths, plotted as a function of the total number of parameters.

and (2) we find that networks with polynomial activations
generally diverge upon training. We circumvent both prob-
lems by instead using an activation function with a different
parameterization: we begin with an activation function of
the variational ansatz

ϕ̃(z) = αReLU(z − β) + γ cos(δz + ϵ) + ζz + η, (19)

then numerically optimize {α, ..., η} such that the NTK of
the 1HL network closely matches that of the 4HL ReLU
network. We choose this ansatz because of the observation
that ReLU activations give sharply peaked kernels as we
require here; in the optimized version, the ReLU term com-
prises the dominant contribution to ϕ̃(z). The optimized
activation function is shown in Figure 2A, and its NTK is
shown Figure 2B. In this procedure, Theorem 3.1 serves as
an existence proof of many activation functions achieving
the desired kernel, and our numerical procedure allows us
to find one with desirable properties.

We next confirm that shallow networks with activation
function ϕ̃ indeed mimic the training and generalization
behavior of deep ReLU networks. We train width 4096
1HL ReLU, 4HL ReLU, and 1HL ϕ̃ networks on the UCI
wine-quality-red task (800 train samples, 799 test
samples, 11 features, 6 classes) with full-batch gradient de-
scent, mean-squared-error (MSE) loss, and step size 0.1. As
shown in Figures 2(C-F), we find that, at all times during
training, the train MSE, test MSE, train accuracy, and test
accuracy for the engineered shallow net closely track those
for the 4HL ReLU network. Like the 4HL ReLU network,

the 1HL ϕ̃ network reaches low training error many times
faster than the 1HL ReLU network.

Even if their asymptotic performance is the same, shallow
FCNs in practice often have the advantage of using far
fewer parameters, with the total parameter count scaling
as O(width) for shallow models but O(width2) for deep
models. It is therefore plausible that our 1HL ϕ̃ network,
while matching a 4HL ReLU network in generalization and
training speed when both are wide, is in fact superior to a
4HL ReLU network when both have the same total number
of parameters. To test this hypothesis, we train models
of many different widths, with appropriate stopping times
for each architecture class chosen via cross-validation to
maximize validation accuracy. Note that the 1HL ReLU
network needed to be trained 10x longer than the other
networks for optimal performance.

As shown in Figures 2(G,H), at a fixed parameter budget,
our engineered shallow network achieves significantly lower
training MSE and higher training accuracy than either alter-
native, suggesting it makes much more efficient use of its pa-
rameters in memorizing the training set. More importantly,
as shown in Figures 2(I,J), our engineered shallow network
consistently outperforms the 4HL ReLU architecture at a
fixed parameter budget. Furthermore, with > 3 × 104 pa-
rameters, it outperforms the 1HL ReLU network as well.

We repeat this experiment using the balance-scale
dataset (313 train samples, 312 test samples, 4 features,
3 classes), breast-cancer-wisc-diag dataset (285
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train samples, 284 test samples, 30 features, 2 classes), and
report results in Figures A.4 and A.5. In both cases, we
find that the 1HL ϕ̃ network closely mimics the training
behavior of the 4HL ReLU net and learned the training data
better than the alternatives at fixed parameter budget. As
with the wine-quality-red dataset, on these datasets,
the 1HL ϕ̃ network consistently outperforms the 4HL ReLU
network at fixed parameter budget and typically outperforms
the 1HL ReLU architecture as well. We also test our proce-
dure on a subset of CIFAR-10 (Krizhevsky, 2009) (1000
train samples, 1000 test samples, 3072 features, 10 classes)
and report results in Figure A.6. For this high-dimensional
dataset, we still see good agreement between the 4HL ReLU
and 1HL mimic net, but, due to the dimensionality of the
first weight matrix, the 1HL mimic net has lots its advantage
in terms of parameter count.

All experiments thus far have normalized train and test data
in accordance with Assumption 2.1. While this assump-
tion was required by our theory, one might wonder if it is
necessary to respect in practice. To test this, we repeat
the above experiments with the wine-quality-red
and balance-scale datasets with only normalizing in-
put vectors on average before use. As reported in Fig-
ures A.7 and A.8, the results vary somewhat: for the
wine-quality-red dataset, the match is still almost
perfect in all metrics except test MSE at late times, while
for the balance-scale dataset, agreement can be poor
depending upon which metric is observed. We leave the
elucidation of what factors affect the quality of agreement
for future work, though from NTK theory, one would ex-
pect that a larger dataset size would induce greater kernel
evolution and thus cause greater divergence.

We stress three important takeaways from these experi-
ments:

1. Shallow FCNs can indeed train and generalize like
deep FCNs, even at finite width.

2. Our mimic network was the best-performing architec-
ture for many datasets and parameter budgets, sug-
gesting that our approach (and even our specific ϕ̃)
may be practically useful in use cases where parameter
efficiency is important.

3. Most significantly, our kernel engineering paradigm
enabled us to design a network architecture in a prin-
cipled way: we began with a clear design goal — to
realize a particular target NTK — and our final net-
work closely followed expected behavior. We contrast
this with the typical black-box trial-and-error method
of neural architecture search.4

4For example, Ramachandran et al. (2018) also find a high-
performing activation function (i.e. Swish), but do so via an ex-

It is also noteworthy that, in almost all cases, FCN perfor-
mance improves essentially monotonically with width (as
also seen by Lee et al. (2019)), suggesting that the limiting
kernel regime is optimal and justifying the network kernel
as the sole consideration in the design of ϕ̃.

4.3. Case Study: the Parity Problem

As a second test of our kernel engineering paradigm, we
consider the classic parity problem. The domain of the
parity problem is the boolean cube {−1,+1}nbits , and the
target function is

f(x) =

{
1 x contains an odd number of +1s,
−1 else.

(20)

We take nbits = 11 and randomly select half the domain
as train data and the other half as test data. Despite its
simplicity, the parity problem is notoriously difficult for
both FCNs and kernel machines, and despite the fact that a
deep ReLU network can easily represent the correct solution
(Hohil et al., 1999; Bengio et al., 2007), in practice it is not
learned during training (Bengio et al., 2006; Nye & Saxe,
2018).

The difficulty of the parity problem lies in the fact that
points are anticorrelated with their neighbors: flipping any
single bit changes the function. By contrast, most standard
FCN kernels have high value when evaluated on nearby
points (i.e. K(c) is large when c is nearly but not exactly
1), so they expect neighboring points to be correlated, not
anticorrelated. This can be understood through the lens
of the kernel’s eigensystem, revealing that, for many FCN
kernels, the parity problem is in fact the hardest-to-learn
function on the boolean cube (Yang & Salman, 2019; Simon
et al., 2021).

However, we can hope to achieve better performance by
engineering a kernel that is better-suited to the problem. We
desire a kernel with a rapid decay as c decreases from 1.5

Further noting that the target function has odd symmetry
with nbits = 11, we also want the kernel to be odd. We
would expect that inference with such a kernel predicts
correctly on the half of test points that are opposite a training
point and predicts close to zero on other test points, giving
accuracy of 75% and MSE of 0.5.

We can achieve such a sharp, odd kernel with a sinusoidal
activation function. Expanding the kernel of Equation 16 in

pensive exhaustive search that yields little insight into the reasons
for high performance.

5Though it might seem we should design a kernel that not only
decays but quickly becomes negative as c decreases from 1, this
is in fact impossible for an FCN kernel as it violates the PSD
constraint of Theorem 2.2.
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Figure 3. (A) NTKs of two networks evaluated on the parity prob-
lem. The NTK of the 1HL network with 1

2
sin(6z) activations

has a rapid decay and odd symmetry, making it well-suited to the
parity problem. The NTK of the 1HL network with 10 sin(6z)
activations (not shown) is identical but 400× greater in magnitude.
(B) Odd power series coefficients of the NTK of the 1HL 1

2
sin(6z)

network. Even coefficients (not shown) are zero.

a power series, we find that

K
(NTK)
sin(az)(c) = e−a2 ∑

k≥1
k odd

a2k

k!
(1 + k)ck, (21)

which has only odd coefficients that peak at index k ≈ a2,
which, if a is moderately large, implies the kernel is mostly
high-order and thus rapidly decays to zero away from c =
±1. We choose a = 6 and test both ϕ(z) = 10 sin(6z) and
ϕ(z) = 1

2 sin(6z). We contrast ReLU and sine kernels in
Figure 3.

We trained 4HL ReLU networks and 1HL sine networks
via gradient descent with MSE loss. The results are shown
in Table 1. The 4HL ReLU network performs significantly
worse than chance6 in terms of both test MSE and test
accuracy. The first 1HL sine network roughly achieved the
“ideal odd kernel” performance we anticipated, which is why
we include it in the table. The second 1HL sine network,
however, genuinely learns the target function, achieving
near-zero MSE and perfect accuracy in every run. This
success surprised us; we hypothesize that it is related to
the fact that the parity function can be written as f(x) =
sin(π2

∑
i xi).78

As with the prior experiment, we stress that, though our
method does dramatically outperform the FCN baseline on
the parity problem, the most important takeaway is not the

6We define the naive “chance” predictor as one that always
predicts 0 and chooses class labels randomly.

7The superiority of this shallow architecture is especially note-
worthy given that the parity problem was historically used to illus-
trate the need for deep architectures (Bengio et al., 2007).

8The constants in our ultimate sinusoidal activation functions —
10, 1

2
, and 6 — were chosen after experimentation to best illustrate

the two different behaviors highlighted in Table 1. Similar choices
gave similar results. We leave as an open problem an explanation
of why only the smaller prefactor led to perfect generalization. The
answer will require ideas beyond the kernel regime.

depth ϕ(z) test MSE test accuracy (%)
4 ReLU(z) 2.819± 0.109 29.326± 1.482
1 10 sin(6z) 0.668± 0.332 82.048± 8.550
1 1

2 sin(6z) 0.021± 0.004 100± 0
chance 1 50

ideal odd kernel .5 75

Table 1. A kernel-informed choice of activation function dra-
matically improves performance on the parity problem. Test
MSE and accuracy are shown for a deep ReLU network and two
single-hidden-layer networks with kernel-informed activation func-
tions. Metrics for a naive random predictor and an ideal odd kernel
are provided for comparison.

high performance itself but rather the fact that we achieved
it by designing a neural network in a principled way by
selecting and reverse-engineering a kernel suited to the task
at hand. Unlike traditional approaches, our method required
very little trial-and-error or hyperparameter optimization.

5. Conclusions
Motivated by the need for principled neural architecture
design, we have derived a constructive method for achieving
any desired positive semidefinite dot-product kernel as an
FCN with one hidden layer. In a series of experiments, we
verified our construction and showed that this reverse engi-
neering paradigm can indeed enable the design of shallow
FCNs with surprising and desirable properties including
improved generalization, better parameter efficiency, and
deep-FCN behavior with only one hidden layer.

The fact that any FCN kernel can be achieved with just one
hidden layer is a surprise with potentially broad implica-
tions for deep learning theory. As with most facets of deep
learning, the role and value of depth are not well understood.
Our results suggest that depth may in fact not be important
for FCNs. If this is true, it means that researchers aiming to
understand the value of depth should focus on convolutional
and other more structured architectures.

Our results open many avenues for future work. On the
theoretical side, one might aim to lift the normalization con-
dition on the data or achieve both desired NNGP and NTK
kernels simultaneously, likely in a deep network. We also
note that the activation functions given by our construction
generally have a large number of arbitrary signs, and though
all sign choices yield the same limiting kernels, some will
outperform others at finite width. Deriving a principle to
choose these signs is a potential avenue for future work, and
one tool for doing so might be finite-width corrections to the
NTK (e.g. Dyer & Gur-Ari (2019); Zavatone-Veth & Pehle-
van (2021)). On the experimental side, there is ample room
to apply our method to other tabular data tasks, explore its
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interactions with regularization and feature learning, and
use the large body of work on kernel selection to choose the
kernel to reverse engineer (Cristianini et al., 2006; Cortes
et al., 2012; Jacot et al., 2020).

Though our experiments focus on the NTK, our results also
allow the design of a network’s NNGP kernel and thus its
Bayesian priors. The ability to choose task-appropriate
priors instead of defaulting to those of standard architec-
tures would be a valuable tool for the study and practice of
Bayesian neural networks (e.g. Wilson & Izmailov (2020)),
another promising direction for future investigation.

Perhaps the most interesting extension of our work would
be the derivation of similar results for convolutional archi-
tectures, characterizing their kernel expressivity and finding
an analog to our reverse engineering construction. Recent
results have shed much light on convolutional kernels’ eigen-
spectra and dependence on hyperparameters (Xiao, 2021;
Misiakiewicz & Mei, 2021) so this lofty goal may indeed
be within reach. If achieved, we hope the extension of our
work to convolutional nets might in time enable the first-
principles design of state-of-the-art architectures for the first
time.
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A. Additional Figures
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Figure A.4. (A-D) Train and test MSE and accuracy for the balance-scale task throughout training for finite 1HL ReLU, 4HL
ReLU, and 1HL ϕ̃ networks. Metrics for the shallow ϕ̃ network closely match those of the deep ReLU network. (E-H). Final train and
test MSE and accuracy for the three architectures with various widths, plotted as a function of the total number of parameters.
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Figure A.5. (A-D) Train and test MSE and accuracy for the breast-cancer-wisc-diag task throughout training for finite 1HL
ReLU, 4HL ReLU, and 1HL ϕ̃ networks. Metrics for the shallow ϕ̃ network closely match those of the deep ReLU network. (E-H). Final
train and test MSE and accuracy for the three architectures with various widths, plotted as a function of the total number of parameters.
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Figure A.6. (A-D) Train and test MSE and accuracy for a size-1k subset of CIFAR-10 throughout training for finite 1HL ReLU, 4HL
ReLU, and 1HL ϕ̃ networks. Metrics for the shallow ϕ̃ network closely match those of the deep ReLU network. (E-H). Final train and
test MSE and accuracy for the three architectures with various widths, plotted as a function of the total number of parameters. Due to the
high input dimension, the 1HL mimic net has little to no advantage over the 4HL ReLU net in terms of parameter efficiency.
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Figure A.7. (A-D) Train and test MSE and accuracy for the wine-quality-red task without uniform input normalization. Metrics
for the shallow ϕ̃ network nonetheless still closely match those of the deep ReLU network. (E-H). Final train and test MSE and accuracy
for the three architectures with various widths, plotted as a function of the total number of parameters.



Reverse Engineering the Neural Tangent Kernel

balance-scale (unnormalized)

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

A
Train

1HL ReLU
4HL ReLU
1HL 

0.6

0.7

0.8

0.9

1.0 C
Test

0.2

0.3

0.4

0.5
E

Train

0.55

0.60

0.65
G

Test

101 103 105

Epoch
50

60

70

80

90

100

Ac
cu

ra
cy

 (%
) B

101 103 105

Epoch

55

60

65 D

103 104 105 106

# Parameters

70

80

90

F

103 104 105 106

# Parameters

55.0

57.5

60.0

62.5

65.0 H

Figure A.8. (A-D) Train and test MSE and accuracy for the balance-scale task without uniform input normalization. For this task,
metrics for the shallow ϕ̃ network differ from those of the deep ReLU network. (E-H). Final train and test MSE and accuracy for the three
architectures with various widths, plotted as a function of the total number of parameters.

B. Experimental Details
For all engineered 1HL networks, we use σw = 1, σb = 0. For all ReLU and erf networks, we use σw =

√
2, σb = 0.1 for

all layers except the readout layer, for which we use σw = 1, σb = 0. We define MSE as E(x,y)

[
(f(x)− y)2

]
, without the

factor of 1
2 .

Naively, when training an infinitely-wide network, the NTK only describes the mean learned function, and the true learned
function will include an NNGP-kernel-dependent fluctuation term reflecting the random initialization. However, by centering
the model — that is, storing a copy of the parameters at t = 0 and redefining f̂t(x) := f̂t(x)− f̂0(x) throughout optimization
and at test time — this term becomes zero (Lee et al., 2020), and so we neglect the NNGP kernel in our activation function
design and use this trick in our experiments.

Arbitrary NTKs with a Single Hidden Layer. When fitting a polynomial to K(c), we use a least-squares fit with 10% of
the weight on the point at c = 1 to encourage better agreement with the 4HL ReLU NTK.

In terms of Hermite polynomials, the activation functions plotted in Figure 1 are as follows:

ϕA = 0.837h0 + 0.271h1 − 0.151h2 − 0.050h3 + 0.101h4 + 0.084h5, (22)
ϕB = 1.230h0 + 0.639h1 + 0.539h4 + 0.426h5, (23)
ϕC = 0.153h0 + 0.826h1 − 0.004h2 − 0.005h3 + 0.219h4 + 0.577h5, (24)
ϕD = 0.001h0 + 0.010h1 − 0.500h3 + 0.009h5, (25)
ϕE = 0.707h1 − 0.004h2 − 0.003h3 + 0.447h4, (26)
ϕF = 1.001h1 − 0.572h3 + 0.004h4 + 0.229h5, (27)
ϕG = 1.002h0 − 0.805h2 + 0.404h4 + 0.011h5. (28)

We found that inverting the sign of the h2 and h3 coefficients, while not changing the network’s infinite-width NTK, did
reduce its finite-width fluctuations and improve the agreement illustrated in Figure 1. Instead of directly computing the
empirical NTK of a single 1HL network with width 218, which required too much memory, we equivalently averaged the
empirical NTKs of 24 1HL networks with width 214.
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Achieving 4HL Behavior with a 1HL Network.

We first optimize the activation function with form given by Equation 19. We use the Nelder-Mead algorithm to minimize
the sum squared error between the target kernel and the engineered 1HL kernel evaluated on values c ∈ [−1, 1]. The
desired kernel is the infinite width 4HL ReLU NTK. One would compare this with the analytical, infinite-width NTK
of the 1HL network, but we find that, because our choice of activation function has discontinuous derivative (and is not
ReLU), neural tangents has difficulty computing its τ -transform, so we instead compare against a randomly-initialized
empirical kernel with width 212. To attenuate statistical fluctuations, we average the empirical kernel over 20 initializations.
This process yields the activation function

ϕ̃(z) = 3.8001 ReLU(z − 1.0600)− 0.0794 cos(11.8106z + 0.9341) + 0.0968z + 0.9010. (29)

We then use this activation function to train finite width nets and compare the performance of 1HL ReLU, 4HL ReLU, and
1HL ϕ̃ networks. For networks of width 4096, we train each net for 216 epochs, averaging the results over five random
initializations. Using k = 3-fold cross-validation on the training data, we choose the optimal stopping time for each net
and then train networks of varying width, again averaging results over five random initializations. For the experiments in
the main text using the wine-quality-red dataset, we use stopping times of 2000 for the 4HL ReLU and ϕ̃ networks
and 20000 for the 1HL ϕ̃ networks. Experiments on the balance-scale dataset were identical, but used stopping times
of 400 epochs for all networks. Experiments on the breast-cancer-wisc-diag datasets used stopping times of 210

epochs for all architectures. Experiments on the CIFAR-10 datasets used stopping times of 800 epochs for all architectures.

All datasets except CIFAR-10 were taken from the UCI repository (Dua & Graff, 2017).

Case Study: the Parity Problem. We use networks of width 128, trained via full-batch gradient descent with step size 0.1.
We stop when either train MSE is below 10−3 or after 10k epochs. The 1HL sine networks always stopped due to low train
MSE, while the 4HL ReLU networks, which trained much slower, generally timed out. The slow training of ReLU networks
here can be understood as a consequence of the presence of very small eigenvalues in their NTK data-data kernel matrix
(Cao et al., 2019; Yang & Salman, 2019). We average performance over 30 trials.

C. Review of Hermite Polynomials
As Hermite polynomials are of central importance to our main result, here we provide a more complete introduction. We
note that there are differing conventions for Hermite polynomials; in this work we use the normalized probabilist’s Hermite
polynomials. The first several such polynomials and the general formula are

h0(z) = 1,

h1(z) = z,

h2(z) =
1√
2

(
z2 − 1

)
,

h3(z) =
1√
3!

(
z3 − 3z

)
,

· · ·

hk(z) =

k∑
ℓ=0

k−ℓ even

(−1)(k−ℓ)/2
√
k!

(k − ℓ)!!ℓ!
zℓ,

· · ·

In addition to those given in the text, we note the useful identities

hk(z) =
z√
k
hk−1(z)−

√
k − 1

i
hk−2(z), (30)

hk(−z) = (−1)khk(z). (31)
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Because the Hermite polynomials are orthonormal w.r.t. the standard normal Gaussian metric, we can isolate a particular
coefficient of ϕ(z) =

∑∞
i=0 bihi(z) by computing

bi =
1√
2π

∫ ∞

−∞
e−z2/2hi(z)ϕ(z)dz. (32)

With the use of Equation 9, the Hermite decomposition of an activation function immediately yields its τ -transform (though
for special functions there are often faster methods of obtaining it, such as directly computing the expectation in Equation 5).
Here we reproduce results from Daniely et al. (2016) and Cho & Saul (2009) for the τ -transforms of a few notable functions:

τeaz (c) = ea
2(c2+1), (33)

τsin(az)(c) = e−a2

sinh(a2c), (34)

τcos(az)(c) = e−a2

cosh(a2c), (35)

τReLU(z)(c) =
1

2π

[
(π − cos−1(c))c+ (1− c2)1/2

]
. (36)

D. Proofs of Equation 6, Corollary 3.2, and Corollary 3.3
Proof of Equation 6. First, we Hermite-expand ϕ as ϕ(z) =

∑∞
k=0 bkhk(σ

−1z). This yields

τϕ(c;σ
2) =

∞∑
k=0

b2kc
k. (37)

Using Equation 10 to take the derivatives of hk, we find that ϕ′(z) =
∑∞

k=0 bkσ
−1
√
khk−1(σ

−1z), and thus

τϕ′(c;σ2) = σ−2
∞∑
k=0

b2kkc
k−1 =

∂c
σ2

τϕ(c;σ
2).

A related equation appears in Appendix A of Poole et al. (2016) but is not derived, and this equation for c = 1 is derived by
Daniely et al. (2016), so we do not claim priority, but we nonetheless hope this proof of the general identity will be useful
for the community.

Proof of Corollary 3.2. Property (a). Setting σb = 0 in Equations 7 and 8 and replacing τϕ′ with τϕ using Equation 6 yields
that

K
(NNGP)
ϕ (c) = σ2

wτϕ(c;σ
2
w), (38)

K
(NTK)
ϕ (c) = K(NNGP)(c) + c∂cτϕ(c;σ

2
w). (39)

Replacing ϕ with ϕ′ and again using Equation 6, we find that

K
(NNGP)
ϕ′ (c) = ∂cτϕ(c;σ

2
w) =

∂c
σ2
w

K
(NNGP)
ϕ (c), (40)

K
(NTK)
ϕ′ (c) = K

(NNGP)
ϕ′ (c) +

c∂2
c

σ2
w

τϕ(c;σ
2
w) =

∂c
σ2
w

K
(NTK)
ϕ (c). (41)

Property (b). This follows from the fact that ταϕ(c;σ2) = α2τϕ(c;σ
2).

Property (c). This follows from the fact that τϕ(−z)(c;σ
2) = τϕ(z)(c;σ

2).

Proof of Corollary 3.3. This corollary is true because the kernels of deep FCNs are compositional in their functional
form, but certain functions cannot be decomposed into multiple nonlinear PSD polynomials. To show this, we begin by
reproducing the recursion relation for the NNGP kernel (see, e.g., Appendix E of Lee et al. (2019)). In terms of the kernel at
layer ℓ, the kernel at layer ℓ+ 1 is

K
(NNGP)
ℓ+1 (c) = σ2

wτϕ

(
K

(NNGP)
ℓ (c)

K
(NNGP)
ℓ (1)

;K
(NNGP)
ℓ (1)

)
+ σ2

b , (42)
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with base condition K
(NNGP)
0 (c) = σ2

wc + σ2
b . If ϕ is nonlinear (i.e. is not an affine function), then the τ -transform in

Equation 42 is nonlinear in its first argument, and we have K
(NNGP)
ℓ+1 (c) = f(K

(NNGP)
ℓ (c)) for some nonlinear PSD function

f .

Thus, after two or more nonlinear hidden layers, the NNGP kernel consists of the composition of multiple nonlinear PSD
functions. However, certain PSD polynomials cannot be decomposed into multiple nonlinear PSD functions in this way. For
example,

K(c) = c2 + c (43)

cannot be written as K(c) = f(g(c)) for any nonlinear PSD functions f and g: to be nonlinear and PSD, they must each
have a positive term of at least order two when expressed as a power series, but then their composition must have at least a
quartic term, and as f and g are PSD, there can be no negative contribution to cancel this high-order term.9 Kernels such as
this can only be achieved with exactly one nonlinear hidden layer (though additional hidden layers with affine activation
functions are fine).

As can be seen from its recursion relations (again see Appendix E of Lee et al. (2019)), the NTK at any layer takes the form

K
(NTK)
ℓ (c) = K

(NNGP)
ℓ (c) + [PSD function], (44)

so, if a particular architecture’s NNGP kernel must necessarily have extra, unwanted positive terms (such as the inevitable
quartic term discussed above), so must the NTK, because the additional PSD contribution cannot cancel any terms. This
completes the proof.

9We note that, while there exist many nonlinear pairs of functions such as f(c) = c6 + c3, g(c) = 3
√
c that yield K(c) = f(g(c)),

one will always be non-PSD: the flaw with this example is that 3
√
c does not have a positive-semidefinite power series expansion and thus

cannot be a valid kernel transformation.


