
GenLabel : Mixup Relabeling using Generative Models

Jy-yong Sohn 1 Liang Shang 1 Hongxu Chen 1 Jaekyun Moon 2 Dimitris Papailiopoulos 1 Kangwook Lee 1

Abstract
Mixup is a data augmentation method that gen-
erates new data points by mixing a pair of input
data. While mixup generally improves the pre-
diction performance, it sometimes degrades the
performance. In this paper, we first identify the
main causes of this phenomenon by theoretically
and empirically analyzing the mixup algorithm.
To resolve this, we propose GenLabel , a simple
yet effective relabeling algorithm designed for
mixup. In particular, GenLabel helps the mixup
algorithm correctly label mixup samples by learn-
ing the class-conditional data distribution using
generative models. Via theoretical and empirical
analysis, we show that mixup, when used together
with GenLabel , can effectively resolve the afore-
mentioned phenomenon, improving the accuracy
of mixup-trained model.

1. Introduction
Mixup (Zhang et al., 2018) is a widely adopted data augmen-
tation algorithm used when training a classifier, which gen-
erates synthetic samples by linearly interpolating two ran-
domly chosen samples. Each mixed sample is soft-labeled,
i.e., it is labeled as a mixture of two (possibly same) classes
of the chosen samples. The rationale behind the mixup algo-
rithm is that such mixed samples can fill up the void space
in between different class manifolds, effectively regulariz-
ing the model behavior. Mixup has been shown to improve
generalization on multiple benchmark image datasets. Vari-
ous variants of mixup have been proposed in the past few
years such as Manifold-mixup (Verma et al., 2019), which
apply mixup in the latent feature space, and several com-
puter vision-specific variants (Yun et al., 2019; Kim et al.,
2020; Uddin et al., 2021; Kim et al., 2021). Recent studies
also provide some theoretical explanations for the success

1Department of Electrical and Computer Engineering, Uni-
versity of Wisconsin, Madison, USA 2School of Electrical Engi-
neering, Daejeon, KAIST. Correspondence to: Kangwook Lee
<kw1jjang@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

of mixup (Zhang et al., 2021; Carratino et al., 2020).

Mixup, however, does not always improve accuracy, and
sometimes it even hurts. Guo et al. (2019) observed that
the accuracies of mixup is up to 1.8% worse than vanilla
training on some image classification tasks. Greenewald
et al. (2021) reported a similar finding; the original mixup
degrades the accuracy of vanilla training up to 2.5% on an
UCI classification task (Dua & Graff, 2017). Despite such
empirical findings, (1) why mixup fails and (2) how we can
prevent them are not fully understood yet.

1.1. Main contributions
In this work, we first take a closer look at the failure scenar-
ios of mixup, particularly focusing on the low-dimensional
input setting. As a result, we identify two main reasons
behind mixup’s failure scenarios. The first one is manifold
intrusion, which was defined in (Guo et al., 2019). Samples
generated by mixing two classes may intrude the manifold
of another class, causing label conflicts with the samples
from the intruded class. We perform analysis of the effect
of manifold intrusion. The second reason we identify is
linear labeling. Mixup assigns a mixed sample with a linear
combination of the two one-hot encoded labels. We prove
that, focusing on a specific softmax regression setting, such
linear labeling results in a strictly suboptimal margin and
accuracy.

After identifying the key reasons behind mixup’s failure, we
propose a simple yet effective fix for mixup. Our proposed
algorithm GenLabel is a relabeling algorithm designed for
mixup. The idea is strikingly simple – GenLabel relabels a
mixed sample using the likelihoods that are estimated with
learned generative models.

Consider a three-way classification problem in Fig. 1. Gen-
Label learns generative models to estimate the likelihood
of a mixed sample. Let pc(x) be the likelihood of sam-
ple x drawn from class c, and let p̂c(x) be the estimated
likelihood. Given a mixed sample xmix, GenLabel first com-
putes all three likelihoods p̂c(xmix) for class c ∈ {1, 2, 3},
and then assigns the mixed sample the following label:
ygen = softmax(log p̂1(xmix), log p̂2(xmix), log p̂3(xmix)).
Note that the cth entry of ygen is p̂c(x

mix)∑3
c′=1

p̂c′ (xmix)
, which

equals the posterior probability estimate P̂(y = c|xmix),

GenLabel : Mixup Relabeling using Generative Models

Class 1

p̂1(x)

Class 2

p̂2(x)

Class 3

p̂3(x)

xmix = λx+ (1− λ)x′

x
x′

ymix = λy + (1− λ)y′ = λe1 + (1− λ)e3

ygen =
∑

c

p̂c(x
mix)∑

c′

p̂c′(x
mix)

ei ' e2

p̂2(x
mix)� p̂1(x

mix),
p̂2(x

mix)� p̂3(x
mix)

Figure 1: Visualization of GenLabel applied to mixup. Consider
two labeled samples (x,y) and (x′,y′). Mixup generates xmix =
λx + (1 − λ)x′ for some λ ∈ [0, 1] and label it as ymix =
λy+(1−λ)y′ = λe1+(1−λ)e3, where ec is the c-th standard
basis vector. This induces label noise as xmix lies on the manifold
of class 2. On the other hand, GenLabel properly relabel it as
ygen ' e2, which is computed using the learned distribution for
each class c (p̂c(x)) and the relabeling formula in the figure.

when we have a balanced dataset. Thus, GenLabel can
be viewed as a labeling method that assigns the posterior
probability of the label y given a mixed sample xmix. This
property of GenLabel allows us to fix the issue of the con-
ventional labeling method in mixup, as shown in Fig. 1.

The suggested GenLabel has been analyzed in diverse per-
spectives. First, we empirically show that GenLabel fixes
the manifold intrusion issue on toy datasets. Second, we
provide a problem setup where GenLabel combined with
mixup maximizes the margin of a classifier, while mixup
alone leads to a much smaller margin. Third, we show that
GenLabel improves the adversarial robustness of mixup in
logistic regression models and fully-connected (FC) net-
works with ReLU activations. Finally, we tested GenLabel
on 133 low-dimensional real datasets in OpenML (Van-
schoren et al., 2013). Our experimental results show that the
suggested GenLabel helps mixup improve the accuracy in
various low-dimensional datasets. We also found that adver-
sarial robustness can be improved by applying GenLabel .

1.2. Preliminaries
Notations We focus on k-way classification tasks. A
dataset with n data points is denoted by S = {zi}ni=1, where
the i-th data point is represented by zi = (xi,yi) composed
of the input feature xi ∈ Rd and the label yi ∈ [0, 1]k. We
use one-hot encoding for the label, i.e., the label of class-
c data points is represented as y = ec, where ec is the
standard basis vector with a 1 in the c-th coordinate and
0’s elsewhere. Mixed samples can have soft label, e.g.,
0.5e1 + 0.5e2 denotes that the mixed sample is equally
likely to be from class 1 and 2. The set of input features
is denoted by X = {xi}ni=1. We assume that each data
point x in class c is generated from (unknown) probabil-
ity distribution pc(x) := px|y(x|ec). For a positive integer
k, we define [k] := {1, 2, · · · , k}. Given a distance met-
ric, d(x1, x2) denotes the distance between x1 and x2, and
d(x,A) = mina∈A d(x, a) denotes the minimum of the
distances between x and the points in a closed set A.

Mixup Mixup (Zhang et al., 2018) generates synthetic
data points by applying a linear combination of two samples.
Given samples xi and xj , it generates xmix = λxi + (1−
λ)xj having a mixed label ymix = λyi + (1 − λ)yj , for
randomly sampled λ ∼ Beta(α, α) for a given α > 0.

Gaussian mixture model Gaussian mixture (GM) model
is a generative model, which assumes that samples x in each
class (say class c) follow a multivariate Gaussian distribution
N (µc,Σc) for some mean µc and covariance matrix Σc.
One can estimate the model parameters by computing the
within-class sample mean µ̂c and the within-class sample
covariance matrix Σ̂c for each class. A GM model of two
classes, say class 1 and 2, can be modeled as π1N (µ̂1, Σ̂1)+

(1− π1)N (µ̂2, Σ̂2), where π1 = P(y = e1).

Kernel density estimator Kernel density estimator (KDE)
is a non-parametric density estimator that makes use of a
kernel function. For example, KDE with Gaussian kernel es-
timates the distribution of class c as 1

nc

∑nc
i=1N (xi, h

2Σ̂c)
for a given bandwidth h, where {xi}nci=1 is the set of sam-
ples in class c and Σ̂c is the sample covariance matrix of
class c. One can use KDE as a generative model, creating
new samples from the estimated density.

Nearest neighbor (NN) based density estimator Suppose
we have nc data points in class c. Then, kc-NN density
estimator provides the estimated class-conditional density
pc(x) = kc

ncV
for a given sample x, where V is the mini-

mum volume of a sphere centered at x and containing kc
data points belonging to class c (Bishop, 2006).

2. Related Works
Mixup and variants Mixup and its variants have been
considered as promising data augmentation schemes im-
proving the generalization and robustness performance in
various image classification tasks (Zhang et al., 2018; Verma
et al., 2019; Tokozume et al., 2018; Inoue, 2018; Shimada
et al., 2019; Hendrycks et al., 2020; Yun et al., 2019; Kim
et al., 2020; Uddin et al., 2021; Kim et al., 2021; Zhang
et al., 2021; Park et al., 2022; Liu et al., 2021). However,
the performance of mixup for low-dimesional datasets have
been rarely observed in previous works. This paper focuses
on the failures of mixup in low-dimensional datasets, and
provide a simple label correction method to solve this issue,
which improves generalization performance in various real
datasets.

Manifold intrusion Guo et al. (2019) observed that
mixup samples of two classes may intrude the manifold
of a third class. The authors dubbed this label conflict phe-
nomenon as manifold intrusion. Hwang & Whang (2021)
found that a similar label conflict problem becomes even
more salient in the regression setting. To resolve mani-
fold intrusion issue, previous works have suggested mixing

GenLabel : Mixup Relabeling using Generative Models
Table 1: Clean accuracy (%) on various synthetic and real datasets.
Mixup performs worse than vanilla training on these datasets.

Dataset Moon Four-circle 3D cube OpenML-48 OpenML-307 OpenML-818

Vanilla 98.7 91.3 93.0 39.1 66.8 100.0
Mixup 97.0 (1.7↓) 57.7 (33.6↓) 89.4 (3.6↓) 30.9 (8.2↓) 54.4 (12.4↓) 92.3 (7.7↓)

strategies which avoid generating mixup samples causing
the label conflict. Guo et al. (2019) suggested learning a mix-
ing policy network that prohibits generating the in-manifold
mixup samples. Greenewald et al. (2021) suggested mix-
ing adjacent data samples by using the concept of optimal
transport. This allows both the mixed sample and the corre-
sponding data sample pair lie on the same manifold, which
avoids facing the label-conflicting scenarios. Focusing on
the regression setting, Hwang & Whang (2021) suggested
learning a mixing policy by measuring how helpful mixing
each pair is. Although all these regularization techniques
prohibit generating mixup points that incur label conflicts,
they also inherently give up the potential benefits of us-
ing such label-conflicting mixup samples by properly re-
labeling them. In this paper, for the first time, we solve the
manifold intrusion issue by re-labeling the mixup samples,
with the aid of generative models.

Generative models for classification Generative models
have been widely used for classification tasks for several
decades. A generative classifier (Ng & Jordan, 2002) pre-
dicts label y based on the class-conditional density p(x|y)
estimated by generative models, and has been developed
until recent years (Schott et al., 2018; Ju & Wagner, 2020).
The present paper also makes use of generative models for
classification task, but we use them for re-labeling aug-
mented data, while existing works use them for the pre-
diction itself. Some previous works proposed generative
model-based data augmentation schemes (Antoniou et al.,
2017; Perez & Wang, 2017; Tanaka & Aranha, 2019). While
these schemes use the learned distribution to create on-
manifold synthetic data, we use the learned distribution
to re-label both on-manifold and out-of-manifold mixup
samples. There have been extensive works on using gener-
ative models to improve the robustness against adversarial
attacks and out-of-distribution samples (Ilyas et al., 2017;
Xiao et al., 2018; Samangouei et al., 2018; Song et al., 2018;
Schott et al., 2018; Li et al., 2019; Ghosh et al., 2019; Serrà
et al., 2020; Choi et al., 2018; Lee et al., 2018). Though
looking similar, these are not data augmentation algorithms
and hence only tangentially related to our algorithm. Our
method can be used together with any of these algorithms.

3. Failure of Mixup on Low-Dimensional Data
In this section, we observe the failure scenarios of mixup,
i.e., when mixup performs even worse than vanilla training,
especially focusing on the low-dimensional data setting. Ta-
ble 1 shows the scenarios when mixup has a lower accuracy

x

x1 = −1 x2 = 0

xmix = 0

x3 = +1

y1 = e1 y2 = e2 y3 = e1

Dataset

Mix of (x1,y1)

and (x3,y3)

x

ymix = e1
Label conflict!

Figure 2: Example 1 visualization. Top: dataset S = {xi,yi}3i=1,
Bottom: A mixup point generated with x1 and x3 with λ =
0.5. This incurs the manifold intrusion because of x2 at the same
location but with a different label. Our analysis shows that this
phenomenon is what reduces the margin from 1/2 to 7/16.

than vanilla training, for synthetic datasets1 and OpenML
datasets (Vanschoren et al., 2013). For example, in the
Four-circle dataset, the performance gap between mixup
and vanilla training is larger than 30%. Why does mixup
have such failure scenarios? Here we identify and analyze
two main reasons. First, we show the manifold intrusion de-
fined in (Guo et al., 2019) may degrade the margin/accuracy
of mixup. Second, we show that even when there is no
manifold intrusion issue, the labeling method used in mixup
may harm the margin/accuracy of a classifier.

3.1. Manifold intrusion reduces margin and accuracy
In (Guo et al., 2019), the manifold intrusion (MI) is defined
as the case when the mixup sample xmix, generated by mix-
ing data in class c1 and c2, collides with a real data sample
having label c3 /∈ {c1, c2}. Below we provide a concrete
problem instance where the margin reduction property of
manifold intrusion is rigorously proved.

Example 1. Consider binary classification on the dataset
S = {(xi,yi)}3i=1 = {(−1, e1), (0, e2), (+1, e1)} in
Fig. 2, where each data point in class 1 is represented
as brown circle, and each data point in class 2 is shown
as blue triangle. We consider the classifier fθ defined
as fθ(x) = 1 if |x| ≥ 2θ, and fθ(x) = |x|

2θ otherwise.
This classifier estimates the label of a given feature x as
ŷ = [fθ(x), 1− fθ(x)], and the margin of this classifier is
represented as margin(fθ) = min{θ, 1− θ}.
As in Fig. 2, applying mixup on this dataset suffers from
manifold intrusion (MI); mixing x1 and x3 with coefficient
λ = 0.5 generates xmix = 0 with label ymix = e1, over-
lapping with x2 = 0 having different label y2 = e2. Here
we compare (1) mixup and (2) mixup-without-MI. To avoid
MI, we set the scheme (2) to mix only samples with different
classes. Here, we sample λ ∼ Beta(1, 1). For each scheme
s ∈ {mixup,mixup-without-MI}, let θs be the parameter
θ that minimizes the MSE loss `(ŷ,y) = ‖ŷ−y‖22. We have
margin(θmixup) = 7

16 and margin(θmixup-without-MI) =
1
2 as in Section C.1 of Appendix.

This shows that we can achieve the maximum margin 1
2 if

we remove mixup points having manifold intrusion, while

1 See Section E in Appendix for the details of synthetic datasets.

GenLabel : Mixup Relabeling using Generative Models
Table 2: The effect of manifold intrusion (MI) on logistic regres-
sion accuracy, for 7 balanced low-dimensional OpenML datasets,
having more than two classes. For six out of seven, one can in-
crease the accuracy by discarding the mixup points which incur
manifold intrusion, demonstrating MI’s effect on accuracy.

OpenML dataset ID 18 36 307 468 1413 1499 40984

Mixup-without-MI (%) 73.70 89.21 56.77 82.73 93.33 96.19 84.88
Mixup (%) 72.93 88.98 54.41 83.64 88.00 95.56 83.90

vanilla mixup degrades the margin to 7
16 , implying the mar-

gin reduction effect of manifold intrusion.

Now we empirically show how the manifold intrusion af-
fects the classification accuracy of mixup for real datasets
in OpenML. Similar to the previous example, we consider
two schemes: (1) mixup and (2) mixup-without-MI, where
the second scheme is defined as a usual mixup with the
exclusion of mixup points that incur the manifold intrusion.
Here we decide whether a mixup point is suffering from
manifold intrusion, using a relaxed version of the definition
suggested in (Guo et al., 2019):

Definition 1. For a real dataset D = {xi,yi}ni=1, we
call a mixed point xmix = λx1 + (1 − λ)x2 has mani-
fold intrusion if the label of the nearest neighbor xnn =
arg minx∈X d(x,xmix) is different from y1 and y2.

Table 2 compares the classification accuracy of (1) mixup
and (2) mixup-without-MI, for 7 balanced low-dimensional
datasets in OpenML having more than two classes, and hav-
ing less than 20 features. We trained a logistic regression
model for classification, and the result is averaged out over
five trials. It turns out that for 6 out of 7 datasets, mixup-
without-MI has a higher accuracy than mixup. This shows
that excluding the manifold-intruding mixup points is bene-
ficial for improving the classification accuracy, for a large
portion of tested low-dimensional real datasets.

3.2. Labeling method in mixup is sub-optimal
Here we show that for datasets not having manifold intru-
sion, the labeling method used in mixup is sub-optimal in
terms of margin and accuracy. Note that for a given mixed
point xmix = λxi + (1 − λ)xj , the conventional method
uses a linear interpolation of labels of original samples, rep-
resented as ylin = λyi + (1 − λ)yj . We call this method
as linear labeling. Here we compare this with an alter-
native labeling dubbed as logistic labeling, represented as
ylog = ρyi + (1 − ρ)yj where ρ = 1

1+exp{−2(λ−1/2)/σ2}
for some σ > 0. We show that mixup with linear labeling
performs worse than mixup with logistic labeling for some
datasets, implying the sub-optimality of conventional label.

Below we start with analyzing the margin of mixup with
linear/logistic labeling methods for a synthetic dataset.

Example 2. Consider a dataset with three data points
in Fig. 3a, where the feature-label pairs are defined as

x2 = [+d, + d]
x1 = [−d, + d]

x3 = [−d, − d] x(1)

x(2)

(a) Dataset

w1

w3

w2

(b) vanilla training

(e) label for mixup  
 + linear labeling

(f) label for mixup  
 + logistic labeling

(c) mixup 
 + linear labeling

w1 w2
w3

(d) mixup  
 + logistic labeling

w1

w3

w2

(g) score for SVM

y1 y2 y3 p1 p2 p3y1 y2 y3

Figure 3: Comparison of linear/logistic labeling for a dataset in
(a). From (b)–(d), one can see that logistic labeling results in the
max-margin classifier while linear labeling does worse than vanilla
training. This implies the need for nonlinear labeling for mixup.
See Section 3.2 for more detailed explanations.

(x1,y1) = ([−d,+d], e1), (x2,y2) = ([+d,+d], e2), and
(x3,y3) = ([−d,−d], e3) with d = 5. We train soft-
max regression model W = [wT

1 ;wT
2 ;wT

3] ∈ R3×2 for
vanilla training and mixup with linear/logistic labeling.
Given x = [x(1), x(2)], the prediction score is denoted
as p = [p1, p2, p3] = 1∑3

i=1 exp(wTi x)
[ew

T
1 x, ew

T
2 x, ew

T
3 x].

Figs. 3b, 3c, 3d compare the decision boundaries. Mixup
with linear label harms the margin, while mixup with logis-
tic label achieves the maximum margin.

The effect of linear/logistic labeling methods on the margin
can be explained as follows. Recall that the softmax regres-
sion finds the model that minimizes the cross entropy loss
between the prediction p and the label y, and we achieve
the minimum when p = y holds. In Fig. 3a, consider
mixing x2 and x3 with coefficient λ ∈ [0, 1] along the
line x(2) = x(1), generating xmix = λx2 + (1 − λ)x3 =
[(2λ − 1)d, (2λ − 1)d]. As in Fig. 3e, mixup with linear
labeling assigns the label ylin = [y1, y2, y3] = [0, λ, 1− λ]
for the mixup points on the line x(2) = x(1). The modelW
is trained in a way that p resembles ylin, i.e., set p1 = 0 and
set both p2 and p3 as a linear function of λ along the line
x(2) = x(1). This is true whenw2 andw3 are close enough
and symmetric about the line x(2) = −x(1), as in Fig. 3c; if
we setw2 = [−1+ 1

2d , 1+ 1
2d] andw3 = [−1− 1

2d , 1− 1
2d],

then using exp(wT
2 x

mix) ' 1 + wT
2 x

mix, we have p2 '
1
2 (1 +wT

2 x
mix) = λ = y2 and similarly p3 ' 1− λ = y3.

This implies that the modelW trained to set p = ylin will
look like the solution in Fig. 3c, especially when d is large.
Thus, fitting the softmax regression model to mixup with
linear labeling reduces the margin in this toy dataset.

We now explain how the logistic labeling enjoys a large
margin as in Fig. 3d. Again, consider mixup points xmix =
λx2 + (1− λ)x3 = [(2λ− 1)d, (2λ− 1)d]. As in Fig. 3f,
the logistic labeling with σ = 1

2
√
d

assigns the label ylog =

[y1, y2, y3] = [0, ρ, 1−ρ] for these mixup points, where ρ =
1

1+exp(−8d(λ−1/2)) . Then, one can confirm that p = ylog

holds for the support vector machine (SVM) solution having
w1 = [−1, 1],w2 = [1, 1], and w3 = [−1,−1]. Note that
the logistic label y in Fig. 3f resembles the score p of SVM

GenLabel : Mixup Relabeling using Generative Models

Algorithm 1 GenLabel
Input Dataset S = {(xi,yi)}ni=1, learning rate η, loss ratio γ
Output Discriminative model fθ(·)
1: θ ← Random initial model parameter
2: pc(·)← Estimated density for class c ∈ [k]
3: for (xi,yi), (xj ,yj) ∈ S do
4: (xmix,ymix) = (λxi + (1− λ)xj , λyi + (1− λ)yj)
5: ygen ←

∑k
c=1

pc(x
mix)∑k

c′=1
pc′ (xmix)

ec

6: θ ← θ − η∇θ{γ · `CE(y
gen, fθ(x

mix))
+(1− γ) · `CE(y

mix, fθ(x
mix))}

7: end for

solution in Fig. 3g, which corroborates the fact that logistic
labeling guides us to achieve the maximum margin.

The above analysis shows that the linear labeling method
is harming the margin of a mixup-trained classifier, while
the logistic labeling method is allowing mixup to enjoy the
maximum margin. This clearly shows that the conventional
labeling method of mixup is sub-optimal, and an appropriate
re-labeling method improves the margin significantly.

We also tested the classification accuracy of mixup with lin-
ear/logistic labeling, for 133 real datsets in OpenML (Van-
schoren et al., 2013) having less than 20 features, when we
use the logistic regression model. In order to decouple the
effect of labeling and the effect of manifold intrusion, we
removed the mixed points incurring the manifold intrusion
by following the criterion in Definition 1. It turns out that
the accuracy gain by using logistic labeling is positive for
47.4%, zero for 16.5%, and negative for 36.1% of the tested
datasets. In other words, using logistic labeling instead of
linear labeling improves the accuracy for around half of the
tested real datasets in OpenML. This shows that the con-
ventional method of labeling mixup points is not optimal in
terms of accuracy in many low-dimensional real datasets.

4. GenLabel
In the previous section, we observed two main issues of
mixup. First issue is manifold intrusion, which occurs since
mixup blindly interpolates randomly chosen two samples,
without knowing the underlying data distribution. Second,
the conventional method of labeling mixup samples is sub-
optimal, in terms of margin and accuracy.

Motivated by these observations, we propose GenLabel ,
a method of re-labeling mixup samples based on the data
distribution estimated by generative models. GenLabel con-
tains three steps. First, we estimate the class-conditional
data distribution p̂c(x) for each class c. Second, we ap-
ply the mixup-based data augmentation, generating mixup
sample xmix originally labeled as ymix. Finally, we rela-
bel xmix based on p̂c(x), i.e., we define the new label as
ygen = softmax(log p̂1(xmix), · · · , log p̂k(xmix)). This new

label is called GenLabel since it makes use of generative
models for labeling. Note that the suggested GenLabel is
a re-labeling method, and we follow the mixing strategy of
mixup by default. Throughout the paper, the scheme called
“GenLabel” refers to “mixup+GenLabel”.

Now we give a formal description of GenLabel . Given
a dataset S, we first train class-conditional generative
model, thereby getting estimates on the underlying data
distribution p̂c(x). Then, for randomly chosen data pair
(xi,yi), (xj ,yj) ∈ S, we apply mixup scheme, generating
the mixed feature xmix = λxi + (1− λ)xj and the mixed
label ymix = λyi + (1−λ)yj . Here, the mixing coefficient
follows the beta distribution, i.e., λ ∼ Beta(α, α) for some
α > 0. Finally, we re-label this augmented data xmix as

ygen =

k∑

c=1

p̂c(xmix)∑k
c′=1 p̂c′ (x

mix)
ec, (1)

which is the posterior probability estimate P̂(y = c|xmix)
when we have a balanced dataset.

Since our generative model is imperfect, ygen may be in-
correct for some samples. Thus, we can use a combination
of mixup labeling and the suggested labeling, e.g., define
the label of mixed point as γygen + (1− γ)ymix for some
γ ∈ [0, 1]. Note that our scheme reduces to the mixup when
γ = 0. Using the relabeled augmented data, the algorithm
trains the classifier fθ : Rn → [0, 1]k that predicts the label
y = [y1, · · · , yk] of the input data. Here, the cross-entropy
loss `CE(·) is used while training the classifier. The pseu-
docode of GenLabel is provided in Algorithm 1.

In summary, the proposed scheme is a novel label correction
method for mixup, which first learns the data distributions
for each class using class-conditional generative models,
and then re-label the mixup data based on the conditional
likelihood of the mixup data sampled from each class. More
precisely, GenLabel sets the label of a mixup data as the soft-
max of the class-conditional log-likelihood, which matches
with the posterior probability for the balanced datasets.

Remark 1. GenLabel described in Algorithm 1 assumes
that the generative model learns the data distribution in
the input feature space. However, we can easily extend
our algorithm to cases when we train generative models in
the latent feature space. Due to the space limitation, the
detailed algorithm description is in Section A.1 at Appendix.

5. Analysis of GenLabel
We analyze the effect of GenLabel in various perspectives.
In Section 5.1, we visualize GenLabel for toy datasets, em-
pirically showing that GenLabel fixes the manifold intrusion
issue of mixup. Section 5.2 provides a concrete problem
instance where GenLabel solves the margin reduction is-
sue of linear labeling in mixup. Finally, Section 5.3 shows

GenLabel : Mixup Relabeling using Generative Models

that GenLabel improves the robustness of mixup on logistic
regression models and fully-connected ReLU networks.

5.1. GenLabel solves the manifold intrusion issue
Consider the datasets given in Fig. 4a: we have nine classes
of 2-dimensional Gaussian dataset on the top row, and two
classes having two circles at each class on the bottom row;
we call the top one as “9-class Gaussian” and the bottom
one as “Four-circle” dataset. Note that both datasets contain
numerous mixed points suffering from the manifold intru-
sion, e.g., the mixed point of blue and orange samples lie
on the black class in 9-class Gaussian dataset.

Given a soft-label y = [y1, · · · , yk], define the top-1 label as
ytop-1 = arg maxc∈[k] yc. Fig. 4b and Fig. 4c illustrate the
top-1 label of a mixed point, for the conventional labeling
in mixup and the suggested GenLabel scheme, respectively.
For the 9-class Gaussian data, we set the mixing coefficient
as λ = 0.6 for the purpose of illustration. As shown in
Fig. 4b, the conventional labeling method causes the label
conflict issue for a large number of mixup samples. This
issue has been resolved by GenLabel as shown in Fig. 4c:
the label of mixed points assigned by GenLabel matches
with the label of maximum margin classifier for each dataset.

This label correction method also increases the margin of a
classifier. Figs. 4d, 4e, 4f and 4g show the decision bound-
aries of vanilla training, mixup (with original labeling), Gen-
Label , and kernel SVM using radial basis function kernel
exp(−2‖x − x′‖2), respectively. While vanilla training
and mixup have small margin for some samples, GenLabel
achieves the ideal margin of kernel SVM.

5.2. GenLabel improves the margin
Here we provide a concrete problem instance where switch-
ing from the linear label to GenLabel of mixup sample will
increase the margin to its maximum value, i.e.,

margin(SVM) = margin(GenLabel)

> margin(vanilla) > margin(mixup),

where SVM represents the support vector machine (Cortes
& Vapnik, 1995) achieving the maximum L2 margin.

Example 3. Consider a dataset S = {(xi, yi)}n+2
i=1 , where

the feature xi ∈ R2 and the label yi ∈ {+1,−1} of each
point is specified in Fig. 5a. Let θ = (r cosφ, r sinφ) be
the model parameter for a fixed r > 0. Fig. 5b shows
φ? = arg minφ `(r, φ) for various r, where ` is the logistic
loss applied to the (augmented) dataset. It turns out that
the optimal φ? of GenLabel approaches to the SVM solution
φsvm = 0.25π as r increases. The detailed derivation of φ?

for each scheme is given in Section C.2 in Appendix.

Remark 2. For large r = ‖θ‖, the original mixup does not
converge to the max-margin solution, while the mixup rela-

beled by GenLabel approaches to the max-margin solution.

In summary, for Examples 2 and 3, (1) the original mixup
method has a smaller margin than vanilla training, and (2)
simply changing the label of the mixed points (using Gen-
Label) fixes this issue and achieves the maximum margin.

5.3. GenLabel improves the robustness of mixup
We provide mathematical analysis on the effect of GenLabel
on the adversarial robustness. Below theorem shows that
GenLabel is improving the robustness of mixup in logistic
regression model and FC ReLU networks, for Gaussian data.
Due to the space limitation, we put the formal statement and
proofs at Sections B.1 and C in Appendix.

Theorem (informal). Consider binary classification prob-
lem where each class follows a Gaussian distribution. For
logistic regression model and fully-connected ReLU net-
works parameterized by θ, we have

`mixup(θ) ≥ `GenLabel(θ) ≥ `adv(θ).

This shows that the adversarial loss of a model is upper
bounded by the GenLabel loss of the model, i.e., if we
find a model with GenLabel loss smaller than or equal to
a threshold lth, then the adversarial loss of this model is at
most lth. Compared with mixup loss, GenLabel loss is a
tighter upper bound on the adversarial loss. This implies
that GenLabel improves the robustness of mixup.

6. Experimental Results
Now we investigate the effect of GenLabel on real datasets.
We consider two models: logistic regression and fully-
connected (FC) ReLU networks with 2 hidden layers. We
focus on OpenML (Vanschoren et al., 2013) having var-
ious real tabular datasets. Especially, we consider 160
low-dimensional OpenML datasets having less than 20 fea-
tures and less than 5000 data points. Among such 160
datasets, we filter out 27 redundant datasets with different
versions, for datasets named as iris, seeds, and chscase-
census, thus having 133 datasets for testing. For logistic
regression model, we reported the result for 82 datasets
which fit well on either KDE or GM model; we used a
dataset if either of the generative model has more than 95%
of train accuracy2. Recall that we allow the combination of
the mixup labeling ymix and the suggested labeling ygen,
i.e., re-label the mixed point by γygen + (1 − γ)ymix for
γ ∈ [0, 1]. Here we choose the optimal mixing ratio γ
using cross-validations. All algorithms are implemented

2It is clear that our algorithm will not work as expected if the
chosen generative model has a poor fit to the data. By using a larger
class of generative models, such as flow (Kingma & Dhariwal,
2018) and diffusion models (Kingma et al., 2021), one should be
able to handle the omitted datasets, but we leave it as future work.

GenLabel : Mixup Relabeling using Generative Models

1

(a) dataset (d) vanilla training,

decision boundary

(e) mixup, 
decision boundary

(f) GenLabel, 
decision boundary

(b) mixup,  
top-1 label

of mixed points

(c) GenLabel,  
top-1 label

of mixed points

(g) kernel SVM, 
decision boundary

Figure 4: Comparison of vanilla training, mixup and the suggested GenLabel for Four-circle dataset. (a): dataset. (b), (c): mixup points
and their top-1 labels of ymix and ygen. One can see that ymix causes label conflicts while ygen does not. (d), (e), (f), (g): decision
boundaries. The margin of GenLabel classifier is larger than those of vanilla training and mixup and matches that of the kernel SVM.

(0, 1)

(−1, 0) (1, 0)

n points
overlapped θ =

r cosφ
r sinφ

[]

(a) Dataset

5 10 15 20 25
||θ||: norm of weight

0.10

0.15

0.20

0.25

0.30

φ
?
:a

ng
le

w
it

h
m

in
im

um
lo

ss
[π

ra
di

an
]

SVM
GenLabel
vanilla
mixup

(b) Comparison of φ?

Figure 5: (a) Logistic regression on (x1, y1) = ([1, 0],+1),
(x2, y2) = ([0, 1],+1), and (xi, yi) = ([−1, 0],−1) for i =
3, 4, · · · , n + 2. (b) GenLabel quickly converges to the SVM
solution as ‖θ‖ increases much faster than the vanilla scheme. The
original mixup converge to a suboptimal value.

in PyTorch (Paszke et al., 2017), and the experimental de-
tails are summarized in Section E in Appendix. All re-
sults are averaged out over 5 trials. The github repo for
reproducible code is given in https://github.com/
UW-Madison-Lee-Lab/GenLabel_official.

Suggested schemes For OpenML datasets, we considered
three types of generative models: Gaussian mixture (GM),
kernel density estimator (KDE) with Gaussian kernel, and
1-nearest-neighbor (NN) density estimator (Bishop, 2006).
We denote each scheme by GenLabel (GM), GenLabel
(KDE), and GenLabel (NN), respectively. We also consid-
ered using cross-validation (CV) to choose either GM or
KDE: this scheme is denoted by GenLabel (CV). For logis-
tic regression, we used GenLabel on the input feature space,
and for FC ReLU networks, we used GenLabel on the latent
feature space at the penultimate layer. For image datasets
(MNIST, CIFAR-10, CIFAR-100 and TinyImageNet), we
tested GenLabel on mixup and manifold-mixup, the results
of which are given in the Appendix.

Compared schemes For all datasets, we compared our
scheme with vanilla training, mixup, and adamixup (Guo
et al., 2019). For OpenML datasets, we added the compar-
ison with (1) generative classifier using Gaussian mixture
(GM) as the generative model and (2) mixup+excluding
MI, which excludes the mixup points with manifold intru-
sion (MI). Here, we detected mixup points with MI using
Definition 1. For image datasets, we tested mixup and
manifold-mixup and compared them with the performances
of mixup+GenLabel and “manifold-mixup”+GenLabel .

6.1. Results on clean accuracy
We compare the accuracy of GenLabel with various base-
lines, on the logistic regression model.

(a) α = 1 (b) α = 2

Figure 6: The accuracy increase (%) of GenLabel (CV) compared
with mixup for 82 OpenML datasets, where λ ∼ Beta(α, α). For
both α values, a large portion of tested datasets enjoy the accuracy
improvement by combining GenLabel with mixup.

Table 3: Accuracies of GenLabel and baselines training a logistic
regression model, for OpenML datasets. We tested on (a) 82
datasets where generative model well fits the data, and (b) 10
balanced datasets among them. Each cell has two values: the result
for case (a), and the result for case (b) in the parenthesis. For
example, among 82 datasets, GenLabel has higher accuracy than
mixup for 54.88% of tested datasets. The number of datasets where
GenLabel outperforms each baseline is larger than or equal to the
number of datasets where GenLabel is worse than the baseline.

Mixup+GenLabel (CV) versus Higher On-par Lower

Vanilla 47.56% (50%) 7.32% (30%) 45.12% (20%)
Adamixup 45.12% (50%) 9.76% (20%) 45.12% (30%)
Mixup 54.88% (40%) 7.32% (30%) 35.37% (30%)
Mixup + Excluding MI 53.66% (50%) 6.10% (20%) 39.02% (30%)
Generative Classifier (GM) 52.42% (70%) 3.66% (10%) 41.46% (20%)

Statistics of GenLabel vs baselines Fig. 6 compares the
accuracies of GenLabel (CV) and mixup on 82 OpenML
datasets. The x-axis is (Acln

GenLabel −Acln
mixup), the accuracy

increase with the aid of GenLabel , and the y-axis is the
number of datasets having the accuracy gain. Recall that
λ ∼ Beta(α, α) for given α = 1 or α = 2. For both
settings, the accuracy of GenLabel is greater than or equal
to that of mixup for more than 69% of the tested datasets.

Table 3 compares accuracies of GenLabel and baselines,
for OpenML datasets. Each cell shows the percentage of
datasets satisfying the condition for (1) 82 datasets and (2)
10 balanaced datasets, where result for (2) is in the paren-
thesis. For example, for 54.88% of 82 datasets, GenLabel
has higher accuracy than mixup. The number of datasets
where GenLabel (CV) outperforms each baseline is larger
than or equal to the number of datasets where the baseline
outperforms GenLabel (CV). The results for 10 balanced
datasets in the parenthesis in Table 3 show similar behavior.

https://github.com/UW-Madison-Lee-Lab/GenLabel_official
https://github.com/UW-Madison-Lee-Lab/GenLabel_official

GenLabel : Mixup Relabeling using Generative Models

Table 4: Accuracy (%) comparison on selected OpenML datasets,
for the logistic regression model. For dataset IDs 830 and 1413,
GenLabel has over 8% accuracy gain than mixup. Note that the
comparisons for all tested datasets are in Table 3.

Methods \ Dataset ID 721 777 792 830 855 913 1413

Generative Classifier (GM) 78.33 53.33 74.67 78.67 65.33 71.33 95.56
Vanilla 79.67 58.67 73.20 77.60 63.33 70.80 95.56
AdaMixup 80.33 64.00 73.87 78.40 66.67 70.53 92.44
Mixup 79.33 62.67 73.47 76.27 66.00 69.87 88.00
Mixup + Excluding MI 79.67 62.67 74.53 78.13 66.40 71.47 93.33
Mixup + GenLabel (GM) 81.00 58.67 75.47 86.13 66.40 71.47 96.00
Mixup + GenLabel (KDE) 79.67 58.67 75.87 77.33 67.60 72.67 96.00
Mixup + GenLabel (CV) 80.33 64.00 75.60 84.53 67.33 73.20 96.44

Table 5: Robustness against a black-box attack (Brendel et al.,
2018) with radius ε = 0.1, on 13 balanced OpenML datasets
having less than 500 data samples and less than 20 features, for
FC ReLU networks with 2 hidden layers. (a): GenLabel (best
among NN and GM) versus baselines. The portion of datasets
where GenLabel outperforms is over 53%. (b): Robust accuracy
(%) for 6 datasets. GenLabel achieves 2–10% improvement over
mixup. See Table 7 in Appendix for the full result.

(a) Statistics for 13 balanced datasets

Mixup+GenLabel (Best) versus Higher On-par Lower

Vanilla 53.85% 23.08% 23.08%
Adamixup 61.54% 7.69% 30.77%
Mixup 69.23% 0.00% 30.77%
Mixup + Excluding MI 69.23% 0.00% 30.77%

(b) 6 selected datasets

Methods \ OpenML ID 446 468 683 755 763 1413

Vanilla 29.67 34.55 51.11 41.05 64.27 68.00
AdaMixup 30.33 37.27 51.11 37.89 63.20 67.11
Mixup 30.67 37.27 50.00 36.84 65.07 67.56
Mixup + Excluding MI 31.67 31.82 52.22 38.95 63.20 70.67
Mixup + GenLabel (GM) 37.00 42.73 52.22 43.16 61.87 71.11
Mixup + GenLabel (NN) 38.00 32.73 46.67 43.16 66.93 77.33

Performance of GenLabel on selected datasets Table 4
shows some selected datasets when GenLabel performs bet-
ter than mixup, e.g., 8% accuracy gain for dataset IDs 830
and 1413. The best generative model (GM or KDE) for Gen-
Label varies depending on the dataset. Moreover, GenLabel
(CV) successfully chooses the appropriate generative model
and outperforms other baselines in all datasets in Table 4.

Interestingly, for dataset IDs 721, 830, 913 and 1413, mixup
performs worse than vanilla, but mixup combined with Gen-
Label overcomes the limitation of mixup and outperforms
vanilla. For other datasets (IDs 777, 792 and 855) where
mixup outperforms vanilla, GenLabel with an appropriate
choice of generative model further improves mixup. Ta-
ble 4 also shows that GenLabel (CV) is performing better
or equal to other baselines (adaMixup, generative classifer,
mixup with excluding MI), for the selected datasets. Note
that the comparison for all datasets are given in Table 3.

6.2. Results on adversarial robustness
GenLabel has some improvement on robustness, compared
with baselines. We tested a black-box attack (Brendel et al.,
2018) on 13 balanced OpenML datasets; black-box attack is
used to avoid the gradient obfuscation issue (Athalye et al.,

2018) of gradient-based attacks (e.g., FGSM/PGD).

Table 5 shows the robust accuracy of GenLabel and base-
lines. GenLabel improves the robust accuracy of mixup for
more than 69% of tested datasets. In Table 5(b), GenLa-
bel improves the robustness by 2–10 %. Still, we remark
that mixup approaches should not be considered as a stand-
alone approach as they are less effective at obtaining robust
models compared to adversarial training algorithms.

6.3. Extension to high-dimensional image datasets
We also tested GenLabel on MNIST, CIFAR-10, CIFAR-
100 and TinyImageNet-200. GenLabel has a marginal gain.
See Section A.2 in Appendix for the results.

7. Discussions
Regarding the suggested GenLabel , one can think of the
following discussion topics: (1) using generative models
with implicit/approximate density for GenLabel , (2) using
generative models not only for labeling, but also mixing.

7.1. Extension to other generative models
Note that our method can be applied to generative
models do not having explicit density. For genera-
tive models with approximated density p̃c(x), as in
VAEs (Kingma et al., 2019), we can replace pc(x) by
p̃c(x) in Algorithm 1. For GANs (Xia et al., 2021)
having implicit density, we use a proxy to the density
pc(x) by inverting the generator (Creswell & Bharath,
2018). Let Mc = {G(w, c) : w ∈ Rd} be the data
manifold generated by generator G for class c. Assuming
the spherical Gaussian noise model used for manifold
learning (Hastie & Stuetzle, 1989; Chang & Ghosh, 2001),
we can estimate pc(x) =

∫
p(x|G(w, c))p(G(w, c))dw '

1
n

∑n
i=1 exp(−d(x, G(wi, c)) by choosing n ran-

dom samples of w. Then, we approximate this
summation with the dominant term, expressed as
maxi exp(−d(x, G(wi, c)) = exp(−d(x,Mc)). Thus,
we replace pc(x) by exp(−d(x,Mc)) in Algorithm 1.

7.2. Using generative models for mixing and labeling
In GenLabel , mixed points xmix are obtained by existing
mixing strategies, and generative models are used only for
re-labeling the mixed points. Can we also use generative
models for making better mixed points? We suggest the
following. For a target class pair c1 and c2, we first choose a
mixing coefficient λ ∈ [0, 1], e.g., using a Beta distribution.
Then, we find xmix satisfying pc1

pc1+pc2
= λ and label it as

ymix =
pc1

pc1+pc2
ec1 +

pc2
pc1+pc2

ec2 , where pc1 = pc1(xmix)

and pc2 = pc2(xmix). In Section F in Appendix, we provide
this algorithm for finding mixed point xmix using generative
models (Gaussian mixture models and GANs) and the exper-
imental results of this algorithm on synthetic/real datasets.

GenLabel : Mixup Relabeling using Generative Models

8. Conclusion
In this paper, we closely examined the failure scenarios
of mixup for low dimensional data, and specify two main
issues of mixup: (1) the manifold intrusion reduces both
margin and accuracy, and (2) even when there is no manifold
intrusion, the linear labeling method harms the margin and
accuracy. Motivated by these observations, we proposed
GenLabel , a novel way of labeling mixup points by using
generative models. We provided concrete examples where
GenLabel solves the main issues of mixup and achieves
maximum margin. We also provided empirical results show-
ing that GenLabel helps improving the accuracy of mixup
on a large number of low-dimensional OpenML datasets.

Acknowledgements
This work was supported by an American Family Insurance
grant via American Family Insurance Data Science Institute
at University of Wisconsin-Madison.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Antoniou, A., Storkey, A., and Edwards, H. Data augmen-
tation generative adversarial networks. arXiv preprint
arXiv:1711.04340, 2017.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International Confer-
ence on Machine Learning, pp. 274–283. PMLR, 2018.

Bishop, C. M. Pattern recognition. Machine learning, 128
(9), 2006.

Brendel, W., Rauber, J., and Bethge, M. Decision-based
adversarial attacks: Reliable attacks against black-box
machine learning models. In International Conference
on Learning Representations, 2018.

Carratino, L., Cissé, M., Jenatton, R., and Vert, J.-P. On
mixup regularization. arXiv preprint arXiv:2006.06049,
2020.

Chang, K.-Y. and Ghosh, J. A unified model for probabilistic
principal surfaces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(1):22–41, 2001.

Choi, H., Jang, E., and Alemi, A. A. Waic, but why? gen-
erative ensembles for robust anomaly detection. arXiv
preprint arXiv:1810.01392, 2018.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Creswell, A. and Bharath, A. A. Inverting the generator of
a generative adversarial network. IEEE transactions on
neural networks and learning systems, 2018.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free at-
tacks. In International Conference on Machine Learning,
pp. 2206–2216. PMLR, 2020.

Donahue, J., Krähenbühl, P., and Darrell, T. Adversarial
feature learning. In International Conference on Learning
Representations, 2017.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O.,
Lamb, A., Arjovsky, M., and Courville, A. Adversari-
ally learned inference. In International Conference on
Learning Representations, 2017.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D.,
Tran, B., and Madry, A. Adversarial robustness as
a prior for learned representations. arXiv preprint
arXiv:1906.00945, 2019.

Feurer, M., van Rijn, J. N., Kadra, A., Gijsbers, P., Mallik,
N., Ravi, S., Müller, A., Vanschoren, J., and Hutter, F.
Openml-python: an extensible python api for openml.
arXiv:1911.02490, 2019.

Ghojogh, B. and Crowley, M. Linear and quadratic discrimi-
nant analysis: Tutorial. arXiv preprint arXiv:1906.02590,
2019.

Ghosh, P., Losalka, A., and Black, M. J. Resisting ad-
versarial attacks using gaussian mixture variational au-
toencoders. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 541–548, 2019.

Greenewald, K., Gu, A., Yurochkin, M., Solomon, J., and
Chien, E. k-mixup regularization for deep learning via op-
timal transport. arXiv preprint arXiv:2106.02933, 2021.

Guo, H., Mao, Y., and Zhang, R. Mixup as locally linear
out-of-manifold regularization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 3714–3722, 2019.

https://www.tensorflow.org/
http://archive.ics.uci.edu/ml

GenLabel : Mixup Relabeling using Generative Models

Hastie, T. and Stuetzle, W. Principal curves. Journal of
the American Statistical Association, 84(406):502–516,
1989.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer,
J., and Lakshminarayanan, B. Augmix: A simple data
processing method to improve robustness and uncertainty.
In International Conference on Learning Representations,
2020.

Hwang, S.-H. and Whang, S. E. MixRL: Data mixing
augmentation for regression using reinforcement learning.
arXiv preprint arXiv:2106.03374, 2021.

Ilyas, A., Jalal, A., Asteri, E., Daskalakis, C., and Di-
makis, A. G. The robust manifold defense: Adversar-
ial training using generative models. arXiv preprint
arXiv:1712.09196, 2017.

Inoue, H. Data augmentation by pairing samples for images
classification. arXiv preprint arXiv:1801.02929, 2018.

Ju, A. and Wagner, D. E-abs: Extending the analysis-by-
synthesis robust classification model to more complex
image domains. In Proceedings of the 13th ACM Work-
shop on Artificial Intelligence and Security, pp. 25–36,
2020.

Kim, J.-H., Choo, W., and Song, H. O. Puzzle mix: Ex-
ploiting saliency and local statistics for optimal mixup.
In International Conference on Machine Learning, pp.
5275–5285. PMLR, 2020.

Kim, J.-H., Choo, W., Jeong, H., and Song, H. O. Co-mixup:
Saliency guided joint mixup with supermodular diversity.
In International Conference on Learning Representations,
2021.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, 2018.

Kingma, D. P., Welling, M., et al. An introduction to vari-
ational autoencoders. Foundations and Trends® in Ma-
chine Learning, 12(4):307–392, 2019.

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. In Advances in Neural Informa-
tion Processing Systems, 2021.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified
framework for detecting out-of-distribution samples and
adversarial attacks. In Advances in Neural Information
Processing Systems, 2018.

Li, Y., Bradshaw, J., and Sharma, Y. Are generative clas-
sifiers more robust to adversarial attacks? In Interna-
tional Conference on Machine Learning, pp. 3804–3814.
PMLR, 2019.

Liu, Z., Li, S., Wu, D., Chen, Z., Wu, L., Guo, J., and
Li, S. Z. Unveiling the power of mixup for stronger
classifiers. arXiv preprint arXiv:2103.13027, 2021.

Ng, A. Y. and Jordan, M. I. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive
bayes. In Advances in Neural Information Processing
Systems, pp. 841–848, 2002.

Park, J., Yang, J. Y., Shin, J., Hwang, S. J., and Yang, E.
Saliency grafting: Innocuous attribution-guided mixup
with calibrated label mixing. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Perez, L. and Wang, J. The effectiveness of data augmen-
tation in image classification using deep learning. arXiv
preprint arXiv:1712.04621, 2017.

Samangouei, P., Kabkab, M., and Chellappa, R. Defense-
gan: Protecting classifiers against adversarial attacks us-
ing generative models. In International Conference on
Learning Representations, 2018.

Schott, L., Rauber, J., Bethge, M., and Brendel, W. Towards
the first adversarially robust neural network model on
mnist. arXiv preprint arXiv:1805.09190, 2018.

Serrà, J., Álvarez, D., Gómez, V., Slizovskaia, O., Núñez,
J. F., and Luque, J. Input complexity and out-of-
distribution detection with likelihood-based generative
models. In International Conference on Learning Repre-
sentations, 2020.

Shimada, T., Yamaguchi, S., Hayashi, K., and Kobayashi, S.
Data interpolating prediction: Alternative interpretation
of mixup. arXiv preprint arXiv:1906.08412, 2019.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N.
Pixeldefend: Leveraging generative models to understand
and defend against adversarial examples. In International
Conference on Learning Representations, 2018.

Soudry, D., Hoffer, E., Nacson, M. S., and Srebro, N. The
implicit bias of gradient descent on separable data. In
International Conference on Learning Representations,
2018.

GenLabel : Mixup Relabeling using Generative Models

Tanaka, F. H. K. d. S. and Aranha, C. Data augmentation
using gans. arXiv preprint arXiv:1904.09135, 2019.

Tokozume, Y., Ushiku, Y., and Harada, T. Learning from
between-class examples for deep sound recognition. In
International Conference on Learning Representations,
2018.

Uddin, A., Monira, M., Shin, W., Chung, T., Bae, S.-H.,
et al. Saliencymix: A saliency guided data augmenta-
tion strategy for better regularization. In International
Conference on Learning Representations, 2021.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo,
L. Openml: Networked science in machine learn-
ing. SIGKDD Explorations, 15(2):49–60, 2013.
doi:10.1145/2641190.2641198. URL http://doi.
acm.org/10.1145/2641190.2641198.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas,
I., Lopez-Paz, D., and Bengio, Y. Manifold mixup: Better
representations by interpolating hidden states. In Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6438–6447, 2019.

Xia, W., Zhang, Y., Yang, Y., Xue, J.-H., Zhou, B., and
Yang, M.-H. GAN inversion: A survey. arXiv preprint
arXiv:2101.05278, 2021.

Xiao, C., Li, B., Zhu, J. Y., He, W., Liu, M., and Song,
D. Generating adversarial examples with adversarial
networks. In 27th International Joint Conference on
Artificial Intelligence, IJCAI 2018, pp. 3905–3911. In-
ternational Joint Conferences on Artificial Intelligence,
2018.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y.
Cutmix: Regularization strategy to train strong classifiers
with localizable features. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 6023–
6032, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018.

Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., and
Zou, J. How does mixup help with robustness and gen-
eralization? In International Conference on Learning
Representations, 2021.

https://doi.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198

GenLabel : Mixup Relabeling using Generative Models

Algorithm 2 GenLabel (using generative models for the latent feature)
Input Dataset S = {(xi,yi)}ni=1, input feature set X = {xi}ni=1, learning rate η, loss ratio γ
Output Trained discriminative model fθ,φ
1: θ, φ← Vanilla-trained parameter for model fθ,φ = fcls

θ ◦ f feature
φ

2: pc(z)← Density estimated by generative model for latent feature z ∈ f feature
φ (X), conditioned on class c ∈ [k]

3: for (xi,yi), (xj ,yj) ∈ S do
4: (xmix,ymix)← (λxi + (1− λ)xj , λyi + (1− λ)yj)
5: zmix ← f feature

φ (xmix)

6: ygen ←
∑k
c=1

pc(z
mix)∑k

c′=1
pc′ (zmix)

ec

7: θ ← θ − η∇θ{γ · `CE(y
gen, fcls

θ (zmix)) + (1− γ) · `CE(y
mix, fcls

θ (zmix))}
8: end for

A. Additional algorithms and experimental results
A.1. GenLabel in the latent feature space

Here we illustrate how GenLabel provided in Algorithm 1 can be extended to the case of learning generative models
in the latent feature space. The procedure is in three steps. First, we use existing training algorithm (vanilla training
or mixup training) to learn a classifier fθ,φ = f cls

θ ◦ f feature
φ where f feature

φ is the feature extractor part and f cls
θ is the

classification part. Second, given the trained feature extractor f feature
φ , we train a class-conditional generative model for

the latent feature z = f feature
φ (x), and denote the learned density for class c by pc(z). Third, we freeze f feature

φ and
fine-tune f cls

θ using the following manner. We first follow the mixup process: for (xi,yi), (xj ,yj) ∈ S, we generate the
augmented data xmix = λxi + (1− λ)xj having label ymix = λyi + (1− λ)yj . Then, we re-label this augmented data

by ygen =
∑k
c=1

pc(z
mix)∑k

c′=1
pc′ (zmix)

ec, where zmix = f feature
φ (xmix). Finally, we train f cls

θ using (zmix,ygen), the hidden
representation of mixed sample and the suggested label for the mixed feature. The pseudocode of this GenLabel variant (for
the latent feature) is given in Algorithm 2.

A.2. GenLabel on high dimensional image datasets

In the main manuscript, we focused on the result for low-dimensional datasets. Here, we provide our experimental results on
high dimensional image datasets, including MNIST, CIFAR-10, CIFAR-100, and TinyImageNet-200.

We test GenLabel combined with existing data augmentation schemes of mixup (Zhang et al., 2018) and manifold-
mixup (Verma et al., 2019). We compare our schemes with mixup and manifold-mixup. We also compare with AdaMixup,
which avoids the manifold intrusion of mixup, similar to our work. For measuring the adversarial robustness, we test under
AutoAttack (Croce & Hein, 2020), which is developed to overcome gradient obfuscation (Athalye et al., 2018), containing
four white/black-box attack schemes (including auto-PGD) that does not need any specification of free parameters. The
attack radius ε for each dataset is specified in Section E.

GenLabel variant used for image datasets For image datasets, we learn generative models in the latent space. To be
specific, we use a variant of GenLabel, which learns the generative model (Gaussian mixture model) and the discriminative
model at the same time. The pseudocode of this variant is given in Algorithm 3, and below we explain the details of this
algorithm.

Consider a neural network fθ = f cls
θ ◦ f feature

θ parameterized by θ, which is composed of the feature extractor part f feature
θ

and the classification part f cls
θ . We train a Gaussian mixture (GM) model on f feature

θ (x), the hidden representation of
input x. In this algorithm, we consider updating the estimated GM model parameters (mean and covariance) at each batch
training. At each iteration t, we randomly choose B batch samples {(xi,yi)}Bi=1 from the dataset D. Then, we estimate the
class-conditional mean and covariance of GM model in the hidden feature space. In other words, we compute the mean
µ

(t)
c = 1

|Sc|
∑
i∈Sc f

feature
θ (xi) and the covariance Σ

(t)
c = 1

|Sc|
∑
i∈Sc(f

feature
θ (xi)−µ(t)

c)(f feature
θ (xi)−µ(t)

c)T for each
class c ∈ [k], where Sc = {i : yi = ec} is the set of samples with label c within the batch. For simplicity, we approximate
the covariance matrix as a multiple of identity matrix, by setting Σ

(t)
c ← 1

d trace(Σ
(t)
c)Id. Here, we consider making use

of the parameters (mean and covariance) estimated in the previous batches as well, by introducing a memory ratio factor
β ∈ [0, 1]. Formally, the rule for updating mean µ(t)

c and covariance Σ
(t)
c are represented as µ(t)

c ← (1− β)µ
(t)
c + βµ

(t−1)
c

GenLabel : Mixup Relabeling using Generative Models

Algorithm 3 GenLabel (learning generative/discriminative models at the same time)
Input Data D, mix function mix(·), learning rate η, loss ratio γ, memory ratio β, batch size B, max iteration T
Output Trained model fθ = fcls

θ ◦ f feature
θ

θ ← Random initial model parameter, π ← Permutation of [B]

(µ
(0)
c ,Σ

(0)
c)← (0, Id) for c ∈ [k]

for iteration t = 1, 2, · · · , T do
{(xi,yi)}Bi=1 ← Randomly chosen batch samples in D
for class c ∈ [k] do
Sc ← {i : yi = ec}
µ

(t)
c ← 1

|Sc|
∑
i∈Sc f

feature
θ (xi), µ

(t)
c ← (1− β)µ(t)

c + βµ
(t−1)
c

Σ
(t)
c ← 1

|Sc|
∑
i∈Sc(f

feature
θ (xi)− µ(t)

c)(f feature
θ (xi)− µ(t)

c)T

Σ
(t)
c ← 1

d
trace(Σ(t)

c)Id, Σ
(t)
c ← (1− β)Σ(t)

c + βΣ
(t−1)
c

end for
for sample index i ∈ [B] do

(xmix
i ,ymix

i)← mix((xi,yi), (xπ(i),yπ(i)))
pc ← det(Σ(t)

c)−1/2 exp{−(f feature
θ (xmix

i)− µ(t)
c)T (Σ

(t)
c)−1(f feature

θ (xmix
i)− µ(t)

c)} for c ∈ [k]
c1 ← argminc∈[k] pc, c2 ← argminc∈[k]\{c1} pc

ygen
i ←

pc1
pc1+pc2

ec1 +
pc2

pc1+pc2
ec2

end for
θ ← θ − η

∑
i∈[B]∇θ{γ · `CE(y

gen
i , fθ(x

mix
i)) + (1− γ) · `CE(y

mix
i , fθ(x

mix
i))}

end for

and Σ
(t)
c ← (1− β)Σ

(t)
c + βΣ

(t−1)
c . When β = 0, it reduces to the memoryless estimation. To avoid cluttered notation, we

discard t unless necessary.

In the second stage, we apply conventional mixup-based data augmentation. We first permute the batch data {(xi,yi)}Bi=1

and obtain {(xπ(i),yπ(i))}Bi=1. Afterwards, for each i ∈ [B], we select the data pair, (xi,yi) and (xπ(i),yπ(i)), and apply
a mixup-based data augmentation scheme denoted by mix(·), to generate mixed point xmix

i labeled by ymix
i . One can use

any data augmentation as mix(·), e.g., mixup, manifold-mixup. For example, for vanilla mixup, we have

xmix
i = λxi + (1− λ)xπ(i), ymix

i = λyi + (1− λ)yπ(i)

where λ ∼ Beta(α, α) for some α > 0.

In the third stage, we re-label this augmented data based on the estimated GM model parameters. To be specific, we
compute the likelihood of the mixed data sampled from class c, denoted by pc = det(Σc)

−1/2 exp{−(f feature
θ (xmix

i) −
µc)

TΣ−1
c (f feature

θ (xmix
i)−µc)}. Then, we sort k classes in a descending order of pc, and select the top-2 classes c1 and c2

satisfying pc1 ≥ pc2 ≥ pc for c ∈ [k]\{c1, c2}. Then, we label the mixed point xmix
i as

ygen
i =

pc1
pc1 + pc2

ec1 +
pc2

pc1 + pc2
ec2 .

Since our generative model is an imperfect estimate on the data distribution, ygen
i may be incorrect for some samples.

Thus, we can use a combination of vanilla labeling and the suggested labeling, i.e., define the label of mixed point as
γygen

i + (1− γ)ymix
i for some γ ∈ [0, 1]. Note that our scheme reduces to the vanilla labeling scheme when γ = 0. Using

the augmented data with updated label, the algorithm trains the classification model fθ : Rn → [0, 1]k that predicts the label
y = [y1, · · · , yk] of the input data, using the cross-entropy loss `CE(·).

Results Table 6 shows the summary of results. Here, we tried two different validation schemes: one is to choose the best
robust model against AutoAttack, and the other is to select the model with the highest clean accuracy. For each scheme
X ∈ {mixup,manifold-mixup}, it is shown that “X + GenLabel” has a minor improvement on both clean and robust
accuracies, for all image datasets. It is also shown that the suggested GenLabel achieves a higher clean accuracy than
AdaMixup, which requires 3x higher computational complexity than our method.

GenLabel : Mixup Relabeling using Generative Models

Table 6: Clean and robust accuracies on real image datasets. We consider two types of validation: selecting the best robust model based
on AutoAttack, or the best model based on the clean accuracy. Here, Mixup+GenLabel indicates that we applied the suggested labeling
method to the augmented points generated by mixup. GenLabel helps mixup-based data augmentations in terms of both robust accuracy
and clean accuracy.

Methods MNIST CIFAR-10 CIFAR-100 TinyImageNet-200

Robust Clean Robust Clean Robust Clean Robust Clean

Vanilla 48.17± 13.1 99.34± 0.03 16.89± 0.98 94.57± 0.25 17.19± 0.20 74.48± 0.28 13.19± 0.19 58.13± 0.09
AdaMixup - 99.32± 0.05 - 95.45± 0.13 - - - -
Mixup 55.44± 1.80 99.27± 0.03 11.65± 1.96 95.68± 0.06 18.44± 0.45 77.65± 0.30 14.91± 0.48 59.46± 0.30
Mixup+GenLabel 56.54± 1.03 99.36± 0.06 14.32± 1.23 96.09± 0.01 19.58± 0.71 78.04± 0.21 15.34± 0.30 59.78± 0.09
Manifold mixup 55.56± 1.53 99.32± 0.04 18.14± 1.88 94.78± 0.49 19.25± 0.61 78.61± 0.17 14.78± 0.28 59.87± 0.63
Manifold mixup+GenLabel 56.62± 1.31 99.37± 0.07 18.91± 1.26 95.10± 0.10 19.28± 1.04 78.99± 0.54 15.19± 0.22 60.02± 0.25

Table 7: Robust accuracy (%) under decision-based black-box attack (Brendel et al., 2018) and clean accuracy (%), on 6 selected datasets.
The robust accuracy is same as what has been reported in Table 5, and we added clean accuracy in the parenthesis for comparison. One
can confirm the huge gap between robust accuracy and clean accuracy, showing the effectiveness of the black-box attack used in the paper.

Methods \ OpenML ID 446 468 683 755 763 1413

Vanilla 29.67 (99.33) 34.55 (84.55) 51.11 (81.11) 41.05 (67.37) 64.27 (85.33) 68.00 (92.00)
AdaMixup 30.33 (100.00) 37.27 (89.09) 51.11 (81.11) 37.89 (71.58) 63.20 (85.87) 67.11 (92.00)
Mixup 30.67 (100.00) 37.27 (84.55) 50.00 (81.11) 36.84 (70.53) 65.07 (86.13) 67.56 (88.89)
Mixup + Excluding MI 31.67 (100.00) 31.82 (89.09) 52.22 (83.33) 38.95 (71.58) 63.20 (85.33) 70.67 (92.89)
Mixup + GenLabel (GM) 37.00 (100.00) 42.73 (82.73) 52.22 (80.00) 43.16 (73.68) 61.87 (85.33) 71.11 (93.78)
Mixup + GenLabel (NN) 38.00 (100.00) 32.73 (81.82) 46.67 (82.22) 43.16 (69.47) 66.93 (85.33) 77.33 (96.44)

A.3. Supplementary for robustness experiments

In Table 5, we showed the robust accuracies of selected datasets. Table 7 shows the full version including the robust accuracy
as well as clean accuracy. This shows the effectiveness of the attack scheme used in this paper.

A.4. Visualization of GenLabel

For the Four-circle dataset and 9-class Gaussian data, we visualized the label of mixup samples and decision boundaries for
GenLabel , mixup, and vanilla training in Fig. 4. This is a full version of Fig. 7.

A.5. GenLabel on CutMix (Yun et al., 2019)

In the main manuscript, we have provided the effect of GenLabel on mixup only, but GenLabel can be also applied to other
mixup variants. Now the question is, whether GenLabel is effective in other mixup variants as well? Note that the latest
mixup variants (PuzzleMix, Co-Mixup, SaliencyMix) are mostly tailored for image datasets, while we are focusing on tabular
datasets. Thus, we consider CutMix, the only method (among the variants listed above) that is applicable to tabular datasets.
Table 8 compares the performance of mixup and mixup+GenLabel, as well as that of CutMix and CutMix+GenLabel. Our
results show that CutMix+GenLabel is having gain compared with CutMix in terms of accuracy.

Table 8: Test accuracies (%) of baselines and GenLabel. For both mixup and CutMix, using GenLabel improves the accuracy.

Dataset / Scheme Vanilla Mixup Mixup+GenLabel CutMix CutMix+GenLabel

Iris 95.56 88.00 96.44 (8.44 ↑) 94.67 95.11 (0.44 ↑)
Wine 92.96 94.81 96.67 (1.86 ↑) 96.30 97.40 (1.10 ↑)
Kidney 62.61 65.22 71.30 (6.08 ↑) 63.48 69.57 (6.09 ↑)

A.6. Effect of generative models on the performance of GenLabel

Here we empirically show how the quality of generative models affect the performance of GenLabel. Table 9 shows the
test accuracy of vanilla/mixup/GenLabel, as well as the train accuracy of GenLabel using Gaussian Mixture (GM) model.
One can see that GenLabel fails when the train accuracy of GM classifier is low, i.e., when GM model cannot fit the data.

GenLabel : Mixup Relabeling using Generative Models

1

(a) dataset (d) vanilla training,

decision boundary

(e) mixup, 
decision boundary

(f) GenLabel, 
decision boundary

(b) mixup,  
top-1 label

of mixed points

(c) GenLabel,  
top-1 label

of mixed points

(g) kernel SVM, 
decision boundary

Figure 7: Comparison of vanilla training, mixup and the suggested GenLabel . Top: Four-circle dataset, Bottom: 9-class Gaussian data.
For the purpose of illustration, we set the mixing coefficient as λ = 0.6 for the 9-class Gaussian data. (a): training data points. (b): mixup
points and their top-1 labels (c): mixup points and their top-1 label for the suggested GenLabel ygen. Figures in (b) and (c) show that the
conventional labeling method ymix causes the label conflict issue for a large number of mixup points, while the suggested label ygen does
not suffer from the conflict issue. (d), (e), (f), (g): decision boundaries of vanilla training, mixup, GenLabel , and kernel SVM. In the
decision boundary plots, we can find that several classes/samples have small margins for vanilla training and mixup, while the suggested
GenLabel does not have such issue and approaching to the ideal margin obtained by kernel SVM.

Table 9: Test accuracies (%) of three schemes (vanilla, mixup, mixup+GenLabel) and train accuracy of Gaussian Mixture (GM) classifier,
for four datasets. For Iris and Wine datasets which GM fits the data well (i.e., train accuracy of GM classifier is high), GenLabel has
high test accuracy. On the other hand, for Abalone and Glass datasets having small train accuracy of GM classifier, GenLabel does
not improve the performance of mixup.

Dataset Vanilla Mixup Mixup+GenLabel (GM) Train acc of GM classifier

Iris 95.56 88.00 96.44 (8.44 ↑) 98.00
Wine 92.96 94.81 96.67 (1.86 ↑) 100.00

Abalone 63.01 62.42 62.39 (0.03 ↓) 62.00
Glass 60.00 64.92 60.31 (4.61 ↓) 64.00

B. Additional mathematical results
B.1. Formal statement on the adversarial robustness of GenLabel

Here we analyze the adversarial robustness of a model trained by mixup+GenLabel , and show that GenLabel is beneficial
for improving the robustness of mixup under the logistic regression models and the fully-connected (FC) ReLU networks.
We first describe the basic setting considered in our analysis, and then provide the results. All proofs are given in Section C
in Appendix.

Basic setting and notations Consider d-dimensional Gaussian dataset defined as (x|y = 0) ∼ N (−e1,
Σ
σ2
1
) and (x|y =

1) ∼ N (e1,
Σ
σ2
2
), where Σij = 1 for i = j and Σij = τ for i 6= j. Here we assume that −1 < τ < 1, τ /∈ { −1

d−1 ,
−1
d−2} and

σ2 = cσ1 with 2−
√

3 < c < 2 +
√

3. We consider the loss function `(θ, (x, y)) = h (fθ(x))− yfθ(x), where fθ(x) is
the prediction of a model parameterized by θ for a given input x, and h(w) = log(1 + exp(w)).

We assume the following labeling setting: when we mix (xi, yi) and (xj , yj) which generates the mixed point xmix
ij =

λxi + (1− λ)xj , we label it as ymix
ij = y if yi = yj = y, and we label it as ygen

ij in (1) otherwise. We assume the mixing
coefficient follows the uniform distribution λ ∼ Unif[0, 1], i.e., λ ∼ Beta(α, α) with α = 1.

For a given model parameter θ and the dataset S, we define the notations for several losses as below. The
standard loss is denoted by Lstd

n (θ, S) = 1
n

∑n
i=1 `(θ, zi). The mixup loss and GenLabel loss are denoted by

Lmix
n (θ, S) = 1

n2

∑n
i,j=1 Eλ[`(θ, zmix

ij)] and Lgen
n (θ, S) = 1

n2

∑n
i,j=1 Eλ[`(θ, zgen

ij)], respectively, where zmix
ij =

(xmix
ij , ymix

ij) and zgen
ij = (xmix

ij , ygen
ij). The adversarial loss with L2 attack of radius ε

√
d is defined as Ladv

n (θ, S) =
1
n

∑n
i=1 max‖δi‖2≤ε

√
d ` (θ, (xi + δi, yi)).

Mathematical results Before stating our result, we denote the Taylor approximation of mixup loss by L̃mix
n (θ, S), the

expression of which is given in Lemma 8 in Appendix. Similarly, the Taylor approximation of each term in the adversarial
loss is denoted by ˜̀

adv(ε
√
d, (xi, yi)), which is expressed in Lemma 9 in Appendix. Finally, the approximation of GenLabel

loss, denoted by L̃gen
n (θ, S), is expressed in Lemma 1 in Appendix.

GenLabel : Mixup Relabeling using Generative Models

In the theorem below, we state the relationship between Taylor approximations of mixup loss, GenLabel loss, and adversarial
loss, for the logistic regression models. In this theorem, we consider the set of model parameters

Θ := {θ ∈ Rd : (2yi − 1)fθ(xi) ≥ 0 for all i = 1, 2, · · · , n}

which contains the set of all θ with zero training errors.

Theorem 1. Consider the logistic regression setting having fθ(x) = θTx. Suppose there exists a constant cx > 0 such that
‖xi‖2 ≥ cx for all i ∈ {1, 2, · · · , n}. Then, in the asymptotic regime of large σ1, for any θ ∈ Θ, we have L̃mix

n (θ, S) >
L̃gen
n (θ, S) ≥ 1

n

∑n
i=1

˜̀
adv(δgen, (xi, yi)). Here, δgen = R · cxAiσ1,c,τ,d

with R = mini∈{1,··· ,n} | cos(θ,xi)|, where
Aiσ1,c,τ,d

is defined in (24) in the Appendix.

−0.2 −0.1 0.0 0.1 0.2
φ: angle of the model [π radian]

0.000

0.005

0.010

0.015

0.020

lo
ss

Mixup
GenLabel
Adv

Figure 8: Comparison between
the mixup loss, GenLabel
loss and adversarial loss, for
the logistic regression model
θ = (10 cosφ, 10 sinφ) on a
two-dimensional Gaussian dataset.
This plot coincides with the result
in Theorem 1.

Fig. 8 compares the second-order Taylor approximation of mixup loss L̃mix
n (θ, S),

GenLabel loss L̃gen
n (θ, S), and adversarial loss 1

n

∑n
i=1

˜̀
adv(δgen, (xi, yi)), for the

logistic regression model θ = (10 cosφ, 10 sinφ) parameterized by the angle φ. Here,
we use the dataset S = {(x+

i ,+1), (x−i ,−1)}20
i=1, where each sample at class +1 and

−1 follows the distribution of x+
i ∼ N ([+1, 0], 1

100I2) and x−i ∼ N ([−1, 0], 1
100I2),

respectively. One can confirm that the model θ = (10, 0), which corresponds to φ = 0,
has the smallest mixup/GenLabel /adversarial loss. In every angle φ ∈ [−π4 , π4], the
GenLabel loss is strictly smaller than mixup loss, which coincides with the result of
Theorem 1.

We can also extend the result of Theorem 1 to fully-connected ReLU networks as below.

Theorem 2. Consider fully-connected ReLU network fθ(x) =
βTσ(WN−1 · · · (W2σ(W1x))) where σ is the activation function and the pa-
rameters contain matrices Wi and a vector β. Suppose there exists a constant
cx > 0 such that ‖xi‖2 ≥ cx for all i ∈ {1, 2, · · · , n}. Then, in the asymp-
totic regime of large σ1, for any θ ∈ Θ, we have L̃mix

n (θ, S) > L̃gen
n (θ, S) ≥ 1

n

∑n
i=1

˜̀
adv(δgen, (xi, yi)). Here,

˜̀
adv(δ, (x, y)) = `(θ, (x, y)) + δ |g (fθ(x))− y| ‖∇fθ(x)‖2 + δ2d

2 |h′′ (fθ(x))| ‖∇fθ(x)‖22 is the Taylor approximation
of adversarial loss for ReLU network, and we have δgen = RcxA

i
σ1,c,τ,d

and R = mini∈{1,··· ,n} | cos(∇fθ(xi),xi)|,
where Aiσ1,c,τ,d

is in (24) and g(x) = ex/(1 + ex).

B.2. Approximation of GenLabel loss

Below we state the approximation of GenLabel loss Lgen
n (θ, S). The proof of this lemma is in Section C.6.

Lemma 1. The second order Taylor approximation of the GenLabel loss is given by

L̃gen
n (θ, S) = Lstd

n (θ, S) +Rgen
1 (θ, S) +Rgen

2 (θ, S) +Rgen
3 (θ, S),

where

Rgen
1 (θ, S) =

1

n

n∑

i=1

Aσ1,c,τ,d(h
′(fθ(xi))− yi)∇fθ(xi)

TErx∼DX [rx − xi],

Rgen
2 (θ, S) =

1

2n

n∑

i=1

Bσ1,c,τ,dh
′′(fθ(xi))∇fθ(xi)

TErx∼DX [(rx − xi)(rx − xi)T]∇fθ(xi),

Rgen
3 (θ, S) =

1

2n

n∑

i=1

Bσ1,c,τ,d(h
′(fθ(xi))− yi)Erx∼DX [(rx − xi)T∇2fθ(xi)(rx − xi)],

where Aσ1,c,τ,d and Bσ1,c,τ,d are two constants defined in (24). When σ1 →∞, we have limσ1→∞Aσ1,c,τ,d = c2+1
2(c+1)2 <

1
3 , limσ1→∞Bσ1,c,τ,d = c2−c+1

3(c+1)2 <
1
6 .

GenLabel : Mixup Relabeling using Generative Models

Toy dataset

1

θ = (r cos ϕ, r sin ϕ)

(1,0)(−1,0)

(0,1)
n points

overlapped ϕ

x1 = (1,0)x3 = (−1,0)

x2 = (0,1)

L1
L2

L3

Figure 9: Left: the dataset S used in Example 3. The feature-label pairs are defined as (x1, y1) = ([1, 0],+1), (x2, y2) = ([0, 1],+1),
and (xi, yi) = ([−1, 0],−1) for i = 3, 4, · · · , n+ 2. Right: the line segments connecting training data points.

C. Proof of mathematical results
C.1. Proof for Example 1

We start with showing θ?mixup = 7
16 . First, we the prediction of the classifier can be represented as

fθ(x) =

{
1
2θ |x|, if 0 ≤ |x| ≤ 2θ,

1, if 2θ ≤ |x| ≤ 1.

Since we have three data points, we have
(

3
2

)
= 3 different way of mixing the data points: (1) mixing x1 and x2, (2) mixing

x2 and x3, (3) mixing x3 and x1. We denote the loss value of i-th mix pair as Li. We first compute L2, the loss of mixing x2

and x3. The mixed point is xmix = λx3 + (1− λ)x2 = λ, which has label ymix = λe1 + (1− λ)e2 for λ ∈ [0, 1]. Then,

L2 =

∫ 1

0

∥∥∥∥ymix −
[

fθ(x
mix)

1− fθ(xmix)

]∥∥∥∥
2

2

dλ = 2

∫ 1

0

(λ− fθ(xmix))2dλ = 2

∫ 2θ

0

λ2(1− 1

2θ
)2dλ+ 2

∫ 1

2θ

(λ− 1)2dλ

=
2

3
(2θ − 1)2.

Since fθ(x) is symmetric, we have L1 = L2. Now, we compute L3. The mixed point is represented as xmix =
λx3 + (1− λ)x1 = 2λ− 1, which is labeled as ymix = λe1 + (1− λ)e1 = e1, for λ ∈ [0, 1]. Then,

L3 =

∫ 1

0

∥∥∥∥ymix −
[

fθ(x
mix)

1− fθ(xmix)

]∥∥∥∥
2

2

dλ =

∫ 1

0

(1− fθ(xmix))2dλ

=

∫ 1
2 +θ

1
2−θ

(1− 1

2θ
|2λ− 1|)2dλ = 2

∫ 1
2 +θ

1
2

(1− 1

2θ
(2λ− 1))2dλ =

2

3
θ.

Thus, d
dθ (3

2 (L1 + L2 + L3)) = d
dθ (8θ2 − 7θ + 2) = 0 when θ = 7

16 . This completes the proof of θ?mixup = 7
16 .

Finally, θ?mixup-without-MI = 1
2 is trivial from the fact that d

dθ (3
4 (L1 + L2)) = d

dθ (2θ − 1)2 = 0 when θ = 1
2 .

C.2. Proof for Example 3

Consider the problem of classifying n + 2 data points S = {(xi, yi)}n+2
i=1 , where the feature xi ∈ R2 and the label

yi ∈ {+1,−1} of each point is specified in Fig. 9. We use the one-hot label yi = [1, 0] for class +1 and yi = [0, 1] for class
−1. Consider applying logistic regression to this problem, where the solution is represented as θ = [r cosφ, r sinφ]. Here
we compare three different schemes: (1) vanilla training, (2) mixup, and (3) mixup with GenLabel (dubbed as new-mixup).
The first scheme is nothing but training only using the given training data S. Both mixup and new-mixup generate mixed
points using linear combination of data points, i.e., xij = λxi + (1− λ)xj for some λ ∼ Beta(α, α), while the labeling
method is different. The original mixup uses yij = λyi + (1− λ)yj , whereas the new-mixup uses yij = ρyi + (1− ρ)yj
where ρ = 1

1+exp{−(λ−1/2)/σ2} for some small σ , assuming the class +1 is modeled as Gaussian mixture. We analyze
the solutions of these schemes, denoted by θvanilla, θmixup and θnew-mixup, and compare it with the L2 max-margin classifier
obtained from support vector machine (SVM), represented as θsvm = (cos π4 , sin

π
4). Here, we denote the angle of SVM

solution by φsvm = π/4. Below we first analyze the loss of vanilla training, and then provide analysis on the loss of the
mixup scheme (using either original linear labeling or the suggested GenLabel).

GenLabel : Mixup Relabeling using Generative Models

Vanilla training Consider the vanilla training which learns θ (or the corresponding φ) by only using the given data. In
this case, the sum of logistic loss over all samples can be represented as

`vanilla =

n+2∑

i=1

log(1 + e−yiθ
Txi),

where the exponential term for each data is

−y1θ
Tx1 = −(r cosφ, r sinφ)T (1, 0) = −r cosφ,

−y2θ
Tx2 = −(r cosφ, r sinφ)T (0, 1) = −r sinφ,

−yiθTxi = (r cosφ, r sinφ)T (−1, 0) = −r cosφ, i = 3, 4, · · · , n+ 2

Then, the loss of vanilla training is

`vanilla = (n+ 1) log(1 + e−r cosφ) + log(1 + e−r sinφ). (2)

The derivative of the loss with respect to φ is given as

R(φ) :=
d

dφ
`vanilla = (n+ 1)

r sinφ exp{−r cosφ}
1 + exp{−r cosφ} +

−r cosφ exp{−r sinφ}
1 + exp{−r sinφ} .

By plugging in φsvm = π/4 in this expression, we have

R(φ = φsvm) =
nr√

2
· exp{−r/

√
2}

1 + exp{−r/
√

2}
=

n√
2
· r

1 + er/
√

2
6= 0,

meaning that vanilla training cannot achieve the max-margin classifier θsvm for a fixed r > 0. Note that R(φ = φsvm)→ 0
holds when ‖θ‖ = r →∞, i.e., the vanilla gradient descent training achieves the SVM solution. This coincides with the
result of (Soudry et al., 2018) which showed that for linearly separable data, the model parameter w(t) updated by gradient
descent satisfies both limt→∞‖θ(t)‖ =∞ and limt→∞ θ(t)/‖θ(t)‖ = θsvm.

Mixup Now we analyze the case of mixup + GenLabel (or new-mixup). Here we briefly recap how the suggested data
augmentation works. Basically, following the vanilla mixup scheme, we randomly sample data points xi and xj , and
generate augmented data xij = λxi + (1− λ)xj where λ ∼ Beta(α, α) for some α > 0. Then, we label this augmented
data as yij = ρyi + (1− ρ)yj where ρ = λ for vanilla mixup with linear labeling, and ρ = 1

1+exp{−(λ−1/2)/σ2} for new
labeling, where σ is a small positive number. Since there are total n+ 2 points in the training set, we have (n+ 2)2 pairs of
xi,xj ∈ X . The sum of loss values of all pairs can be represented as

`mixup = 2n

∫

L1∪L2

`(yij , ŷij) + n2`(y3, ŷ3) + 2

∫

L3

`(yij , ŷij) + `(y1, ŷ1) + `(y2, ŷ2) (3)

where the line segments L1, L2, L3 are illustrated in Fig. 9. Note that each line segment can be represented as the set of
following (xij ,yij) pairs for λ ∈ [0, 1]:

L1 : xij = (−λ, 1− λ), yij = [1− ρ, ρ]

L2 : xij = (2λ− 1, 0), yij = [ρ, 1− ρ]

L3 : xij = (1− λ, λ), yij = [1, 0]

Recall that for a given random data x, the label estimated by logistic regression model θ is represented as ŷ = [ŷ(0), ŷ(1)] =
[1
1+exp(−θTx)

, 1
1+exp(+θTx)

]. If this sample has true one-hot encoded label y = [y(0), y(1)], then the logistic loss of this
model (regarding the specific sample (x, y)) is given as

`(y, ŷ) = −y(0) log ŷ(0) − y(1) log ŷ(1)

GenLabel : Mixup Relabeling using Generative Models

Thus, each loss term in (3) can be represented as

∫

L1

`(yij , ŷij) =

∫ 1

0

{(1− ρ) log(1 + eλr cosφ−(1−λ)r sinφ) + ρ log(1 + e−λr cosφ+(1−λ)r sinφ)}p(λ)dλ,

∫

L2

`(yij , ŷij) =

∫ 1

0

{(1− ρ) log(1 + e(2λ−1)r cosφ) + ρ log(1 + e−(2λ−1)r cosφ)}p(λ)dλ,

∫

L3

`(yij , ŷij) =

∫ 1

0

log(1 + e−(1−λ)r cosφ−λr sinφ) p(λ)dλ,

`(y1, ŷ1) = `(y3, ŷ3) = log(1 + e−r cosφ),

`(y2, ŷ2) = log(1 + e−r sinφ),

where p(λ) is the probability density function for sampling λ.

Based on the expression of the loss `(r, φ) for each scheme given in (2) and (3), we numerically plotted φ? = arg minφ `(r, φ)
for various r in Fig. 5. It turns out that the optimal φ?new-mixup of new-mixup approaches to the SVM solution φsvm = π/4 as

r increases. Using the standard definition of margin denoted by margin(θ) = min
(xi,yi)∈D

yiθ
Txi
‖θ‖ = min{cosφ, sinφ}, we

have

margin(θsvm) = margin(θnew-mixup) > margin(θvanilla) > margin(θmixup)

according to Fig. 5.

C.3. Proof of Theorem 1

Following the proof of Theorem 3.1 of (Zhang et al., 2021), when θ ∈ Θ, we have

(h′(fθ(xi))− yi)∇fθ(xi)
TErx∼DX [rx − xi] ≥ 0,

h′′(fθ(xi))∇fθ(xi)
TErx∼DX [(rx − xi)(rx − xi)T]∇fθ(xi) ≥ 0.

The first inequality in Theorem 1 is directly obtained by combining Lemma 8 and the fact that Aiσ1,c,τ,d
< 1/3 and

Biσ1,c,τ,d
< 1

6 holds, which is proven in Lemma 1. The second inequality in Theorem 1 is obtained by applying Theorem
3.1 of (Zhang et al., 2021) into the Taylor approximation of GenLabel loss L̃gen

n (θ, S) in Lemma 1.

C.4. Proof of Theorem 2

Similar to the proof of Theorem 1, the first inequality is directly from Lemma 1. The second inequality is obtained by
applying Theorem 3.3 of (Zhang et al., 2021) into the Taylor approximation of GenLabel loss L̃gen

n (θ, S) in Lemma 1.

C.5. Lemmas used for proving Lemma 1

We here provide lemmas that are used in the proof of Lemma 1, which is given in Section C.6. Before stating our first
lemma, recall that the covariance matrix of each class-conditional data distribution is a scalar factor of Σ, which is defined
as

Σ =




1 τ τ · · · τ
τ 1 τ · · · τ
... τ

. . . τ
...

τ τ · · · 1 τ
τ τ · · · τ 1



. (4)

Below we provide the inverse matrix of Σ.

GenLabel : Mixup Relabeling using Generative Models

Lemma 2. When τ /∈ { −1
d−1 ,

−1
d−2} and −1 < τ < 1, the matrix in (4) is invertible. The inverse is given by

Σ−1 = cd




1 −τd −τd · · · −τd
−τd 1 −τd · · · −τd

... −τd
. . . −τd

...
−τd −τd · · · 1 −τd
−τd −τd · · · −τd 1



, (5)

where

cd =
1

1− τ
(d− 2)τ + 1

(d− 1)τ + 1
(6)

and
τd =

τ

(d− 2)τ + 1
. (7)

Proof. We prove the lemma by verifying Σ× (5) = Id.

Clearly the diagonal element in Σ× (5) reads

cd[1− (d− 1)ττd] =
1

1− τ
(d− 2)τ + 1

(d− 1)τ + 1
[1− (d− 1)

τ2

(d− 2)τ + 1
]

=
1

1− τ
(d− 2)τ + 1

(d− 1)τ + 1

(d− 2)τ + 1− τ2(d− 1)

(d− 2)τ + 1

=
1

1− τ
(d− 2)τ + 1− τ2(d− 1)

(d− 1)τ + 1
=

1

1− τ
(1− τ)(τ(d− 1) + 1)

(d− 1)τ + 1
= 1.

The off-diagonal element in Σ× (5) reads

cd(τ − τd − (d− 2)ττd) = cd[
(d− 2)τ2 + τ − τ

(d− 2)τ + 1
− (d− 2)τ2

(d− 2)τ + 1
] = 0.

Then we conclude the proof.

Lemma 3. For Z ∼ N (0,Σ), we have the following formula for ZTΣ−1Z:

ZTΣ−1Z = cd

[
A1[Z1 −B1(

d∑

i=2

Zi)]
2 +A2[Z2 −B2(

d∑

i=3

Zi)]
2

+ · · ·+Ad−1[Zd−1 −Bd−1(

d∑

i=d

Zi)]
2 +AdZ

2
d

]
,

where An, Bn are constants that satisfy the following recurrence relation for n ≤ d

An = An−1 −B2
n−1An−1, Bn =

An−1Bn−1 +B2
n−1An−1

An
,

A1 = 1, B1 = τd,

(8)

and Z = [Z1, · · · , Zd].

Proof. Using (5) we have

ZTΣ−1Z = cd[

d∑

i=1

Z2
i − 2τd

∑

i 6=j
ZiZj

︸ ︷︷ ︸
(∗)

].

GenLabel : Mixup Relabeling using Generative Models

We focus on (*). We claim the following induction formula:

Claim: for any n < d, and An, Bn satisfying (8), we can decompose (∗) into

(∗) = A1[Z1 −B1(

d∑

i=2

Zi)]
2 + · · ·+An[Zn −Bn(

d∑

i=n+1

Zi)]
2

+An+1

d∑

i=n+1

Z2
i − 2An+1Bn+1

d∑

i,j=n+1,i6=j
ZiZj . (9)

The lemma immediately follows by setting n = d− 1 in the claim. Now we use induction to prove the claim.

Base case: when n = 1, we complete the square for Z1 and obtain

(∗) = [Z1 − τd(Z2 + · · ·+ Zd)]
2 − τ2

d (Z2 + · · ·+ Zd)
2 +

d∑

i=2

Z2
i − 2τd

∑

i,j=2,i6=j
ZiZj

= [Z1 − τd(Z2 + · · ·+ Zd)]
2 + (1− τ2

d)

d∑

i=2

Z2
i − 2(τd + τ2

d)
∑

i,j=2,i6=j
ZiZj .

We conclude the base case with A1, B1, A2, B2 satisfying (8) as:

A1 = 1, B1 = τd, A2 = 1− τ2
d = A1 −B2

1A1,

A2B2 = τd + τ2
d = A2

A1B1 +B2
1A1

A2
= A1B1 +B2

1A1.

Induction hypothesis: we assume the claim holds true for n. We want to show the claim also holds true for n + 1. We
focus on the second line of the claim: (9). We further complete the square and have

(9) := An+1

d∑

i=n+1

Z2
i − 2An+1Bn+1

d∑

i,j=n+1,i6=j
ZiZj

= An+1[Zn+1 −Bn+1

d∑

i=n+2

Zi]
2 −An+1B

2
n+1(

d∑

i=n+2

Zi)
2

+An+1

d∑

i=n+2

Z2
i − 2An+1Bn+1

d∑

i,j=n+2,i6=j
ZiZj

= An+1[Zn+1 −Bn+1

d∑

i=n+2

Zi]
2

+ (An+1 −An+1B
2
n+1)

d∑

i=n+2

Z2
i − 2(An+1Bn+1 +An+1B

2
n+1)

∑

i,j=n+2,i6=j
ZiZj

= An+1[Zn+1 −Bn+1

d∑

i=n+2

Zi]
2 +An+2

d∑

i=n+2

Z2
i − 2An+2Bn+2

∑

i,j=n+2,i6=j
ZiZj .

Thus the claim holds true for n+ 1 with An+2, Bn+2, An+1, Bn+1 satisfying (8) as

An+2 = An+1 −An+1B
2
n+1, Bn+2 =

An+1Bn+1 +An+1B
2
n+1

An+2
.

Then we conclude the claim and the lemma.

GenLabel : Mixup Relabeling using Generative Models

Lemma 4. Denote Y = (Y1, · · · , Yj), and Yj = Zj − Bj(
∑d
i=j+1 Zi) with Bj , Zj defined in Lemma 3 for 1 ≤ j ≤ d,

then Yj follows a 1-D Gaussian distribution:

Yj ∼ N (0,
1

cdAj
).

Proof. Applying Lemma 3, we compute the cumulative density function of Yj as

P (Yj < x) = P (Zj −Bj(
d∑

i=j+1

Zi) < x) =

∫

(Zj+1,Zj+2,··· ,Zd)∈Rd−j

×
∫ x+Bj(Zj+1+···+Zd)

−∞

∫

(Z1,Z2,··· ,Zj−1)∈Rj−1

(2π)−
d
2 det(Σ)−

1
2 exp{−1

2
ZTΣ−1Z}dZ

=

∫

(Zj+1,Zj+2,··· ,Zd)∈Rd−j
(2π)−

d−j
2 exp{−cd

2
[Aj+1Y

2
j+1 + · · ·+AdY

2
d]}

×
∫ x+Bj(Zj+1+···+Zd)

−∞
(2π)−

1
2 exp{−cd

2
AjY

2
j }

×
∫

(Z1,Z2,··· ,Zj−1)∈Rj−1

(2π)−
j−1
2 det(Σ)−

1
2 exp{−cd

2
[A1Y

2
1 + · · ·+Aj−1Y

2
j−1]}dZ, (10)

where we used Yd = Zd. Note that Yj = Zj −Bj(
∑m
i=j+1 Zi), we apply change of variable

(Z1 −B1(

d∑

i=2

Zi), · · · , Zd)→ (Y1, · · · , Yd). (11)

The corresponding Jacobian matrix | ∂(Y1,··· ,Yd)
∂(Z1,··· ,Zd) | is an upper triangular matrix with diagonal element 1. Thus the Jacobian is

1, and we conclude

(10) =

∫

(Yj+1,Yj+2,··· ,Yd)∈Rd−j
(2π)−

d−j
2 exp{−cd

2
[Aj+1Y

2
j+1 + · · ·+AdY

2
d]}

×
∫ x

−∞
(2π)−

1
2 exp{−cd

2
AjY

2
j }

×
∫

(Y1,Y2,··· ,Yj−1)∈Rj−1

(2π)−
j−1
2 det(Σ)−

1
2 exp{−cd

2
[A1Y

2
1 + · · ·+Aj−1Y

2
j−1]}dY

= C × 1

(cdAj)1/2
× 1

2
[1 + erf(

x
√
cdAj√
2

)], (12)

where C a constant that corresponds to the integration in the first and third line. Here C does not depend on x. Note that
1
2 [1 + erf(

x
√
cdAj√
2

)] is the cdf of N (0, 1
cdAj

), let x→∞, we conclude C × 1
(cdAj)1/2

= 1, thus Yj ∼ N (0, 1
cdAj

).

Lemma 5. Yj and Yk are independent for j 6= k, where Yj is defined in Lemma 4.

Proof. We prove the lemma by showing the joint cdf of Yj , Yk can be written as the product of cdf of Yj and cdf of Yk.
Without loss of generality, we assume j < k. We focus on computing the joint cdf P (Yj < x, Yk < y). Following the same

GenLabel : Mixup Relabeling using Generative Models

procedure of (10), we apply the change of variable (11), then the integration becomes:

P (Yj < x, Yk < y) =

∫

(Yk+1,Yk+2,··· ,Yd)∈Rd−k
(2π)−

d−k
2 exp{−cd

2
[Ak+1Y

2
k+1 + · · ·+AdY

2
d]}

×
∫ y

−∞
(2π)−

1
2 exp{−cd

2
AkY

2
k }

×
∫

(Yj+1,Yj+2,··· ,Yk−1)∈Rk−j−1

(2π)−
k−j−1

2 exp{−cd
2

[Aj+1Y
2
j+1 + · · ·+Ak−1Y

2
k−1]}

×
∫ x

−∞
(2π)−

1
2 exp{−cd

2
AjY

2
j }

×
∫

(Y1,Y2,··· ,Yj−1)∈Rj−1

(2π)−
j−1
2 det(Σ)−

1
2 exp{−cd

2
[A1Y

2
1 + · · ·+Aj−1Y

2
j−1]}dY

= C × 1

(cdAj)1/2

1

2
[1 + erf(

x
√
cdAj√
2

)]× 1

(cdAk)1/2

1

2
[1 + erf(

y
√
cdAk
2

)].

Similar to (12), C is a constant that corresponds to the first, third and fifth line, and C does not depend on x, y. Note that
1
2 [1 + erf(

x
√
cdAj
2)] and 1

2 [1 + erf(y
√
cdAk
2)] are the cdf of N (0, 1

cdAj
) and N (0, 1

cdAk
). Let x, y →∞, we conclude that

the constant terms combine to be C × 1

cd
√
AjAk

= 1. Thus the joint cdf is

P (Yj < x, Yk < y) =
1

2
[1 + erf(

x
√
cdAj

2
)]× 1

2
[1 + erf(

y
√
cdAk
2

)].

This equals to P (Yj < x)× P (Yk < y) by directly applying Lemma 4. Then we conclude the lemma.

Lemma 6. Suppose Z ∼ N (0,Σ) with Σ given by (4), then

eT1 Σ−1Z ∼ N (0, cd), (13)

where cd is defined in (7). Here (13) corresponds to a 1-D Gaussian distribution.

Proof. By Lemma 2 we have

eT1 Σ−1 = cd(1,−τd,−τd, · · · ,−τd)T .
Thus

eT1 Σ−1Z = cd[Z1 − τdZ2 − τdZ3 − · · · − τdZd].
Then the lemma follows by directly applying Lemma 4 with A1 = 1, B1 = τd in (8).

Lemma 7. Suppose Z ∼ N (0,Σ) with Σ given by (4), then

ZTΣ−1Z has the same distribution as χ2(d),

where χ2(d) is the Chi-square distribution with freedom d.

Proof. Applying Lemma 3, Lemma 4 and Lemma 5 we have

ZTΣ−1Z =

d∑

i=1

cdAiY
2
i ,

where Ai is defined in (8), Yi is defined in Lemma 4. Here Yi, Yj are independent for i 6= j and cdAiY 2
i = (

√
cdAiYi)

2.
Then we apply Lemma 4 to get (

√
cdAiYi) ∼ N (0, 1) is a standard normal distribution. Then by the definition of the

Chi-square distribution we conclude the lemma.

GenLabel : Mixup Relabeling using Generative Models

C.6. Proof of Lemma 1

Proof. Denote the mixed point by x̃ij(λ) = λxi + (1− λ)xj . In order to estimate the second order Taylor expansion of
Lgen
n (θ, S), we first compute the GenLabel ygen

ij . Next we use expression of ygen
ij to estimate Lgen

n (θ, S). Then we derive the
second order Taylor expansion and the correspond coefficients Aiσ1,c,τ,d

, Biσ1,c,τ,d
. Last we consider the asymptotic limit

σ1 →∞.

Step 1: compute ygen
ij .

Recall that when yi = yj , we set the label of mixed point as ymix
ij = yi. For such case, we have ymix

ij = λ1yi+ (1−λ1)yi =
λ1yi + (1− λ1)yj for any λ1 ∈ R. When yi 6= yj , we use the suggested GenLabel ygen

ij in (1). Without loss of generality,
we assume xi ∼ N (−e1,

Σ
σ2
1
) and xj ∼ N (e1,

Σ
σ2
2
). Thus the correspond labels are yi = 0, yj = 1. We compute the mixed

point x̃ij as follows:

x̃ij(λ) = λxi + (1− λ)xj = λ(−e1 +Zi) + (1− λ)(e1 +Zj) = (1− 2λ)e1 +Zij

Zij = λZi + (1− λ)Zj ∼ N (0,
λ2Σ

σ2
1

+
(1− λ)2Σ

σ2
2

).
(14)

where Zi = xi + e1 and Zj = xj − e1. Now we compute the GenLabel ygen
ij and express it as a convex combination of yi

and yj . To compute the ygen
ij , we denote the density function of N (−e1,

Σ
σ2
1
) as

p(x) = (2π)−
d
2 det(Σ)−

1
2σd1e

−σ
2
1
2 (x+e1)TΣ−1(x+e1),

and we denote the density function of N (e1,
Σ
σ2
2
) as

q(x) = (2π)−
d
2 det(Σ)−

1
2σd2e

−σ
2
2
2 (x−e1)TΣ−1(x−e1).

Then the GenLabel ygen
ij in (1) is given by the ratio:

ygen
ij =

q(x̃ij(λ))

p(x̃ij(λ)) + q(x̃ij(λ))
=

1

1 +
p(x̃ij(λ))
q(x̃ij(λ))

=
1

1 +
σd1
σd2

exp{−σ2
1

2 [(x̃ij(λ) + e1)TΣ−1(x̃ij(λ) + e1)− σ2
2

σ2
1
(x̃ij(λ)− e1)TΣ−1(x̃ij(λ)− e1)]}

.

We use x̃ij(λ) = (1− 2λ)e1 +Zij in (14) to express the exponential term in the denominator as

exp{−σ
2
1

2
[(2− 2λ)2eT1 Σ−1e1 + 4(1− λ)eT1 Σ−1Zij +ZTijΣ

−1Zij]}

× exp{σ
2
1

2
[4λ2eT1 Σ−1e1 − 4λeT1 Σ−1Zij +ZTijΣ

−1Zij]}

× exp{σ
2
2 − σ2

1

2
[4λ2eT1 Σ−1e1 − 4λeT1 Σ−1Zij +ZTijΣ

−1Zij]}

= exp{−σ2
1 [(2− 4λ)eT1 Σ−1e1 + 2eT1 Σ−1Zij]} exp{(σ2

2 − σ2
1)[2λ2eT1 Σ−1e1 − 2λeT1 Σ−1Zij +

ZTijΣ
−1Zij

2
]}.

Now we apply previous lemmas to estimate all terms in the exponent.

For eT1 Σ−1e1, we apply Lemma 2 to Σ−1 and conclude

(2− 4λ)eT1 Σ−1e1 = (2− 4λ)cd,

where cd is defined in (7).

For the other two terms, we define Z ′ij := eT1 Σ−1Zij and z̄ij := ZTijΣ
−1Zij . From (14), Zij =

√
λ2

σ2
1

+ (1−λ)2

σ2
2
Z ∼

N (0, [λ
2

σ2
1

+ (1−λ)2

σ2
2

]Σ), with Z ∼ N (0,Σ). Then we apply Lemma 6 to Z ′ij and have

Z ′ij = eT1 Σ−1Zij ∼ N (0, [
λ2

σ2
1

+
(1− λ)2

σ2
2

]cd). (15)

GenLabel : Mixup Relabeling using Generative Models

For z̄ij , we apply Lemma 7 and have

z̄ij = ZTijΣ
−1Zij = [

λ2

σ2
1

+
(1− λ)2

σ2
2

]ZTΣ−1Z ∼ [
λ2

σ2
1

+
(1− λ)2

σ2
2

]χ2(d) (16)

where χ2(d) is the Chi-square distribution with freedom d. Thus we conclude that the GenLabel reads

ygen
ij =

1

1 +
σd1
σd2

exp{−σ2
1 [(2− 4λ)cd + 2Z ′ij]} exp{(σ2

2 − σ2
1)[2λ2cd − 2λZ ′ij +

z̄ij
2]}

. (17)

In other words, ygen
ij can be written as a convex combination of yi and yj as follows:

ygen
ij = λ1yi + (1− λ1)yj = 1− λ1 = (17),

λ1 = 1− (17) =
1

1 +
σd2
σd1

exp{σ2
1 [(2− 4λ)cd + 2Z ′ij]} exp{(σ2

1 − σ2
2)[2λ2cd − 2λZ ′ij +

z̄ij
2]}

. (18)

Step 2: estimate Lgen
n (θ, S).

Now we plug the expression of ygen
ij (18) into the GenLabel loss, we have

Lgen
n (θ, S) =

1

n2
Eλ∼Unif([0,1])

n∑

i,j=1

[h(fθ(x̃ij(λ)))− (λ1yi + (1− λ1)yj)]fθ(x̃ij(λ))

=
1

n2
Eλ∼Unif([0,1])

n∑

i,j=1

{
EB∼Bern(λ1)

[
B[h(fθ(x̃ij))− yifθ(x̃ij)]

+ (1−B)[h(fθ(x̃ij))− yjfθ(x̃ij)]
]
}
. (19)

For λ ∼ Unif([0, 1]), B|λ ∼ Bern(λ1), we can exchange them in order and have

B ∼ Bern(aij), λ|B ∼
{ F1

ij , B = 1;
F2
ij , B = 0.

aij =

∫ 1

0

λ1dλ =

∫ 1

0

1

1 +
σd2
σd1

exp{σ2
1 [(2− 4λ)cd + 2Z ′ij]} exp{(σ2

1 − σ2
2)[2λ2cd − 2λZ ′ij +

z̄ij
2]}

dλ.

F1
ij has density function

F1
ij ∼

λ1

aij
=

1

aij

1

1 +
σd2
σd1

exp{σ2
1 [(2− 4λ)cd + 2Z ′ij]} exp{(σ2

1 − σ2
2)[2λ2cd − 2λZ ′ij +

z̄ij
2]}

.

F2
ij has density function

F2
ij ∼

1− λ1

1− aij
=

1

1− aij
1

1 +
σd1
σd2

exp{−σ2
1 [(2− 4λ)cd + 2Z ′ij]} exp{(σ2

2 − σ2
1)[2λ2cd − 2λZ ′ij +

z̄ij
2]}

.

After changing the order of λ and B in (19), we get

(19) =
1

n2

{ n∑

i,j=1

aijEλ∼F1
ij

[h(fθ(x̃ij(λ)))− yifθ(x̃ij(λ))] (20)

+

n∑

i,j=1

(1− aij)Eλ∼F2
ij

[h(fθ(x̃ij(λ)))− yjfθ(x̃ij(λ))]

}
. (21)

GenLabel : Mixup Relabeling using Generative Models

Since x̃ij(λ) = x̃ji(1− λ), we can rewrite (21) as

(21) =
1

n2

n∑

i,j=1

(1− aij)Eλ∼F3
ij

[h(fθ(x̃ij(λ)))− yifθ(x̃ij(λ))]. (22)

Here F3
ij has density function F2

ij(1− λ):

F3
ij ∼

1

1− aij
1

1 +
σd1
σd2

exp{−σ2
1 [(4λ− 2)cd + 2Z ′ij]} exp{(σ2

2 − σ2
1)[2(1− λ)2cd − 2(1− λ)Z ′ij +

z̄ij
2]}

.

From (20) and (22), we denote Fij as a mixture distribution:

Fij = aijF1
ij + (1− aij)F3

ij .

Then (19) reads

(19) =
1

n2

n∑

i,j=1

Eλ∼Fij [h(fθ(x̃ij(λ)))− yifθ(x̃ij(λ))]

=
1

n

n∑

i=1

Eλ∼FiErx∼DX `x̌i,yi(θ). (23)

Here we defined Fi as a mixture distribution:

Fi =
1

n

n∑

j=1

Fij .

DX is the empirical distribution induced by training samples and x̌i = λxi + (1− λ)rx.

Step 3: derive the second order Taylor expansion.

Given the expression of Lgen
n (θ, S) in (23), we follow the proof of Lemma 8 and conclude that the second order Taylor

expansion is given by Lemma 1, with the coefficients Aiσ1,c,τ,d
, Biσ1,c,τ,d

given by

Aiσ1,c,τ,d = Eλ∼Fi [1− λ], Biσ1,c,τ,d = Eλ∼Fi [(1− λ)2]. (24)

Here Fi has density function

1

n

n∑

j=1

{ 1

1 +
σd2
σd1

exp{σ2
1 [(2− 4λ)cd + 2Z ′ij]} exp{(σ2

1 − σ2
2)[2λ2cd − 2λZ ′ij +

z̄ij
2]}

+
1

1 +
σd1
σd2

exp{−σ2
1 [(4λ− 2)cd + 2Z ′ij]} exp{(σ2

2 − σ2
1)[2(1− λ)2cd − 2(1− λ)Z ′ij +

z̄ij
2]}
},

where Z ′ij , z̄ij and cd are defined in (15), (16) and (6) respectively.

It remains to prove that when σ1 →∞, these coefficients satisfy the properties mentioned in Lemma 1.

Step 4: asymptotic analysis for σ1 →∞
Now we prove limσ1→∞Aiσ1,c,τ,d

= c2+1
2(c+1)2 and limσ1→∞Biσ1,c,τ,d

= c2−c+1
3(1+c)2 . Recall that GenLabel ygen

ij is given in (18).
When σ1 →∞, we have Z ′ij , z̄ij → 0, then λ1 in (18) becomes

λ1 =
1

1 + cd exp{σ2
1 [(2− 4λ)]cd + 2(σ2

1 − c2σ2
1)λ2cd}

=
1

1 + cd exp{2σ2
1cd[(1− c2)λ2 − 2λ+ 1]}

=

{
1

1+cd exp{2σ2
1cd(1−c2)(λ− 1

1−c)(λ− 1
1+c)} , c 6= 1;

1
1+cd exp{2σ2

1cd(1−2λ)} , c = 1.

GenLabel : Mixup Relabeling using Generative Models

We have three cases regarding c.

If c > 1, then 1
1−c < 0, 1− c2 < 0, which implies

(1− c2)(λ− 1

1− c)(λ− 1

1 + c
)

{
> 0, 1

1−c < 0 ≤ λ < 1
1+c ;

< 0, 1
1+c < λ ≤ 1.

If 0 < c < 1, then 1
1−c > 1, 1− c2 > 0, which implies

(1− c2)(λ− 1

1− c)(λ− 1

1 + c
)

{
> 0, 0 ≤ λ < 1

1+c ;
< 0, 1

1+c < λ ≤ 1 < 1
1−c .

If c = 1, we have 1− 2λ > 0 for 0 ≤ λ < 1
2 and 1− 2λ < 0 for 1

2 < λ ≤ 1.

When σ1 →∞, we combine all three cases above and conclude

λ1 =

{
0, 0 ≤ λ < 1

1+c ;
1, 1

1+c < λ ≤ 1. ygen
ij =

{
yj , 0 ≤ λ < 1

1+c ;
yi,

1
1+c < λ ≤ 1.

With the GenLabel given by the above equation, we compute the GenLabel loss as

Lgen
n (θ, S) =

1

n2
Eλ∼Unif([0,1])

n∑

i,j=1

[h(fθ(x̃ij(λ)))− ygen
ij fθ(x̃ij(λ))]

=
1

(c+ 1)n2
Eλ∼Unif([0,1/(1+c)])

n∑

i,j=1

{
h(fθ(x̃ij(λ)))− yjfθ(x̃ij(λ))

}
(25)

+
c

(c+ 1)n2
Eλ∼Unif([1/(1+c),1])

n∑

i,j=1

{
h(fθ(x̃ij(λ)))− yifθ(x̃ij(λ))

}
.

Since 1−Unif([0, 1/(1 + c)]) and Unif([1− 1/(1 + c), 1]) are of the same distribution and x̃ij(1− λ) = x̃ji(λ), we have

(25) =
1

(c+ 1)n2
Eλ∼Unif([c/(c+1),1])

n∑

i,j=1

{
h(fθ(x̃ij(λ)))− yifθ(x̃ij(λ))

}
.

Using the above equation, the GenLabel loss reads

Lgen
n (θ, S) =

1

n2
Eλ∼ c

c+1 Unif([1/(c+1),1])+ 1
c+1 Unif([c/(c+1),1])

n∑

i,j=1

{
h(fθ(x̃ij(λ)))− yifθ(x̃ij(λ))

}

=
1

n

n∑

i=1

Eλ∼ c
c+1 Unif([1/(c+1),1])+ 1

c+1 Unif([c/(c+1),1])Erx∼DX `x̌i,yi(θ).

Following the proof of Lemma 8, we conclude that when σ1 →∞, the coefficients Aiσ1,c,τ,d
, Biσ1,c,τ,d

are given by

lim
σ1→∞

Aiσ1,c,τ,d =Eλ∼ c
c+1 Unif([1/(c+1),1])+ 1

c+1 Unif([c/(c+1),1])[1− λ]

=
c

c+ 1

∫ 1

1
c+1

c+ 1

c
(1− λ)dλ+

1

c+ 1

∫ 1

c
c+1

c+ 1

1
(1− λ)dλ

=

∫ 1

1
c+1

(1− λ)dλ+

∫ 1

c
c+1

(1− λ)dλ =
c2

2(c+ 1)2
+

1

2(c+ 1)2
=

c2 + 1

2(c+ 1)2
.

lim
σ1→∞

Biσ1,c,τ,d =Eλ∼ c
c+1 Unif([1/(c+1),1])+ 1

c+1 Unif([c/(c+1),1])[(1− λ)2]

=

∫ 1

1
c+1

(1− λ)2dλ+

∫ 1

c
c+1

(1− λ)2dλ =
c3

3(c+ 1)3
+

1

3(c+ 1)3
=
c2 − c+ 1

3(c+ 1)2
.

GenLabel : Mixup Relabeling using Generative Models

From direct computation, we conclude that when 2−
√

3 < c < 2 +
√

3,

c2 + 1

2(c+ 1)2
<

1

3
,

c2 − c+ 1

3(c+ 1)2
<

1

6
⇐⇒ c2 − 4c+ 1 < 0.

We conclude the lemma.

D. Mathematical results in (Zhang et al., 2021)
Lemma 8 (Lemma 3 of (Zhang et al., 2021)). The second order Taylor approximation of the mixup loss Lmix

n (θ, S) is given
by

L̃mix
n (θ, S) = Lstd

n (θ, S) +Rmix
1 (θ, S) +Rmix

2 (θ, S) +Rmix
3 (θ, S),

where

Rmix
1 (θ, S) =

1

n

n∑

i=1

1

3
(h′(fθ(xi))− yi)∇fθ(xi)

TErx∼DX [rx − xi],

Rmix
2 (θ, S) =

1

2n

n∑

i=1

1

6
h′′(fθ(xi))∇fθ(xi)

TErx∼DX [(rx − xi)(rx − xi)T]∇fθ(xi),

Rmix
3 (θ, S) =

1

2n

n∑

i=1

1

6
(h′(fθ(xi))− yi)Erx∼DX [(rx − xi)T∇2fθ(xi)(rx − xi)].

Lemma 9 (Lemma 3.2 of (Zhang et al., 2021)). Consider the logistic regression model having fθ(x) = θTx. The second
order Taylor approximation of Ladv

n (θ, S) is 1
n

∑n
i=1

˜̀
adv(ε

√
d, (xi, yi)), where for any η > 0,x ∈ Rd and y ∈ {0, 1},

˜̀
adv(η, (x, y)) = `(θ, (x, y)) + η

∣∣g
(
θTx

)
− y
∣∣ · ‖θ‖2 +

η2

2
· g
(
θTx

) (
1− g

(
θTx

))
· ‖θ‖22

and g(x) = ex/(1 + ex) is the logistic function.

E. Detailed experiments setup
Here we provide a detailed description on our experimental settings.

E.1. Synthetic datasets

Datasets The 2D cube dataset with 2 classes (class 0 and 1) is defined as follows. Consider two adjacent squares centered
at µ0 = (−1, 0) and µ1 = (1, 0), respectively, where the length of each side of each square is 2. We define the support of
class i as the area of each square. In other words, the support of class 0 is X0 = {x ∈ R2 : ‖µ0 − x‖∞ ≤ 1} where ‖·‖∞
is the L∞ norm operator. Similarly, the support of class 1 is X1 = {x ∈ R2 : ‖µ1 − x‖∞ ≤ 1}. The data point x for class
i ∈ {0, 1} is uniform-randomly sampled from the square Xi.

The 3D cube dataset with 8 classes is defined as below. Consider 8 adjacent cubes, each of which is located at each octant,
where the center of each cube is µ = (µ(1), µ(2), µ(3)) for µ(1), µ(2), µ(3) ∈ {−1, 1} and the length of each side of each
cube is 2. We define the support of class i as the volume of each cube. For example, the class 0 corresponds to the cube
centered at µ0 = (−1,−1,−1), and the support of class 0 is X0 = {x ∈ R3 : ‖µ0 − x‖∞ ≤ 1}. Similarly, we define the
support of class i ∈ {0, 1, · · · , 7}. The data point x for class i is uniform-randomly sampled from the cube Xi.

The 9-class Gaussian dataset used in Fig. 4 is defined as follows. We generate 9 Gaussian clusters having the covariance
matrix of Σ = 1

10I2 and centered at µ = (µ(1), µ(2)) for µ(1), µ(2) ∈ {−10, 0, 10}. For example, cluster 0 (or class 0) is
centered at µ0 = (−10,−10) and cluster 8 (or class 8) is centered at µ0 = (10, 10).

The Circle and Moon datasets used in Table 1 are from scikit-learn (Pedregosa et al., 2011) combined with Laplacian noise,
where the exponential decay λ of Laplacian noise is set to 0.1 for Moon and 0.02 for Circle.

The Four-circle dataset used in Table 1 is generated as follows. We first generate a Circle dataset from scikit-learn (Pedregosa
et al., 2011) combined with Laplacian noise, where the exponential decay λ of Laplacian noise is set to 0.01. Then, we
generate another (second) Circle dataset under the same setting (but having different realization), shift it to the right, and flip
the label of the second Circle dataset. In this way, we get two adjacent Circle datasets with flipped label.

GenLabel : Mixup Relabeling using Generative Models

Training setting For synthetic datasets, the hyperparameters used in our experiments are summarized in Table 10. For
both 2D and 3D cube datasets, we randomly generate 20 data samples from uniform distribution for each class as training
data, and evaluate the decision boundary by another 10000 randomly generated data samples for each class. For 9-class
Gaussian dataset, each cluster has 5000 randomly generated samples as the training data. For Moon and Circle datasets, we
randomly generate 1000 data samples for both training and testing. For Four-circle dataset, we randomly generate 1000 data
samples for each Circle dataset for both training and testing. For 2D and 3D cube datasets, we use a 3-layer fully connected
network, which has 64 neurons in the first hidden layer and 128 neurons in the second hidden layer. For Moon, Circle
and Four-circle datasets, we use a 4-layer fully connected network, which has 64 neurons in the first hidden layer and 128
neurons in the remaining hidden layers. For all the datasets, we use the SGD optimizer and the multi-step learning rate
decay. We measure the clean validation accuracy at each epoch and choose the best model having the highest clean accuracy.

Algorithms For mixup (Zhang et al., 2018), we followed the code from the official github repository: https://
github.com/facebookresearch/mixup-cifar10. For our GenLabel scheme on 9-class Gaussian datasets, we
use the ground-truth mean and identity covariance to estimate the Gaussian mixture (GM) models at the input layer.

E.2. Real datasets

Datasets We use OpenML datasets from (Vanschoren et al., 2013) , MNIST, CIFAR-10 and CIFAR-100 datasets
from PyTorch (Paszke et al., 2017), and Tiny-Imagenet-200 dataset from http://cs231n.stanford.edu/
tiny-imagenet-200.zip.

For experiments on OpenML datasets, we first accessed all datasets from Python OpenML API (Feurer et al., 2019).
Afterwards, we filtered out the datasets having more than 20 features, datasets with more than 5000 data samples. We tested
our GenLabel on the remaining datasets.

Training setting The hyperparameters used in our experiments are summarized in Table 11, 12, 13 and 14. When
we train mixup+GenLabel on OpenML datasets, we used a 6-fold cross-validation for choosing the best loss ratio γ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For the clean validation runs, we measured the clean validation accuracy at each epoch and
choose the best model having the highest clean accuracy. For the robust validation runs, we measured the robust validation
accuracy at every 5 epochs and choose the best model having the highest robust accuracy. For OpenML datasets, we
tested training methods on both the logistic regression model and the neural network with 2 hidden layers. For the latter,
we followed the same architecture used in mixup (Zhang et al., 2018) which has 128 neurons in each hidden layer. For
MNIST and CIFAR-10 datasets, we used LeNet-5 and ResNet-18, respectively. For both CIFAR-100 and Tiny-Imagenet-200
datasets, we used PreActResNet-18. We tested on NVIDIA Tesla V100 GPUs in Amazon Web Service (AWS) and local
NVIDIA RTX2080 GPU machines.

Algorithms For mixup (Zhang et al., 2018) and manifold-mixup (Verma et al., 2019), we followed the code from the offi-
cial github repository: https://github.com/facebookresearch/mixup-cifar10 and https://github.
com/vikasverma1077/manifold_mixup. Note that the mixup github repository contains license: see https:
//github.com/facebookresearch/mixup-cifar10/blob/master/LICENSE. For adamixUp (Guo et al.,
2019), we used two methods: (1) for OpenML, we implemented by ourselves in PyTorch, (2) for MNIST and CIFAR-10, we
cloned the source code in https://github.com/SITE5039/AdaMixUp implemented in TensorFlow (Abadi et al.,
2015), and made slight modifications to make their experimental settings and models consistent with ours. For our GenLabel
schemes, we estimated and updated the Gaussian mixture (GM) models at the penultimate layer.

F. Generative model-based mixup algorithm (GenMix)
In Section 7.2 of the main manuscript, we suggested a new way of mixing data points using generative models. Here, we
formally define the algorithm for such “generative model-based mixup”, which is dubbed as GenMix. Our algorithm first
trains a class-conditional generative model. One can use any generative models off-the-shelf, e.g., Gaussian mixture models,
GANs. Based on the learned class-conditional distribution pc(x)’s, our algorithm augments the training dataset with data
points xmix that satisfy pc1(xmix) : pc2(xmix) = (1 − λ) : λ for arbitrary pre-defined λ ∈ [0, 1]. It then trains a model
via a standard (non-adversarial) training algorithm with the augmented dataset. The key idea behind GenMix is that such
augmented data points can act as an implicit regularizer, promoting larger margins for the classification boundary of the
trained model, which in turn guarantees robustness with good generalization.

https://github.com/facebookresearch/mixup-cifar10
https://github.com/facebookresearch/mixup-cifar10
http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://github.com/facebookresearch/mixup-cifar10
https://github.com/vikasverma1077/manifold_mixup
https://github.com/vikasverma1077/manifold_mixup
https://github.com/facebookresearch/mixup-cifar10/blob/master/LICENSE
https://github.com/facebookresearch/mixup-cifar10/blob/master/LICENSE
https://github.com/SITE5039/AdaMixUp

GenLabel : Mixup Relabeling using Generative Models
Table 10: Hyperparameters and models used for clean validation in synthetic dataset experiments.

General settings Optimizer Momentum Weight decay Batch size

SGD 0.9 0.0001 128

Datasets Methods Model Training epochs Learning rate Loss ratio γ

2D cube
Vanilla 3-layer FC net 40 0.1 -
Mixup 3-layer FC net 40 0.1 -
Mixup+GenLabel 3-layer FC net 40 0.1 1

3D cube
Vanilla 3-layer FC net 40 0.1 -
Mixup 3-layer FC net 40 0.1 -
Mixup+GenLabel 3-layer FC net 40 0.1 0.8

Moon
Vanilla 4-layer FC net 100 0.1 -
Mixup 4-layer FC net 100 0.1 -
Mixup+GenLabel 4-layer FC net 100 0.1 1

Circle
Vanilla 4-layer FC net 100 0.1 -
Mixup 4-layer FC net 100 0.1 -
Mixup+GenLabel 4-layer FC net 100 0.1 0.8

Four-circle
Vanilla 4-layer FC net 100 0.1 -
Mixup 4-layer FC net 100 0.1 -
Mixup+GenLabel 4-layer FC net 100 0.1 1

Table 11: Hyperparameters and models used for clean validation in OpenML datasets experiments.

General settings Training epochs Optimizer Weight decay Batch size

100 Adam 0.0001 128

Datasets Methods Model Learning rate Loss ratio γ

OpenML
Baselines Logistic Regression Chosen by cross-validation (among 0.1, 0.01, 0.001, and 0.0001) -
Mixup+GenLabel Logistic Regression Chosen by cross-validation (among 0.1, 0.01, 0.001, and 0.0001) Chosen by cross-validation

The rest of this section is organized as follows. We first provide a formal description of the GenMix framework. Then, we
propose two specific instances of our framework, namely, GenMix+GM and GenMix+GAN, which use Gaussian mixture
(GM) and GANs for generative modeling, respectively.

F.1. General framework

Let Dc = {(x(m)
c , ec)}ncm=1 be the training data for class y ∈ [k], where x(m)

c is the feature vector for m-th data point, ec is
the one-hot encoded label vector for any data points in class c, and nc is the number of data points with class y. The training
data is denoted by D = ∪c∈[k]Dc. In the first stage, it trains class-conditional generative model using the given training data
Xc = {x(m)

c }ncm=1, thereby learning the underlying data distribution pc(x).

In the second stage, we randomly sample mixing coefficient λ ∈ [0, 1]. For each class pair i, j ∈ [k], we generate augmented
points Xmixup = {x1, · · · ,xnaug}, each of which satisfies pi(xmix) : pj(x

mix) = (1− λ) : λ. In other words, the goal is to
find virtual data x’s which satisfy ∣∣∣∣

pj(x)

pi(x) + pj(x)
− λ
∣∣∣∣ ≤ ε (26)

for a pre-defined small margin ε > 0. Depending on the generative model used in the algorithm, we use different methods to
find these mixup points Xmixup. The detailed description of these methods are given in the following subsections. In both
schemes, we check whether the generated mixup points Xmixup incur manifold intrusion (Guo et al., 2019), and discard
the mixup points having such issues. To be specific, for the case of mixing class i and j, we decide that the manifold
intrusion does not occur for a mixup point x ∈ Xmixup if classes i and j are the two most probable classes of x, i.e.,
min{pi(x), pj(x)} ≥ p`(x) holds for all other classes ` ∈ [k]\{i, j}. For augmented data x without such manifold
intrusion issue, we soft-label it as y = pi

pi+pj
ei +

pj
pi+pj

ej where pi = pi(x) is the probability that x is sampled from class
i. We denote the set of data-label pair as Dmixup = {(x,y)} for x ∈ Xmixup.

Given naug data points obtained in the second stage, the algorithm finally trains the classification model f : Rn → [0, 1]k

that predicts the label y = [y1, · · · , yk] of the input data. Here, the cross-entropy loss is used while optimizing the model. In
our GenMix scheme, the model is trained by using not only the given training data D = ∪c∈[k]{Dc}, but also the augmented
dataset Dmixup. The pseudocode of the GenMix algorithm is given in Algorithm 4.

GenLabel : Mixup Relabeling using Generative Models
Table 12: Hyperparameters and models used for robust validation in OpenML dataset experiments.

General settings Training epochs Optimizer Momentum Weight decay Batch size Black-box attack radius

100 SGD 0.9 0.0001 128 0.1 * (max value - min value)

Datasets Methods Model Learning rate Loss ratio γ

OpenML
Baselines FC ReLU networks with 2 hidden layers Chosen by cross-validation (among 0.1, 0.01, 0.001, and 0.0001) -
Mixup+GenLabel FC ReLU networks with 2 hidden layers Chosen by cross-validation (among 0.1, 0.01, 0.001, and 0.0001) Chosen by cross-validation

Table 13: Hyperparameters and models used for clean validation in image dataset experiments.

General settings Training epochs Learning rate scheduler Optimizer Momentum Weight decay Batch size

200 multi-step decay SGD 0.9 0.0001 128

Datasets Methods Model Learning rate Attack radius Loss ratio γ Memory ratio β

MNIST

Vanilla LeNet-5 0.1 0.05 - -
AdaMixup LeNet-5 0.1 0.05 - -
Mixup LeNet-5 0.1 0.05 - -
Mixup+GenLabel LeNet-5 0.1 0.05 0.15 0.95
Manifold mixup LeNet-5 0.1 0.05 - -
Manifold mixup+GenLabel LeNet-5 0.1 0.05 0.15 0.99

CIFAR-10

Vanilla ResNet-18 0.1 2/255 - -
AdaMixup ResNet-18 0.1 2/255 - -
Mixup ResNet-18 0.1 2/255 - -
Mixup+GenLabel ResNet-18 0.1 2/255 0.1 0.95
Manifold mixup ResNet-18 0.1 2/255 - -
Manifold mixup+GenLabel ResNet-18 0.1 2/255 0.1 0.95

CIFAR-100

Vanilla PreAct ResNet-18 0.1 1/255 - -
Mixup PreAct ResNet-18 0.1 1/255 - -
Mixup+GenLabel PreAct ResNet-18 0.1 1/255 0.1 0.97
Manifold mixup PreAct ResNet-18 0.1 1/255 - -
Manifold mixup+GenLabel PreAct ResNet-18 0.1 1/255 0.1 0.97

Tiny
ImageNet

Vanilla PreAct ResNet-18 0.1 1/255 - -
Mixup PreAct ResNet-18 0.1 1/255 - -
Mixup+GenLabel PreAct ResNet-18 0.1 1/255 0.05 0.995
Manifold mixup PreAct ResNet-18 0.1 1/255 - -
Manifold mixup+GenLabel PreAct ResNet-18 0.1 1/255 0.05 0.995

Algorithm 4 GenMix
Input Training data D, Number of augmented data naug, likelihood-ratio margin ε > 0, mixing coefficient λ ∈ [0, 1]
Output Trained model f(·), Augmented data Dmixup

pc ← Data distribution of class c learned by generative model
Dmixup ← {}
for classes i ∈ [k] and j ∈ [k]\{i} do
n← 0
while n < naug do

Find point x satisfying
∣∣∣ pj(x)

pi(x)+pj(x)
− λ

∣∣∣ ≤ ε
p` ← p`(x) for ` ∈ [k]
if min{pi, pj} ≥ p` ∀` ∈ [k]\{i, j} then
Dmixup ← Dmixup ∪ {(x, pi

pi+pj
ei +

pj
pi+pj

ej)}
n← n+ 1

end if
end while

end for
f ← model training with D ∪Dmixup

In summary, the proposed scheme is a novel data augmentation technique that first learns the data distributions for each
class using class-conditional generative models, and then augments the train data with soft-labeled data points Xmixup, each
of which has the likelihood ratio of λ ∈ [0, 1] with respect to a target class pair.

GenLabel : Mixup Relabeling using Generative Models

Table 14: Hyperparameters and models used for AutoAttack validation in image dataset experiments.

General settings Training epochs Learning rate scheduler Optimizer Momentum Weight decay Batch size

50 multi-step decay SGD 0.9 0.0001 128

Datasets Methods Model Learning rate Attack radius Loss ratio γ Memory ratio β

MNIST

Vanilla LeNet-5 0.001 0.1 - -
AdaMixup LeNet-5 0.001 0.1 - -
Mixup LeNet-5 0.001 0.1 - -
Mixup+GenLabel LeNet-5 0.001 0.1 0.15 0.97
Manifold mixup LeNet-5 0.001 0.1 - -
Manifold mixup+GenLabel LeNet-5 0.001 0.1 0.15 0.97

CIFAR-10

Vanilla ResNet-18 0.001 2/255 - -
AdaMixup ResNet-18 0.001 2/255 - -
Mixup ResNet-18 0.001 2/255 - -
Mixup+GenLabel ResNet-18 0.001 2/255 0.15 0.9
Manifold mixup ResNet-18 0.001 2/255 - -
Manifold mixup+GenLabel ResNet-18 0.001 2/255 0.15 0.9

CIFAR-100

Vanilla PreAct ResNet-18 0.001 1/255 - -
Mixup PreAct ResNet-18 0.001 1/255 - -
Mixup+GenLabel PreAct ResNet-18 0.001 1/255 0.15 0.97
Manifold mixup PreAct ResNet-18 0.001 1/255 - -
Manifold mixup+GenLabel PreAct ResNet-18 0.001 1/255 0.15 0.97

Tiny
ImageNet

Vanilla PreAct ResNet-18 0.002 1/255 - -
Mixup PreAct ResNet-18 0.002 1/255 - -
Mixup+GenLabel PreAct ResNet-18 0.002 1/255 0.15 0.995
Manifold mixup PreAct ResNet-18 0.002 1/255 - -
Manifold mixup+GenLabel PreAct ResNet-18 0.002 1/255 0.15 0.995

z ∈ ℝd

noise

Generator G

Class i Mi = {G(z, i)}z∈ℝd

Class j Mj = {G(z, j)}z∈ℝd

x

d(x, Mj)

d(x, Mi)

Figure 10: Finding the augmented point x ∈ Xmixup satisfying d(x,Mj)− d(x,Mi) ' log(1
λ
− 1) in GenMix+GAN, for arbitrary

classes i 6= j and a pre-defined mixing coefficient λ ∈ [0, 1]. Given the manifoldMc = {G(z, c)}z∈Rd for class c ∈ [k] estimated by
class-conditional GAN, the distance d(x,Mc) is measured by inverting the generator of GAN (Creswell & Bharath, 2018).

F.2. GenMix+GM

We first suggest GenMix+GM, a data augmentation scheme which uses the Gaussian mixture (GM) model for generative
modeling. Here, we provide a formal description on how GenMix+GM finds the augmented points x satisfying the
likelihood ratio condition (26). Given training samples, GenMix+GM algorithm first estimates the parameters of Gaussian
distribution for each class. To be specific, it computes the sample mean and the sample covariance of class c, represented
as µ̂c = 1

nc

∑nc
m=1 x

(m)
c and Σ̂c = 1

nc

∑nc
m=1(x

(m)
c − µ̂c)(x(m)

c − µ̂c)T , respectively. Then, the (estimated) probability

of point x sampled from class c is pc(x) = 1√
(2π)kdet(Σ̂c)

e−(x−µ̂c)T Σ̂c
−1

(x−µ̂c)/2. Now, the question is how to find the

virtual data points x satisfying (26). This can be solved by applying quadratic discriminant analysis (QDA) (Ghojogh &
Crowley, 2019), which gives us the closed-form solution for x satisfying |log

pj(x)
pi(x)+pj(x) | ' λ, for given target classes i, j.

F.3. GenMix+GAN

The Gaussian mixture (GM) model is a simple generative model that works well when the data distribution is similar to
Gaussian, but it cannot learn other distributions. In such cases, GANs are useful for learning the underlying distribution.
Thus, here we suggest GenMix+GAN which uses GANs for generative modeling. As discussed in Section 7.1, we can
replace pc(x) by exp(−d(x,Mc)) in Algorithm 4 and apply GenMix scheme. Note that the condition in (26) reduces to
d(x,Mj)− d(x,Mi) ' log(1

λ − 1). Thus, the goal is to solve minx(d(x,Mj)− d(x,Mi)− log(1
λ − 1))2.

We use an iterative method to find points x that satisfy this condition. One key observation that helps us to design an
efficient optimization algorithm is that ifm? = arg minm∈M d(x,m), then d(x+ δ,M) ≈ d(x+ δ,m?) if δ is small.

GenLabel : Mixup Relabeling using Generative Models

x
data

robust feature
extractor frobust

classifier gcls ŷD = {xl, yl}n
l=1

Drobust = D ∪ {xmid, ymid}
Zi : manifold for class i

pi(z) : distribution of class i

feature domain
Zi

 Zj

zmid : mid features for class i, j

xmid = f −1
robust(zmid)

ymid = αei + (1 − α)ej
α = pi(zmid)/(pi(zmid) + pj(zmid))

Figure 11: How to generate augmented datasetDrobust by applying GenMix in the hidden feature space. For target classes i, j, we first apply
GenMix+GM in the feature space to find the mid hidden feature zmid, and then invert it back to get mid input feature xmid = f−1

robust(zmid).
Finally, we add mid input features in the original dataset D to obtain Drobust. Here, we make use of the invertibility of frobust suggested
in (Engstrom et al., 2019).

That is, once we have a projection of x onto a manifoldM, saym?, the distance between x+ δ and the same manifold can
be safely approximated by the distance between x+ δ andm?, without recomputing the projection.

To formally prove this, from triangle inequality,

d(x+ δ,M) = min
m∈M

d(x+ δ,m)

≤ min
m∈M

[d(x+ δ,x)+d(x,m)] = min
m∈M

d(x,m)+d(x,x+ δ)

= d(x,m?) + d(x,x+ δ) ≤ d(x+ δ,m?) + 2d(x,x+ δ)

holds. Similarly, we have d(x+δ,M) ≥ d(x+δ,m?)−2d(x,x+δ). This implies that when d(x+δ,m?)� d(x,x+δ),
we have d(x+ δ,M) ≈ d(x+ δ,m?).

Using this approximation, we propose the following sequential optimization algorithm, as illustrated in Fig. 10. Starting
from a random initial point x ∈ Rn, we first compute its projection on k class-conditional manifolds, finding m?

c =
arg minm∈Mc d(x,m) for each c ∈ [k]. Each of these projections can be approximately computed by solving a respective
optimization problem minz∈Rd d(x, G(z, c)). Now, we select two target classes i, j which are closest to the initial point,
i.e., d(x,m?

i) ≤ d(x,m?
j) ≤ d(x,m?

l) for all l ∈ [k] \ {i, j}, and consider the following optimization problem:

min
δ
|d(x+ δ,Mj)− d(x+ δ,Mi)− log(

1

λ
− 1)|2

such that d(x+ δ,m?
c)� d(x,x+ δ), c ∈ {i, j}

That is, we find the best direction δ that minimizes the objective function, within a small set around x. By the aforementioned
approximation, the target function can be rewritten as |d(x + δ,m?

j) − d(x + δ,m?
i) − log(1

λ − 1)|2. Since m?
i and

m?
j are given, we can compute the gradient of this objective function with respect to δ and run a gradient descent

algorithm. The solution to this sub-optimization problem is now defined as x, and we repeat the whole procedure
until | 1

1+exp(d(x,m?
j)−d(x,m?

i)) − λ| ≤ ε, and obtain the augmented data point x. We label this augmented data as

y = exp(−di)
exp(−di)+exp(−dj)ei +

exp(−dj)
exp(−di)+exp(−dj)ej where di = d(x,m?

i).

F.4. GenMix in the hidden feature space

As illustrated in Fig. 11, the suggested GenMix can be also defined in the hidden feature space. Below we describe the
details of using GenMix in the hidden space.

Let frobust be the robust feature extractor suggested in (Engstrom et al., 2019). Note that this feature extractor is approximately
invertible, i.e., the input data x can be well estimated by the representation z = frobust(x) in the feature space. We first apply
GenMix in the feature space to find the middle features zmid satisfying pi(zmid) ' pj(zmid) for target classes i, j. Then,
using the invertibility of frobust, we compute xmid = f−1

robust(zmid) = arg min
x
‖zmid − frobust(x)‖. Afterwards, we define the

augmented dataset as Drobust = D ∪ {(xmid,ymid)}, where ymid = αei + (1− α)ej for α = pi(zmid)
pi(zmid)+pj(zmid)

.

GenLabel : Mixup Relabeling using Generative Models

V

Ket

Y

(a) Training data

V

Ket

Y

(b) Augmented
data

V

Ket

Y

(c) Decision
Boundary

Figure 12: Result of GenMix+GAN on V, Ket and Y datasets. (a): Training data (black: X1, blue: X2, magenta: X3), (b) Augmented
data Xmixup including middle points (red, yellow, cyan), (c): Decision boundaries (DBs) of GenMix+GAN. The region with same color
represents the set of points classified as the same class.

F.5. Experimental results on GenMix

We evaluate the generalization and robustness performances of GenMix+GAN, GenMix+GM and existing algorithms. We
tested on synthetic datasets (Circle, Moon in scikit-learn (Pedregosa et al., 2011) and V, Ket, Y datasets designed by us) and
a real dataset (MNIST with digits 7 and 9). The V, Ket, Y-datasets are illustrated in Fig. 12a. We compare our schemes with
mixup (Zhang et al., 2018) and manifold-mixup (Verma et al., 2019).

F.5.1. GENMIX ENJOYS LARGE MARGINS

Fig. 12 shows the result of GenMix+GAN for three synthetic datasets. Here, we set the mixing coefficient as λ = 0.5, so
that GenMix generates mixup data that are equiprobable to target classes. One can confirm that the equiprobable points help
the trained model to enjoy large margins in all datasets.

In Fig. 13, we visualize the suggested mixup points and the model trained by the suggested data augmentation on various
synthetic datasets, and compare them with those found by vanilla mixup. Here, we set the mixing coefficient λ = 0.5,
meaning that the suggested mixup points are equally probable to be sampled by two target classes.

First, we show the result for 2D Gaussian dataset with 4 classes, where each data in class c is sampled from a Gaussian
distribution N (µc,Σc). Trivially, Gaussian mixture (GM) model fits well with this data, so we use GM to estimate pc(x) in
this dataset. The middle points xmix generated by the suggested mixup are illustrated in (a). Note that the mid points lie
on the equiprobable regime for each class pair. Here, the suggested mixup learns to not mix class-1 data (red) and class-2
data (blue), since mixing these classes incur manifold intrusion. In (b) and (c), we show the decision boundary found by
suggested mixup and vanilla mixup. One can see that the suggested mixup, which makes use of the underlying distribution
to generate proper middle points, achieves large margins for all classes. On the other hand, the standard mixup interpolates
samples without considering the overall data distribution, resulting in smaller margins around the class-0 data.

Second, we show the result for circle and moon datasets defined in (Pedregosa et al., 2011). Since the Gaussian mixture
model is not suitable for these datasets, we use GANs to estimate the underlying distribution pc(x). As described in the
discussion section for applying GenLabel to “implicit density”, we inverted GAN and used the projected distance as a proxy
to the negative log likelihood. In (a) of circle and moon datasets, the mixed points satisfying p0(xmix) = p1(xmix) are
colored as red, which are indeed at the middle of two manifolds of black and blue. Using these mixed points, the decision
boundary has a larger margin compared with vanilla mixup, as shown in (b) and (c).

Note that in Fig. 13 we used L2 norm for generating middle points in Moon dataset, but we can also generate middle points
for L1 or L∞ norms. Fig. 14 illustrates the mixup points generated for Moon dataset, when L1, L2, and L∞ distance metrics
are used. Here, we set the mixing coefficient as λ = 0.5, i.e., the goal is to find equidistant points to target manifolds. From
the figures, we can conclude that GenMix+GAN successfully finds the points that are equidistant to both manifolds, for
various Lp distance settings.

GenLabel : Mixup Relabeling using Generative Models

2D Gaussian Circle

(a) (b) (c)

Moon

(a) (b) (c)(a) (b) (c)
Figure 13: Comparison between generative-model based mixup (suggested mixup) and vanilla mixup for 2D datasets. For 2D Gaussian
data, class 0,1,2,3 are colored as violet, red, blue, and yellow, respectively. For circle and moon datasets, class 0 and 1 are colored as black
and blue, respectively, and the middle point obtained in the suggested mixup is colored as red. For each dataset, we show three results: (a)
the mid points generated by the suggested mixup, and the decision boundaries of (b) suggested mixup and (c) vanilla mixup. In (a), one
can confirm that the mid points of the suggested mixup lie on the equiprobable regime for the target class pair. As shown in (b) and (c),
the suggested mixup enjoys larger margins for all classes than vanilla mixup.

(a) L1-norm (b) L2-norm (c) L∞-norm

Figure 14: Illustration of data points generated by GenMix+GAN in various Lp norm setup. Black and blue points correspond to each
class. The red points represent the mixup points generated by Algorithm 4.

F.5.2. GENMIX HELPS GENERALIZATION

Here we compare GenMix with mixup and manifold-mixup in terms of generalization performance. Table 15 compares
the performance for circle and MNIST datasets. For MNIST, we used binary classification of digits 7 and 9 using only
ntrain = 500 samples at each class, to show the scenarios with large gap between GenMix and existing schemes. One
can confirm that GenMix+GAN strictly outperforms the other data augmentation schemes in terms of generalization
performances. This shows that depending on how we generate middle points (i.e., how we mix data), generalization
performance varies significantly. One can confirm that GenMix outperforms conventional ways of mixing data, by making
use of the underlying data distribution learned by generative models.

F.5.3. GENMIX IN THE HIDDEN FEATURE SPACE

Recall that in Section F.4, we have suggested GenMix in the hidden feature space. Fig. 15 shows the result of GenMix+GM
applied for the hidden feature space, tested on CIFAR-10 dataset. Note that each generated image contains the features
of both classes c1, c2 written in the caption, showing that the mid features obtained by the suggested mixup indeed lies in
between the target class manifolds.

F.6. Reducing the computational complexity of GenMix+GAN

Here we discuss methods for reducing the complexity of GenMix+GAN, which used inverting the generator of GAN. We
can reduce the complexity of inverting the generator of GAN, by using alternative GAN architectures that simultaneously
learn the inverse mapping during training, e.g., bidirectional GAN (Donahue et al., 2017) and ALIGAN (Dumoulin et al.,
2017). One can also consider using flow-based generative models, e.g., (Kingma & Dhariwal, 2018).

GenLabel : Mixup Relabeling using Generative Models

Table 15: Classification errors (%). GenMix+GAN has a better generalization performance than other schemes.

Schemes / Datasets Circle (2D) Circle (3D) MNIST 7/9 (ntrain=500)

Vanilla Training 8.60± 4.84 1.40± 0.54 2.72± 0.20
Mixup 7.98± 2.94 5.22± 1.99 2.32± 0.40
Manifold-mixup 7.34± 1.43 0.94± 0.75 3.88± 0.53
GenMix+GAN 4.90± 0.12 0.22± 0.06 2.13± 0.12

horse, shiphorse, catfrog, cardeer, carcat, frogbird, car
Figure 15: Generative model-based mixup in the hidden feature space for CIFAR-10. Each image xmix contains features of both classes
c1, c2 in the caption, supporting that it lies in between the manifold of target classes.

