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Abstract

In cooperative multi-agent reinforcement learning,
the outcomes of agent-wise policies are highly
stochastic due to the two sources of risk: (a)
random actions taken by teammates and (b) ran-
dom transition and rewards. Although the two
sources have very distinct characteristics, exist-
ing frameworks are insufficient to control the risk-
sensitivity of agent-wise policies in a disentangled
manner. To this end, we propose Disentangled
RIsk-sensitive Multi-Agent reinforcement learn-
ing (DRIMA) to separately access the risk sources.
For example, our framework allows an agent to
be optimistic with respect to teammates (who can
prosocially adapt) but more risk-neutral with re-
spect to the environment (which does not adapt).
Our experiments demonstrate that DRIMA signif-
icantly outperforms prior state-of-the-art methods
across various scenarios in the StarCraft Multi-
agent Challenge environment. Notably, DRIMA
shows robust performance where prior methods
learn only a highly suboptimal policy, regardless
of reward shaping, exploration scheduling, and
noisy (random or adversarial) agents.

1. Introduction

In cooperative multi-agent reinforcement learning (MARL),
the paradigm of centralized training with decentralized ex-
ecution (CTDE) has shown great success in recent years
(Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019;
Rashid et al., 2020a; Wang et al., 2020b). Under such a
paradigm, researchers execute agent-wise policies without
inter-agent communication, i.e., use decentralized execution,
while they train the agents with access to the full informa-
tion, i.e., apply centralized training.
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Table 1: Payoff matrix of the two-step game. {ej, ea} de-
notes a reward set in which one element of this set is uni-
formly sampled as a reward. The payoffs of the first and the
second step are designed to assess whether an algorithm is
able to handle cooperative and environmental uncertainty,
respectively.

A B C A B C

A7 -12 -12 A {~10,10} {—11,9} {-11,9}
B -12 0 0 B {-11,9} {—8,—6} {—11,9}
C-120 0 C {-11,9} {-11,9} {-26,12}

(a) Payoft in the first step. (b) Payoff in the second step.

However, despite the progress on value-based CTDE, agents
still often fail to cooperate due to environment random-
ness, limited observation of agents, and time-varying poli-
cies of other agents, especially in highly stochastic en-
vironments. For such environments in single-agent set-
tings, risk-sensitive reinforcement learning (RL) (Chow &
Ghavamzadeh, 2014) has shown remarkable results by using
policies that consider risk rather than simple expectations
for return distribution caused by state transitions, rewards,
and actions. Here, risk refers to the uncertainty over possible
outcomes, and risk-sensitive policies act with a risk mea-
sure, such as variance or conditional value at risk (CVaR)
(Chow & Ghavamzadeh, 2014). The main goal of this pa-
per is to apply this risk-sensitive technique to value-based
CTDE to learn more robust policies against various factors
of uncertainty.

In this regard, our motivating observation is that in MARL,
the returns are affected by two types of uncertainty: (a)
cooperative uncertainty and (b) environmental uncertainty.
Here, the cooperative uncertainty stems from how the agents
cannot communicate with each other. Furthermore, environ-
mental uncertainty is caused by stochastic transition and the
rewarding mechanism of the environment. See Figure 1 for
an illustration of such uncertainties.

The existing distributional reinforcement learning frame-
works are, however, unable to disentangle such sources of
risk. This is important since the cooperative risk-seeking
yet environmental risk-neutral policies are likely to be of
favorable choices in many practical scenarios (i.e., surviving
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Table 2: Test rewards in the stochastic two-step matrix game
for DRIMA, DMIX with varying risk-sensitivity across
twelve random seeds.

Algorithm Risk sensitivity | Reward
Cooperative Environmental
DRIMA (Ours) Seeking Neutral 6.98
DMIX Neutral -0.02
(Sun et al., 2021) Seeking 0.03

together as a team for a long time under the expectation that
every teammate will cooperate for the sake of the team).
In Table 1, we design a simple matrix game showing the
importance of disentangling such risk sources. At the first
step of the game, cooperative risk-seeking is crucial for the
agents to take the optimal action A. Otherwise, an agent
1 will take action B or C' to consider the risk of teammate
agent 2 taking a non-cooperative action B or C. However,
for the second step, both the agents should take an environ-
mental risk-neutral decision A to maximize the expected
reward. DMIX (Sun et al., 2021), a representative distribu-
tional MARL method, has limited capability in adjusting
risk-sensitivity in this simple example. As shown in Table 2,
we observe that changing risk-sensitivity in DMIX affects
two sources of risk simultaneously. Namely, risk-seeking
adjustment makes both cooperative and environmental risk-
sensitivity become seeking. Therefore, agents can obtain a
high mean reward by selecting action A in the first step, but
get a low mean reward by selecting action C' in the second
step. More details about the implementation of the matrix
game are included in Appendix E.

Contribution. In this paper, we present Disentangled RIsk-
sensitive Multi-Agent reinforcement learning (DRIMA), a
novel framework on disentangling sources of uncertainty for
distributional MARL. The main idea is to separate risk lev-
els in both centralized training and decentralized execution
with a hierarchical quantile structure and quantile regres-
sion. Unlike prior risk-sensitive MARL frameworks (Qiu
etal., 2021; Sun et al., 2021), DRIMA considers cooperative
risk into each utility function and environmental risk into
a joint true action-value estimator. Therefore, each utility
function is encouraged to learn the action-value distribution
with respect to other agents’ cooperative policy, and the
joint-action value estimator is trained to learn action-value
distribution with respect to the environment stochasticity.
As illustrated in Table 2, our DRIMA can obtain a higher
reward compared to the prior risk-sensitive MARL approach
by learning a cooperative risk-seeking and environmental
risk-neutral policy.

We also demonstrate the effectiveness of DRIMA on various
scenarios in the StarCraft' Multi-Agent Challenge (SMAC)
environment which is widely used as the environment for

IStarCraft is a trademark of Blizzard Entertainment™.

many MARL research (Samvelyan et al., 2019). DRIMA
significantly outperforms state-of-the-art methods, includ-
ing distributional MARL methods and non-distributional
ones. Notably, by disentangling sources of risk, DRIMA
shows impressive results regardless of reward shaping and
exploration schedule, whereas existing works learn only a
suboptimal policy (see Figure 3).

Finally, we demonstrate the importance of risk-sensitivity
control through experiments in the presence of random and
adversarial agents. In the real world, a multi-agent system
can be easily broken due to the presence of a malicious or
a broken agent, and agents are necessary to mitigate these
potential dangers. DRIMA, which is capable of disentan-
gled sources of risk, can learn a robust policy even in these
situations. We hope that our idea will motivate new future
research directions such as safe MARL.

2. Preliminaries
2.1. Centralized training with decentralized execution

In this paper, we consider a decentralized partially observ-
able Markov decision process (Oliehoek et al., 2016) rep-
resented by a tuple G = (S,U, P,7,O, N,~). Here, s € S
denotes the true state of the environment. At each step, an
agenti € N := {1, ..., N} selects an action u; € U as an
element of the joint action vector w := [uq,--- ,uy]. Then
the next state s’ is determined by a stochastic transition dy-
namic P(s’|s, u). All the agents cooperate to maximize the
reward (s, u) that is discounted by a factor of + for each
step. Each agent i is associated with a partial observation
defined by the observation function O(s,%) : S x N+ O,
and an action-observation history 7;. Concatenation of all
the agent-wise action-observation histories is coined as the
overall history 7.

We consider value-based centralized training with decen-
tralized execution (CTDE) (Sunehag et al., 2018; Rashid
et al., 2018; Son et al., 2019). Here, agents are trained in a
centralized manner and executed in parallel without access
to the global state s. Under value-based CTDE, we aim
to train each agent-wise utility function ¢;(7;,u;) whose
greedy actions are consistent with the greedy actions from
the joint action-value estimator Q¢ (s, 7, ). Formally, the
following decentralization condition should be satisfied:

argmax, q(71,u1)
argmax Qj¢(s, 7,u) = : . (D

argmax, . qn (TN, uN)

To meet this condition, value-decomposition networks
(VDN, Sunehag et al. 2018) learns a centralized yet fac-
tored joint action-value estimator by representing the joint
action-value estimator as a sum of individual agent-wise
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Figure 1: Two types of uncertainty in MARL: (a) cooperative uncertainty and (b) environmental uncertainty. Note that
friendly agents learn a policy over time, while enemies in the environment act through a stationary distribution. Current
value-based CTDE methods do not consider two sources of risk explicitly or tackle them in an entangled way which may

lead to a suboptimal solution.

utility functions. QMIX (Rashid et al., 2018) extends VDN
by employing a mixing network to express a non-linear
monotonic relationship among individual agent-wise utility
functions in the joint action-value estimator. QTRAN (Son
et al., 2019) has been proposed to eliminate the monotonic
assumption on the joint action-value estimator in QMIX
(Rashid et al., 2018). Instead of directly decomposing the
joint action-value estimator into utility functions, QTRAN
proposes a training objective that enforces the decentraliza-
tion of the joint action-value estimator into the summation
of individual utility functions.

Recently, several other methods have been proposed to solve
the limitations of QMIX. QPLEX (Wang et al., 2020b) takes
a duplex dueling network architecture to factorize the joint
value function. Unlike QTRAN, QPLEX learns using only
one joint action-value network and a single loss function.
Also, Rashid et al. (2020a) proposed CW-QMIX and OW-
QMIX, which use a weighted projection that allows more
emphasis to be placed on better joint actions. We provide
a more detailed description of other CTDE algorithms in
Appendix C.

2.2. Distributional reinforcement learning

Instead of training a scalar state-action estimator Q7 (s, u),
distributional RL represents an action-value as a random
variable Z™(s,u). Then the distributional Bellman oper-
ator for policy evaluation in single-agent RL can then be
expressed as follows:

Z7(s,u) 2 R(s,u) +~Z™ (8", U"), 2)
where random variables R, S’, and U’ are distributed ac-
cording to Pr(+|s,u), Ps:(:|s,u), and 7(-|s"), respectively.
Furthermore, A L B denotes that the two random variables

a and b follow the same probability distribution.

Implicit quantile network (IQN). IQN (Dabney et al.,
2018a) is a popular framework for distributional RL. It

approximates the (true) action-value as a distribution using
a quantile-based representation. To be specific, a determinis-
tic parametric function Z (s, u,w) is trained to reparametize
samples w drawn from a base distribution Z/(0, 1), to the
respective quantile values of a distribution.

To train the IQN, one can use the following Huber quantile
regression loss (Huber, 1964):

W Lomol x 162, iffo] <1,
‘CIQN = 1 .
lw —1550] x (6] — 5), otherwise,

0= Z(s,u,w) — (r + 72" (5", ugyy, '),

uépt — arg max Ew [Ztar(sla 'LL/, 'LU)L
w!

where Z*2* is the target network whose parameters are up-
dated periodically from the original action-value estimator
Z. Next, (s,u,r,s") is a tuple of experience transitions from
a replay buffer. In distributional RL, weights w are used
to express a level of rewards and next state transitions are
generated from the randomness of the environment.

Distributional MARL. Recently, distributional RL has also
been applied to CTDE regime (Qiu et al., 2021; Sun et al.,
2021), but they lack disentanglement of risk sources. RMIX
(Qiu et al., 2021) and DFAC (Sun et al., 2021) showed
promising results by extending agent-wise utility functions
from deterministic variables to random variables. RMIX
demonstrates the effectiveness of risk-sensitive MARL via
distributional RL, but it is limited since they cannot rep-
resent policies, which have different risk levels relying on
sources (i.e., cooperative risk-seeking yet environmental
risk-averse policies). DFAC is another distributional MARL
framework with proposed mean-shape decomposition while
employing IQN network for agent-wise utility function, but
they only showcase risk-neutral policies. We further de-
scribe distributional MARL methods in Appendix C.
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Figure 2: Architecture of DRIMA. Each agent-wise utility function z; and true action-value estimator Z; are built based
on IQN and input a quantile of cooperative risk wag: and environmental risk weny, respectively. Further details for each

component are provided in Appendix B.

3. DRIMA: Disentangled risk-sensitive MARL

In this section, we propose a new method, called DRIMA,
which aims at disentangling the two sources of risk. In Sec-
tion 3.1, we present a systematic analysis of the sources of
risk for multi-agent reinforcement learning and a motiva-
tion for why our architecture is needed. In Section 3.2, we
propose the training objective of DRIMA for training our
action-value estimators. Finally, in Section 3.3, we intro-
duce a new architecture for the action-value estimators. The
overall architectural sketch is given in Figure 2.

3.1. Motivation

Environmental risk in MARL. Instead of training a
scalar joint state-action estimator Qj¢(s,7,u), distribu-
tional multi-agent reinforcement learning represents an
action-value as a random variable, denoted Zj¢(s, T, u).
The distributional Bellman operator for policy evaluation in
multi-agent reinforcement learning can then be expressed
as follows:

Z7(s,7,u) 2 R(s, T, u) + v Z5(8", T, U"),

3)

where random variables R, S’, 7', and U’ are distributed ac-
cording to Pg(-|s,T,u), Ps/(:|s, T,u), Py (-|s, T,u), and
7(-|s’, '), respectively. Furthermore, A 2 B denotes the
two random variables which follow the same probability dis-
tribution. Here, the source of risk is the stochasticity of the
environment, and policy represented by 7(u'|s’, 7'). Then,
the scalar action-value function is defined as QF, = E[Z];],
and can be characterized by the Bellman equation:

QTe(s, 7, u) = E[R(s, 7, u)] +1E[Q],(s', 7', u/)].

Cooperative risk in VDN and QMIX. VDN (Sunehag
et al., 2018) and QMIX (Rashid et al., 2018) are meth-
ods that attempt to decentralize ()j; based on additive and
monotonic factorization, respectively. For VDN, we define

a joint action-value function as the linear sum of individual
agent-wise utility functions g; as follows:

N
th(sa T, u) = Z qi(’ri’ ui)'
1=1

This linear value factorization structure solves the decentral-
ized decision making problem.

However, due to the limited expressive power of the factor-
ized estimator, the learned values include additional random-
ness. For the Bellman equation target, Wang et al. (2020a)
proves the closed-form solution for individual agent-wise
utility function g¢;(7;, u;) which is calculated as:

E 8, T ® T, u; B u_y)| +v;(7),
oo 5 P(-\m[y( )] + i)

y(s,r,u) = E[R(S’Tvu)] + ’YE[Q?t(Sllevu/)]

where (7; ® 7_;) denotes < 71,...,7;,..., 7N > and 7_;
denotes the elements of all agents except for agent ¢. Also,
v;(7;) is the observation-dependent baseline that does not
influence action choices. The first term is the expected
value of an individual action u; over the actions of other
agents, which evaluates the expected return of executing an
individual action u;. For example, as shown in Figure 1, the
value and optimal action of one agent may vary according to
the actions of other agents. The source of risk in the equation
is the limited expressive power of value factorization and
the stochasticity of the state and actions of other agents from
the point of view of one agent.

Inspired by this, rather than handling risk in an entangled
manner, we disentangle them via two separate action-value
estimators with different roles; (i) a true action-value estima-
tor Zj4(weny) Which learns the joint action-value y without
structural constraints and captures environmental risk with
a risk level wey,, (il) a transformed action-value estima-
tor Zyran(Wage) Which learns an action-value guided by the
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true-action value estimator while being decentralizable into
the utility functions and capturing cooperative risk with a
risk level wagt.

3.2. Training objectives

The training objective of DRIMA is twofold. First, DRIMA
trains the true action-value estimator to approximate the
distributional true action-value estimator Z;; based on the
distributional Bellman operator (Equation 3). Next, the
transformed action-value estimator attempts to imitate the
behavior of the true action-value estimator through weights.
Unlike the action-value estimator of DMIX, the true action-
value estimator Z ;. of DRIMA does not have any structural
restrictions such as monotonicity. Therefore, Z;; can accu-
rately represent only the risk of the environment. On the
other hand, the transformed action-value estimator Zyi,an
limits its expressive power to satisfy the decentralization
condition (Equation 1). We use a weighting mechanism to
track the E,,_,, [Z;+(Wenv)] to exclude the risk of the envi-
ronment.

Loss for the true action-value estimator. The loss Lq_1qn
trains the true action-value estimator Z;; with consideration
of the environmental risk. To be specific, the loss is designed
based on the IQN loss derived from the Bellman operator
(Equation 3) and the Huber quantile loss (Huber, 1964):

‘wenv - 15>0| X %52, 1f|6| < ]_,

Lea—1on = 1 i
|Wenv — L5>0| X (6] — 3), otherwise,
0= _‘jt(s T,Uu, wenv) - ('f' + ,thar(s T uopt,w;nv)),

where Z;f.}’ is the target network whose parameters are up-
dated periodically from the original estimator Z;.. Further-
more, ugpt is the actions maximizing the utility functions
zi (1], ] ) for i € N. For the Ly4_1qu, risk-level samples
Weny, Why, are drawn from a uniform distribution (0, 1).

Loss for the transformed action-value estimator. We pro-
pose Lopt, Lnopt; Lup to encourage the transformed action-
value estimator to track the value of the true action-value
estimator while considering cooperative risk level wag;. The
formulation of each loss is given as follows, where we omit
the common function arguments (s, 7) for presentational
simplicity:

2

l:opt = (Ztran(uopt7wagt) - th(uopt)> ;
£nopt - a(Ztran(u wagt) - th(u))27
Eub = Ztran ’u, wagt) - Qub(u))Za

o = if Ztra_n(ua wagt) < th(u)7
1 — Wagt), oOtherwise,
ﬁ _ if Ztran(u wagt) > Qub( )
otherwise,

where Q¢ (u) = Eq,, [Zjt (U, Weny)] is a expected value of
true action-value, Qup(u) = max(Qj¢(u), Q¢ (uopt)) ap-
proximately maximizes the expected true action-value, and
Uopt 18 an “optimal” action maximizing the utility function
2;(Wagy ) for i € .

In the subsequent paragraphs, detailed descriptions of each
loss are provided. Firstly, for optimal actions, L. encour-
ages the transformed action-value estimator Zy,,, to follow
the value of the true action-value estimator (0;;. We can
adjust the environmental risk sensitivity according to how
we calculate the expected value ;¢ from the distributional
true action-value estimator Zj.. If the expectation is cal-
culated by sampling environmental risk level wey, from a
uniform distribution 2/(0, 1), the agents learn a risk-neutral
policy for the environmental risk. By changing this sam-
pling distribution, we can learn the optimal policy for the
desired environmental risk-sensitivity. For example, if we
learn Zyyan for Q¢ = Eu,,, [Zjt(Wenv)] calculated by sam-
pling Wepy from a uniform distribution ¢/(0, 0.25), agents
take environmental risk-averse behaviors.

Secondly, for non-optimal actions, Lnop¢ aims to make
Zyran, Which has lower representational power, follow the
true action-value estimator () ; efficiently, utilizing coop-
erative risk level as a weight. If the value of ()5 is greater
than the value of the transformed action-value estimator
Zyran, then this is an optimistic sample where the corre-
sponding action is likely to be the optimal action, so the
transformed action-value estimator follows the true action-
value estimator exactly. Conversely, for a relatively small
true action-value, we softly ignore it and follow the true
action-value estimator through a small weight whose value
depends on the cooperative risk wagt. The comparison of
this loss function with existing MARL methods such as OW-
QMIX (Rashid et al., 2020a) is described in Appendix C.3.

Finally, we add a loss function £y, which makes an up-
per bound condition for Zy,,, for numerical stability be-
cause only the lower bound of Z; .., exists in the Lpopt
when w,g; = 1. By combining our three loss functions
Lopt s Lnopt, Lun, We obtain the following objective which
is minimized in an end-to-end manner to train the true and
the transformed action-value estimators:

L= L:tdleN + )\opt Eopt + )\nopt L:nopt + Aubﬁub

where Agpt, Anopts Aub > 0 are hyperparameters controlling
the importance of each loss function. The training algorithm
of DRIMA is provided in Appendix A.

3.3. Network architectures

Here, we introduce our architectures for the action-value
estimators. First, we construct the estimators using the util-
ity functions 21 (wagt ), - - - , 2 (Wagt ) With cooperative risk
level wagr. Our main contribution in designing the esti-
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mators is twofold: (i) using IQN (Dabney et al., 2018a)
for the true action-value estimator 2 J-t(wenv) with environ-
mental risk level wey, and (ii) using a monotonic mixing
network for the transformed action-value estimators Zy,an
with cooperative risk level wagt.

Agent-wise utility function z;. In a partially observ-
able setting, agents can learn better policies by using their
action-observation history 7; instead of their current obser-
vation. We represent each agent-wise utility function as a
DRQN (Hausknecht & Stone, 2015) that receives action-
observation history as input and outputs z; for each action
and wagt. The utility functions aim to accurately extract the
optimal action from the joint action-value.

True action-value estimator Z;.. The estimator Zj¢
aims to express distributions with additional representation
power; note that the transformed action-value estimator has
limited power due to the decentralization condition (Equa-
tion 1) (Rashid et al., 2018). For the true action-value es-
timator, we employ a feed-forward network that takes the
state s and set of utility functions z; for i € A/. Since we use
z averaged over multiple w,g; samples, the feed-forward
network is not conditioned on wagt. To apply IQN for the
true action-value estimator, we use an additional network ¢
that computes an embedding ¢(wepy) for the sample point
Weny. We calculate the embedding of wey, With cosine basis
functions and utilize element-wise (Hadamard) product, as
done in the IQN (Dabney et al., 2018a) paper.

Transformed action-value estimator 7. ... The architec-
ture of the transformed action-value estimator is largely the
same as the mixing network of Rashid et al. (2018), and it
is expressed as follows:

Ztran(37 T,u, wagt) =

fmix (21(7—17u17wagt)a RS ZN(TNaquwagt); etran(s))v

where Oyran (S, Wage ) is @ non-negative parameter obtained
from state-dependent hypernetwork (Ha et al., 2017). A
more detailed discussion is available in Appendix D.

4. Experiments

We design our experiments to answer the following ques-
tions:

* Q1: Are there MARL scenarios that existing distri-
butional MARL methods cannot solve? Can DRIMA
solve them through disentangling sources of risk? (see
Figure 3)

¢ Q2: Can DRIMA achieve robust performance through
risk sensitivity control in the presence of noisy (random
or adversarial) agents? (see Figure 5)

* Q3: Can DRIMA improve sample efficiency and fi-
nal performance over baseline methods, even under
traditional MARL scenarios? (see Figure 6)

* Q4: How does risk sensitivity affect the performance in
multi-agent distributional RL methods? (see Figure 7-
9)

4.1. Experimental setup

Environments. We mainly evaluate our method on the
Starcraft Multi-Agent Challenge (SMAC) environment
(Samvelyan et al., 2019). In this environment, each agent is
a unit participating in combat against enemy units controlled
by handcrafted policies. The agent is required to collabo-
rate with ally units Each unit is required to collaborate with
ally units (without communication) to achieve high win rate
against another team of enemy units following handcrafted
policy. In the environment, agents receive individual local
observation containing distance, relative location, health,
shield, and unit type of other allied and enemy units within
their sight range.

Scenarios. To verify the effectiveness of disentangling risks,
we consider the following scenarios:

* Explorative (for Q1): Agents behave heavily ex-
ploratory in the training phase, so it is difficult to learn
cooperation unless they consider the cooperative risk.

¢ Dilemmatic (for Q1): A social dilemma exists in
which agents can learn local optimum policies, and
agents should consider cooperative risk to learn opti-
mal policies.

* Noisy (for Q2): During the test phase, some agents
may behave incorrectly. Hence, learning robust poli-
cies with risk sensitivity control against the failure of
other agents is required.

¢ Basic (for Q3 and Q4): This is a traditional MARL en-
vironment which was used in prior works (Rashid et al.,
2018; Samvelyan et al., 2019; Wang et al., 2020b), i.e.,
neither social dilemma nor noisy agent.

In particular, to design explorative and dilemmatic scenarios,
we consider modified exploration schedules and reward
functions, given the basic scenario. More details of the
above setups are given in Appendix D.

In explorative and dilemmatic scenarios, it is likely to ob-
tain more non-cooperative behaviors from teammates. This
represents the importance of considering cooperative risk
explicitly. As shown in Section 3.1, the choice of train-
ing data distribution affects the action-value estimator in
value factorization. Rashid et al. (2020a) also demonstrates
the importance of change in exploration scheduling in the
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Figure 3: Median test win rate in explorative and dilemmatic scenarios with 25%-75% percentile over four random seeds,

comparing DRIMA with eight baselines.

(a) Sm_vs_6m (DRIMA)

(b) 5Sm_vs_6m (DMIX)

(c) MMM2 (DRIMA)

(d) MMM2 (DMIX)

Figure 4: Illustration of the policies learned using DRIMA and DMIX in dilemmatic scenarios. Agents trained by DMIX
run away from enemies without fighting (d, b). In contrast, DRIMA trains the agents to fight the enemies, obtaining a higher

win rate in overall (c, a).

valued-based CTDE methods. In dilemmatic scenarios, if
two sources of uncertainty are not disentangled well, units
are induced to have a “selfish” behavior (e.g., running away)
in order to avoid being damaged.

In noisy scenarios, we deal with the unwanted behavior
of agents that can occur in real-world applications. Early
formulations of MARL methods focused on decentralized
decision-making. However, if agents are to interact with
each other in the real world, they are necessary to mitigate
some potential dangers. We use two different noisy agents
in the noisy scenarios. The first is a random agent that
moves randomly, and the second is an adversarial agent that
selects the malicious action that minimizes the action-value.

Evaluation. We run 32 test episodes without exploration
for every 4 % 10*-th time step. The percentage of episodes
where the agents defeat all enemy units, i.e., fest win rate,
is reported as the performance metric of the algorithms.
We report the median performance with shaded 25-75%
confidence intervals with four random seeds. For visual
clarity, we smooth all the curves by moving average filter
with a window size of 4.

4.2. Main results

We evaluate DRIMA compared to the eight baselines, in-
cluding non-distributional — VDN (Sunehag et al., 2018),
QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019),
QPLEX (Wang et al., 2020b), OW-QMIX (Rashid et al.,
2020a) and CW-QMIX (Rashid et al., 2020a), and distribu-
tional value-based CTDE methods — DDN (Sun et al., 2021)
and DMIX (Sun et al., 2021).

Comparisons in explorative and dilemmatic scenarios.
Notably, as shown in Figure 3, DRIMA obtains significant
gains in explorative and dilemmatic scenarios, where sep-
arating cooperative risk and environmental risk is critical;
it is likely to reach a suboptimal equilibrium (i.e., selecting
actions of running away) if risk sources are not disentangled
in such environments. This result is significant since there is
no baseline that consistently achieves the second-best result.
For relatively easy tasks such as Sm_vs_6m, 3s_vs_5z, and
8m_vs_9m, we set (cooperative risk-sensitivity, environ-
mental risk-sensitivity) to (seeking, neutral). For a super
hard task like MMM?2, we set to (seeking, seeking). The
rationale of this setting is that for easy tasks, considering en-
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Figure 6: Median test win rate in basic scenarios with 25%-75% percentile over four random seeds, comparing DRIMA

with eight baselines.

vironmental risks does not crucially affect the search for the
optimal strategy, but for hard tasks which require extensive
exploration, it is much beneficial to consider environmental
risks; environmental risk-averse behavior is likely to avoid
dangerous actions, which makes the agents less explorative.

We also illustrate in Figure 4 how DRIMA solves the most
difficult scenarios. As demonstrated in Figures 4b and 4d,
existing algorithms such as DMIX may end up learning a
“locally optimal” policy where the agents run away from the
enemy units to avoid receiving negative rewards. However,
in Figure 4a and 4c, we observe that DRIMA successfully
escapes this local optimum and chooses to fight the enemies
to achieve a higher win rate.

Comparisons in noisy scenarios. Figure 5 demonstrates
DRIMA achieves robust and high performance through risk
sensitivity control even in the presence of noisy agents. In
these scenarios, we set (cooperative risk-sensitivity, envi-
ronmental risk-sensitivity) to (averse, neutral). Cooperative
risk-averse agents learn a policy that considers other non-
cooperative agents. Since the agents can behave incorrectly
in the test phase, all methods show relatively low perfor-
mance compared to basic scenarios in Figure 6. In particular,
as shown in Figures 5a and 5b, some algorithms like QMIX
and DMIX achieve very low performance compared to basic
scenarios in Figure 6a.

Comparisons in basic scenarios. In Figure 6, one can find
that DRIMA generally achieves the state-of-the-art perfor-

mance both sample-efficiently and asymptotically, while
the second-best method varies for each scenario. Moreover,
DRIMA shows consistent superiority regardless of difficulty
and desirable tactics. We use the same risk-sensitivity as in
explorative and dilemmatic scenarios. Intriguingly, in rela-
tively easier tasks (i.e., Sm_vs_6m), simple methods such as
VDN show better results than more complex methods (i.e.,
DDN and DMIX?). We understand that a simple structure is
more efficient for learning plausible strategies in such easy
tasks. However, the reason why DRIMA is able to learn
easy tasks despite its sophisticated structure comes from that
disentanglement of risk sources which makes useful learn-
ing signals for conquering easy tasks efficiently. We provide
additional experiments on more maps in Appendix F.

4.3. Ablation studies

DRIMA with varying risk-levels. To investigate the effect
of different risk levels in DRIMA, we conduct experiments
that adjust cooperative and environmental risk levels. As
shown in Figure 7, we find that leveraging risk levels with
disentanglement indeed affects the performance in a hard
task (i.e., MMM?2). Interestingly, one can note that coop-
erative risk-seeking and environmental risk-seeking shows
the strongest performance. We believe that it is critical

*In the original paper of DDN (Sun et al., 2021) and DMIX
(Sun et al., 2021), the results of 5m_vs_6m, 3s_vs_5z, and
8m_vs_9m were not reported.
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Figure 9: Robustness of DRIMA in relatively easy tasks. Differing risk-levels (cooperative risk level w,gt, environmental
risk level wepy) in DRIMA do not degrade below the second-best baseline.

for teammates to act cooperatively (i.e., cooperative risk-
seeking) and enhance exploration through an environmental
risk-seeking objective in order to find the optimal tactic in
such a hard task.

Comparisons to risk-sensitive variants of DDN and
DMIX. To further understand the effectiveness of disentan-
gling risk sources, we compare DRIMA and risk-sensitive
variants of DDN and DMIX in Figure 8. Although DDN and
DMIX propose only risk-neutral policies in their original
paper, we additionally implement their risk-sensitive vari-
ants by adjusting the quantile-sampling range, i.e., sampling
quantiles in [0, 0.25] for risk-averse policy and [0.75, 1] for
risk-seeking policy. As shown in Figure 8§, DRIMA also
achieves superior performance over risk-sensitive variants
of DDN and DMIX. The gain mainly comes from the ability
of DRIMA to explicitly separate the two risk sources.

Robustness of DRIMA. In Figure 9, in order to show
the robustness of DRIMA, we report the performance
over the second-best baseline across relatively easy tasks:
Sm_vs_6m-vl, 3s_vs_5z-vl, and 8m_vs_9m-vl. We
note that changing environmental-wise risks still result to
DRIMA performing the best. It shows not only the em-
pirical strength of DRIMA but also one interesting finding;
environmental-risk does not matter in finding a desirable tac-
tic in such easy tasks. However, note that in 8m_vs_9m-vl,

only environmental risk-averse agents reached a 100% win
rate, although other agents also achieve high win rates. This
means that a safe policy can be beneficial for easy tasks.

5. Conclusion

In this paper, we present DRIMA, a new distributional
MARL framework that disentangles two sources of risk
in order to obtain optimal policies efficiently. Our main
idea is to use disentangled sources of risk along with the
proposed hierarchical quantile structure and quantile regres-
sion. Through extensive experiments, we show that DRIMA
achieves state-of-the-art performance thanks to the disen-
tanglement of risk sources. We believe that DRIMA is an
important step toward training robust MARL agents in the
real-world scenarios.
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A. DRIMA training algorithm
The training algorithm for DRIMA is provided in Algorithm 1

Algorithm 1 DRIMA algorithm

1: Initialize replay memory B < () and target parameters 6~ < 6

2: for episode =1 to M do

3:  Observe initial state s° and observation 0° = [O(s°,4)]XY; for each agent i

4 fort=1to T do

5: With probability €, each agent i select an random action wu}

6 Otherwise, set u! = arg max,s 2; (T}, ul, wag ) for each agent ¢ based on our cooperative risk-sensitivity wagt.
7 Take action u!, and retrieve next state, observation and reward (sT1, o', rt)

8 Store transition (st, 7t wl, vt stTL riT1) in B

9 Sample a transition (s, 7, u,r, s’, /) from B

10: Sample environmental risk levels wepy, Why, uniformly from 2/(0, 1)

11: Compute loss Lq_1qu for true action-value estimator from Section 3.2

12: Sample environmental risk levels wey, based on our environmental risk-sensitivity

13: Sample cooperative risk levels w,g¢ uniformly

14: Compute loss Lopt, Lnopt, and Ly, for transformed action-value estimator from Section 3.2
15: Update 6 by minimizing the losses

16: Update target network parameters 6~ < 6 with period [

17:  end for

18: end for
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B. Detailed architectural illustration

In this section, we provide detailed illustration for our architectural components: (i) agent-wise utility function, (ii) true
action-value estimator, and (iii) transformed action-value estimator.
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Figure 10: Agent-wise utility function. ¢ : [0, 1] — R? denotes a quantile embedding function (Dabney et al., 2018a)

4 )

S — | —| Hypernetwork ]

| | J
{2i(7i, ui, wage) Yoy — | — (MLP) — @ .
©— —® — | — th(S,T,U,wenv)
wenv—» —>[ cos]—»[ ¢ ]—T

\ J

Figure 11: True action-value estimator. ¢ : [0, 1] — R? denotes a quantile embedding function (Dabney et al., 2018a).

S — | —| Hypernetwork ]
1N | iR
N
{Zi(Ti’ui’wagt)}i:1 ndl Band —_—® — — ® — | — Ztran(svTauvwagt)

Figure 12: Transformed action-value estimator. | - | is employed to enforce monotonicity constraint (Rashid et al., 2018).
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C. Related work

C.1. Centralized training with decentralized execution

Centralized training with decentralized execution (CTDE) has emerged as a popular paradigm under the multi-agent
reinforcement learning framework. It assumes the complete state information to be fully accessible during training, while
individual policies allow decentralization during execution. To train agents under the CTDE paradigm, both policy-based
(Foerster et al., 2018; Lowe et al., 2017; Du et al., 2019; Igbal & Sha, 2019; Wang et al., 2020c; 2021) and value-based
methods (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020; Sun et al., 2021) have been proposed.
At a high level, the policy-based methods rely on the actor-critic framework with independent actors to achieve decentralized
execution. On the other hand, the value-based methods attempt to learn a joint action-value estimator, which can be cleverly
decomposed into individual agent-wise utility functions.

Among the policy-based methods, COMA (Foerster et al., 2018) trains individual policies with a joint critic and solves
the credit assignment problem by estimating a counterfactual baseline. MADDPG (Lowe et al., 2017) extends the DDPG
(Lillicrap et al., 2015) algorithm to learn individual policies in a centralized manner on both cooperative and competitive
games. MAAC (Igbal & Sha, 2019) includes an attention mechanism in critics to improve scalability. LIIR (Du et al., 2019)
introduces a meta-gradient algorithm to learn individual intrinsic rewards to solve the credit assignment problem. ROMA
(Wang et al., 2020c) proposes a role-oriented framework to learn roles via deep RL with regularizers and role-conditioned
policies. Finally, DOP (Wang et al., 2021) proposes factorized critic for multi-agent policy gradients.

Among the value-based methods, value-decomposition networks (VDN, Sunehag et al. 2018) learns a centralized yet
factored joint action-value estimator by representing the joint action-value estimator as a sum of individual agent-wise utility
functions. QMIX (Rashid et al., 2018) extends VDN by employing a mixing network to express a non-linear monotonic
relationship among individual agent-wise utility functions in the joint action-value estimator. Qatten (Yang et al., 2020)
introduces a multi-head attention mechanism for approximating the decomposition of the joint action-value estimator, which
is based on theoretical findings. However, our method satisfies both theoretical guarantees and practical performance.

QTRAN (Son et al., 2019) has been proposed to eliminate the monotonic assumption on the joint action-value estimator in
QMIX (Rashid et al., 2018). Instead of directly decomposing the joint action-value estimator into utility functions, QTRAN
proposes a training objective that enforces the decentralization of the joint action-value estimator into the summation of
individual utility functions. However, recent studies have found that despite its promise, QTRAN performs empirically
worse than QMIX in complex MARL environments (Samvelyan et al., 2019; Rashid et al., 2020b).

One can find connections between DRIMA and QTRAN (Son et al., 2019), but DRIMA has a larger capacity to represent
risk-sensitive policies. As for QTRAN, let’s say wagr = 1 in DRIMA, then our loss functions Lope and Lyope become
similar to QTRAN. However, DRIMA is capable of representing a wider range of risk-sensitive policies. For example, if the
cooperative risk level wagy is 0.5, both Lyope and Lope follow the true action-value without weighting, which is cooperative
risk-neutral. This cannot be represented by QTRAN.

Recently, several other methods have been proposed to solve the limitations of QMIX. QPLEX (Wang et al., 2020b) takes a
duplex dueling network architecture to factorize the joint value function. Unlike QTRAN, QPLEX learns using only one
joint action-value network and a single loss function. Since they learn only a single estimator, it is impossible to learn
cooperative randomness and environmental randomness separately by applying distributional reinforcement learning as
in our method. Also, Rashid et al. (2020a) proposed CW-QMIX and OW-QMIX, which use a weighted projection that
allows more emphasis to be placed on better joint actions. Their methods apply weights to loss according to the sign of the
TD-error for each sample, and it is theoretically guaranteed that the optimal policy can be learned for decentralizable tasks.
However, whereas DRIMA learns the randomness of the environment using the weights from the TD-error, CW-QMIX and
OW-QMIX only aim to consider the randomness of chosen actions. For this reason, they do not consider the distribution of
the TD-error caused by the transition probability or the randomness of the reward in training, and it is not guaranteed that
they can learn the optimal policy in stochastic environments. On the other hand, the true action-value estimator of DRIMA
learns only the randomness of the environment, and the transformed action-value estimator learns through the estimated
true action-value, not the TD-target. Therefore, DRIMA completely separates the randomness of the environment and the
randomness of the action in training.



Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning

C.2. Distributional reinforcement learning

Instead of training a scalar state-action estimator, distributional reinforcement learning focuses on representing a distribution
over returns. Empirically, distributional reinforcement learning improves sample efficiency and performance.

A number of distributional reinforcement learning methods are proposed in a single-agent domain. Bellemare et al. (2017)
proposed C51, which parameterizes the return distribution as a categorical distribution over a fixed set of equidistant points.
In (Dabney et al., 2018b), QR-DQN is proposed to estimate the distributions with a uniform mixture of N diracs and quantile
regression. By estimating the quantile function with quantile regression, which has been shown to converge to the true
quantile function, QR-DQN minimizes the Wasserstein distance to the distributional target. This estimation has been shown
to converge to the true quantile function.

Implicit quantile Networks (IQN) (Dabney et al., 2018b) provides a way to learn an implicit representation of distributions
by reparameterizing samples from base samples, typically w ~ U(0,1). It learns a quantile function that maps from
embeddings of sample probabilities to the corresponding quantiles, called implicit quantile networks. The quantiles are
trained by Huber quantile regression loss (Huber, 1964).

Recently, distributional RL has also been applied to CTDE regime (Qiu et al., 2021; Sun et al., 2021), but they lack
disentanglement of risk sources. RMIX (Qiu et al., 2021) and DFAC (Sun et al., 2021) showed promising results by extending
agent-wise utility functions from deterministic variables to random variables. RMIX demonstrates the effectiveness of
risk-sensitive MARL via distributional RL, but it is limited since they cannot represent policies, which have different
risk levels relying on sources (i.e., cooperative risk-seeking yet environmental risk-averse policies). DFAC is another
distributional MARL framework with proposed mean-shape decomposition while employing IQN network for agent-wise
utility function, but they only showcase risk-neutral policies. Da Silva et al. (2019) and Lyu & Amato (2018) have applied
distributional learning in fully decentralized cases, not CTDE methods. Finally, Rowland et al. (2021) and Baker (2020)
propose a method to learn cooperation using optimism in a fully distributed setting instead of CTDE.
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C.3. A further comparison between DRIMA and OW-QMIX in risk-sensitivity

In this section, we provide further backgrounds to understand why DRIMA is capable of disentangling cooperative and
environmental risk while OW-QMIX (Rashid et al., 2020a) cannot.

Before that, note that the risk-sensitivity is not mentioned explicitly in the original OW-QMIX paper, but we find that
OW-QMIX can be viewed as an optimistic (cooperative risk-seeking) algorithm due to its tight connection to hysterical
Q-learning (Matignon et al., 2007; Omidshafiei et al., 2017), which study cooperative optimism in the fully distributed
MARL. In detail, one can find the connection from the loss function of hysterical Q-learning as follows:

Lhys—q,i(T,u) = wi(1,u)(qi (i, wi) —vi)?, i €N

target

yi=r+7g" 0 (i argmax g;(7, uj)),

“

w(s,u) _ o‘hys—Q; 1f Qz('rz’uz) S Yiy ,
Brys—q, otherwise,

where the parameters anys_q > Bnys—q > 0 are typically viewed as learning rate parameters, but here we equivalently view
them as part of the loss. qfarget is the fixed target network whose parameters are updated periodically from ¢;. Unlike
single-agent RL in a stationary environment, learned policies change through adjustment of the weights (cooperative risk
level) in MARL (Panait et al., 2006; 2008).

As with fully distributed settings, the idea of optimism is also applicable to value factorization methods such as QMIX
(Rashid et al., 2018). QMIX is unable to represent joint action-value functions that are characterized as non-monotonic
(Mahajan et al., 2019; Son et al., 2019), i.e., an agent’s action-value ordering over its own actions depends on other agents’
actions. To solve this problem, Rashid et al. (2020a) proposes Optimistically-Weighted QMIX (OW-QMIX) which assigns a
higher weighting to those joint actions that are underestimated, and hence could be the true optimal actions in an optimistic
(cooperative risk-seeking) outlook, as follows:

‘CUW7QMIX(87 T, u) = U}(S, u)(Qtran(s7 T, u) - y)27

target

y:”d_'_’yQJt (5/37-/7u/opt)7

’lU(S ’LL) — ]-7 lf Qtran(svTa u) S ya
’ «, otherwise,

(&)

)

where v < 1 is a hyperparameter and 'J?ir is the fixed target network whose parameters are updated periodically from the

original unconstrained true action-value estimator Q. They sample (s, u,r, s"), a tuple of experience transitions from
a replay buffer and uy, is the “optimal” action maximizing the utility functions ¢;(7;, u;) for i € A. One can find the

loss function of hysterical Q-learning (Equation 4) and OW-QMIX (Equation 5) are similar, so that OW-QMIX can be
understood as cooperatively optimistic algorithm like hysterical Q-learning.

To investigate similarities and differences between DRIMA and OW-QMIX to handle risk-sensitivity, we employ an one-step
single-state matrix game. In this game, there is only one state, and all episodes finish after a single time-step. We find a
connection between the DRIMA and OW-QMIX via following proposition:

Proposition C.1. Consider a deterministic-reward environment with a single state that terminated immediately. Then the
loss Luopt of DRIMA with parameters Wagy is equivalent to the Weighted QMIX with oo = 2 (1- wagt).

Proof. In the simple one-step matrix game, the loss for Weighted QMIX reduces to

‘COW—QMIX(S7 T, U) = ’LU(S, u)(Qtran(Sa T, u) - 7“)2,

w(s, u) = 1, if Qeran(s, 7 u) <, (6)
’ «, otherwise, ’

since there is no next state to bootstrap from. In DRIMA, Z;; estimates a deterministic value independent of wep, for the
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deterministic-reward environment. Then the loss Lyqpe of DRIMA reduces to

Loopt (8, T u) w(s, w)(Zeran(S, T, U, Wage ) — ?EIMA(S,T,U)F,
IJ')EIMA(S =Eu,.[Z Jt 8, T, U, Weny)] ~ By, [1] =7, 7
if Ziran(5, T, U, Wage) < QR (s, 7, 1),
— Wagt), otherwise. ’

Now observe that if & = 2 % (1 — wagt) and Zj; is sufficiently trained, then two equations are equal. [

This proposition says that DRIMA and OW-QMIX become equivalent in an deterministic-reward environment. However, if
the environment is highly stochastic, then optimistic algorithms can induce misplaced optimism towards uncontrollable
environment dynamics, leading to sub-optimal behavior. The optimistic MARL approaches ignore low returns, which are
assumed to be caused by teammates’ exploratory actions. This causes severe overestimation of action-values in stochastic
domains (Wei & Luke, 2016; Rowland et al., 2021). Since reward and next state in the TD-target y in Weighted QMIX
include randomness of the environment, cooperative risk cannot be extracted separately enough from the sign of the
TD-error. Therefore, in DRIMA, we do not use the target y as done in Weighted QMIX. Instead, we use E,,, [Zj¢ (Wenv)] to
exclude the randomness of the environment in the target. The true action-value estimator Z;, of DRIMA does not have any
structural restrictions such as monotonicity in value factorization methods. Therefore, Z;¢ can accurately represent only the
randomness of the environment.
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D. Experimental details

We mainly evaluate our method on the Starcraft Multi-Agent Challenge (SMAC) environment (Samvelyan et al., 2019). In
this environment, each agent is a unit participating in combat against enemy units controlled by handcrafted policies. The
agent is required to collaborate with ally units Each unit is required to collaborate with ally units (without communication)
to achieve high win rate against another team of enemy units following handcrafted policy. In the environment, agents
receive individual local observation containing distance, relative location, health, shield, and unit type of other allied and
enemy units within their sight range. The SMAC environment additionally assumes that a global state is available during the
training of the agents. To be specific, the global state contains information on all agents participating in the scenario.

Evaluation. We run 32 test episodes without exploration for every 4 x 10*-th time step. The percentage of episodes where
the agents defeat all enemy units, i.e., fest win rate, is reported as the performance metric of the algorithms. We report the
median performance with shaded 25-75% confidence intervals with four random seeds. For visual clarity, we smooth all the
curves by moving average filter with a window size of 4.

Scenarios. To further verify the effectiveness of disentangling risks, we additionally consider harder scenarios with modified
exploration schedules and reward functions. We refer to these four different types of scenarios as explorative (increased
exploration), dilemmatic (increased exploration and negative rewards), noisy (incorrect action during test phase), and basic,
respectively. Details are as follows:

¢ Explorative: This is a modified version of basic scenarios, where the exploration annealing schedule is changed from
"50k" to "500k" time steps following setups in Rashid et al. (2020a).

* Dilemmatic: This has increased exploration as explorative scenarios and a different reward shaping; the reward is
determined not only by the enemy units’ health (positive) but also by damages dealt by our agents (negative).

* Noisy: The training phase is the same as the basic scenarios. During the test phase, one agents may behave incorrectly.
In 3s_vs_5z environment, one agent takes a noisy action with a 100% probability, and in Sm_vs_6m, it takes a noisy
action with a 20% probability.

* Basic: This is a traditional MARL environment which was used in prior works (Rashid et al., 2018; Samvelyan et al.,
2019; Wang et al., 2020b).

In explorative and dilemmatic scenarios, it is likely to obtain more non-cooperative behaviors from teammates. This
represents the importance of considering cooperative risk explicitly. As shown in Section 3.1, the choice of training data
distribution affects the action-value estimator in value factorization. Rashid et al. (2020a) also demonstrates the importance
of change in exploration scheduling in the valued-based CTDE methods. In dilemmatic scenarios, where negative reward
exists, if two sources of uncertainty are not disentangled well, units are induced to have a “selfish” behavior (e.g., running
away) in order to avoid being damaged. In noisy scenarios, we deal with the unwanted behavior of agents that can occur
in real-world applications. Early formulations of MARL methods focused on decentralized decision-making. However,
if agents are to interact with each other in the real world, they are necessary to mitigate some potential dangers. We use
two different noisy agents in the noisy scenarios. The first is a random agent that moves randomly, and the second is an
adversarial agent that selects the malicious action that minimizes the action-value.

hyperparameters The hyperparameters of training and testing configurations for VDN, QMIX, and QTRAN are the same
as in the recent GitHub code of SMAC * (Samvelyan et al., 2019) and PyMARL * with StarCraft version SC2.4.6.2.69232
The architecture of all agents’ policy networks is a deep recurrent Q-network (Hausknecht & Stone, 2015) consisting of two
64-dimensional fully connected layers and one 64-dimensional GRU. The mixing networks consist of a single hidden layer
with 32 hidden widths and ELU activation functions. Hypernetworks consists of two layers with 64 hidden widths and ReLU
activation functions. Also, the hyperparameters of WQMIX ° (Rashid et al., 2020a) and QPLEX © (Wang et al., 2020b)
are the same as in their GitHub codes. However, unlike they used a specific configuration for some environments, such as
adding non-linearity for MMM2, we used the same setting for all environments. Finally, the hyperparameters of DFAC ’

*https://github.com/oxwhirl/smac
*https://github.com/oxwhirl/pymarl
Shttps://github.com/oxwhirl/wgmix
*https://github.com/wjh720/QPLEX
"https://github.com/j3soon/dfac
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(Sun et al., 2021) are the same as in their GitHub code. As in their paper, we use 256 hidden layer sizes for DMIX (Sun
et al., 2021) in the MMM?2 environment and 512 hidden layer sizes for DDN (Sun et al., 2021) in the MMM2 environment.
For other scenarios, we fix all the hidden layer sizes as 64 for a fair comparison. There may be slight differences compared
to their paper due to differences in StarCraft version.

Like the DFAC paper (Sun et al., 2021), following the optimizer of the IQN (Dabney et al., 2018a), we used the Adam
optimizer. For other methods except for DRIMA and DFAC, according to their papers, all neural networks are trained using
the RMSProp optimizer with a 0.0005 learning rate. We use e-greedy action selection with decreasing e from 1 to 0.05 for
exploration, following Samvelyan et al. (2019). For the discount factor, we set v = 0.99. The replay buffer stores 5000
episodes at most, and the mini-batch is 32. Using a Nvidia Titan Xp graphic card, the training time varies from 8 hours to 24
hours for different scenarios.

To apply IQN for the true action-value estimator, we use an additional network, which computes an embedding ¢(weyy) for
the sample point we,,. We calculate the embedding of wey, With cosine basis functions and utilize element-wise (Hadamard)
product, instead of a simple vector concatenation, for merging function as in IQN paper. The element-wise product forces a
sufficiently early interaction between the two representations. The only difference is that because we use mixing networks
rather than DQN, the hidden layer of the mixing network, not the convolution features, is multiplied by the embedded
sample point to force interaction between the features and the embedded sample point.

For the loss function Ly,, we fixed the value only for the threshold @ jt (s, T, Uopt) of the clipping function that receives
optimal actions as input. To combine our loss functions, we obtain the following objective, which is minimized in an
end-to-end manner to train the true action-value estimator and the transformed action-value estimator:

L= ‘Ctd + )\opt Eopt + )\noptﬁnopt + )\ub‘Cub

where Aopt, Anopt > 0 are hyperparameters controlling the importance of each loss function. We set Aqpe = 3 and
)\nopt; Aw = L.

As for the loss, the calculation of L4 was performed for multiple samples at the same time as in IQN. We simply set the
number of samples Neyy for wen, and N/ . = 8 for wl, . Also, for the losses for the transformed action-value estimator,
the expected value of true action-value estimator Q¢ (u) = E,,,, [Zjt (U, Weny)| Was obtained with Ko, = 8 samples. For
the IQN (Dabney et al., 2018a) architecture, we use cosine basis functions with an embedding size of 64, ReLU nonlinearity,
and multiplicative interaction according to their paper. For environmental risk-sensitivity, we used sampled wep, from

U(0,0.25) as risk-averse, and ¢/(0.75, 1.0) as risk-seeking.

For cooperative risk, we don’t need to learn Zy.., values for all possible w,g: because, unlike ZJEjr, the value distribution of
Zran 18 not used for the target in loss functions. Therefore, for simplicity of implementation, we sample a fixed set of wagt
with intervals of 0.1 from 0.1 to 1. In the execution phase, we select optimal action based on our cooperative risk-sensitivity
Wagt. For the cooperative risk-sensitivity, we used wagy = 0.5 as risk-neutral, wagr = 1.0 as risk-seeking, and wagy = 0.1

as risk-averse.
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E. Experiments in simple matrix games
E.1. Comparing DRIMA with DMIX in stochastic two-step matrix game

In this section, to showcase that DRIMA is indeed able to disentangle risks, we conduct experiments in a stochastic two-step
matrix game which is a diagnostic illustrative environment widely used in the MARL community (Rashid et al., 2018;
Son et al., 2019; Sun et al., 2021). In this game, two agents play a two-step matrix game where they select one action in
{A, B, C'} and receive the shared global reward by a payoff matrix which should be maximized. As shown in Table 3, our
matrix game is modified from the matrix game employed by Son et al. (2019) in order to compare the capability of different
methods in handling risks. In particular, the first and the second steps are designed to assess whether an algorithm is able to
handle cooperative and environmental risks, respectively. Depending on the preference of a practitioner (i.e., environmental
risk-seeking or risk-neutral), the proper policy must be learned. We compare DRIMA, and DMIX (Sun et al., 2021) with
varying risk-sensitivity, conducted over 50k steps. We employ a full exploration scheme (i.e., € = 1 in e-greedy) so that all
available states will be visited.

Analysis. As shown in Table 4, we observe that DRIMA is able to represent diverse type of risk-sensitive policies. To be
specific, cooperative risk-seeking DRIMA selects action A which requires strong cooperation of a teammate in the first step.
Whereas, DMIX have limited capability in adjusting risk-sensitivity. We observe that changing risk-sensitivity in DMIX
affect cooperative and environmental risks simultaneously. Namely, risk-seeking adjustment makes both cooperative and
environmental risk sensitivity become seeking. Therefore, DMIX may produce a suboptimal policy in environments which
require different sensitivity for each risk source; note that cooperative risk-seeking and environmental risk-neutral policies
have the highest mean reward.

Table 3: Payoff matrix of the two-step game. {e;, e2} denotes a reward set in which one element of this set is uniformly
sampled as a reward. The payoffs of the first and the second step are designed to assess whether an algorithm is able to
handle cooperative and environmental uncertainty, respectively.

A B C A B C

A 7 -12 -12 A {-10,10} {-11,9} {-11,9}

B -12 0 0 B {-11,9} {-8,—6} {—11,9}

C -12 0 0 C {-11,9} {-11,9} {—26,12}
(a) Payoft in the first step. (b) Payoff in the second step.

Table 4: Test rewards in the stochastic two-step matrix game for DRIMA, DMIX with varying risk-sensitivity across twelve
random seeds. DRIMA (cooperative risk-seeking, environmental risk-neutral) agents select action action A in the first step,
and select action A in the second step. DRIMA (risk-neutral) agents select action B or C in the first step, and select action A
in the second step. DRIMA (risk-seeking) agents select action A in the first step, and select action C in the second step.

Algorithm Risk sensitivity | Reward

Cooperative Environmental
DRIMA (Ours) Seeking Neutral 6.98

DMIX Neutral -0.02
(Sun et al., 2021) Seeking 0.03
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E.2. Simple one-step matrix game with noisy agents

In previous environments, cooperative risk-seeking always performs well because assuming “cooperative” teammates in
training helps to learn tactics to beat enemies. However, in real world, randomly behaving agents or adversarial teammates
are likely to exist. To demonstrate the importance of an cooperative risk-neutral policy, we increased the randomness of the
agents’ behavior in this experiment. In this setting, the agents act randomly with a 50% probability even during the test
phase. As shown in Table 5, we eliminate the second step for environmental risk in the previous two-step simple matrix
game, and increased the penalty for choosing the wrong action in the first step. We compare DRIMA, and DMIX (Sun et al.,
2021) with varying risk-sensitivity, conducted over 50k steps. We employ a full exploration scheme (i.e., € = 1 in e-greedy)
so that all available states will be visited.

In this experiment, the training settings are the same as in the previous simple two-step matrix game experiment in section I,
so the agents learn the same policy as before. As shown in Table 6, we observe that risk-neutral agents outperform
risk-seeking agents. This is because cooperative risk-seeking agents always assume that other agents will be cooperative
with them. These agents are easily degraded in the presence of other non-cooperating agents. In the real world applications,
when a malicious external agent is added, there is a risk that multi-agent system is easily broken. Therefore, learning robust
multi-agent systems against adversarial agents is an interesting future direction of research. We hope that our idea will help
this new future research directions such as adversarial training in multi-agent reinforcement learning.

Table 5: Payoff matrix of the one-step game.

u2

A B C
U1
A 8 -100 -100
B -100 0 0
C -100 0 0

Table 6: Test rewards and trained policy in the one-step matrix game for DRIMA, DMIX, and OW-QMIX with varying
risk-sensitivity across twelve random seeds.

ALGORITHM RISK SENSITIVITY \ TEST REWARD WITH NOISY AGENTS
COOPERATIVE ENVIRONMENTAL \ MEAN
DRIMA (OURS) NEUTRAL NEUTRAL -26.92
SEEKING NEUTRAL -45.01

DMIX NEUTRAL -26.65
(SUN ET AL., 2021) SEEKING -45.64
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F. Additional experiments on SMAC

We provide experimental results across additional maps on SMAC. We report median test win rate with 25% — 75%
percentile over five random seeds, comparing DRIMA with five baselines. One can observe DRIMA demonstrates
competitive performance in overall.
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Figure 13: Median test win rate with 25%-75% percentile over four random seeds, comparing DRIMA with five baselines.



