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Abstract

Inverting an image onto the latent space of
pre-trained generators, e.g., StyleGAN-v2, has
emerged as a popular strategy to leverage strong
image priors for ill-posed restoration. Several
studies have showed that this approach is effec-
tive at inverting images similar to the data used
for training. However, with out-of-distribution
(OOD) data that the generator has not been ex-
posed to, existing inversion techniques produce
sub-optimal results. In this paper, we propose
SPHInX (StyleGAN with Projection Heads for
Inverting X), an approach for accurately embed-
ding OOD images onto the StyleGAN latent space.
SPHInX optimizes a style projection head using
a novel training strategy that imposes a vicinal
regularization in the StyleGAN latent space. To
further enhance OOD inversion, SPHInX can ad-
ditionally optimize a content projection head and
noise variables in every layer. Our empirical stud-
ies on a suite of OOD data show that, in addition
to producing higher quality reconstructions over
the state-of-the-art inversion techniques, SPHInX
is effective for ill-posed restoration tasks while
offering semantic editing capabilities.

1. Introduction

In the past few years, generative adversarial networks
(GANs) ( s ) have been shown to
produce high-quality, photo-realistic images in a variety
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of image synthesis and manipulation tasks ( ,

, ). In partlcular the StyleGAN v2 archltec—
ture and its variants ( , ; ; ) have
been used to synthesize very high resolution images. At
a basic level, StyleGAN-v2 learns to transform a latent
vector z € Z C R®'? to an intermediate latent code
w € W C R5'? through a mapping function (projection
head) f, which is then used to synthesize images.

The continued progress in training GANs has led to a surge
in techniques that can leverage deep generators as priors
for ill-posed image inversion problems ( , ;
s ; s ). In this context, the
problem of accurately embedding a given image onto the
latent space, often referred to as GAN inversion, has gained
51gn1ﬁcant research interest ( , ; ;

s ). Furthermore, it has been demonstrated that
the rich semantic information encoded in the latent space of
a pre-trained StyleGAN allows seamless editing of images
through controlled latent code manipulations ( ,

; , ).

Broadly, existing approaches for StyleGAN-based inver-
sion perform a careful selection of the latent space for op-
timization (Z, Z+, W and W+) and regularization tech-
niques. Existing inversion strategies have been successful
with images that are similar to the data used for training the
generator (e.g., FFHQ faces). However, embedding out-of-
distribution images (e.g., ‘in-the wild’/domain shifted face
images) onto such latent spaces is known to be very chal-
lenging. As a result, there has been a significant emphasis
on improving StyleGAN based priors for out-of distribution
inversion. For instance, proposed an out-of-
domain face image inversion strategy by introducing an
encoder-based regularization on the StyleGAN-v2 feature
maps. On the other hand, demonstrated that
it is possible to invert even non-face images, e.g., car im-
ages, onto the W+ space of a StyleGAN pre-trained on
face images. However, the perceptual quality of the recon-
structed images in both cases are significantly poorer due
to the choice of latent space for optimization as well as the
mismatch between the latent space prior and the OOD data.
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Table 1: StyleGAN-based inversion involves optimizing different combinations of latent spaces (Z+, W+, S and B). A
wide variety of optimization strategies have been proposed in the literature to improve the efficacy of this inversion process.

Method Optimization Space Additional Regularization Strategy OOD

PGD ( , ) Z - -

PULSE ( , ) Z+ Latent space search with Gaussian prior -

ILO ( s ) (Z2+.8.B) {1 -ball constraint on manifold induced by the -

previous layer

12S ( , ) W+ - v

Zhu et al. ( , ) W+ PCA whitening in W+ space (P-norm™) -

IDInvert ( , ) W+ In-domain regularization using domain- -
guided encoder

PIE( , ) W+ Hierarchical non-linear optimization -

Waulff ef al. ( , ) W+ Statistical priors on YW+ space v

StyleFlow ( , ) W+ - -

StyleRig ( , ) W+ Self-supervised two-way cycle consistency -

12S++ ( , ) W+, B) - v

BDInvert ( , ) W+, S) P-norm™, Semantic consistency reg. Ng

Proposed Work. In this paper, we develop SPHInX (Style-
GAN with Projection Heads for Inverting X), an inversion
approach for accurately embedding OOD images onto the la-
tent space of StyleGAN-v2. We make a critical finding that,
by redesigning the projection head that maps between Z-+
and W+, such that the style latent variables corresponding
to different intermediate layers in the generator architecture
are decoupled, one can significantly improve the inverse
optimization process. In a nutshell, SPHInX improves OOD
image inversion by: (a) replacing the existing mapping func-
tion f with a style projection head Ps; (b) adopting a novel
training strategy that enforces Py to consistently produce
meaningful solutions in the W+ latent space for any realiza-
tion from P(Z+); and (c) optimizing a content projection
head P, and the noise latent variables 3. We find that such
a strategy results in a robust estimate of P(W+) for a given
image.

Contributions. (a) A new approach, SPHInX , for inverting
OOD images onto the StyleGAN-v2 latent space; (b) Novel
training strategy that induces a robust local neighborhood in
W+ for a given image; (c) Design of a style projection head
that maps between Z+ and W, to improve inversion with
OOD data; (d) Extensive empirical studies on ‘in-the wild’
face and non-face image data to demonstrate the efficacy
of SPHInX in reconstruction, semantic editing and solving
challenging inverse problems - denoising, compressed re-
covery and simultaneous inversion & attribute discovery
(Appendix B); (e) Systematic study of the behavior of dif-
ferent existing latent space optimization strategies using a
broad suite of image datasets; (f) Our codes are publicly
accessible”.

2https ://github.com/Rakshith-2905/SPHInX

2. Background

GAN Inversion. This refers to the ill-posed problem of
inferring a latent code or an embedding z for an image in
the latent space of a pre-trained generative model G. Such
an inversion technique can be utilized for semantic manip-
ulation or solving restoration tasks such as in-painting and
compressed sensing ( , ). Projected gradient
descent (PGD) ( R ; s ;

, ) is a commonly adopted strategy, which
optimizes for a latent vector that minimizes a discrepancy
L(.,.) between the generated image G(z) and the given
observation /. Mathematically,

z" = argmzin L(G(z),I)+R(.), (1)

where R(.) is an additional regularizer. Common choices
for £ are: (i) pixel-wise mean squared error (Lysg)
and (or) (ii) learned perceptual image patch similarity
(Liprps) ( , ) which is a perceptual similarity
metric based on deep network activations (VGG-16 (

s )). Mathematically,

1
Lipps =Y oW, D wie(Vh,,. — L7 )]
‘

h,w,c

where (Hy, W;) denotes the spatial size in layer ¢ and W*
denotes the /" latent layer of the adopted classifier. Further,
wy. corresponds to the channel-level scaling vector, and I,
I’ are the images being compared.

StyleGAN Preliminaries. At its core, StyleGAN (

, ; ) relies on a mapping network f that
transforms an input latent code z € R%12 sampled from a
Gaussian prior P(Z) to a disentangled intermediate latent
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code w € R®'2 € W. The latent code w is then repeated
N, = 18 times and passed to each of the layers in G (
s ; , ). Differing from
conventional generative models ( s ;
, ), instead of directly passing z to the first
layer, StyleGAN uses a constant input s € R**4X512 (ipi-
tially drawn at random from a Gaussian prior P(S)) which
is progressively transformed in every layer with increasing
resolution to synthesize the images. Additionally, Style-
GAN employs a set of noise inputs sampled independently
from a Gaussian prior P(B), in every layer to improve the
overall textural quality.

StyleGAN-based Inversion. Since pre-trained StyleGAN
can be effectively leveraged as a prior for ill-posed im-
age recovery and semantic editing, several StyleGAN-
specific inversion studies have emerged recently (

s ; s ). While per-
forming StyleGAN-based inversion, the choice of the la-
tent space along with additional regularization techniques
adopted become critical. Table | provides a comprehensive
list of StyleGAN-based inversion strategies, along with their
choice of latent space optimization and regularization.

(Image2StyleGAN, or shortly 125), first investi-
gated the efficacy of inverting an image onto the intermedi-
ate W space of StyleGAN. They made a crucial observation
that the reconstruction quality can be significantly improved
by optimizing with an extended intermediate latent space
W+ C RNex512 ywhere every wt € W+ was obtained
by stacking N, realizations from P(Z) using the mapping
f. In addition, they demonstrated that YV offers a higher
degree of freedom to guide the inversion compared to W.
As an extension, identified that images can
be reconstructed with improved granularity by optimizing
the noise space B along with W+ (Image2StyleGAN++, or
shortly 12S++). Recently, proposed an inversion
strategy that progressively included different layers of Style-
GAN and optimized for latent codes in Z+ that lie within
an ¢; —ball around the manifold induced by the previous
layer (Intermediate Layer Optimization, or shortly ILO).
Here, every z+ € Z+ was obtained by stacking N, realiza-
tions from P(Z). In this paper, we systematically study the
behavior of different optimization strategies while invert-
ing OOD images within the same domain (e.g., in-the-wild
face images) as well as images from novel domains (e.g.,
medical images), and solving ill-posed restoration tasks.

3. Proposed Approach

3.1. Motivation

Broadly, our work is motivated by the need for (i) accu-
rate inversion of images beyond the training set (Section 4,
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Figure 1: Robustness of GAN inversion methods under
latent space perturbations. We show the perceptual quality
of the reconstructed image (LPIPS defined in (2)) at differ-
ent levels of noise perturbations (measured using signal-
to-noise ratio). For in-the-wild face image with geometric
transformation, the resulting solution (W+, S, B) in this
illustration) is highly non-robust. In contrast, SPHInX pro-
duces a solution that is perceptually more accurate as well
as robust under perturbations.

Appendix C); (ii) enabling improved ill-posed restoration
of OOD images (Section 5); (iii) semantic editing in novel
domains without requiring pre-specified encoders (Section
4, Appendix B); and (iv) re-purposing GAN priors for novel
domains with limited data access, such as medical imaging
(Section 5, Appendix C).

While existing approaches can effectively invert images by
optimizing in the extended W+ latent space (along with
semantic and noise latent variables S and ), their perfor-
mance with OOD images, e.g., geometrically altered or
cartoonized faces, is found to be sub-optimal ( s

; , ). Given that the Y/+ latent space
contains rich semantic information about in-domain images
(for e.g., faces), the latent codes need to be significantly
altered in order to accurately reconstruct OOD images de-
void of in-domain artifacts. Moreover, such an inversion is
significantly challenging due to the inherently non-robust
nature of YW+ space optimization. As illustrated using the
LPIPS metric (from (2)) in Figure 1, the solution obtained
by optimizing in the collection of latent spaces (W+, S, B)
of StyleGAN-v2 is highly non-robust even when a face im-
age is rotated by only 30 degrees. Even minor perturbations
to the solution (additive noise to achieve a target SNR) re-
sults in perceptually inferior reconstructions. This naturally
motivates the need for novel optimization strategies that can
infer solutions that are more locally robust for OOD images,
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so that the inversion can stably converge. Due to lack of
known priors on W+, it is not straightforward to enforce
such a local consistency during GAN inversion. In this
paper, we address these shortcomings and obtain superior
quality embeddings for OOD images through (i) optimiza-
tion with carefully constructed projection heads (different
from f); and (ii) a novel training paradigm that implicitly
imposes a vicinal regularization in the YW+ space.

3.2. Optimization with Projection Heads

We propose to improve StyleGAN based inversion by opti-
mizing a projection head that maps between Z+ and W+
instead of directly searching in either of the latent spaces
via gradient descent. Intuitively, this crucial modification
requires the inversion strategy to transform the prior distribu-
tion P(Z+) into an appropriate latent distribution P(WW+),
such that any realization from P(W+), when passed to the
StyleGAN generator G will reconstruct the given image .
For instance, in the style latent space, the projection head
P, takes a realization from P(Z+),zt € Z4 C RN¢x512
to produce a projected latent code w € W+ C RNex512,

A naive way to implement this is to directly fine-tune the
pre-trained mapping function f to perform OOD inversion,
without directly manipulating the latent variables as done
in all existing approaches. However, as shown in Figure 2,
this results in poor quality embeddings and reconstructions
I that do not contain any of the characteristics from the
input image I. Furthermore, we also experimented with a
randomly re-initialized f and found that this was also insuffi-
cient for inverting the image. This behavior can be attributed
to the fact that, even with in-distribution images, the inver-
sion can be improved only by individually controlling every
latent vector in w ( R ). Alternately,
ILO ( , ) used a fixed mapping f, but adopted
a novel optimization strategy that progressively included
latent variables from different layers of StyleGAN and op-
timized for latent codes that lie within an ¢; —ball around
the manifold induced by the previous layer. However, the
inherent lack of local robustness for OOD images in the
W+ latent space makes such a progressive optimization
also insufficient.

To circumvent this challenge, we design a style projection
head P that decouples the latent spaces for different layers
in W+. In other words, P, transforms each zt € Z+ into
d—dimensional representations using a bottleneck block of
MLP layers. Subsequently, N, different decoder blocks
(again a set of MLP layers) independently provide the cor-
responding mapping w € W+, using the bottleneck rep-
resentation as input. Note that, while each z™ € R>12 and
wT € R512, the choice of bottleneck dimension d is not
very sensitive and we used d = 16 in all our experiments.
Interestingly, using the proposed projection head and op-

Ground Truth Ps() as pretrained f

Ps(.) as untrained f Ours

Figure 2: Design of the projection head. While
re-purposing the pre-trained mapping function f from
StyleGAN-v2 as the projection head fails completely. How-
ever, using the proposed projection head P, which decou-
ples the different latent spaces in YW+, leads to significantly
higher quality reconstructions.

.ll.,r (Ne = w | (Nex 512) g
“ " StyleGAN-v2

2t ~ P(24) [

N
Cormean?

b

b~ P(B)

Figure 3: Overview of SPHInX . For a given image I,
SPHInX trains a style projection head P, (optionally along
with a content projection head P, and noise variables B)
through a novel training paradigm to effectively invert
onto the YW+ latent space of a pre-trained StyleGAN-v2.

timizing with different realizations of z* from P(Z+) in
every iteration of the optimization process, we obtain an ac-
curate yet robust estimate of P(JV/+) for a given image. As
illustrated in Figure 2, this results in a highly accurate recon-
struction of in-the-wild face images using a StyleGAN-v2
pre-trained on FFHQ.

As discussed earlier, the core idea of SPHInX to improve
the fidelity of OOD inversion is to perform optimization
with the projection head Ps. However, including content
(S) and noise (B) latent parameters from StyleGAN-v2 into
the collection of optlmlzatlon variables ( s ;

s ; , ) can further enhance
the inversion fidelity. This is especially the case, when han-
dling complex OOD shifts such as geometrically altered
face and non-face images. Optimizing the content latent
space s € S C R**4xX512 (3 constant tensor determined
during GAN training) improves the inversion by better cap-
turing the potentially unrelated semantic structure of OOD
images. Based on our intuition on utilizing P,, we employ
a content projection head P, to directly parameterize the
content input (randomly initialized using a Gaussian prior
in lieu of the pre-trained content tensor). Further, optimiz-
ing the Gaussian noise inputs (13) corresponding to each
layer of the synthesis network in StyleGAN-v2 enhances
the perceptual quality of the reconstructed images (
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W+,8,B)  (Ps, Pe, B)

Input
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Figure 4: Inversion of OOD images using different op-
timization strategies. While SPHInX (P;) improves the
fidelity of reconstruction in both examples ((top) translated
face; (bottom) cartoon), with the inclusion of additional op-
timization variables (P., 5) SPHInX significantly enhances
the reconstruction quality (PSNR/LPIPS metrics are shown
for every case).
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Figure 5: Quantitative comparison of in-the-wild face
image reconstruction performance. For this evaluation,
we used the shifts: (i) translation (ii) rotation and (iii) scaling
with varying levels of severity on in-the-wild faces. We
utilize the PSNR metric for evaluating the reconstruction
quality.

et al., 2020). Figure 3 illustrates a functional block diagram
of our proposed approach. A detailed algorithm listing for
SPHInX is provided in the Appendix A.

4. Inverting In-the-Wild Face Images using
StyleGAN-v2

The ability to accurately embed in-domain images (e.g.
faces) onto the latent space of StyleGAN-v2 has enabled us
solve a variety of challenging downstream tasks including
image restoration, semantic editing and style transfer (Xia
et al,, 2021). However, when we consider misaligned im-
ages collected from the web or images characterized by
unknown distribution shifts (or shortly “in-the-wild”), it
is significantly challenging (Kang et al., 2021; Richardson
et al., 2021) to obtain useful latent codes from a generator
with semantic knowledge of only in-domain images. In this

section, we demonstrate that SPHInX can accurately recover
such in-the-wild images with high-fidelity. Furthermore, we
also find that our approach offers the ability to effectively
interpolate between OOD face images and more importantly,
manipulate specific attributes of interest (e.g., non-smiling
— smiling), thus validating its utility in semantic editing
and counterfactual reasoning (Axel Sauer, 2021).

4.1. In-the-Wild Face Image Reconstruction

In order to understand the impact of the optimization vari-
ables chosen for inversion, we consider OOD examples
(translated face and cartoon images) and perform inversion
(1) using SPHInX (P;) and its variant (P, P, and 55) and (ii)
using standard GAN inversion (\W+) and W+, S, B). Fig-
ure 4 provides the comparison between the reconstructions
using these different choices. We can observe that through
the effective re-parameterization of W+, SPHInX produces
superior reconstructions in both cases over the baselines.
However, the inclusion of P, and B enhances the recon-
struction quality. Based on this observation, all image re-
construction experiments reported in the paper involve the
optimization of P, P, and B until otherwise specified.

Datasets. We evaluate the efficacy of SPHInX for in-the-
wild image inversion using face images collected from the
web. We then applied different geometric transformations
of varying severity levels to construct our evaluation set.
Following Kang et al., we adopted the following domain
shifts: (i) random rotations in the counterclockwise direction
by 10, 20 and 30 degrees, (ii) scaling by factors of 7/8, 3/4,
9/8, and 5/4 and (iii) random translation by 0, 50, 100 and
150 pixels respectively. For all our experiments, we resized
each image to a resolution of 1024 x 1024, and rescaled
them to the range [—1, 1].

Experiment Setup. The bottleneck block in Py of
SPHInX is constructed using fully connected (FC) layers
of sizes [512, 256, 16] and each of the decoders is another
block of FCs of sizes [32, 64, 512]. The architecture for P,
is a fully convolutional network comprised of three Conv2D
layers with 32,128 and 512 filters respectively. For each
image, we trained all the compared methods for 10, 000 it-
erations using the ADAM optimizer with 51 = 0.9 and 35 =
0.999. We employ a trapezoid-based learning rate schedule
with a maximum learning rate of 0.001. We used N, = 18
corresponding to an image resolution of 1024 x 1024. For
SPHInX and the Z+ baselines, we use a standard normal
distribution N(0,I) € RN¢*512 a5 the prior for sampling
zT. All approaches are trained using a combination of the
mean-squared error (MSE) and LPIPS losses. For evalu-
ating the quality of generated images in all experiments,
we utilized two widely-adopted metrics: (i) Peak Signal to
Noise Ratio (PSNR); (ii) Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018).
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Ground Truth Ours (W+,8,B) (2+,8,B)

Scale(8/7) Scale(3/4) Rotation(30°)

Translate(150pix)

Ground Truth Ours (W+,8,B)

(2+,5,8)

Figure 6: Comparison of in-the-wild face image reconstruction performance. In all cases, we optimize SPHInX including
P. and 5. We find that even under complex geometric shifts, SPHInX produces highly-accurate accurate reconstructions.

Young Age Closed mouth Closed Eyes

Figure 7: Semantic editing of images from novel domains
(cartoons). We observe that the solutions from SPHInX can
be manipulated using existing StyleGAN attribute directions
when the OOD images are aligned with the FFHQ faces used
for generator training.

Observations. Figure 6 provides a visual comparison of
the images generated using SPHInX along with the base-
lines across different geometric transformations. In contrast,
strong baselines such as W+, S, B) and ILO (equivalent
to (£+, S, B) when the ¢;-ball constraint is removed) fail
to handle the unknown shifts. Figure 5 provides a quanti-
tative comparison of SPHInX on in-the-wild image recon-
struction against several state-of-the-art baselines including
Image2StyleGAN (Abdal et al., 2019), P—norm(Zhu et al.,
2020b), StyleGAN2 Inv (Karras et al., 2020) and the more
recent PSP (Richardson et al., 2021) and BDInvert (Kang
etal., 2021). It can be clearly seen that SPHInX consistently
produces higher PSNR in all cases.

4.2. In-the-Wild Face Image Editing

In addition to providing high-fidelity reconstructions, an im-
portant property of any GAN inversion approach is the abil-
ity to manipulate the image embeddings to synthesize plau-

sible semantic changes. Given the utility of GAN inversion
techniques in semantic editing tasks such as image diffusion
and morphing (Xia et al., 202 1), manipulating image embed-
dings along pre-specified StyleGAN directions reflective of
unique attributes is a popular strategy to test the efficacy of
inversion. If w; denotes the solution obtained by inverting
an image and D refers to a pre-specified direction vector,
semantic editing can be performed as w™ = w + a D.
Here « controls the intensity of attribute change. Interest-
ingly, we find that SPHInX supports such semantic editing
operations for images even from novel domains that are
geometrically aligned with FFHQ faces used for training
the generator (e.g., cartoons). As demonstrated in Figure 7,
existing attribute directions (e.g., age and closed mouth) in
StyleGAN can be applied to solutions obtained from P, for
such images without requiring pre-trained encoders such as
PSP (Richardson et al., 2021).

However, when handling complex OOD shifts such as ge-
ometrically altered face and non-face images that are mis-
aligned with the FFHQ face image manifold, existing Style-
GAN directions cannot be repurposed impeding semantic
editing. In such scenarios, the ability to progressively syn-
thesize meaningful realizations by interpolating between
‘in-the wild” images that differ by one or more unknown at-
tributes can be considered as an important evaluation bench-
mark. Given two OOD face images I; and I, that differ by
an attribute (for e.g., smile), we first embed the images onto
the StyleGAN-v2 latent space by optimizing (Ps, P, B).
Let 6; and 62 be the latent codes corresponding to the im-
ages I; and I5. We now perform a linear interpolation
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Pose

Smile

Age

Figure 8: Semantic interpolation between ‘in the wild’ images that differ by an unknown attribute (pose/smile/age).
SPHInX optimized along with P, and B progressively traverses along the attribute and produces highly plausible realizations

even for OOD images.

between the latent codes and obtain the corresponding re-
alizations. Mathematically, 0;,: = a 61 + (1 — @) 65 and
Lint. = G(0;nt). Here, 0;,; and I, are the interpolated
latent code and image respectively, and a € [0, 1]. Figure 8
illustrates the ability of SPHInX to progressively traverse
along the semantic attribute, even under complex distribu-
tion shifts (30 degree rotation, 0.75 scaling and 150 pixel
translation).

5. 111-Posed Restoration of Non-face Images
using a FFHQ StyleGAN-v2

GAN inversion with StyleGAN has been known to be effec-
tive at solving ill-posed image restoration tasks (Daras et al.,
2021). While this can be a valuable tool in many applica-
tions, lack of access to pre-trained, high-quality generators
or semantically rich, large-scale datasets is a critical limita-
tion. In such scenarios, it becomes important to investigate
if general-purpose generators from the vision community
can be re-purposed to solve inverse problems with images
from novel domains (e.g., medical imaging). In particular,
the highly expressive StyleGAN latent spaces provide a nat-
ural avenue for inverting non-face images (while the GAN
was trained only using faces).

Datasets. We consider a broad suite of non-face image
datasets to evaluate the efficacy of SPHInX for ill-posed
image inversion: (i) Animal Faces-HQ (AFHQ) (Choi et al.,,

2020): This dataset contains 16,130 high-quality images of
various breeds of cats, dog and other wildlife; (ii) Diabetic
Retinopathy Images (Retina) (ret): This dataset consists
of 88,702 high-resolution, left and right eye retina images
taken under a variety of imaging conditions; (iii) ISIC 2018
Skin Lesions (Codella et al., 2019): This dataset contains a
total of 10,015 dermoscopic lesion images drawn from the
HAM10000 database (Tschandl et al., 2018); and (iv) Mimic
CXR (Johnson et al., 2019): This is a large public database
containing 377,100 chest radiographs (X-rays) correspond-
ing to a variety of radiographic studies; For all our experi-
ments, we resized each image to a resolution of 1024 x 1024
and rescaled them to the range [—1, 1]. Following the obser-
vations from section 4, we optimize SPHInX along with P,
and B for all restoration experiments.

Image Reconstruction Evaluation. Figure 9 illustrates the
image reconstruction performance of SPHInX for non-face
images, and shows comparisons against baseline approaches.
For each dataset, we show the median, along with the 25t
and the 75™ percentiles, of the metrics obtained from 50
randomly chosen images (Refer to the appendix for results
on additional datasets). We find that SPHInX consistently
outperforms the baselines across the two datasets, AFHQ
and Retina thereby demonstrating its efficacy in OOD in-
version. Interestingly, the performance of state-of-the-art
approaches such as 12S++ (referred as (W+, S)) and ILO
are very similar across all metrics, and consistently lower
than SPHInX . Comparatively, the WV+, S, B) baseline is
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Figure 9: Comparison of non-face image reconstruction performance. Through the use of style and content projection
heads, along with a novel training strategy, we find that SPHInX consistently outperforms the baseline methods in both the
metrics (LPIPS|, PSNRT) across the datasets. It must be noted that in all cases, we optimize SPHInX along with P, and B.

the second best approach.

5.1. Denoising with a GAN Prior

Given an image corrupted by an unknown noise process,
the goal is to restore the true image from the noisy obser-
vation. However, since noise, edges and textures are all
high frequency components, it is challenging to effectively
reconstruct an image without loss of details. Daras et al.
demonstrated that StyleGAN can be used to remove noise
while preserving details in the reconstructed image. Given
the efficacy of SPHInX in inverting non-face images with
the FFHQ StyleGAN-v2, we now investigate its utility in
denoising. For this experiment, we added Gaussian noise
with known parameters and optimized our projection heads
such the noise is suppressed.

Figure 10 shows the results of the denoising experiment,
wherein the restored images from SPHInX and the best-
performing baseline WV+, S, B) are included. Furthermore,
we also plot the metrics aggregated across 10 different ex-
amples and varying levels of corruption severity. More
specifically, we show the mean and standard deviation for
each of the metrics at each noise level. In particular, we mea-
sured the performance over increasing noise strengths (STD)
in the range [0.20, 1]. It can be observed that SPHInX con-
sistently outperforms the baselines (higher PSNR and lower
LPIPS), particular at lower noise level. However, at higher
noise strengths, we find that there is a steep drop in the re-
covery performance, highlighting the limitation of the GAN
prior in distinguishing true signal and noise in the images

from an unseen domain.

5.2. Compressed Recovery of Medical Images

Compressed sensing is an image acquisition method, where
we attempt to reconstruct images using a very few random
measurements. This process offers compression of data be-
low the Nyquist rate, which makes it an effective solution
in the field of medical imaging, and has been extensively
used for ultrasound (US) compression and sparse recovery.
For this task, following (Daras et al., 2021), we generated
observations of random projections using partial circulant
measurement matrices with random signs and a fixed per-
centage of measurements. It must be noted that, we use the
same measurement process, as that of the true image, with
the StyleGAN-v2 reconstruction before evaluating the loss
function. For the optimization, we used only the MSE loss
between the generated and the true observations.

Figure 11 summarizes the results from the compressed re-
covery experiments with two medical imaging datasets,
namely CXR and ISIC skin lesion. In addition to show-
ing the PSNR and LPIPS metrics at different number of
measurements (varied between 1% and 5%), we include
examples of the images recovered using SPHInX and the
(W+, S, B) methods. We make a surprising finding even at
severe compression factors, SPHInX with an out-of-domain
generator produces high-fidelity reconstructions (Average
PSNR ~ 34 dB) and convincingly outperforms existing
baselines. We find that only SPHInX is able to consistently
recover finer details in the lesion images, wherein features
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Figure 11: Compressed recovery of medical images with a FFHQ StyleGAN-v2 prior. (Left) shows SPHInX consistently
outperforms other baselines at different % factor of measurements. (Right) shows the performance of SPHInX and
(W+, S, B) when the percentage of measurements is as low as 1%.

such as the color and the blurriness along the edges are
known to be crucial for making reliable diagnosis.

6. Conclusions

In this paper we presented SPHInX , a new approach for solv-
ing ill-posed inverse problems with pre-trained StyleGAN-
v2. Through the use of carefully designed projection heads
for style and content latent spaces, and a novel training
strategy, SPHInX produces accurate and robust embeddings
for even arbitrary OOD images. With extensive empirical

studies with multiple datasets, we demonstrated significant
performance improvements in embeddings high-resolution
OOD images as well as ill-posed tasks such as denoising
and compressed sensing. Compared to state-of-the-art ap-
proaches such as [12S++ (Abdal et al., 2020) and ILO (Daras
et al., 2021), we find that SPHInX stably converges to mean-
ingful embeddings in the latent space. In summary, our
study clearly evidences the utility of StyleGAN as a strong
image prior even in domains, where collecting large datasets
for training custom generative models is infeasible.
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C Non-face image reconstruction results for Mimic CXR and ISIC lesion datasets
D Sensitivity of the Bottleneck Dimension d

A. Algorithm Listing for SPHInX
Algorithm 1 provides the details of training SPHInX °.

Algorithm 1 SPHInX

1: Input: Input image I,
No. of iterations IV,
Learning rate 7,
Pre-trained StyleGAN generator G,
No. of generator layers Ny,
Style Projection Head Ps(.; ),
Content Projection Head P, (.; ¢),
Noises b,
Penalties A\ for MSE and )\ for LPIPS.
2: Output: Py(.;0%), P.(.; %), b*,
Generated Image I'.
3: Initialize: P(Z+) = N(0,I) C RNex512,
P(S) — N(O, I) C RAx4x512
4: forninlto N do
50 zT ~P(Z+);s~ P(S)
6:  Compute wh = Py(z";0), s’ = P.(s; 9);
7.
8
9

Generate image I’ = G(w™,s', b);
Compute loss £(I,I’) using Eqn (1);
: (Q,Qi),b) «— (9,(;5, b) — n(VgE,V¢£,VbL);
10: end for
11: wh =Py(z";0%);
12: ' = P.(s; ¢*);
13: return: Ps(.;0%), P.(:;0*), b*, I' = G(wT,s’,b*)

B. Additional Experiment: Simultaneous Inversion and Attribute Discovery for Novel Domain
Images

A desired property of any GAN inversion algorithm is that the latent codes can be semantlcally manipulated for downstream
applications such as style transfer and attribute discovery ( ) ; , ;

s ; s ; ) ). However, when inverting images from novel domains (e.g., medical
images onto the GAN latent space), the mismatch between the latent spaces and the OOD image makes it significantly hard
to meaningfully manipulate the latent codes. Hence, we introduce a new inverse optimization problem to evaluate GAN
inversion techniques in OOD settings. Given an image I along with its K variants that differ by a single attribute (for e.g.,
rotation), our goal is to simultaneously invert all K + 1 images using a starting point w~ in the latent space for embedding
I and local direction vectors in each of the layers, D € RN¢*512 along which the remaining K variants can be accurately

3SPHInX uses publicly available StyleGAN-v2 pre-trained on FFHQ from https://github.com/rosinality/
stylegan2-pytorch for all experiments.
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PPN

Figure 12: Simultaneous image inversion and attribute discovery. SPHInX can learn meaningful attribute directions -
rotation, brightness and zoom - by simultaneously inverting an image along with its realizations that differ by the attribute.
By varying the scale of traversal « along the inferred direction, we observe that SPHInX effectively produces realizations
reflective of the learned attribute. In each case, the input images are marked with a red arrow.

embedded. Formally,

D
mln L(G +ZE< (W +akm),~’k>7

wi, D, {a}

where {«y} refers to the set of scaling parameters for each of the K images. Upon training, we expect the generator to
synthesize manipulations pertinent to the learned attribute by traversing along D from w .

Setup. In this study, we considered three different image transformations: (i) rotation, (ii) brightness and (ii) zoom and
synthesized K = 3 different variants for each image by manipulating the chosen attribute. We adopt the following loss
formulation in order to solve this optimization problem,

Eembed = L:(g( ) )

Kl ( (W +auDr; ) I)

where £ denotes the weighted sum of the MSE and LPIPS losses. Here {a;, } 5, denote the learnable scaling factors along
the direction D. It must be noted that w;~, D and {ay }*_; are inferred during this optimization. In addition, we enforce
{ak}szl to be increasingly monotonic in an effort to map «y to the intensity of the attribute change. Here, we consider
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Figure 13: Recovering non-face images using face GAN. Using SPHInX , we are able to effectively invert images from
novel domains.

{Ix}£ | be arranged in an order of increasing attribute intensity change. We impose the constraint using a margin based
loss function as follows,

Loargin = max(0,7 — o)+

max (0,7 — agy1 + o),
where 7 is the margin. The total optimization objective now becomes,

Ltotal = Lembed + Emargin-

Training Details. We choose brightness, zoom and rotations as the attributes and generate K = 3 respective realizations of
the given image I. We utilize the in-built, PyTorch transforms to generate the realizations. For the brightness attribute, we
use brightness factors {0.5, 1.0, 1.5} while for zoom, we use zoom in factors {1.0,1.25,1.75}. We generate K realizations
corresponding to {0, 22.5,45} degrees for the rotation attribute. During inference, we vary the scale of traversal v along the
learned attribute direction to generate the images. For all experiments, we use a margin 7 = 2.0.

Findings. Figure 12 illustrates the results from SPHInX corresponding to all three attributes. The images are generated by
traversing the learned direction vector D by varying «.. Our results show that, SPHInX can accurately recover directions
corresponding to specific attribute changes in the StyleGAN latent space trained on FFHQ.

C. Non-face image reconstruction results for Mimic CXR and ISIC lesion datasets

In addition to the two datasets showed in Figure 9 for non-face image reconstruction using a StyleGAN-v2 trained on FFHQ,
in Figure 13 we include the results for two additional medical imaging datasets. The observations on the improvements in
terms of both PSNR and LPIPS holds in these cases as well.
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D. Sensitivity of the Bottleneck Dimension d

The only requirement for the projection head P; is to support obtaining independent W vectors for all 18 layers. Across
different choices of d € {16, 32,64, 128}, we found the std. dev in reconstruction to be negligible (in the order of 0.1dB in
PSNR, 0.0005 in LPIPS across different datasets).
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