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Abstract

We analyze continuous-time models of acceler-
ated gradient methods through deriving conserva-
tion laws in dilated coordinate systems. Namely,
instead of analyzing the dynamics of X(t), we
analyze the dynamics of W (t) = tα(X(t)−Xc)
for some α and Xc and derive a conserved quan-
tity, analogous to physical energy, in this dilated
coordinate system. Through this methodology,
we recover many known continuous-time anal-
yses in a streamlined manner and obtain novel
continuous-time analyses for OGM-G, an acceler-
ation mechanism for efficiently reducing gradient
magnitude that is distinct from that of Nesterov.
Finally, we show that a semi-second-order sym-
plectic Euler discretization in the dilated coor-
dinate system leads to an O(1/k2) rate on the
standard setup of smooth convex minimization,
without any further assumptions such as infinite
differentiability.

1. Introduction
Despite the significance of acceleration within the study
of first-order optimization methods, a fundamental under-
standing of the acceleration phenomena remains elusive.
Recently, continuous-time analyses of accelerated gradient
methods have been extensively pursued, even using ideas
from mathematical physics. However, these continuous-
time analyses still retain a component of mystery: They rely
on establishing that certain energy functions are nonincreas-
ing but do not justify the origin of such energy functions.

In this work, we present a methodology for analyzing ac-
celerated gradient methods through deriving a conservation
law, analogous to the conservation of energy of physics,
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in a dilated coordinate system. Namely, instead of ana-
lyzing the dynamics of X(t), we analyze the dynamics of
W (t) = tα(X(t)−Xc) for some α ∈ R and Xc ∈ Rn.

Through this methodology, we recover many known
continuous-time analyses in a streamlined manner. Further-
more, the methodology enables us to perform a novel analy-
sis of an ODE model of OGM-G of Kim & Fessler (2021),
an acceleration mechanism distinct from that of (Nesterov,
1983). Finally, we show that a semi-second-order symplec-
tic Euler discretization in the dilated coordinate system leads
to an O(1/k2) rate on the standard setup of smooth con-
vex minimization, without any further assumptions such as
infinite differentiability.

1.1. Preliminaries and notation

We review the standard definitions of convex optimization
and set up the notation (Nesterov, 2004; Boyd & Van-
denberghe, 2004; Bauschke & Combettes, 2017; Nesterov,
2018; Ryu & Yin, 2022). Throughout the paper, we use Rn
for the underlying Euclidean space with Euclidean norm
‖ · ‖ and inner product 〈·, ·〉. For L > 0, f : Rn → R is
L-smooth if f is differentiable and

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn.

For µ > 0, g : Rn → R is µ-strongly convex if g(x) −
(µ/2) ‖x‖2 is convex. When f is differentiable and convex,

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0

holds for all x, y ∈ Rn, and we refer to this inequality as
the convexity inequality. Throughout this paper, consider

minimize
x∈Rn

f(x), (1)

where f : Rn → R is convex and differentiable. When (1)
has a minimizer, write X? to denote a minimizer. Write
f? = infx∈Rn f(x) for the optimal value of the problem.

Energy and conservation law. Let A : (0,∞) → R be
differentiable and B : (0,∞)→ R be integrable. Suppose

0 = Ȧ(t) +B(t)
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holds for all t > 0. Then, for 0 < t0 < t <∞, integrating
from t0 to t gives us the conservation law

E ≡ A(t0) = A(t) +

∫ t

t0

B(s) ds,

where the energy E is independent of time. Moreover, if the
limit limt0→0A(t0) exists, then

E ≡ lim
t0→0

A(t0) = A(t) +

∫ t

0

B(s) ds.

Partial derivatives. Consider a function U(W, t) with
variables W = (w1, . . . , wn) ∈ Rn and t ∈ R. Define

∇WU(W, t) =

(
∂

∂w1
U(W, t), . . . ,

∂

∂wn
U(W, t)

)
∈ Rn.

When W (t) is differentiable, the chain rule gives us

d

dt
U(W (t), t) =

〈
∇WU(W (t), t), Ẇ (t)

〉
+
∂

∂t
U(W (t), t).

(2)

To clarify, the distinction between d
dt and ∂

∂t corresponds
to viewing W (t) as a curve dependent on t or viewing W
as an input to U independent of t. We clarify this notation
fully in Appendix A. Then for 0 < t0 < t <∞, integrating
from t0 to t gives us∫ t

t0

〈
∇WU(W, s), Ẇ (s)

〉
ds

= U(W (t), t)− U(W (t0), t0)−
∫ t

t0

∂

∂s
U(W, s) ds.

1.2. Prior work

In convex optimization and machine learning, the classical
goal is to reduce the function value efficiently. In the smooth
convex setup, Nesterov’s celebrated accelerated gradient
method (AGM) (Nesterov, 1983) achieves an accelerated
rate of O(1/k2). Recently, the optimized gradient method
(OGM) (Kim & Fessler, 2016) improved the rate of AGM
by a factor of 2, and this rate is in fact exactly optimal (Drori,
2017). In the smooth strongly convex setup, the strongly
convex AGM (SC-AGM) (Nesterov, 2018, 2.2.22) achieves
an accelerated rate. The review by d’Aspremont et al. (2021)
provides a comprehensive historical review.

The study of first-order convex optimization algorithms ef-
ficiently reducing the squared gradient norm was initiated
by Nesterov (2012). For smooth non-convex minimiza-
tion, gradient descent (GD) achieves an O((f(x0)− f?)/k)
rate (Nemirovski, 1999, Proposition 3.3.1). In the smooth
convex setup, OGM-G (Kim & Fessler, 2021) achieves an
O(f(x0) − f?)/k2) rate. M-OGM-G (Zhou et al., 2022)

and OBL-G[ (Park & Ryu, 2021) are variants of OGM-G
achieving similar rates. Combining AGM with OGM-G
(Nesterov, 2018, Remark 2.1) yields anO(‖x0 − x?‖2 /k4)

rate, which matches the Ω(‖x0 − x?‖2 /k4) lower bound of
(Nemirovsky, 1991; 1992) and is therefore optimal.

An ODE model for the heavy ball method with constant
friction, i.e., constant damping, was introduced by Polyak
(1964) and follow-up work studying variations flourished
(Attouch & Alvarez, 1998; Alvarez & Attouch, 2001; At-
touch & Czarnecki, 2002; Alvarez et al., 2002; Attouch
et al., 2002; 2012; Attouch & Czarnecki, 2017; Boţ &
Csetnek, 2017; 2019; Adly & Attouch, 2020b; Adly et al.,
2021b; Aujol et al., 2021; 2022). The study of ODE mod-
els of AGM and accelerated mirror descent with vanishing
damping was initiated by Su et al. (2014; 2016); Krich-
ene et al. (2015). Specifically, Su et al. (2014) studied
the dynamics of 0 = Ẍ + r

t Ẋ + ∇f(X) and proved
f(X(t)) − f? ≤ (r − 1)2 ‖X0 −X?‖2 /(2t2) for r ≥ 3.
Attouch et al. (2018c) improved the constant of this bound
for r > 3. For r < 3, Attouch et al. (2019c) established
an O(t−2r/3) rate. Improved rates under the additional, so-
called, H1(γ) hypothesis were established by Aujol et al.
(2019); Sebbouh et al. (2019); Apidopoulos et al. (2021). A
wide range of variations of the ODE with vanishing damping
were also studied (Attouch & Chbani, 2015; May, 2017; At-
touch et al., 2018b;d; Attouch & Cabot, 2018a; Attouch
et al., 2019b; Attouch & Peypouquet, 2019; Attouch &
László, 2020; Attouch et al., 2020a; 2021a;d; Attouch &
László, 2021; Attouch & Cabot, 2017; Attouch & Laszlo,
2021; Boţ et al., 2021; Attouch et al., 2022; 2021b). Similar
analyses were extended to differential inclusions for non-
differentiable functions (Attouch & Maingé, 2011; Attouch
& Peypouquet, 2016; Aujol & Dossal, 2017b; Apidopoulos
et al., 2017; 2018), monotone inclusions (Boţ & Csetnek,
2016; 2018; Boţ et al., 2018; Bot & Hulett, 2022), primal-
dual methods (Boţ & Nguyen, 2021), and splitting meth-
ods França et al. (2018); Hassan-Moghaddam & Jovanović
(2021); França et al. (2021b); Attouch et al. (2021c).

This intense study of ODEs modeling optimization algo-
rithms motivated the development of tools utilizing the
following ideas: variational principle and Lagrangian me-
chanics (Wibisono et al., 2016; Jordan, 2018; Zhang et al.,
2021; Wilson et al., 2021); duality gap and convex-analytical
techniques (Diakonikolas & Orecchia, 2019); Hamiltonian
mechanics (Diakonikolas & Jordan, 2021); control theory
(Hu & Lessard, 2017); continuous-time complexity lower
bounds (Muehlebach & Jordan, 2020); and perturbation
analysis of physics, leading to the high-resolution ODE (Shi
et al., 2021).

The study of continuous-time models, in turn, motivated the
study of discretizing such ODEs to obtain implementable
algorithms. Discretizing ODEs with vanishing damping
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(Wibisono et al., 2016; Attouch et al., 2018a; Attouch &
Cabot, 2018b; Attouch et al., 2019a; 2020a; Adly & Attouch,
2020a; Attouch & Cabot, 2020; Attouch et al., 2020b; Adly
& Attouch, 2021; Adly et al., 2021a;c; Diakonikolas &
Jordan, 2021) and discretizing alternate ODEs (Scieur et al.,
2017; Wilson et al., 2019; Muehlebach & Jordan, 2019;
Zhang et al., 2019) have been studied. Specifically, Zhang
et al. (2018) achieved an O(1/k2) rate using the Runge–
Kutta discretization on the ODE by Su et al. (2014) under
additional assumptions.

The study of using symplectic integrators, a discretization
scheme designed to conserve energy (Hairer et al., 2006),
for discretizing the ODE models was initiated by Betancourt
et al. (2018) and was further developed in a series of work
(Maddison et al., 2018; França et al., 2020a;b; Muehlebach
& Jordan, 2021; França et al., 2021a). However, these ap-
proaches did not obtain an asymptotic O(1/k2) rate in the
sense usually considered in optimization. An O(1/k2) rate
was obtained by Shi et al. (2019) combining symplectic
integration with the high-resolution ODE framework.

Recently, Even et al. (2021) introduced the “continuized”
framework of accelerated gradient methods, which uses a
stochastic jump process to perform randomized discretiza-
tions. The framework can utilize the simpler continuous-
time analysis while producing an implementable (but ran-
domized) discrete algorithm with rate O(1/k2).

1.3. Contribution

The central thesis, the main contribution, of this paper is that
continuous-time analyses of accelerated gradient methods
significantly simplify under an alternate dilated coordinate
system. We establish this claim by presenting a methodol-
ogy analyzing the ODEs by deriving conservation laws in
dilated coordinate systems and recovering many prior anal-
yses in a streamlined manner. We then use the methodology
to perform the first continuous-time analysis of OGM-G,
whose acceleration mechanism was understood far less than
the acceleration mechanism of Nesterov.

Furthermore, we show that the coordinate change can also
benefit the analysis of discretizations. Specifically, we apply
a semi-second-order symplectic Euler discretization in the
dilated coordinate system to obtain an O(1/k2) rate in the
standard setup of smooth convex minimization, without any
further assumptions such as infinite differentiability. This
is the first result of its kind, in the precise sense clarified
in Section 5.1, and it will be interesting to see, in future
work, to what extent discretizations exploiting our dilated
coordinates can achieve competitive rates.

2. Conservation laws from dilated coordinates
Our main methodology for continuous-time analysis is to
perform a coordinate change and then obtain a conservation
law. In this section, we quickly exhibit this methodology
applied to the classical AGM ODE and then present a gen-
eralized form which we will use in later sections.

Consider problem (1). Assume a minimizer of f exists and
write X? for a minimizer of f . (We do not assume the
minimizer is unique.) Write f? = f(X?). The AGM ODE
presented by Su et al. (2014) is

0 = Ẍ +
3

t
Ẋ +∇f(X) (3)

with initial condition X(0) = X0, Ẋ(0) = 0. Here,
X : [0,∞) → Rn is a function of the time t, but we often
write X in place of X(t) for the sake of notational brevity.
Consider the dilated coordinate W = tα(X −X?) with a
yet undetermined α ∈ R. The ODE in the W coordinate is

0 =
1

tα
Ẅ +

3− 2α

tα+1
Ẇ +∇WU(W, t) (4)

with

U(W, t) =
α(α− 2)

2tα+2
‖W‖2+tα (f (X(W, t))− f?) (5)

and X(W, t) = W
tα +X?. Since U contains tα(f(X)− f?),

we choose α = 2 in anticipation of the O(1/t2) rate to get

0 =
1

t2
Ẅ − 1

t3
Ẇ +∇WU(W, t). (6)

Taking the inner product between Ẇ and (6) and using (2),
we get

0 =
d

dt

(
1

2t2

∥∥∥Ẇ∥∥∥2)+
〈
∇WU(W, t), Ẇ (t)

〉
=

d

dt

(
1

2t2

∥∥∥Ẇ∥∥∥2 + U(W (t), t)

)
− ∂

∂t
U(W (t), t).

The corresponding conservation law is

E ≡ 2 ‖X0 −X?‖2

= lim
t0→0

(
1

2t20

∥∥∥Ẇ (t0)
∥∥∥2 + U(W (t0), t0)

)
=

1

2t2

∥∥∥Ẇ (t)
∥∥∥2 + U(W (t), t)−

∫ t

0

∂

∂s
U(W (s), s) ds.

From ∂
∂tX(W, t) = − 2

t3W = − 2
t (X −X?), we get

− ∂

∂t
U(W, t) = − ∂

∂t
t2 (f (X(W, t))− f?)

= 2t
(
f? − f (X)− 〈∇f(X), X? −X〉

)
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and

E ≡ 2 ‖X0 −X?‖2

= t2 (f(X)− f?) +
1

2

∥∥∥tẊ + 2(X −X?)
∥∥∥2 (7)

+

∫ t

0

2s
(
f? − f (X)− 〈∇f(X), X? −X〉

)
ds

for all t ≥ 0. Since f is convex, the integrand is nonnegative,
and we conclude

f(X)− f? ≤
E

t2
=

2 ‖X0 −X?‖2

t2
.

General form of conservation laws. We now generalize
the previous analysis for later sections. LetU : Rn×R→ R,
and consider the ODE

0 = a(t)Ẅ + b(t)Ẇ +∇WU(W, t).

Take the inner product with Ẇ and integrate to obtain the
conservation law

E ≡ a(t0)

2

∥∥∥Ẇ (t0)
∥∥∥2 + U(W (t0), t0) (8)

=
a(t)

2

∥∥∥Ẇ (t)
∥∥∥2 +

∫ t

t0

(
b(s)− ȧ(s)

2

)∥∥∥Ẇ (s)
∥∥∥2 ds

+ U(W (t), t)−
∫ t

t0

∂

∂s
U(W (s), s) ds.

Note that if a(t) = 1 and U(W, t) = U(W ), then this
convservation law is nothing but the familiar conservation
of energy in physics; within E, the first term (1/2)‖Ẇ‖2
is kinetic energy, the second term

∫ t
t0
b‖Ẇ‖2ds is energy

dissipated way as heat due to friction, the third term U(W )
is potential energy, and the fourth term vanishes as the
potential U is independent of time.

Throughout this paper, we consider dilated coordinates of
the form W = eγ(t)(X − Xc) for some Xc ∈ Rn. As
a consequence, U(W, t) will contain eγ(t)(f(X(W, t)) −
f(Xc)). The convexity inequality enters the integral of
∂
∂sU(W, s) through the identity

− ∂

∂t
eγ(t) (f (X(W, t))− f(Xc))

= γ̇(t)eγ(t)
(
f(Xc)− f (X)− 〈∇f(X), Xc −X〉

)
.

Note, if eγ(t) = 1 for all t, i.e. if there is no coordinate
change, then γ̇(t) = 0 and the convexity inequality does
not enter the conservation law. In this sense, the coordinate
change is essential for our analysis to utilize convexity.

Connection with Lyapunov analyses. Our analyses
based on conservation laws are not fundamentally different

from the Lyapunov analyses of the prior work. The first two
terms of the conservation law for the AGM ODE

Φ(t) = t2 (f(X)− f?) +
1

2

∥∥∥tẊ + 2(X −X?)
∥∥∥2 ,

form the exact Lyapunov function of Su et al. (2014).
Once Φ(t) is stated, it is relatively straightforward to verify
Φ̇(t) ≤ 0 through direct differentiation. The conservation
laws of Section 3 also contain Lyapunov functions of prior
work (Attouch et al., 2019c; Aujol & Dossal, 2017a; Aujol
et al., 2019).

The analyses of prior work often start by stating a Lyapunov
function of unclear origin and then proceed with the analysis.
In truth, these Lyapunov functions are obtained through
many hours of trial and error. A core motivation of our work
is to provide a systematic methodology for obtaining such
Lyapunov functions.

The closely related prior work of Diakonikolas & Jordan
(2021) presents a methodology based on Hamiltonian me-
chanics. While they also provide a unified methodology for
analyzing continuous-time models of accelerated gradient
methods, there are some key differences that we further
clarify in Appendix B. One key difference is that while we
start from a given ODE and derive conservations laws, Di-
akonikolas & Jordan (2021) start from a Hamiltonian with
“potential energy“ and a “kinetic energy” terms and derive
the ODE. From our framework, a ‖W‖2 term arises natu-
rally as in (5) and as in the third term of (10), but ‖W‖2
does not arise from the approach of Diakonikolas & Jordan
(2021). Our analyses of the generalized AGM, SC-AGM,
and OGM-G ODEs crucially rely on using the ‖W‖2 term
and therefore cannot be obtained by the methodology of
Diakonikolas & Jordan (2021) as is.

3. Continuous-time analyses of Nesterov-type
acceleration via conservation laws in
dilated coordinate systems

Again, consider problem (1). Assume a minimizer of f
exists and writeX? for a minimizer of f . Write f? = f(X?).
Su et al. (2016) presented the generalized ODE

0 = Ẍ +
r

t
Ẋ +∇f(X) (9)

and provided Lyapunov analyses for r ≥ 3. We consider
the dilated coordinate W = tα(X − X?) and follow a
similar line of reasoning as that of Section 2 to obtain the
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conservation law

E ≡ tα (f (X)− f?) +
1

2
tα−2

∥∥∥tẊ + α(X −X?)
∥∥∥2

+
α(α+ 1− r)

2
tα−2 ‖X −X?‖2 (10)

+

∫ t

t0

(
(2r − 3α)sα−3

2

∥∥∥sẊ + α(X −X?)
∥∥∥2

+
α(α+ 1− r)(α+ 2)

2
sα−3 ‖X −X?‖2

)
ds

+

∫ t

t0

αsα−1 (f? − f(X)− 〈∇f(X), X? −X〉) ds.

Note that when r = 3, α = 2, and t0 = 0, half of the terms
vanish and the conservation law reduces to (7).

Throughout this section, we present the analysis results
based on conservation laws while deferring the detailed
derivations to Appendix C.

3.1. AGM ODE r > 3

Let r > 3. Plug α = 2 and t0 = 0 into (10) and evaluate
integrals as described in Appendix C.2 to get

E ≡ (5− r) ‖X0 −X?‖2

= −2(r − 3) ‖X0 −X?‖2

+ t2 (f(X)− f?) +
1

2

∥∥∥tẊ + 2(X −X?)
∥∥∥2

+ (r − 3) ‖X −X?‖2 +

∫ t

0

r − 3

s

∥∥∥sẊ∥∥∥2 ds
+

∫ t

0

2s (f? − f(X)− 〈∇f(X), X? −X〉) ds.

All terms depending on t are nonnegative when r > 3. Thus
E+ 2(r− 3) ‖X0 −X?‖2 ≥ t2(f(X)− f?) holds, and we
conclude

f(X)− f? ≤
(r − 1) ‖X0 −X?‖2

t2
.

This rate improves upon the rate f(X) − f? ≤
(r−1)2‖X0−X?‖2

2t2 by Su et al. (2014) and matches the rate of
Attouch et al. (2018c). This conservation law also implies
E ≥ (r − 3) ‖X −X?‖2, and boundedness of ‖X −X?‖
can be used to establish convergence of X(t) (Chambolle &
Dossal, 2015; Attouch et al., 2018c).

3.2. AGM ODE r < 3

Let 0 ≤ r < 3. Plug α = 2r
3 to (10) to get

E = t
2r
3 (f (X)− f?) +

r(3− r)
9

t
2r
3 −2 ‖X −X?‖2

+
1

2
t
2r
3 −2

∥∥∥∥tẊ +
2r

3
(X −X?)

∥∥∥∥2
+

∫ t

t0

2

27
r(3− r)(3 + r)s

2r
3 −3 ‖X −X?‖2 ds

+

∫ t

t0

2r

3
s

2r
3 −1 (f? − f(X)− 〈∇f(X), X? −X〉) ds.

We let the starting time be nonzero, i.e., t0 > 0, to ensure
all of the terms do not blow up. All terms are nonnegative.
Thus E ≥ t 2r

3 (f(X)− f?), and we conclude

f(X)− f? ≤
E

t
2r
3

.

This recovers the result of Attouch et al. (2019c).

3.3. AGM ODE with growth condition

Aujol et al. (2019) consider convex functions satisfying the
so-called “H1(γ) hypothesis”, defined as

f(x)− f? ≤
1

γ
〈∇f(x), x−X?〉 , ∀x ∈ Rn

for a γ ≥ 1, and obtain improved rates. To utilize the H1(γ)
hypothesis, rather than the convexity inequality, we rescale
the ODE by multiplying tβ and then obtain the conservation
law (8) with the rescaled ODE. The derivations are detailed
in Appendix C.3. With values α = 2r

γ+2 and β = 2(γ−1)r
γ+2

we get

E ≡ t
2γr
γ+2 (f(X)− f?) +

1

2
t

2γr
γ+2−2

∥∥∥tẊ + α(X −X?)
∥∥∥2

+
r(2− γ(r − 1))

(γ + 2)2
t

2γr
γ+2−2‖X −X?‖2

+

∫ t

t0

2r(2r + 2− γ(r − 1))(2− γ(r − 1))

(γ + 2)3

s
2γr
γ+2−3‖X −X?‖2ds

+

∫ t

t0

s
2γr
γ+2−1 2γr

γ + 2(
f? − f(X)− 1

γ
〈∇f(X), X? −X〉

)
ds.

When γ ≥ 1 and r ≤ 1 + 2
γ , all terms are nonnegative, and

we get

f(X)− f? ≤
E

t
2γr
γ+2

,
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which recovers the result of (Aujol et al., 2019). Note that
this rate is better than that of Section 3.2 since 2γr

γ+2 ≥
2r
3

for γ ≥ 1.

3.4. SC-AGM

Wilson et al. (2021) presented the following ODE of the
strongly convex accelerated gradient method (SC-AGM)

0 = Ẍ + 2
√
µẊ +∇f(X) (11)

with initial condition X(0) = X0, Ẋ(0) = 0, where µ > 0
is the strong convexity parameter of f .

Consider the dilated coordinate W = e
√
µt(X −X?). The

resulting conservation law with t0 = 0 is

E ≡ f(X0)− f?

= −µ
2
‖X0 −X?‖2

+ e
√
µt

(
f(X)− f? +

1

2

∥∥∥Ẋ +
√
µ(X −X?)

∥∥∥2)
+

∫ t

0

√
µe
√
µs

2

∥∥∥Ẋ∥∥∥2 ds+

∫ t

0

√
µe
√
µs
(
...
)
ds,

where

(...) = f? − f(X)− 〈∇f(X), X? −X〉 −
µ

2
‖X −X?‖2

≥ 0.

The inequality follows from µ-strong convexity of f . All
the terms depending on t are nonnegative, thus E +
µ
2 ‖X0 −X?‖2 ≥ e

√
µt(f(X)− f?), and we conclude

f(X)− f? ≤ e−
√
µt
(
f(X0)− f? +

µ

2
‖X0 −X?‖2

)
.

This recovers the result of (Wilson et al., 2021).

3.5. Gradient flow

We conclude this section by showing that dilated coordinates
also simplify the analysis of the gradient flow ODE

0 = Ẋ +∇f(X)

with X(0) = X0, which is a first-order ODE model of
gradient descent.

Consider the dilated coordinate W = t(X − X?). With
a(t) = 0 in (8), we get the conservation law with t0 = 0

E ≡ −1

2
‖X0 −X?‖2

= t (f(X)− f?) +
1

2
‖X −X?‖2 − ‖X0 −X?‖2

+

∫ t

0

s
∥∥∥Ẋ∥∥∥2ds+

∫ t

0

(f? − f(X)− 〈∇f(X), X? −X〉) ds.

We recover the well-known result

f(X)− f? ≤
‖X0 −X?‖2

2t
.

4. Continuous-time analysis of OGM-G
We now present a novel ODE model of OGM-G (Kim &
Fessler, 2021), which optimally reduces the squared gradi-
ent magnitude (rather than the function value) for smooth
convex minimization. Consider problem (1). Assume
f? = infx∈Rn f(x) > −∞. (We do not assume a solu-
tion exists.) Following steps similar to those of Su et al.
(2014) with OGM-G, we obtain the OGM-G ODE

0 = Ẍ − 3

t− T
Ẋ + 2∇f(X)

for t ∈ (0, T ) with initial value X(0) = X0, Ẋ(0) = 0.
The precise derivation of the OGM-G ODE and the calcula-
tions throughout this section are presented in Appendix D.

Choose the dilated coordinate W = (T − t)α(X −Xc) for
some Xc ∈ Rn. Since we expect the rate O

(
1/T 2

)
, we

choose α = −2. The corresponding conservation law is

E ≡ 2

T 2
(f(X0)− f(Xc))

=
2

(T − t)2
(f(X)− f(Xc))−

2

(T − t)4
‖X −Xc‖2

+
1

2(T − t)4
∥∥∥(T − t)Ẋ + 2(X −Xc)

∥∥∥2
+

∫ t

0

4

(T − s)3
(f(Xc)− f(X)− 〈∇f(X), Xc −X〉) ds.

4.1. OGM-G ODE r = −3

We now establish an O(1/T 2) rate on ‖∇f(X(T ))‖2 via a
conservation law. At first, this may seem curious as the con-
servation law contains no terms directly involving∇f(X).

We first characterize the dynamics of the solution to the
OGM-G ODE near the terminal time t = T .

Lemma 4.1. Let X : [0, T ) → Rn be the solution to the
OGM-G ODE. We can continuously extend X(t), Ẋ(t),
Ẍ(t) to t = T with

Ẋ(T ) = 0, Ẍ(T ) = lim
t→T−

Ẋ(t)

t− T
= ∇f(X(T )).

Proof outline. For simplicity, assume limt→T− Ẋ(t) and
limt→T− Ẍ(t) = limt→T−

Ẋ(t)−Ẋ(T )
t−T exist. We will for-

mally prove these assumptions in Appendix D.3.

Consider the conservation law with α = 0 and Xc = X0:

E ≡ 1

2

∥∥∥Ẋ∥∥∥2 + 2(f(X)− f(X0)) +

∫ t

0

3
∥∥∥Ẋ∥∥∥2
T − s

ds.
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Since E is independent of time and since the first two terms

are bounded, we have
∫ T
0

3‖Ẋ‖2
T−s ds < ∞. The finite inte-

gral implies limt→T− Ẋ(t) = 0. Furthermore,

0 = lim
t→T−

(
Ẍ(t)− 3

t− T
Ẋ(t) + 2∇f(X(t))

)
= −2Ẍ(T ) + 2∇f(X(T )).

We now prove the promised result.

Theorem 4.2. Let X : [0, T ] → Rn be the extended solu-
tion to the OGM-G ODE. Then X exhibits the rate

‖∇f(X(T ))‖2 ≤ 4 (f(X0)− f(X(T )))

T 2
≤ 4 (f(X0)− f?)

T 2
.

Proof. Consider the conservation law withXc = X(T ) and
define the Lyapunov function

Φ(t) =
2

(T − t)2
(f(X)− f(X(T )))

− 2

(T − t)4
‖X −X(T )‖2

+
1

2(T − t)4
∥∥∥(T − t)Ẋ + 2(X −X(T ))

∥∥∥2 .
Then Φ(t) is monotonically nonincreasing by the conserva-
tion law, and so Φ(0) ≥ limt→T− Φ(t).

By applying L’Hôpital’s rule,

lim
t→T−

f(X(t))− f(X(T ))

(T − t)2
=

1

2
‖∇f(X(T ))‖2

lim
t→T−

X(t)−X(T )

(T − t)2
=

1

2
∇f(X(T )).

Therefore,

lim
t→T−

Φ(t) = ‖∇f(X(T ))‖2 − 1

2
‖∇f(X(T ))‖2 + 0

=
1

2
‖∇f(X(T ))‖2

and we conclude
1

2
‖∇f(X(T ))‖2 ≤ 2

T 2
(f(X0)− f(X(T ))) .

In the proof of Theorem 4.2, ∇f does not explicitly appear
in the conservation law and only arises at the terminal time
T due to Lemma 4.1. For this reason, we can establish a
bound on ‖∇f(X(t))‖2 only at the terminal time.

Lee et al. (2021) presented the first Lyapunov analysis of the
discrete-time OGM-G. We show in Appendix D.4 that the
Lyapunov function of Theorem 4.2 is the continuous-time
analog of the Lyapunov function of Lee et al. (2021). The
discrete-time analysis for OGM-G also establish a rate on
‖∇f(xk)‖2 only for the terminal iteration k = K.

4.2. OGM-G ODE for r < −3

Following Su et al. (2014), we generalize the OGM-G ODE
to general r:

0 = Ẍ +
r

t− T
Ẋ + 2∇f(X).

In Appendix D.3, we directly extend the argu-
ments of Lemma 4.1 to conclude limt→T−

Ẋ(t)
t−T =

− 2
r+1∇f(X(T )).

With the dilated coordinate W = (T − t)−2(X −X(T )),
we get the conservation law

E ≡ 2

T 2
(f(X)− f(X(T ))) +

r + 3

T 4
‖X −X(T )‖2

=
2

(T − t)2
(f(X)− f(X(T ))) +

r + 1

(T − t)4
‖X −X(T )‖2

+
1

2(T − t)4
∥∥∥(T − t)Ẋ + 2(X −X(T ))

∥∥∥2
+

∫ t

0

(−(r + 3))

(T − s)5
∥∥∥(T − s)Ẋ + 2(X −X(T ))

∥∥∥2 ds
+

∫ t

0

4

(T − s)3
(f(X(T ))−f(X)− 〈∇f(X), X(T )−X〉) ds.

Theorem 4.3. Let X : [0, T ] → Rn be the extended solu-
tion to the OGM-G ODE with r < −3. Then,

‖∇f(X(T ))‖2 ≤ 2(−1− r) (f(X0)− f(X(T )))

T 2

Proof outline. The arguments are similar to those of The-
orem 4.2: Define a Lyapunov function Φ(t) based on
the conservation law and consider the inequality Φ(0) ≥
limt→T− Φ(t). Details are presented in Appendix D.5.

4.3. Obtaining ‖∇f(X(T ))‖2 ≤ O(1/T 4) with OGM +
OGM-G ODE

We state a simple technique to obtain an
O(‖x0 − x?‖2 /T 4) rate from the O((f(X0) − f?)/T

2)
rate of the OGM-G ODE. This technique is based
on the idea of Nesterov (2012), Nesterov et al.
(2020) to concatenate AGM with OGM-G to obtain
a ‖∇f(xK)‖2 ≤ O(‖x0 − x?‖2 /K4) rate.

If one starts the AGM ODE with XF(0) = XF
0 and

ẊF(0) = 0, the terminal solution XF(T ) satisfies
f(XF(T )) − f? ≤ 2 ‖X0 −X?‖2 /T 2. Then we start the
OGM-G ODE with XG(0) = XF(T ) and ẊG(0) = 0 and
obtain the solution XG(T ) satisfying

∥∥∇f(XG(T ))
∥∥2 ≤

4(f(XG(0))−f?)/T 2. Concatenating these two guarantees,
we obtain

∥∥∇f(XG(T ))
∥∥2 ≤ 8 ‖X0 −X?‖2 /T 4.
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5. Discretization in dilated coordinates via
semi-second-order symplectic Euler

In this section, we show that discretizing the AGM ODE
(r = 3) using a semi-second-order symplectic Euler dis-
cretization in the dilated coordinate system leads to an al-
gorithm with an O(1/k2) rate. Despite the extensive prior
work on continuous-time analyses and discretizations of
the AGM ODE, obtaining an accelerated rate through a di-
rect and “natural” discretization has been surprisingly tricky.
Our result is the first to accomplish this, in the precise sense
clarified in Section 5.1.

Again, the ODE (3), restated, is 0 = Ẍ + 3
t Ẋ +∇f(X).

With W = t2(X −X?), the ODE (6), restated, is

0 =
1

t2
Ẅ − 1

t3
Ẇ +∇WU(W, t). (6)

We first identify a generalized coordinate W and conjugate
momentum P to replace X and Ẋ . The dilated coordinate
W = t2(X − X?) has been chosen, so we determine the
generalized momentum via the Lagrangian formulation.

Recall from (5) that U(W, t) = t2 (f(X(W, t))− f?). De-
fine the Lagrangian as

L(W, Ẇ , t) =
1

2t

∥∥∥Ẇ∥∥∥2 − t U(W, t).

Then the Euler–Lagrange equation d
dt∇ẆL = ∇WL yields

the ODE (6) and P = ∇ẆL = Ẇ
t = tẊ + 2(X −X?) is

the conjugate momentum. Express (6) in W and P :

Ṗ = −t∇f(X(W, t))

Ẇ = tP

and Ẅ = P − t2∇f (X(W, t)).

Inspired by the symplectic Euler (Hairer et al., 2006) and
velocity Verlet integrators (Verlet, 1968; Swope et al., 1982;
Allen & Tildesley, 2017) we consider alternating updates of
W and P but use a second-order update for W :

P (t+ h) ≈ P (t)− t∇f(X)h

W (t+ h) ≈W (t) + Ẇ (t)h+ Ẅ (t)
h2

2

= W (t) + tP (t)h+
(
P (t)− t2∇f(X(W, t))

)h2
2
.

We refer to this method as a semi-second-order symplectic
Euler. This discretization is also an instance of the Nyström
method (Hairer et al., 2006).

Identifying wk and pk with W (hk) and P (hk) and defining
xk through wk = h2k2(xk −X?), we get the method

pk+1 = pk − kh2∇f (xk)

xk+1 =
k2

(k + 1)2

(
xk−

h2

2
∇f (xk)

)
+

2k + 1

(k + 1)2

(pk+1

2
+X?

)
.

Finally, letting s = h2, θk = k
2 and zk = pk

2 +X?, we get

x+k = xk −
s

2
∇f(xk)

zk+1 = zk − sθk∇f(xk) (12)

xk+1 =
θ2k
θ2k+1

x+k +

(
1− θ2k

θ2k+1

)
zk+1

for k = 0, 1, . . . . The starting point is x0 = z0 = X0 ∈ Rn,
since z0 corresponds to P (0)

2 +X? = X0.

Theorem 5.1. Assume f is convex and L-smooth. Assume
f has a minimizer X?. For s ∈

(
0, 2

L

]
, (12) exhibits the

rate
f(x+k )− f? ≤

2 ‖X0 −X?‖2

sk2
.

Proof outline. The proof is based on the Lyapunov analysis
Φk ≤ Φk−1 ≤ · · · ≤ Φ0 with

Φk=2ckθ
2
k

(
f(xk)−f?−

s

4
‖∇f(xk)‖2

)
+

1

s
‖zk+1 −X?‖2

and ck = θk+1

θ2k+1−θ
2
k

for k = 0, 1, . . . . The details are pre-
sented in Appendix E.

5.1. Discussion

Hamiltonian mechanics. Some may wonder what can be
said from a Hamiltonian mechanics perspective. We discuss
this matter briefly in Appendix F, and (Diakonikolas & Jor-
dan, 2021; França et al., 2021a) pursues this direction deeply.
Here, we point out the quick observation that the explicit
time-dependence of the Lagrangian makes the Hamiltonian
time-dependent, and this time-dependence makes the Hamil-
tonian a non-conserved quantity. Therefore, the classical
theory of symplectic integrators is not immediately appli-
cable, but we nevertheless use our method and obtain an
accelerated rate.

Prior discretizations. The discretization of (Wibisono
et al., 2016) achieves an O(1/k2) rate, but, arguably, this
discretization “does not flow natural from the dynamical-
systems framework” (Jordan, 2018, p. 529). Zhang et al.
(2018) achieved an accelerated rate with a Runge–Kutta
method, but their O(1/k2) rate requires the additional as-
sumption of infinite differentiability. Shi et al. (2019) used
a symplectic integrator with Ẋ as the momentum (no coor-
dinate change) and achieved an O(1/k2) rate, but they cru-
cially rely on the high-resolution ODE formulation. França
et al. (2021a) proposed a generalized symplectic integra-
tor and established O(1/k2) rate for exponentially large
k depending on the stepsize, but their rate does not hold
for all k ∈ N. Even et al. (2021) introduced alternative
“continuized” framework and obtained O(1/k2) with ran-
domized discretizations. On the other hand, our result is
a direct, non-randomized discretization of the AGM ODE



Continuous-Time Analysis of AGM via Conservation Laws in Dilated Coordinate Systems

that achieves an O(1/k2) rate without making additional
assumptions or using a high-resolution formulation.

Discretized rate surpasses AGM. The rate of Theo-
rem 5.1 with s = 2

L is

f(x+k )− f? ≤
L ‖X0 −X?‖2

k2
.

Interestingly, this rate is smaller (better) than the rate of
Nesterov’s AGM by a factor of 2 (Nesterov, 1983) but is
slightly larger (worse) than the exact optimal rate of OGM
(Drori & Teboulle, 2014; Kim & Fessler, 2016; Drori, 2017).
This improvement seems to be in part due to the choice of
Lyapunov function, inspired by (Park et al., 2021), that al-
lows a tighter analysis. By taking the continuous-time limit
of AGM and then discretizing, we arrived at a discretized
algorithm that is better than the original AGM.

Interpreting zk as conjugate momentum. Lee et al.
(2021) point out that many known accelerated gradient meth-
ods have an auxiliary zk-sequence satisfying a geometric
structure. In our analysis of the AGM ODE, we identify that
zk is (up to a factor-2 scaling and translation with X?) the
conjugate momentum P = Ẇ/t = tẊ+ 2(X−X?) of the
dilated coordinate W = t2(X −X?).

Moreover, we’ve observed that this interpretation of the z-
variables as conjugate momenta of the dilated coordinate
systems (with some rescaling and translation) also holds
in other setups, including the SC-AGM and the OGM-G
setups. Specifically, when we discretize the ODEs in the
dilated coordinate systems W (t), the discretized methods
closely resemble the known accelerated methods, and the
z-variables roughly correspond to conjugate momenta P (t).
We leave the formalization and development of this obser-
vation as future work.

6. Conclusion
This work presents a methodology for analyzing continuous-
time models of accelerated gradient methods through de-
riving conservation laws in dilated coordinate systems. Us-
ing this methodology, we recover many known continuous-
time analyses in a streamlined manner and obtain novel
continuous-time analyses of OGM-G.

We hypothesize that our dilated coordinates can simplify
analyses of other setups beyond those explored in Sections 3
and 4. For example, exploring the use of dilated coordinates
in stochastic differential equations modeling stochastic op-
timization and investigating whether dilated coordinates
generally simplify discretization, as was the case for the
AGM ODE (r = 3) in Section 5, are interesting direc-
tions of future work. Finally, finding a more fundamental
understanding of the interpretation of zk as the conjugate
momentum would also be interesting.
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A. Partial derivative notation
For U : Rn × R→ R, we assign symbols W ∈ Rn and t ∈ R for the inputs, i.e., we write U(W, t). At the same time, we
consider the curve W : R → Rn a function of t ∈ R, i.e., we write W (t). When we provide the curve W (t) as the first
input to U , we get U(W (t), t), which is now a function solely of t ∈ R, and we can take the total derivative d

dt of it. Using
the chain rule of vector calculus, we get

d

dt
U(W (t), t) =

〈
(D1U)(W (t), t), Ẇ (t)

〉
+ (D2U)(W (t), t)

where D1U is the derivative of U(·, ·) with respect to the first n coordinates and D2U is the derivative of U(·, ·) with respect
to the last coordinate. When U(W, t) is viewed as a function of W and t (when W is an input variable independent of t
rather than a curve), then

D1U = ∇WU, D2U =
∂

∂t
U.

Write ∇WU(W (t), t) to mean take the partial derivative of U(W, t) with respect to W and then plug in W = W (t).
Likewise, write ∂

∂tU(W (t), t) to mean take the partial derivative of U(W, t) with respect to t and then plug in W = W (t).
Finally, we can write

d

dt
U(W (t), t) =

〈
(D1U)(W (t), t), Ẇ (t)

〉
+ (D2U)(W (t), t)

=
〈
∇WU(W (t), t), Ẇ (t)

〉
+
∂

∂t
U(W (t), t).

B. Comparison with (Diakonikolas & Jordan, 2021)
Diakonikolas & Jordan (2021) present a methodology based on Hamiltonian mechanics, and their goal is also to provide a
unified methodology for analyzing continuous-time models of accelerated gradient methods. However, our methodology
differs from that of Diakonikolas & Jordan (2021) in the following three ways.

• We start from a given ODE and derive conservations laws, while Diakonikolas & Jordan (2021) start from a Hamiltonian
and derive the ODE.

• In our framework, different choices of ‘α’ produce different conservation laws for one fixed ODE, but in (Diakonikolas
& Jordan, 2021) different choices of ‘α’ corresponds to different ODEs and different corresponding energies.

• Our framework accommodates translation with respect to an arbitrary “center point” Xc.

Our analyses of the AGM, SC-AGM, and OGM-G ODEs crucially rely on these differences and therefore cannot be obtained
by the methodology of Diakonikolas & Jordan (2021) as-is:

• The approach of Diakonikolas & Jordan (2021) does not lead to a Lyapunov function or a conservation law containing
‖W‖2. Many of our results crucially rely on using an energy U(W, t) with the ‖W‖2 term.

• The translation with respect to Xc = X(T ) is essential for the analysis of OGM-G ODE in Theorem 4.2.

C. Omitted calculations of Section 3
C.1. Conservation law for generalized r

We start with ODE (9)

0 = Ẍ +
r

t
Ẋ +∇f(X).

Now consider the coordinate change W = tα(X −X?). Then we see

W = tα(X −X?)

Ẇ = tαẊ + αtα−1(X −X?)

Ẅ = tαẌ + 2αtα−1Ẋ + α(α− 1)tα−2(X −X?).
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From this, we can rewrite X , Ẋ , Ẍ in terms of W , Ẇ , Ẅ ,

X =
W

tα
+X?

Ẋ =
Ẇ

tα
− α W

tα+1

Ẍ =
1

tα
Ẅ − 2α

tα+1
Ẇ +

α(α+ 1)

tα+2
W.

Plugging these to (9) we get ODE

0 =
1

tα
Ẅ +

r − 2α

tα+1
Ẇ +

α(α+ 1− r)
tα+2

W +∇f
(
W

tα
+X?

)
.

Now by defining

U(W, t) =
α(α+ 1− r)

2tα+2
‖W‖2 + tα

(
f

(
W

tα
+X?

)
− f?

)
we can rewrite the ODE as

0 =
1

tα
Ẅ +

r − 2α

tα+1
Ẇ +∇WU(W, t). (13)

Now plugging a(t) = 1
tα , b(t) = r−2α

tα+1 , from conservation law (8) we get

E ≡ 1

2tα0

∥∥∥Ẇ (t0)
∥∥∥2 +

α(α+ 1− r)
2tα+2

0

‖W (t0)‖2 + tα0

(
f

(
W (t0)

tα0
+X?

)
− f?

)
=

1

2tα

∥∥∥Ẇ∥∥∥2 +
α(α+ 1− r)

2tα+2
‖W‖2 + tα

(
f

(
W

tα
+X?

)
− f?

)
+

∫ t

t0

2r − 3α

2sα+1

∥∥∥Ẇ∥∥∥2 ds
−
∫ t

t0

(
αsα−1

(
f

(
W

sα
+X?

)
− f? −

〈
∇f

(
W

sα
+X?

)
,
W

sα

〉)
− α(α+ 1− r)(α+ 2)

2sα+3
‖W‖2

)
ds.

Rewriting in terms of X , Ẋ , Ẍ with some reordering we have

E ≡ tα0 (f (X(t0))− f?) +
1

2
tα−20

∥∥∥t0Ẋ(t0) + α(X(t0)−X?)
∥∥∥2 +

α(α+ 1− r)
2

tα−20 ‖X(t0)−X?‖2 (10)

= tα (f (X)− f?) +
1

2
tα−2

∥∥∥tẊ + α(X −X?)
∥∥∥2 +

α(α+ 1− r)
2

tα−2 ‖X −X?‖2

+

∫ t

t0

(
(2r − 3α)sα−3

2

∥∥∥sẊ + α(X −X?)
∥∥∥2 +

α(α+ 1− r)(α+ 2)

2
sα−3 ‖X −X?‖2

)
ds

+

∫ t

t0

αsα−1 (f? − f(X)− 〈∇f(X), X? −X〉) ds.

C.2. AGM ODE with r > 3

Plugging α = 2, t0 = 0 to (10), we have

E ≡ (5− r) ‖X0 −X?‖2

= t2 (f (X)− f?) +
1

2

∥∥∥tẊ + 2(X −X?)
∥∥∥2 + (3− r) ‖X −X?‖2

+

∫ t

0

(
r − 3

s

∥∥∥sẊ + 2(X −X?)
∥∥∥2 +

4(3− r)
s

‖X −X?‖2
)
ds

+

∫ t

0

2s (f? − f(X)− 〈∇f(X), X? −X〉) ds.
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Also, since∫ t

0

(
r − 3

s

∥∥∥sẊ + 2(X −X?)
∥∥∥2 +

4(3− r)
s

‖X −X?‖2
)
ds

=

∫ t

0

(
r − 3

s

∥∥∥sẊ∥∥∥2 + 4(r − 3)
〈
Ẋ,X −X?

〉)
ds =

∫ t

0

r − 3

s

∥∥∥sẊ∥∥∥2 ds+
[
2(r − 3) ‖X −X?‖2

]t
0

=

∫ t

0

r − 3

s

∥∥∥sẊ∥∥∥2 ds+ 2(r − 3)
(
‖X −X?‖2 − ‖X0 −X?‖2

)
.

Therefore

E ≡ (5− r) ‖X0 −X?‖2

= t2 (f (X)− f?) +
1

2

∥∥∥tẊ + 2(X −X?)
∥∥∥2 + (r − 3) ‖X −X?‖2 − 2(r − 3) ‖X0 −X?‖2

+

∫ t

0

r − 3

s

∥∥∥sẊ∥∥∥2 ds+

∫ t

0

2s
(
f? − f(X)− 〈∇f(X), X? −X〉

)
ds.

C.3. AGM ODE with growth condition

Rescaling (13) by multiplying tβ we get

0 =
1

tα−β
Ẅ +

r − 2α

tα−β+1
Ẇ +∇W

(
α(α+ 1− r)

2tα−β+2
‖W‖2 + tα+β

(
f

(
W

tα
+X?

)
− f?

))
.

Now plugging a(t) = 1
tα−β , b(t) = r−2α

tα−β+1 , from conservation law (8) we get

E ≡ 1

2tα−β0

∥∥∥Ẇ (t0)
∥∥∥2 +

α(α+ 1− r)
2tα−β+2

0

‖W (t0)‖2 + tα+β0

(
f

(
W (t0)

tα0
+X?

)
− f?

)
=

1

2tα−β

∥∥∥Ẇ∥∥∥2 +
α(α+ 1− r)

2tα−β+2
‖W‖2 + tα+β

(
f

(
W

tα
+X?

)
− f?

)
+

∫ t

t0

2r − 3α− β
sα−β+1

∥∥∥Ẇ∥∥∥2 ds+

∫ t

t0

α(α+ 1− r)(α− β + 2)

2sα−β+3
‖W‖2 ds

−
∫ t

t0

sα+β−1
(

(α+ β)

(
f

(
W

sα
+X?

)
− f?

)
− α

〈
∇f

(
W

sα
+X?

)
,
W

sα

〉)
ds.

Rewriting in terms of X we have

E ≡ tα+β0 (f(X(t0)))− f?) +
1

2
tα+β−20

∥∥∥t0Ẋ(t0) + α(X(t0)−X?)
∥∥∥2 +

1

2
α(α+ 1− r)tα+β−20 ‖X(t0)−X?‖2

= tα+β(f(X)− f?) +
1

2
tα+β−2

∥∥∥tẊ + α(X −X?)
∥∥∥2 +

1

2
α(α+ 1− r)tα+β−2‖X −X?‖2

+

∫ t

t0

2r − 3α− β
2

sα+β−3
∥∥∥sẊ + α(X −X?)

∥∥∥2 +

∫ t

t0

α(α+ 1− r)(α− β + 2)

2
sα+β−3‖X −X?‖2ds

+

∫ t

t0

sα+β−1
(

(α+ β)(f? − f(X))− α 〈∇f(X), X? −X〉
)
ds. (14)

To utilize the H1(γ) hypothesis, it is natural to choose α, β such that α
α+β = 1

γ . The choice α = 2r
γ+2 , β = 2(γ−1)r

γ+2 makes
α

α+β = 1
γ , and 2r − 3α− β = 0, and we get the conservation law used in Section 3.3.

E ≡ t
2γr
γ+2 (f(X)− f?) +

1

2
t

2γr
γ+2−2

∥∥∥∥tẊ +
2r

γ + 2
(X −X?)

∥∥∥∥2 +
r(2− γ(r − 1))

(γ + 2)2
t

2γr
γ+2−2‖X −X?‖2

+

∫ t

t0

2r(2r + 2− γ(r − 1))(2− γ(r − 1))

(γ + 2)3
s

2γr
γ+2−3‖X −X?‖2ds

+

∫ t

t0

s
2γr
γ+2−1 2γr

γ + 2

(
f? − f(X)− 1

γ
〈∇f(X), X? −X〉

)
ds.
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C.3.1. LYAPUNOV FUNCTION FOR r > 3 IN (SU ET AL., 2014)

Plugging α = r − 1, β = 3− r, t0 = 0 to (14), we have

E ≡ (r − 1)2

2
‖X0 −X?‖2

= t2(f(X)− f?) +
1

2

∥∥∥tẊ + (r − 1)(X −X?)
∥∥∥2

+

∫ t

0

s(r − 1)

(
f? − f(X)− 〈∇f(X), X? −X〉

)
ds+

∫ t

0

s(r − 3)(f(X)− f?)ds.

Since all terms are nonnegative, we immediately get

f(X)− f? ≤
(r − 1)2

2t2
‖X0 −X?‖2 .

In (Su et al., 2014), they also present∫ ∞
0

t(f(X(t))− f?)dt ≤ (r − 1)2

2(r − 3)
‖X0 −X?‖2 ,

and this can also be obtained immediately from conservation law.

C.4. SC-AGM ODE

We proceed the argument similar to C.1. Start with the ODE (9)

0 = Ẍ + 2
√
µẊ +∇f(X).

Now consider the coordinate change W = eβt(X −X?). Then we see

W = eβt(X −X?)

Ẇ = eβt
(
Ẋ + β(X −X?)

)
Ẅ = eβt

(
Ẍ + 2βẊ + β2(X −X?)

)
.

From this, we can rewrite X , Ẋ , Ẍ in terms of W , Ẇ , Ẅ ,

X = e−βtW +X?

Ẋ = e−βt
(
Ẇ − βW

)
Ẍ = e−βt

(
Ẅ − 2βẆ + β2W

)
.

Plugging these to (9) we get ODE

0 = e−βt
(
Ẅ + 2(

√
µ− β)Ẇ + β(β − 2

√
µ)W

)
+∇f

(
e−βtW +X?

)
.

Now by defining

U(W, t) =
β(β − 2

√
µ)

2
e−βt ‖W‖2 + eβt

(
f
(
e−βtW +X?

)
− f?

)
,

we can rewrite the ODE as

0 = e−βtẄ + 2(
√
µ− β)e−βtẆ +∇WU(W, t).
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Now plugging a(t) = e−βt, b(t) = 2(
√
µ− β)e−βt, from conservation law (8) we get

E ≡ e−βt0

2

∥∥∥Ẇ (t0)
∥∥∥2 +

β(β − 2
√
µ)

2
e−βt0 ‖W (t0)‖2 + eβt0

(
f(e−βt0W (t0) +X?)− f?

)
=
e−βt

2

∥∥∥Ẇ∥∥∥2 +
β(β − 2

√
µ)

2
e−βt ‖W‖2 + eβt

(
f
(
e−βtW +X?

)
− f?

)
+

∫ t

t0

4
√
µ− 3β

2
e−βs

∥∥∥Ẇ∥∥∥2 ds
−
∫ t

t0

(
βeβs

(
f(e−βsW +X?)− f? −

〈
∇f(e−βsW +X?), e

−βsW
〉)
−
β2(β − 2

√
µ)

2
e−βs ‖W‖2

)
ds.

Plugging t0 = 0 and rewriting in terms of X , Ẋ , Ẍ we have

E ≡ f (X0)− f? + β(β −√µ) ‖X0 −X?‖2

= eβt
(
f (X)− f? +

1

2

∥∥∥Ẋ + β(X −X?)
∥∥∥2 +

β(β − 2
√
µ)

2
‖X −X?‖2

)
+

∫ t

0

4
√
µ− 3β

2
eβs
∥∥∥Ẋ + β(X −X?)

∥∥∥2 ds
+

∫ t

0

βeβs
(
f? − f(X)− 〈∇f(X), X? −X〉+

β(β − 2
√
µ)

2
‖X −X?‖2

)
ds.

Now plugging β =
√
µ we have

E ≡ f (X0)− f?

= e
√
µt

(
f (X)− f? +

1

2

∥∥∥Ẋ +
√
µ(X −X?)

∥∥∥2 − µ

2
‖X −X?‖2

)
+

∫ t

0

√
µ

2
e
√
µs
∥∥∥Ẋ +

√
µ(X −X?)

∥∥∥2 ds
+

∫ t

0

√
µe
√
µs
(
f? − f(X)− 〈∇f(X), X? −X〉 −

µ

2
‖X −X?‖2

)
ds.

Finally, from ∫ t

0

√
µ

2
e
√
µs
∥∥∥Ẋ +

√
µ(X −X?)

∥∥∥2 ds
=

∫ t

0

(√
µ

2
e
√
µs
∥∥∥Ẋ∥∥∥2 +

µ

2
e
√
µs
(

2
〈
Ẋ,X −X?

〉
+
√
µ ‖X −X?‖2

))
ds

=

∫ t

0

(√
µ

2
e
√
µs
∥∥∥Ẋ∥∥∥2 +

µ

2

d

ds

(
e
√
µs ‖X −X?‖2

))
ds

=

∫ t

0

√
µ

2
e
√
µs
∥∥∥Ẋ∥∥∥2 ds+

µ

2

[
e
√
µs ‖X −X?‖2

]t
0

=

∫ t

0

√
µ

2
e
√
µs
∥∥∥Ẋ∥∥∥2 ds+

µ

2

(
e
√
µt ‖X −X?‖2 − ‖X0 −X?‖2

)
.

we conclude

E ≡ f (X0)− f?

= e
√
µt

(
f (X)− f? +

1

2

∥∥∥Ẋ +
√
µ(X −X?)

∥∥∥2)− µ

2
‖X0 −X?‖2

+

∫ t

0

√
µ

2
e
√
µs
∥∥∥Ẋ∥∥∥2 ds+

∫ t

0

√
µe
√
µs
(
f? − f(X)− 〈∇f(X), X? −X〉 −

µ

2
‖X −X?‖2

)
ds.



Continuous-Time Analysis of AGM via Conservation Laws in Dilated Coordinate Systems

C.5. Gradient flow

Recall, gradient flow was written as

0 = Ẋ +∇f(X).

Consider the dilated coordinate W = t(X −X?). Then we see

W = t(X −X?)

Ẇ = tẊ + (X −X?).

Then X , Ẋ can be rewritten as

X =
W

t
+X?

Ẋ =
Ẇ

t
− W

t2
.

Plugging these to ODE, we have

0 =
Ẇ

t
− W

t2
+∇f

(
W

t
+X?

)
.

Now by defining

U(W, t) = − 1

2t2
‖W‖2 + t

(
f

(
W

t
+X?

)
− f?

)
,

we can rewrite ODE as

0 =
Ẇ

t
+∇WU(W, t).

Now plugging a(t) = 0, b(t) = 1
t , from conservation law (8)

E ≡ lim
t0→0

U(W (t0), t0)

=

∫ t

0

1

s

∥∥∥Ẇ∥∥∥2 ds+ U(W, t)−
∫ t

0

∂

∂s
U(W, s)ds

=

∫ t

0

1

s

∥∥∥Ẇ∥∥∥2 ds− 1

2t2
‖W‖2 + t

(
f

(
W

t
+X?

)
− f?

)
−
∫ t

0

(
1

s3
‖W‖2 +

(
f

(
W

s
+X?

)
− f? + s

〈
∇f

(
W

s
+X?

)
,−W

s2

〉))
ds.

Rewriting in terms of X , Ẋ , we get the conservation law in Section 3.5

E ≡ −1

2
‖X0 −X?‖2

= t (f(X)− f?)−
1

2
‖X −X?‖2

+

∫ t

0

(
1

s

∥∥∥sẊ + (X −X?)
∥∥∥2 − 1

s
‖X −X?‖2

)
ds−

∫ t

0

(f(X)− f? − 〈∇f(X), X −X?〉) ds

= t (f(X)− f?)−
1

2
‖X −X?‖2

+

∫ t

0

(
s
∥∥∥Ẋ∥∥∥2 +

d

ds
‖X −X?‖2

)
ds+

∫ t

0

(f? − f(X)− 〈∇f(X), X? −X〉) ds

= t (f(X)− f?) +
1

2
‖X −X?‖2 − ‖X0 −X?‖2 +

∫ t

0

s
∥∥∥Ẋ∥∥∥2 ds+

∫ t

0

(f? − f(X)− 〈∇f(X), X? −X〉) ds.
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D. Omitted calculations of Section 4
D.1. Derivation of OGM-G ODE

OGM-G in (Kim & Fessler, 2021) was presented as

x+k = xk −
1

L
∇f(xk)

xk+1 = x+k +
(θK−k − 1)(2θK−(k+1) − 1)

θK−k(2θK−k − 1)
(x+k − x

+
k−1) +

2θK−(k+1) − 1

2θK−k − 1
(x+k − xk).

Plugging x+k = xk − 1
L∇f(xk) to the second line and using the fact θK−k = K−k

2 + o(K) we have

xk+1 = xk −
1

L
∇f(xk) +

(K − k − 2 + o(K))2

(K − k + o(K))(K − k − 1 + o(K))

(
xk − xk−1 −

1

L
(∇f(xk)−∇f(xk−1))

)
− K − k − 2 + o(K)

K − k − 1 + o(K)

1

L
∇f(xk)

= xk +

(
1− 3(K − k) + o(K)

(K − k)2 + o(K)K

)
(xk − xk−1)−

(
2− 1

K − k + o(K)

)
1

L
∇f(xk)

− 1

L

(K − k)2 + o(K)K

(K − k)2 + o(K)K
(∇f(xk)−∇f(xk−1)).

Similar to (Su et al., 2014), we use the identification 1
L = h2, t = kh and xk = X(kh). Moreover for fixed T > 0, we use

identification T = Kh. Adding −2xk + xk−1 and dividing h2 both sides we have

(xk+1 − xk)− (xk − xk−1)

h2
= − 3(Kh− kh) + o(K)h

(Kh− kh)2 + o(K)Kh2
xk − xk−1

h
−
(

2− h

Kh− kh+ o(K)h

)
∇f(xk)

− (Kh− kh)2 + o(K)Kh2

(Kh− kh)2 + o(K)Kh2
(∇f(xk)−∇f(xk−1))

= − 3

T − t
X(t)−X(t− h)

h
− 2∇f(X(t))− (∇f(X(t))−∇f(X(t− h)) + o(K)h.

Finally taking limit h→ 0, we obtain the desired ODE

0 = Ẍ(t)− 3

t− T
Ẋ(t) + 2∇f(X(t)).

D.1.1. OGM-G ODE COINCIDES WITH THE ODE MODEL OF OBL-G[

The method OBL-G[ (Park & Ryu, 2021)

x+k = xk −
1

L
∇f(xk)

zk+1 = zk −
1

L

K − k + 1

2
∇f(xk)

xk+1 =
K − k − 2

K − k + 2
x+k +

4

K − k + 2
zk+1.

is a variant of OGM-G. Interestingly, the ODE model of OBL-G[ exactly coincides with OGM-G ODE.

Note this method is written in the form with auxiliary sequence zk, we derive the ODE in a different way. We take the
same identification 1

L = h2, Kh = T , kh = t, xk = X(kh), zk = Z(kh). Then we may regard the method as a system of
first-order ODEs. From zk update, by taking limit h→ 0 we have

zk+1 − zk
h

= −Kh− kh+ h

2
∇f(xk)

h→0
=⇒ Ż(t) = −T − t

2
∇f(X).
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From xk update, dividing both sides by h, subtracting x+k both sides and by taking limit h→ 0 we have

xk+1 − xk
h

=
4

Kh− kh+ 2h
(zk+1 − xk)− Kh− kh− 2h

Kh− kh+ 2h
∇f(xk)h

h→0
=⇒ Ẋ(t) =

4

T − t
(Z(t)−X(t)). (15)

Thus we get system of first-order ODEs. Now to derive a second-order ODE, multiplying T − t to (15) and differentiating,
we have

(T − t)Ẍ(t)− Ẋ(t) = 4
(
Ż(t)− Ẋ(t)

)
= 4

(
−T − t

2
∇f(X)− Ẋ(t)

)
.

Dividing T − t and organizing the result, we conclude

0 = Ẍ(t)− 3

t− T
Ẋ(t) + 2∇f(X).

D.2. Conservation law for OGM-G ODE

We proceed argument similar to C.4. Start with ODE presented in Section 4.2

0 = Ẍ +
r

t− T
Ẋ + 2∇f(X). (16)

Now consider the coordinate change W = (T − t)α(X −Xc).

Then we see

W (t) = (T − t)α(X(t)−Xc)

Ẇ (t) = (T − t)αẊ(t)− α(T − t)α−1(X(t)−Xc)

Ẅ (t) = (T − t)αẌ(t)− 2α(T − t)α−1Ẋ(t) + α(α− 1)(T − t)α−2(X(t)−Xc).

Note the sign flips while differentiating (T − t)α.

From this, we can rewrite X , Ẋ , Ẍ in terms of W , Ẇ , Ẅ ,

X(t) = (T − t)−αW (t) +Xc

Ẋ(t) = (T − t)−αẆ (t) + α(T − t)−α−1W (t)

Ẍ(t) = (T − t)−αẄ (t) + 2α(T − t)−α−1Ẇ (t) + α(α+ 1)(T − t)−α−2W (t).

Plugging these to (9) we get ODE

0 =
1

(T − t)α
Ẅ +

2α− r
(T − t)α+1

Ẇ +
α(α+ 1− r)
(T − t)α+2

W + 2∇f
(

W

(T − t)α
+Xc

)
.

Now by defining

U(W, t) =
α(α+ 1− r)
2(T − t)α+2

‖W‖2 + 2(T − t)α
(
f

(
W

(T − t)α
+Xc

)
− f(Xc)

)
we can rewrite the ODE as

0 =
1

(T − t)α
Ẅ +

2α− r
(T − t)α+1

Ẇ +∇WU(W, t).

Now plugging a(t) = 1
(T−t)α , b(t) = 2α−r

(T−t)α+1 , from conservation law (8) we get

E ≡ 1

2(T − t0)α

∥∥∥Ẇ (t0)
∥∥∥2 +

α(α+ 1− r)
2(T − t0)α+2

‖W (t0)‖2 + 2(T − t0)α
(
f

(
W (t0)

(T − t0)α
+Xc

)
− f(Xc)

)
=

1

2(T − t)α
∥∥∥Ẇ∥∥∥2 +

α(α+ 1− r)
2(T − t)α+2

‖W‖2 + 2(T − t)α
(
f

(
W

(T − t)α
+Xc

)
− f(Xc)

)
+

∫ t

t0

3α− 2r

2(T − s)α+3

∥∥∥Ẇ∥∥∥2 ds− ∫ t

t0

α(α+ 1− r)(α+ 2)

2(T − s)α+3
‖W‖2 ds

−
∫ t

t0

2α

(T − s)α+1

(
f(Xc)− f

(
W

(T − s)α
+Xc

)
−
〈
∇f

(
W

(T − s)α
+Xc

)
,

W

(T − s)α

〉)
ds.
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Plugging t0 = 0 and rewriting in terms of X , Ẋ , Ẍ we have

E = 2Tα (f(X0)− f(Xc)) +

(
α2

2
+
α(α+ 1− r)

2

)
Tα−2 ‖X0 −Xc‖2 (17)

= 2(T − t)α (f (X)− f(Xc)) +
1

2
(T − t)α−2

∥∥∥(T − t)Ẋ − α(X −Xc)
∥∥∥2 +

α(α+ 1− r)
2

(T − t)α−2 ‖X −Xc‖2

+

∫ t

0

(
3α− 2r

2
(T − s)α−3

∥∥∥(T − s)Ẋ − α(X −Xc)
∥∥∥2 − α(α+ 1− r)(α+ 2)

2
(T − s)α−3 ‖X −Xc‖2

)
ds

+

∫ t

0

(−2α)(T − s)α−1 (f(Xc)− f(X)− 〈∇f(X), Xc −X〉) ds.

Now plugging α = −2 we get the energy in Section 4.2, moreover plugging r = −3 we get the energy for r = −3 in
Section 4.

D.3. Regularity of OGM-G ODE at terminal time T

Since the argument for r = −3 is exactly same for general r, we prove the statement for the general r < 0. We will present
our proofs in following order.

(i) supt∈[0,T )

∥∥∥Ẋ(t)
∥∥∥ is bounded.

(ii) X(t) can be continuously extended to T .

(iii) limt→T− Ẋ(t) = 0.

(iv) limt→T−
Ẋ(t)
t−T = − 2

1+r∇f(X(T )).

(v) limt→T− Ẍ(t) = − 2
1+r∇f(X(T )).

(i), (ii) holds for r ≤ 0, (iii) holds for r < 0, and (iv), (v) holds for r < 0 with r 6= −1.

D.3.1. supt∈[0,T )

∥∥∥Ẋ(t)
∥∥∥ IS BOUNDED IF r ≤ 0

Considering conservation law (17) with α = 0, Xc = X0, we have

E ≡ 0 =
1

2

∥∥∥Ẋ(t)
∥∥∥2 + 2(f(X(t))− f(X0))−

∫ t

0

r

T − s

∥∥∥Ẋ(s)
∥∥∥2 ds. (18)

Collecting the terms except the integrand, define Ψ: [0, T )→ R as

Ψ(t) =
1

2

∥∥∥Ẋ(t)
∥∥∥2 + 2(f(X(t))− f(X0)).

Observe for r ≤ 0

Ψ̇(t) =
r

T − t

∥∥∥Ẋ(t)
∥∥∥2 ≤ 0,

so Ψ(t) is a nonincreasing function. Thus Ψ(t) ≤ Ψ(0) = 0, and from the fact f? = infx∈Rn f(x) > −∞, we have∥∥∥Ẋ(t)
∥∥∥2 = 2Ψ(t) + 4(f(X0)− f(X(t))) ≤ 4(f(X0)− f?).

Therefore supt∈[0,T )

∥∥∥Ẋ(t)
∥∥∥ ≤ 2

√
f(X0)− f?, we get the desired result.
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D.3.2. X(t) CAN BE CONTINUOUSLY EXTENDED TO T

We first prove X(t) is uniformly continuous. From the result of D.3.1, we see

‖X(t)−X(t+ δ)‖ =

∥∥∥∥∥
∫ t+δ

t

Ẋ(s)ds

∥∥∥∥∥ ≤
∫ t+δ

t

∥∥∥Ẋ(s)
∥∥∥ ds ≤ ∫ t+δ

t

2
√
f(X0)− f?ds = 2δ

√
f(X0)− f?.

Thus for X is 2
√
f(X0)− f?-Lipschitz function, we can conclude X is uniformly continuous.

Now from the fact of basic analysis, we know for D ⊂ Rn, uniformly continuous function g : D → Rn can be extended
continuously to D̄. Therefore X : [0, T )→ Rn can be extended to [0, T ) = [0, T ], we get the desired result.

D.3.3. limt→T−

∥∥∥Ẋ(t)
∥∥∥ = 0

We first prove the limit limt→T−

∥∥∥Ẋ(t)
∥∥∥ exists. From Ψ defined in D.3.1 we have∥∥∥Ẋ(t)

∥∥∥ =
√

2Ψ(t) + 4(f(X0)− f(X(t))),

so it is enough to show limt→T− Ψ(t) and limt→T− f(X(t)) exists. From D.3.2 we know limt→T− X(t) exists, thus from
continuity of f , we have limt→T− f(X(t)) exists. It remains to show limt→T− Ψ(t) exists.

Recall Ψ is nonincreasing. Moreover, since f? = infx∈Rn f(x) > −∞ we have

Ψ(t) =
1

2

∥∥∥Ẋ(t)
∥∥∥2 + 2(f(X(t))− f(X0)) ≥ 2(f? − f(X0)),

so Ψ is bounded below. Thus Ψ is nonincreasing and bounded below, by completeness of real numbers, we conclude
limt→T− Ψ(t) exists. Therefore limt→T−

∥∥∥Ẋ(t)
∥∥∥ exists.

Now we prove limt→T−

∥∥∥Ẋ(t)
∥∥∥ = 0. Let C = limt→T−

∥∥∥Ẋ(t)
∥∥∥ ≥ 0. Assume for contradiction that C > 0. Then there is

ε > 0 such that T − ε < s < T implies
∥∥∥Ẋ(s)

∥∥∥ > C
2 . Thus for t > T − ε, if r ≤ 0 we have

∫ t

0

r

T − s

∥∥∥Ẋ(s)
∥∥∥2 ds =

∫ T−ε

0

r

T − s

∥∥∥Ẋ(s)
∥∥∥2 ds+

∫ t

T−ε

r

T − s

∥∥∥Ẋ(s)
∥∥∥2 ds ≤ ∫ t

T−ε

C2

4

r

T − s
ds.

Since limt→T−
∫ t
T−ε

C2

4
r

(T−s)ds = −∞ if r < 0, we conclude limt→T−
∫ t
0

r
T−s

∥∥∥Ẋ(s)
∥∥∥2 ds = −∞ from above inequal-

ity. By the way from (18) we know Ψ(t) =
∫ t
0

r
T−s

∥∥∥Ẋ(s)
∥∥∥2 ds, but we have just observed above that Ψ(t) is bounded

below. This is a contradiction, we conclude limt→T−

∥∥∥Ẋ(t)
∥∥∥ = 0.

D.3.4. limt→T−
Ẋ(t)
t−T = − 2

r+1∇f(X(T ))

The key observation of the proof is

d

dt

(
(T − t)rẊ(t)

)
= −2(T − t)r∇f(X(t)).

We can check above is true from the ODE 0 = Ẍ + r
t−T Ẋ + 2∇f(X). With this observation, we can handle the separated

terms Ẍ and Ẋ as one term.

Integrating both sides from 0 to t, we get

(T − t)rẊ(t) = −
∫ t

0

2(T − s)r∇f(X(s))ds.
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Multiplying (T − t)−(r+1), we get

Ẋ(t)

T − t
= −(T − t)−(r+1)

∫ t

0

2(T − t)r∇f(X(s))ds. (19)

From (Rockafellar, 1970, Corollary 25.5.1), the fact f is convex and differentiable implies continuity of ∇f . From D.3.2,
we see limt→T− ∇f(X(t)) exists. Moreover from D.3.3, we see the numerator for left hand side reaches to zero as t→ T−.
Therefore we can apply L’Hôpital’s rule (componentwisely), for r 6= −1 we conclude

lim
t→T−

Ẋ(t)

T − t
= − lim

t→T−

∫ t
0

2(T − t)r∇f(X(s)) ds

(T − t)r+1
=

2

r + 1
lim
t→T−

∇f(X(t)) =
2

r + 1
∇f(X(T )).

By flipping the sign of both sides, we get the desired result.

D.3.5. limt→T− Ẍ(t) = − 2
r+1∇f(X(T ))

From ODE (16) we have
Ẍ(t) =

r

T − t
Ẋ(t)− 2∇f(X(t)).

We know the limit t→ T− for right hand side exists by D.3.4. Therefore limt→T− Ẍ(t) exists, by L’Hôpital’s rule we have

lim
t→T−

Ẍ(t) = lim
t→T−

Ẋ(t)

t− T
= − 2

r + 1
∇f(X(T )).

D.4. Correspondence with discrete analysis of OGM-G

Lee et al. (2021) presented Lyapunov function proof for convergence analysis of OGM-G. They first rewrote OGM-G with
auxiliary sequence zk as follows

x+k = xk −
1

L
∇f(xk)

zk+1 = zk −
θK−k
L
∇f(xk) (20)

xk+1 =
θ4K−(k+2)

θ4K−(k+1)

x+k +

(
1−

θ4K−(k+2)

θ4K−(k+1)

)
zk+1. (21)

Then they presented the Lyapunov function as follows

Uk =
1

θ2K−k

(
1

2L
‖f(xK)‖2 +

1

2L
‖f(xk)‖2 + f(xk)− f(xK)−

〈
∇f(xk), xk − x+k−1

〉)
(22)

+
L

θ4K−k

〈
zk − x+k−1, zk − x

+
K

〉
.

We claim there is a correspondence between this function and the Lyapunov function we’ve presented in Theorem 4.2. We
use same identification as did in D.1, 1

L = h2, kh = t, Kh = T , xk = X(kh), zk = Z(kh). Then we derive continuous
counterpart of Uk by dividing 2h2 then ignoring o(K)h and O(h).

We first calculate the continuous counterpart of zk. Rewrite the update equation (20) as

xk+1 − x+k =

(
1−

θ4K−(k+2)

θ4K−(k+1)

)
(zk+1 − x+k ). (23)

Dividing left hand side with h we observe,

xk+1 − x+k
h

=
xk+1 − xk + h2∇f(xk)

h
=
xk+1 − xk

h
+O(h) = Ẋ(t) +O(h).
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Then from the fact θK−k = K−k
2 + o(K), we observe

1

h

(
1−

θ4K−(k+2)

θ4K−(k+1)

)
=

1

h

(
1− (K − k − 2 + o(K))4

(K − k − 1 + o(K))4

)
=

1

h

(
(2(K − k) + o(K))(2(K − k)2 − 6(K − k) + o(K)K)

(K − k)4 + o(K)K3

)
=

(2(Kh− kh) + o(K)h)(2(Kh− kh)2 − 6(Kh− kh)h+ o(K)Kh2)

(Kh− kh)4 + o(K)K3h4

=
(2(T − t) + o(K)h)(2(T − t)2 − 6(T − t)h+ o(K)Th)

(T − t)4 + o(K)T 3h
=

4

T − t
+ o(K)h.

Dividing (23) by h, applying above observations, corresponding zk+1 with Z(t+ h) = Z(t) +O(h) we have

Ẋ(t) +O(h) =
xk+1 − x+k

h
=

1

h

(
1−

θ4K−(k+2)

θ4K−(k+1)

)
(zk+1 − x+k ) =

4

T − t
(Z(t)−X(t)) +O(h) + o(K)h.

Organizing with respect to Z, we have

Z(t) =
T − t

4
Ẋ(t) +X(t) +O(h) + o(K)h.

Now to conclude the desired result, we observe the followings. First, observe the terms with gradient are O(h). For example,
1
2L ‖∇f(xK)‖2 = h2

2 ‖∇f(xK)‖2 = O(h). With this observation, we see x+k−1 = xk−1 − 1
L∇f(xk−1) can be replaced

with xk−1. Second, observe hθK−k = T−t
2 + o(K)h. Third, we correspond xk−1 with X(t− h) = X(t) +O(h).

Plugging these to (22), and dividing by 2h2, we get

Uk
2h2

=
1

2(hθK−k)2
(f(xk)− f(xK) +O(h)) +

1

2(hθK−k)4
〈zk − xk +O(h), zk − xK +O(h)〉

=
2

(T − t+ o(K)h)2
(f(X(t))− f(X(T ))) +

8

(T − t+ o(K)h)4
〈Z(t)−X(t), Z(t)−X(T )〉+O(h)

=
2

(T − t)2
(f(X(t))− f(X(T ))) +

1

2(T − t)4
〈

(T − t)Ẋ(t), (T − t)Ẋ(t) + 4(X(t)−X(T ))
〉

+O(h) + o(K)h

=
2

(T − t)2
(f(X(t))− f(X(T ))) +

1

2(T − t)4

(∥∥∥(T − t)Ẋ(t) + 2(X(t)−X(T ))
∥∥∥2 − 4 ‖X(t)−X(T )‖2

)
+O(h) + o(K)h.

Ignoring O(h) and o(K)h, we see Uk
2h2 corresponds to the Lyapunov function defined in Theorem 4.2.

D.5. Details for Theorem 4.3

Recall by plugging α = −2, Xc = X(T ), t0 = 0 to (17), we obtained the conservation law presented in 4.2.

E ≡ 2

T 2
(f(X0)− f(X(T ))) +

r + 3

T 4
‖X0 −X(T )‖2

=
2

(T − t)2
(f(X)− f(X(T ))) +

1

2(T − t)4
∥∥∥(T − t)Ẋ + 2(X −X(T ))

∥∥∥2 +
r + 1

(T − t)4
‖X −X(T )‖2

+

∫ t

0

(−(r + 3))

(T − s)5
∥∥∥(T − s)Ẋ + 2(X −X(T ))

∥∥∥2 ds
+

∫ t

0

4

(T − s)3
(f(X(T ))− f(X)− 〈∇f(X), X(T )−X〉) ds.

By collecting first three terms, define the Lyapunov function as

Φ(t) =
2

(T − t)2
(f(X)− f(X(T ))) +

1

2(T − t)4
∥∥∥(T − t)Ẋ + 2(X −X(T ))

∥∥∥2 +
r + 1

(T − t)4
‖X −X(T )‖2 .
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From conservation law we know Ė = 0, so we have

Φ̇(t) =
r + 3

(T − t)5
∥∥∥(T − t)Ẋ + 2(X −X(T ))

∥∥∥2 − 4

(T − t)3
(f(X(T ))− f(X)− 〈∇f(X), X −X(T )〉) ≤ 0.

Note the first term is nonpositive since r ≤ −3. Especially Φ(0) ≥ limt→T− Φ(t).

Now we calculate limt→T− Φ(t). From D.3 we know limt→T−
Ẋ(t)
t−T = − 2

r+1∇f(X(T )). By applying L’Hôpital’s rule we
have

lim
t→T−

f(X(t))− f(X(T ))

(T − t)2
= lim
t→T−

〈
∇f(X(t)), Ẋ(t)

〉
−2(T − t)

=

〈
∇f(X(T )), lim

t→T−

Ẋ(t)

2(t− T )

〉
= − 1

r + 1
‖∇f(X(T ))‖2

lim
t→T−

X(t)−X(T )

(T − t)2
= lim
t→T−

Ẋ(t)

−2(T − t)
=

1

2
lim
t→T−

Ẋ(t)

t− T
= − 1

r + 1
∇f(X(T )).

Therefore we get

lim
t→T−

Φ(t) = lim
t→T−

2
(
f(X)− f(X(T ))

)
(T − t)2

+
1

2

∥∥∥∥∥− Ẋ

t− T
+ 2

X −X(T )

(T − t)2

∥∥∥∥∥
2

+ (r + 1)

∥∥∥∥X −X(T )

(T − t)2

∥∥∥∥2


= − 2

r + 1
‖∇f(X(T ))‖2 +

1

2

∥∥∥∥ 2

r + 1
∇f(X(T ))− 2

r + 1
∇f(X(T ))

∥∥∥∥2 +
1

r + 1
‖∇f(X(T ))‖2

=
1

−(r + 1)
‖∇f(X(T ))‖2 .

Finally applying above calculation we have

1

−(r + 1)
‖∇f(X(T ))‖2 = lim

t→T−
Φ(t) ≤ Φ(0) =

2

T 2
(f(X0)− f(X(T ))) +

r + 3

T 4
‖X0 −X(T )‖2

≤ 2

T 2
(f(X0)− f(X(T ))) .

This proves Theorem 4.3.

E. Proof of Theorem 5.1
Recall, with θk = k

2 the discretized method was

x+k = xk −
s

2
∇f(xk) (12)

zk+1 = zk − sθk∇f(xk)

xk+1 =
θ2k
θ2k+1

x+k +

(
1− θ2k

θ2k+1

)
zk+1,

and with ck = θk+1

θ2k+1−θ
2
k

the Lyapunov function was

Φk = 2ckθ
2
k

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
+

1

s
‖zk+1 −X?‖2

for k = 0, 1, . . . . We first prove Φk+1 ≤ Φk, then we will get the desired result from Φk ≤ Φ0.

(i) Φk+1 ≤ Φk
For convenience, name

Ak = ckθ
2
k =

θk+1

θ2k+1 − θ2k
θ2k.
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Observe since ck = 2(k+1)
(k+1)2−k2 = 2(k+1)

2k+1 ≥ 1, we have Ak ≥ θ2k. From this we have

1

s
‖zk+1 −X?‖2 −

1

s
‖zk+2 −X?‖2 = 2θk+1 〈∇f(xk+1), zk+1 −X?〉 − sθ2k+1 ‖∇f(xk+1)‖2

≥ 2θk+1 〈∇f(xk+1), zk+1 −X?〉 − sAk+1 ‖∇f(xk+1)‖2 .

Applying this fact we have

Φk − Φk+1 = 2Ak

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
− 2Ak+1

(
f(xk+1)− f? −

s

4
‖∇f(xk+1)‖2

)
+

1

s
‖zk+1 −X?‖2 −

1

s
‖zk+2 −X?‖2

≥ 2Ak

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
− 2Ak+1

(
f(xk+1)− f? −

s

4
‖∇f(xk+1)‖2

)
+ 2θk+1 〈∇f(xk+1), zk+1 −X?〉 − sAk+1 ‖∇f(xk+1)‖2

= 2Ak

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
− 2Ak+1

(
f(xk+1)− f? +

s

4
‖∇f(xk+1)‖2

)
+ 2θk+1 〈∇f(xk+1), zk+1 −X?〉

= 2Ak

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
− 2Ak

(
f(xk+1)− f? +

s

4
‖∇f(xk+1)‖2

)
+ 2 (Ak −Ak+1 + θk+1)︸ ︷︷ ︸

=
(k+1)2

8k2+16k+6
≥0

(
f(xk+1)− f? +

s

4
‖∇f(xk+1)‖2

)

− 2θk+1

(
f(xk+1)− f? +

s

4
‖∇f(xk+1)‖2

)
+ 2θk+1 〈∇f(xk+1), zk+1 −X?〉

≥ 2Ak

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
− 2Ak

(
f(xk+1)− f? +

s

4
‖∇f(xk+1)‖2

)
− 2θk+1

(
f(xk+1)− f? +

s

4
‖∇f(xk+1)‖2

)
+ 2θk+1 〈∇f(xk+1), zk+1 −X?〉

= 2Ak

(
f(xk)− f(xk+1)− s

4
‖∇f(xk)‖2 − s

4
‖∇f(xk+1)‖2

)
+ 2θk+1

(
f? − f(xk+1)− 〈∇f(xk+1), X? − xk+1〉 −

s

4
‖∇f(xk+1)‖2

)
+ 2θk+1 〈∇f(xk+1), zk+1 − xk+1〉

(a)

≥ 2Ak

(
f(xk)− f(xk+1)− s

4
‖∇f(xk)‖2 − s

4
‖∇f(xk+1)‖2

)
+ 2θk+1 〈∇f(xk+1), zk+1 − xk+1〉

= 2Ak

(
f(xk)− f(xk+1)− s

4
‖∇f(xk)‖2 − s

4
‖∇f(xk+1)‖2

)
+ 2θk+1

〈
∇f(xk+1),

θ2k
θ2k+1 − θ2k

(
xk+1 − x+k

)〉
= 2Ak

(
f(xk)− f(xk+1)− s

4
‖∇f(xk)‖2 − s

4
‖∇f(xk+1)‖2

)
+ 2Ak

〈
∇f(xk+1), xk+1 − xk +

s

2
∇f(xk)

〉
= 2Ak

(
f(xk)− f(xk+1) + 〈∇f(xk+1), xk+1 − xk〉 −

s

4
‖∇f(xk)−∇f(xk+1)‖2

) (b)

≥ 0.

The inequalities (a) and (b) come from the fact s ∈
(
0, 2

L

]
and L-smoothness of f .

(ii) From Φk ≤ Φ0, we have f(x+k )− f? ≤
k+ 1

2

k+1
2‖X0−X?‖2

sk2

From θ0 = 0 we have A0 = 0, and so z1 = z0 + sθ0∇f(X0) = z0 = X0. Therefore

Φ0 = 2A0 +
1

s
‖z1 −X?‖2 =

1

s
‖X0 −X?‖2
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Now since f is L-smooth, for s ∈
(
0, 2

L

]
, we have

f(x+k ) ≤ f(xk)− 1

2L
‖∇f(xk)‖2 ≤ f(xk)− s

4
‖∇f(xk)‖2 ,

and so

2Ak
(
f(x+k )− f?

)
≤ 2Ak

(
f(xk)− f? −

s

4
‖∇f(xk)‖2

)
≤ Φk ≤ Φ0 =

1

s
‖X0 −X?‖2 .

Therefore, we conclude

f(x+k )− f? ≤
‖X0 −X?‖2

2sAk
=

(
θk+1

θ2k+1 − θ2k
θ2k

)−1 ‖X0 −X?‖2

2s

=

(
2k + 1

2(k + 1)
× 4

k2

)
‖X0 −X?‖2

2s

=
k + 1

2

k + 1

2 ‖X0 −X?‖2

sk2
.

Since k+ 1
2

k+1 ≤ 1, this implies f(x+k )− f? ≤ 2‖X0−X?‖2
sk2 as well. This proves Theorem 5.1.

F. Time-dependent Hamiltonian
For the sake of completeness, we show how the dynamics is described through a Hamiltonian perspective. With the
Hamiltonian

H(W,P, t) = 〈P, Ẇ 〉 − L(W,P, t)

=
t

2
‖P‖2 + t3(f(X(W, t))− f?),

the dynamics of the Euler–Lagrange equation can be equivalently specified with

Ṗ = −∇WH(W,P, t) = −t∇f(X(W, t))

Ẇ = ∇PH(W,P, t) = tP.

However, our setup differs from the classical setup in that the Lagrangian and the Hamiltonian explicitly depend on time.
One consequence of this difference is that the Hamiltonian is not conserved:

d

dt
H(W,P, t) =

〈
Ẇ ,∇WH(W,P, t)

〉
+
〈
Ṗ ,∇PH(W,P, t)

〉
+
∂

∂t
H(W,P, t)

= 〈∇PH(W,P, t),∇WH(W,P, t)〉+ 〈−∇WH(W,P, t),∇PH(W,P, t)〉+
∂

∂t
H(W,P, t)

=
∂

∂t
H(W,P, t) 6= 0.

Since H is not conserved, the classical theory of symplectic integrators is not immediately applicable.


