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Abstract

Micro- and macro-architecture search have
emerged as two popular NAS paradigms recently.
Existing methods leverage different search strate-
gies for searching micro- and macro- architec-
tures. When using architecture parameters to
search for micro-structure such as normal cell
and reduction cell, the architecture parameters
can not fully reflect the corresponding opera-
tion importance. When searching for the macro-
structure chained by pre-defined blocks, many
sub-networks need to be sampled for evalua-
tion, which is very time-consuming. To ad-
dress the two issues, we propose a new search
paradigm, that is, leverage the attention mecha-
nism to guide the micro- and macro-architecture
search, namely AGNAS. Specifically, we intro-
duce an attention module and plug it behind
each candidate operation or each candidate block.
We utilize the attention weights to represent the
importance of the relevant operations for the
micro search or the importance of the relevant
blocks for the macro search. Experimental re-
sults show that AGNAS can achieve 2.46% test
error on CIFAR-10 in the DARTS search space,
and 23.4% test error when directly searching
on ImageNet in the ProxylessNAS search space.
AGNAS also achieves optimal performance on
NAS-Bench-201, outperforming state-of-the-art
approaches. The source code can be available at
https://github.com/Sunzh1996/AGNAS.
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Figure 1. Comparison of Micro search or Macro search with our
AGNAS. Micro search assigns architecture parameters α for can-
didate operations to search for the cell, and Macro search samples
numerous single choice paths for evaluating. Instead, we insert
the attention module to the output of each edge in a cell or to the
output of each layer, with the aim that the attention weights can
represent the importance of associated operations or choice blocks.

1. Introduction
Neural Architecture Search (NAS) has attracted lots of at-
tention in recent years, because it can automatically find
optimal neural networks in the pre-defined search space for
target tasks. More importantly, the searched architecture can
perform better than hand-crafted neural networks in many
computer vision tasks, such as image classification (Zoph
& Le, 2016; Zoph et al., 2018; Guo et al., 2020), object
detection (Chen et al., 2019; Ghiasi et al., 2019), semantic
segmentation (Chen et al., 2018; Liu et al., 2019). Early
NAS methods adopted reinforcement learning (RL) (Baker
et al., 2016; Bello et al., 2017; Zoph et al., 2018) or evolu-
tionary algorithms (EA) (Real et al., 2017; Liu et al., 2018b;
Real et al., 2019), requiring to train many sub-networks from
scratch, which takes thousands or even tens of thousands
of GPU-hours. To alleviate this issue, ENAS (Pham et al.,
2018) proposed weight sharing among child architectures
in a pre-defined search space, which dramatically reduced
the search cost to a few GPU-days.

Search space plays a vital role in NAS, and can be broadly
categorized into micro search space and macro search space.
Specifically, as shown in Figure 1 (a), the micro search,
which is also referred to as operation search, aims to deter-
mine the operation associated with each pair of nodes in a
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cell and then manually stack a series of identical cells to
build a target neural network. DARTS (Liu et al., 2018c)
relaxed the discrete search space to be continuous, and used
a bi-level optimization to alternately optimize the architec-
ture parameters and network weights, thus achieving an
efficient end-to-end training. Thereafter, recent works (Xie
et al., 2018; Dong & Yang, 2019; Li et al., 2020; Chu et al.,
2020; Chen & Hsieh, 2020; Liang et al., 2019; Zhou et al.,
2020) pointed out that the bi-level optimization of DARTS
(Liu et al., 2018c) suffers from performance collapse is-
sues. Moreover, recent works (Wang et al., 2021; Xie et al.,
2021) also demonstrated that the operation associated with
the largest magnitude of architecture parameters does not
necessarily result in the highest validation accuracy after
discretization. In light of the above-mentioned observations,
we propose an alternative paradigm, that is, to leverage the
attention mechanism to indicate the importance of candidate
operations rather than using architecture parameters.

On the other hand, the macro architecture of neural net-
work is determined by macro search. For example, borrow-
ing from the design of MobileNet (Howard et al., 2017),
the macro architecture can be chain-style and candidate
blocks of each layer are choosable, as shown in Figure 1 (b).
Though prior works (Guo et al., 2020; Chu et al., 2021; You
et al., 2020) have proposed to search for superb architectures
with a heuristic algorithm based on the pre-trained supernet,
such paradigm requires to sample and evaluate numerous
sub-networks, which is still time-consuming. However, by
using the attention mechanism, we can obtain the searched
architecture as the search process converges, without the
need for post-sampling.

In summary, we propose a novel paradigm that aims to
search micro and macro architectures in one framework
based on the attention mechanism to solve the aforemen-
tioned issues. Similar to how the human brain selectively
focuses on certain parts of the input (Briggs et al., 2013), we
demonstrate that the attention mechanism can be used to em-
phasize useful parts of the network while ignoring the trivial
ones. Therefore, we propose to utilize attention weights
to indicate the importance of candidate operations. As pre-
vious works have pointed out that channels with smaller
attention weights can be pruned with neglected influence
on network performance (Luo & Wu, 2020; Wang et al.,
2019; Yamamoto & Maeno, 2018), we propose to accumu-
late the attention weights of output channels from different
candidate operations to conduct the micro search, and the
attention weights from different choice blocks to conduct
the macro search.

Unlike prior methods (Nakai et al., 2020; Jiang et al., 2021;
Jing et al., 2020; Wang et al., 2020) that included the at-
tention module in the search space to have more candidate
operations, we exploit the attention mechanism to guide the

neural architecture search. As illustrated in Figure 1 (c),
we insert the attention module to the output feature map
of candidate operations, and then use the attention weights
to identify the optimal operation with a clear advantage.
Similarly, the candidate blocks (e.g. MBConv blocks in
the ProxylessNAS search space) for each layer can also be
optimized by the attention module for the macro search,
which is shown in Figure 1 (d). As soon as the training
of the supernet converges, the importance of operations or
blocks is then specified by the attention weights, which are
optimized together with network parameters by an efficient
gradient descent algorithm such as SGD. Taking the DARTS
search space as an example, the operations with the highest
attention weight on each edge is kept to build the searched
cell for each layer.

Our contributions can be summarized as follows:

• We first propose a novel search paradigm by leverag-
ing the attention mechanism to efficiently search for
the micro and macro neural architectures in one frame-
work.

• We use the accumulated channel attention weights to in-
dicate the importance of candidate operations or choice
blocks by plugging the attention module behind the out-
put of each edge in a cell or the output of each layer.

• Benefited from the attention mechanism, the truly oper-
ation strength in micro search can be more outstanding
and the macro architecture can be easily obtained in an
end-to-end manner.

• We conduct extensive experiments on three popular
search spaces, achieving convincing results that outper-
form previous state-of-the-arts, clearly demonstrating
the effectiveness of the proposed framework.

2. Related Works
Micro Search. Micro search aims to determine the opera-
tion associated with each edge in a cell. The micro search
space proposed by NASNet (Zoph et al., 2018) is widely
used in later works. For example, many works (Liu et al.,
2018a; Real et al., 2019; Pham et al., 2018) proposed their
search strategies in the NASNet search space, whereas their
search process is discrete and usually takes thousands or
even tens of thousands of GPU-hours. Later on, DARTS
(Liu et al., 2018c) proposed relaxing the discrete search
space to be continuous so that the search cost can be dra-
matically reduced by gradient decent technique. DARTS
formulates a bi-level problem that simultaneously optimizes
the architecture parameters and super-network weights. Un-
fortunately, the optimization process suffers from the gen-
eralizability (Xie et al., 2018; Dong & Yang, 2019; Chang
et al., 2019; Li et al., 2020; Chu et al., 2020) and stability
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(Zela et al., 2020; Chen & Hsieh, 2020; Wang et al., 2021)
issues. In order to mitigate the performance gap between the
super-network and discrete architectures, SNAS (Xie et al.,
2018), GDAS (Dong & Yang, 2019), and DATA (Chang
et al., 2019) adopted the differentiable Gumbel-Softmax to
approximate one-hot encoding. SGAS (Li et al., 2020) grad-
ually pruned redundant operations during the search process,
hence the search space progressively squeezes and approx-
imates to the final target architecture. On the other hand,
RobustDARTS (Zela et al., 2020) leveraged eigenvalues of
architecture parameters to monitor the search process and
applied stronger regularizations to eliminate the instability.
SDARTS (Chen & Hsieh, 2020) proposed a perturbation-
based regularization to smooth the loss landscape to over-
come the unstable optimization issue. Moreover, recent
work (Wang et al., 2021) pointed out that the values of
architecture parameters do not necessarily reflect operation
strength and proposed a perturbation-based architecture se-
lection strategy, which, however, requires fine-tuning after
discretizing each edge, leading to substantial computation
costs. Therefore, considering that the optimization collapse
and the uncertainty of selecting architecture process caused
by architecture parameters, we propose a novel paradigm
and introduce the attention mechanism to guide the neural
architecture search instead of using architecture parameters.

Macro Search. Macro search methods firstly train a chain-
style super-network consisting of a series of choice blocks,
and then derive the final optimal sub-network based on the
validation accuracy. Because the super-network can be used
as a basic performance estimator for different architectures,
many works focus on solving the problem of super-network
training fairly and efficiently in a huge search space. SPOS
(Guo et al., 2020) trains the super-network through uni-
form path sampling. FairNAS (Chu et al., 2021) enforces
fairness constraints to alleviate the super-network bias and
boost the evaluation capacity. GreedyNAS (You et al.,
2020) proposed to ease the training burden by encourag-
ing to focus more on those potentially good paths instead
of all paths. However, these methods require sampling
many sub-networks based on the evolutionary algorithm
and evaluating their performance, so the search phase is
time-consuming. Instead, we introduce the attention mecha-
nism to the super-network training, so that the search phase
can be naturally integrated into the training process.

Attention Mechanism. The visual attention mechanism
is inspired by the neuronal structure of the early primate
visual system (Itti et al., 1998), and it began to attract lots of
attention when (Mnih et al., 2014) applied this mechanism
to the RNN model for image classification. Afterwards, lots
of works (Xu et al., 2015; Wang et al., 2017; Hu et al., 2018;
Woo et al., 2018; Li et al., 2019) designed different attention
structures with the aim of aggregating space or channels
information to improve the performance. Meanwhile, some

works (Luo & Wu, 2020; Wang et al., 2019; Yamamoto
& Maeno, 2018) applied the attention mechanism to prune
channels with smaller attention weights. Inspired by the
fact that attention weights can indicate the channel impor-
tance, we introduce it to reflect the influence of candidate
operations on the super-network with the aim of guiding the
neural architecture search.

3. Preliminary and Limitations
In the micro search space, the cell is defined as a directed
acyclic graph (DAG) with N nodes, and each edge (i, j)
between every node is associated with mixed operation ō(i,j)

that is parameterized as architecture parameters α(i,j) by
using softmax relaxation. The differentiable architecture
search can be formulated as a bi-level optimization problem
as follows:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argminwLtrain(w,α)
(1)

where α (the architecture parameters) and w (the network
weights) are alternately optimized on the validation and
training datasets respectively.

Limitation. Whereas, the architecture parameter α may not
accurately indicate how much the operation contributes to
the super-network’s performance as illustrated in (Wang
et al., 2021; Xie et al., 2021). So, we argue that the architec-
ture parameter may not be necessary and propose another
alternative paradigm based on the attention mechanism.

In the macro search space, the super-network is chained by
a sequence of layers that contains many candidate choice
blocks. Earlier methods divide the macro search procedure
into super-network training that can be expressed as:

w∗(a) = argminwEa∼ALtrain(w, a) (2)

After the super-network trained to convergence, then per-
form the sub-network searching as:

a∗ = argmaxa∼AACCval(a,w
∗(a)) (3)

Limitation. Whereas, hundreds of sub-networks need to
be evaluated with the evolutionary algorithm in order to
discover the optimal sub-network. Instead, we do not need
to sample the sub-networks because once the super-network
converges, the optimal sub-network will be indicated by the
attention weights.

4. Methodology
4.1. Micro Search with Attention

The goal of the micro search is to determine each operation
associated with each edge in a cell. For each searched cell,
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Figure 2. The main framework of the proposed AGNAS. Specifically, the goal of the micro search is to determine the optimal operation
associated with each edge in a cell based on the attention module added on each edge. The macro search aims to discover the optimal
choice block by the plug-in attention module on each layer.

the edge (i, j) is associated with all m candidate operations,
that are applied to the predecessor input node i, resulting
in the m output feature maps F o

k (k = 1, 2, ...,m). Assume
that each output feature map is F o

k ∈ Rb×c×h×w. The
DARTS approach integrates all m output feature maps by
element-wise addition, so the feature map of the output node
j is also F out ∈ Rb×c×h×w.

Instead, we concatenate all m output feature maps in chan-
nel dimension before delivering to the output node j, yield-
ing the intermediate concatenated feature map F con ∈
Rb×(m∗c)×h×w. To distinguish the importance of each can-
didate operation, we apply the attention module to the con-
catenated feature map F con. Specifically, as illustrated in
Figure 2, the concatenated feature map F con will first go
through a global average pooling to get the feature map
F con
gap ∈ Rb×(m∗c)×1×1,

F con
gap =

1

h× w

h∑
p=1

w∑
q=1

F con(p, q) (4)

and then the global average pooling feature map F con
gap is

applied to two fully-connected layers followed by a Sig-
moid layer. To reduce the complexity of the model and
improve generalisation, we use a bottleneck structure with
two fully-connected layers. The first FC layer is responsible
for dimensionality reduction and the second FC layer for
restoring the original dimensionality,

Atten = σ(W2Relu(W1F
con
gap )) (5)

where W1 ∈ R c
r×c and W2 ∈ Rc× c

r are the fully-
connection weights, r is the hyper-parameter coefficient

of dimensionality reduction, σ(·) is the Sigmoid function
whose output, Atten ∈ Rb×(m∗c)×1×1, i.e., the attention
weights, can be regarded as the magnitude of importance of
each channel.

The attention weights here are the activation values of all
channels. Therefore, the importance of the first candidate
operation A1 can be determined as the summation of the
activation values of the first c channels. Similarly, the im-
portance of each operation is expressed as the sum of the
activation values of the corresponding number of channels,

A1 =
∑c

i=1 Atten(i)

A2 =
∑2c

i=c Atten(i)
...

Am =
∑mc

i=(m−1)c Atten(i)

(6)

Next, in order to back propagate gradient and update the
weights of the attention module, the learned activation val-
ues of each channel are multiplied by the original concate-
nated feature map F con to obtain the output feature map
with each re-weighted channel F̃ con ∈ Rb×(m∗c)×h×w,

F̃ con = F con ⊗Atten (7)

Finally, the weighted feature map will be also applied the
element-wise addition in the channel dimension to get the
feature map F out of the output node j,

F out = F̃ con
[1:c] ⊕ F̃ con

[c:2c] ⊕ · · · ⊕ F̃ con
[(m−1)c:mc] (8)

At the end of the micro search, we forward propagate all
images of the validation datasets to obtain the attention
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weights associated with all candidate operations on each
edge in a cell. Finally, the optimal operation on each edge
is selected according to the largest aggregated attention
weights,

A∗ = argmax(A1, A2, · · ·, Am) (9)

4.2. Macro Search with Attention

For the macro search, we leverage the attention mechanism
to search for the specific choice block at each layer of the
target network. As shown in Figure 2, the super-network is
chained by pre-defined n choice blocks at each layer, and
the attention module is plugged in the end of each layer.

The output of the previous layer will be applied to all n
choice blocks of the current layer to generate n different
feature maps F o

k (k = 1, 2, ..., n), each of which is repre-
sented as F o

k ∈ Rb×c×h×w. Similar to the micro search,
we firstly concatenate the n output feature maps in the
channel dimension. Then the concatenated feature map
F con ∈ Rb×(n∗c)×h×w is applied to the attention module to
compute the channel attention weights by Eq.(4) and Eq.(5).

Afterwards, the channel activation weights are multiplied by
the concatenated feature map F con to get the re-weighted
output F̃ con ∈ Rb×(n∗c)×h×w, and the element-wise addi-
tion in channel dimension is applied to the F̃ con to obtain
the output F out of this layer as in Eq.(7) and (8).

At the end of the macro search, the importance of each block
at each layer can be represented by the summation of the
attention weights of the corresponding number of channels
on validation datasets,

A1 =
∑c

i=1 Atten(i)

A2 =
∑2c

i=c Atten(i)
...

An =
∑nc

i=(n−1)c Atten(i)

(10)

where Aj(j = 1, 2, ..., n) represents the importance of the
j-th choice block. Finally, the optimal choice block at each
layer is selected by the largest attention weights,

A∗ = argmax(A1, A2, · · ·, An) (11)

4.3. Theoretical Analysis

The reason why attention weights can produce more mean-
ingful and reliable results may be explained by the fact that
the approach is data-dependent, so that the attention weights
can vary more and better fit the data as they are different for
each sample.

Moreover, we also analyze it from the perspective of the
frequency principle. Notice that we use the global average

Algorithm 1 AGNAS Search Algorithm
Input: Supernet N with Attention moudule M, Training
data Dtrain, Validation data Dval.
Output: Attention weights A, Searched model.

Micro Search & Macro Search
1: Build supernet N with pre-defined cells or blocks as

well as the attention module M
2: while not converaged do
3: Update network weights w on training data Dtrain

by descending ∇wLtrain(w)
4: end while
5: Compute attention weights A on validation data Dval

by Eq.(6) for micro search or Eq.(10) for macro search
6: return derived micro cells based on the attention

weights A∗ by Eq.(9) or derived macro network based
on the attention weights A∗ by Eq.(11)

pooling (GAP) as the pre-processing before computing at-
tention weights. Whereas, GAP is actually a special case of
Two-Dimensional Discrete Cosine Transform (2D-DCT) as
follows,

f2d
h,w =

H−1∑
i=0

W−1∑
j=0

x2d
i,jcos(

hπ

H
(i+

1

2
))cos(

wπ

W
(j +

1

2
))

f2d
0,0 =

H−1∑
i=0

W−1∑
j=0

x2d
i,jcos(

0

H
(i+

1

2
))cos(

0

W
(j +

1

2
))

=

H−1∑
i=0

W−1∑
j=0

x2d
i,j = GAP (x2d)HW

s.t. h ∈ {0, 1, . . . ,H − 1} , w ∈ {0, 1, . . . ,W − 1}
(12)

Therefore, f2d
0,0 represents the lowest frequency component

of 2D-DCT, and it is proportional to GAP. According to
F-Principle (Xu et al., 2019b), low-frequency components
help to improve the generalization of networks. That is, the
operation, i.e., architecture derived by attention weights can
achieve better performance than that derived by architectural
parameters due to the GAP pre-processing.

5. Experiments
5.1. Search Space

DARTS Search Space. Following DARTS (Liu et al.,
2018c), a cell is defined as a directed acyclic graph (DAG)
consisting of an ordered sequence of N nodes. The input
node is represented by the outputs from the previous two
cells, each intermediate node aggregates information flows
from all of its predecessors, and the output node is defined
as a concatenation of a fixed number of its predecessors.
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Methods Test Err.(%) Params(M) Search Cost Search
(GPU-days) Algorithm

NASNet-A (Zoph et al., 2018) 2.65 3.3 1800 RL
AmoebaNet-A (Real et al., 2019) 3.34±0.06 3.2 3150 EA
AmoebaNet-B (Real et al., 2019) 2.55±0.05 2.8 3150 EA
PNAS (Liu et al., 2018a) 3.41±0.09 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
DARTS (1st order) (Liu et al., 2018c) 3.00±0.14 3.3 1.5 Gradient
DARTS (2nd order) (Liu et al., 2018c) 2.76±0.09 3.3 4 Gradient
SNAS (Xie et al., 2018) 2.85±0.02 2.8 1.5 Gradient
GDAS (Dong & Yang, 2019) 2.93 3.4 0.21 Gradient
BayesNAS (Zhou et al., 2019) 2.81±0.04 3.4 0.2 Gradient
Robust-DARTS (Zela et al., 2020) 2.95±0.21 N/A 1.6 Gradient
PC-DARTS (Xu et al., 2019a) 2.57±0.07 3.6 0.1 Gradient
DATA (Chang et al., 2019) 2.59 3.4 1 Gradient
SGAS(Cri.1 avg.) (Li et al., 2020) 2.66±0.24 3.7 0.25 Gradient
SDARTS-ADV (Chen & Hsieh, 2020) 2.61±0.02 3.3 1.3 Gradient
DARTS+PT (Wang et al., 2021) 2.61±0.08 3.0 0.8 Gradient
AGNAS (avg.) 2.53±0.003 3.6 0.4 Gradient
AGNAS (best) 2.46 3.6 0.4 Gradient

Table 1. Search results on CIFAR-10 and comparison with other state-of-the-art methods. Unlike other methods that only perform the
micro search for identical cells, AGNAS firstly conducts the micro search to obtain the different cells and then builds the target network
by stages. We report the average results for three independent runs with different initial random seeds.

ProxylessNAS Search Space. Following ProxylessNAS
(Cai et al., 2018), we adopted the MobileNet-like search
space in our experiments. The super-network consists of 21
choice blocks, each of which has 6 candidate choices with
different kernel size {3,5,7} and expansion ratio {3, 6}, as
well as an alternate candidate choice of skip-connect.

NAS-Bench-201 Search Space. NAS-Bench-201 (Dong
& Yang, 2020) is a benchmark for almost up-to-date NAS
algorithms. Specifically, the super-network is stacked by
cells, but it only requires searching for normal cells and
maintaining the reduction cells as residual blocks with a
stride of two. The normal cell is built by six edges and five
candidate operations associated with each edge, resulting
in a total of 15,625 neural architectures in the search space.
The diagnostic information about accuracy, loss, and param-
eters is accessible on three datasets including CIFAR-10,
CIFAR-100, and ImageNet-16-120.

5.2. Results on CIFAR-10

We conduct the micro search by constructing a super-
network with eight cells in the DARTS search space. Re-
duction cells are located at the 1/3 and 2/3 of the net-
work, whereas the rest are normal cells. The super-network
plugged by the attention module is trained on half of the
CIFAR-10 (Krizhevsky et al., 2009) training datasets. In
particular, we use the SGD optimizer to update network
weights with initial learning rate of 0.025, momentum 0.9,

and weight decay 3× 10−4. We search for 50 epochs with
the batch size of 64. The micro search process elapses nine
hours on 1080Ti GPU with only 10 GB GPU memory.

At the end of the micro search process, we can obtain eight
different cells according to the attention weights by forward-
ing propagation on the validation datasets. We divide the
super-network into three stages based on the location of the
reduction cell. And one of the normal cells is then selected
at each stage to build the target network.

Finally, in the evaluating phase, the target network which
consists of 20 layers with initial channel size of 36 is trained
on the whole CIFAR-10 training datasets. We use an SGD
optimizer with a weight decay of 3× 10−4 and a momen-
tum of 0.9. The initial learning rate starts from 0.025 and
follows the cosine annealing strategy to a minimum of 0.
The network is trained from scratch for 600 epochs with
batch size of 96.

As shown in Table 1, the results show that our method
achieves state-of-the-art performance with the accuracy of
97.54% compared with other methods in the DARTS search
space. Differently, all the previous methods stack the same
searched cell to evaluate the performance. However, we
build the target network using the different normal cells
at different stages, and can obtain the average accuracy of
97.47%, indicating that our method can search for a stable
architecture even with different seed initialization.
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Methods Test Err. (%) Params Search Cost Search

Top-1 Top-5 (M) (GPU-days) Algorithm
MnasNet (Tan et al., 2019) 26 8.2 4.2 2000 RL
NASNet (Zoph et al., 2018) 26.0 8.4 5.3 1800 RL
AmoebaNet (Real et al., 2019). 24.3 7.6 6.4 3150 EA
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225 SMBO
FBNet-C (Wu et al., 2019) 25.1 7.9 5.5 9 Gradient
ProxylessNAS(GPU) (Cai et al., 2018) 24.9 7.5 7.1 8.3 Gradient
SPOS (Guo et al., 2020) 26.0 8.4 5.3 11‡ Evolution
FairNAS-A (Chu et al., 2021) 24.66 7.8 4.6 16‡ Evolution
GreedyNAS-C (You et al., 2020) 23.8 7.5 4.7 8‡ Evolution
RLNAS (Zhang et al., 2021) 24.4 7.4 5.3 N/A Evolution
AGNAS 23.4 6.8 6.7 3.3 Gradient

Table 2. Search results on ImageNet and comparison with other state-of-the-art methods. ‡ denotes the search cost includes the additional
subnet searching with the evolutionary algorithm.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test
Optimal 91.61 94.37 73.49 73.51 46.77 47.31
RSPS 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
ENAS 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
AGNAS 91.25±0.019 94.05±0.059 72.4±0.382 72.41±0.061 45.5±0.003 45.98±0.457

Table 3. Search results on NAS-bench-201. We report the average performance for three independent runs of searching. “Optimal”
indicates the highest accuracy for each dataset on NAS-Bench-201.

5.3. Results on ImageNet

We conduct the macro search directly on ImageNet datasets
(Krizhevsky et al., 2017) in the ProxylessNAS search space.
Specifically, the super-network is chained by a series of
blocks, each of which contains many candidate choice oper-
ations. The super-network with the added attention module
is trained on 8 NVIDIA V100 GPUs on 10% of the training
datasets for 50 epochs with a batch size of 64 per GPU.
After that, the optimal choice operation for each layer is
determined according to the channel attention weights that
are computed on the validation datasets.

The final derived network is trained from scratch on the
entire ImageNet training datasets. We use the SGD opti-
mizer with an initial learning rate of 0.5, weight decay of
4× 10−5, and momentum of 0.9. The network is trained for
240 epochs with the batch size of 1024 on 8 NVIDIA V100
GPUs.

From Table 2, we can see that by directly searching on
ImageNet within 3.3 GPU-days, AGNAS achieves Top-
1 test error of 23.4% and Top-5 test error of 6.8%. The

results show that the proposed method is very efficient and
significantly outperforms the other methods.

5.4. Results on NAS-Bench-201

In NAS-Bench-201 search space, we add the attention mod-
ule to each edge in a cell. It is worth noting that the bench-
mark can only retrieve the super-network stacked by the
same cell. Therefore, we average the attention weights
of the edges in the same position of all cells for selecting
the corresponding operations in order to obtain the final
single cell. We search for 50 epochs on CIFAR-10 and
then index the accuracy of the searched architecture on the
three datasets CIFAR-10, CIFAR-100, and ImageNet-16-
120, respectively. We keep the hyperparameters the same
as DARTS, and repeat the experiment three times with dif-
ferent initial random seeds. The results are shown in Table
3. Compared to other methods, AGNAS achieves the best
performance on three datasets. Furthermore, the best accu-
racies are all close to the global optimal, demonstrating the
effectiveness of the neural architecture with the attention
mechanism.
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(c) The ranking of attention weights or alpha weights
against discretization accuracy.

Figure 3. Comparison of attention weights and architecture param-
eters on measuring the importance of candidate operations.

6. Discussion
6.1. Attention Weight vs. Architecture Parameter

Here we investigate the effect of the attention weights vs.
architecture parameters on the performance of the super-
network. Specifically, we experiment AGNAS and DARTS
on CIFAR-10 dataset, and randomly discretize an edge in
a cell at the end of the search phase. The super-network
is expected to get the highest discretization accuracy if we
keep the optimal operation measured by the attention weight
or alpha weights on the edge and prune the other operations.
Moreover, we use the Kendall τ metric (Kendall, 1938)
to measure the correlation between two rankings of alpha
weights or attention weights and discretization accuracy.
The closer this metric is to 1, the higher the correlation
between the two sequences; otherwise, the opposite is true.

With the instance of both DARTS and AGNAS discretizing
the second edge in the first cell, we compare the discretiza-
tion accuracy of the super-network when only one of the
operations is retained on this edge. The Op 4 has the largest
attention weight, which also bring the highest discretization
accuracy, as demonstrated in Figure 3 (a). Nonetheless, as
shown in Figure 3 (b), the largest alpha weight on Op 4 does
not reach the highest accuracy after discretizing the edge,
showing that the alpha weight cannot reflect the true strength
of the operation. Furthermore, our approach achieves higher
Kendall τ than DARTS as shown in Figure 3 (c), which
means that attention weights better reflect operational im-
portance than architectural parameters. More details are
provided in the Appendix C.
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Figure 4. Micro cell searched on CIFAR-10 and the evaluated tar-
get network.
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Figure 5. Macro architecture searched on ImageNet.

6.2. Visualization

Here we visualize the searched micro cells and target net-
work on CIFAR-10. We obtain a total of eight different cells
in the micro search stage, five of which are shown in Fig-
ure 4 (a) (b) (c) (d) (e), where the (b) and (d) are reduction
cells, and the remaining normal cells are built the final target
network at different stages, which is shown in Figure 4 (f).
In addition, as shown in Figure 5, we visualize the macro
architecture directly searched in the ProxylessNAS search
space on ImageNet.

6.3. Limitations

Although AGNAS achieves good performance, we must
acknowledge that the resource consumption is a little higher
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than architecture parameter-based methods (e.g., AGNAS:
9.7 GB GPU-Memory vs. DARTS: 9.4 GB GPU-Memory).
We are also exploring whether there are more appropriate
mechanisms to determine the true importance of candidate
operations.

7. Conclusion
In this paper, we propose to leverage the attention mech-
anism to search for micro and macro architectures in one
framework. We use the attention weights to measure the
importance of candidate operations and choice blocks. Ex-
tensive experiments validate that the proposed AGNAS is
effective and significantly outperforms state-of-the-art ap-
proaches. In the future, we will simultaneously search for
micro- and macro- architecture in the AGNAS framework
and apply AGNAS to other computer vision tasks such as
object detection and semantic segmentation.
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A. Datasets
We conduct the micro search and macro search on two popular image classification datasets including CIFAR-10 and
ImageNet. CIFAR-10 datasets have 50K training RGB images and 10K testing RGB images with a fixed spatial resolution
of 32×32. In the search phase, we split the training datasets in half to train the super-network weights and the attention
module weights, and the other half as validation datasets to select the optimal operation in micro search by forwarding
propagation of all images to get the corresponding attention weights. The ILSVRC2012 ImageNet dataset contains 1.28M
training and 50K validation images with 1000 object categories. In the macro search phase, we sample 10% of the training
datasets to update the super-network and the attention module weights, and 2.5% training datasets as validation datasets are
used to select the final choice block at each layer based on the attention weights.

B. Analysis of Collapse
DARTS introduces the architecture parameters and leverages a bi-level optimization to alternately optimize the architecture
parameters and network weights. However, the optimization may prefer non-parametric operations, especially skip-
connections, thus resulting in the performance collapse issue. Therefore, we investigate how the number of skip-connection
for DARTS and AGNAS changes througout the search process in the NAS-Bench-201 search space.

We repeat the experiments three times with different initialized seeds, and the results are shown in Figure 6. We plot the
number of skip-connection per epoch together with the test accuracy in each experiment. As shown in Figure 6 (a) (b)
(c), the searched cells by DARTS are all consisted of skip-connections, and the test accuracy also deteriorates to roughly
53% at the last search epoch, thus indicating the performance collapse induced by architecture parameters. However, as
demonstrated in Figure 6 (d) (e) (f), AGNAS achieves state-of-the-art performance with the proposed attention mechanism
and the number of skip-connection is no more than three during the search process. The results indicate that the effectiveness
of utilizing attention weights to quantify the importance of candidate operations to derive the final cell.
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Figure 6. The number of skip-connection and test accuracy on CIFAR-10 as the search process in the NAS-Bench-201. We repeat each
experiment three times with different initial seeds.
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C. Attention Weight vs. Architecture Parameter
We have discretized additional edges in different cells to illustrate that the attention weights are more consistent than
architectural parameters in measuring the importance of candidate operations. As shown in Figure 7-9, when AGNAS
discretizes the corresponding edges in different cells, the operations with the largest attention weight all achieve the highest
discretization accuracy. Whereas, DARTS with the largest alpha weight does not reach the highest accuracy after discretizing
the same edge, and the ranking consistency, i.e., the Kendall τ is also inferior to AGNAS, indicating that the attention
weights can better reflect the operational importance than architecture parameters.
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(c) The ranking of attention weights or alpha
weights against discretization accuracy.

Figure 7. Comparison of attention weights and architecture parameters on measuring the importance of candidate operations both on the
1st edge of the 2nd cell.
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(c) The ranking of attention weights or alpha
weights against discretization accuracy.

Figure 8. Comparison of attention weights and architecture parameters on measuring the importance of candidate operations both on the
13th edge of the 3rd cell.
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(c) The ranking of attention weights or alpha
weights against discretization accuracy.

Figure 9. Comparison of attention weights and architecture parameters on measuring the importance of candidate operations both on the
10th edge of the 5th cell.


