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Abstract
We study the problem of distributed mean esti-
mation and optimization under communication
constraints. We propose a correlated quantization
protocol whose error guarantee depends on the
deviation of data points instead of their absolute
range. The design doesn’t need any prior knowl-
edge on the concentration property of the dataset,
which is required to get such dependence in previ-
ous works. We show that applying the proposed
protocol as a sub-routine in distributed optimiza-
tion algorithms leads to better convergence rates.
We also prove the optimality of our protocol un-
der mild assumptions. Experimental results show
that our proposed algorithm outperforms exist-
ing mean estimation protocols on a diverse set of
tasks.

1. Introduction
Large-scale machine learning systems often require the dis-
tribution of data across multiple devices. For example, in
federated learning (Kairouz et al., 2021), data is distributed
across user devices such as cell phones, and the machine
learning models are trained with adaptive stochastic gradient
descent methods or their variations like federated averaging
(McMahan et al., 2017). Such algorithms require multi-
ple rounds of communication between the devices and the
centralized server. At each round, the devices send model
updates to the server, and the server aggregates the data and
outputs a new model.

In many scenarios like federated learning, the data from
devices are sent to the server over wireless channels. Com-
munication between devices and the server, especially the
uplink communication, is a bottleneck. This has resulted in
a series of works on compression and quantization methods
to reduce the communication cost (Konečnỳ et al., 2016;
Lin et al., 2018; Alistarh et al., 2017).
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At the heart of these algorithms is the distributed mean
estimation protocol where each client has a model update
(in the form of a vector). Each client compresses its update
and transmits the compressed version to the server. The
server then decompresses and aggregates the updates to
approximate the mean of the updates. In this work, we study
the problem of distributed mean estimation and provide the
first algorithm whose dominant term of the error depends
on the variance of the inputs rather than only their absolute
range without additional side information. We then use
these results to provide improved convergence guarantees
for distributed optimization protocols. Before we proceed
further, we need a few definitions.

Distributed mean estimation. Let X ⊂ Rd be the input
space and xn = x1, x2, . . . , xn be the n data points where
each xi ∈ X . For most results, we assume X = Bd(R)

def
=

{x ∈ Rd | ∥x∥2 ≤ R}, the ℓ2 ball of radius R. We denote
the mean of the vectors as

x̄ =
1

n

n∑
i=1

xi.

In compression, these xis are encoded at the clients and
then decoded at the server (Mayekar and Tyagi, 2020). Qi,
the quantizer (encoder) at client i is a (possibly randomized)
mapping from X → Y , where Y is the quantized space.
With the slight abuse of notation let Qn = Q1, Q2, . . . Qn,
be the set of quantizers. Each client encodes xi and sends
Qi(xi) to the server. The server then decodes Qn(xn) to
get an estimate of the mean x̂. Following earlier works
(Suresh et al., 2017; Mayekar and Tyagi, 2020), we measure
the performance of the quantizer in terms of mean squared
error,

E(Qn, xn)
def
= E∥x̂− x̄∥22,

where the expectation is over the public and private random-
ness of the algorithm.

Distributed optimization. We consider solving the fol-
lowing optimization task using distributed stochastic gra-
dient descent (SGD) methods. Let F : Rd → R be an
objective function and the goal is to minimize the F over an
ℓ2-bounded space Ω def

= {w ∈ Rd | ∥w∥2 ≤ D}. Motivated
by the federated learning setting, we assume there are T



rounds of communication. At round t, a set of n clients
is involved, and each of them has access to a stochastic
gradient oracle of F , denoted by g.

In distributed SGD, after selecting a random initialization
w0 ∈ Ω, at round t, each client queries the oracle at wt.
Under communication constraints, users must quantize their
obtained gradient with limited bits and send it to the server.
The server then uses these quantized messages to estimate
the true gradient of F (w), which is the average of local
gradients. We denote this estimate as ∇̂F (wt). The server
then updates the parameter with some learning rate

wt+1 = wt − ηt∇̂F (wt),

and projects it back to Ω, which is sent to all clients in the
next round.

Under smoothness assumptions on F , standard results in
optimization, e.g., Bubeck (2015), allow us to obtain con-
vergence results given mean squared error guarantees for
the mean estimation primitive E[(∇̂F (wt) − ∇F (wt))

2].
Hence we will focus on analyzing error guarantees on the
mean estimation task and discuss their implications on dis-
tributed optimization.

2. Related Works
The goal of distributed mean estimation is to estimate the
empirical mean without making distributional assumptions
of the data. This is different from works estimating the
mean of the underlying distributional model (Zhang et al.,
2013; Garg et al., 2014; Braverman et al., 2016; Cai and
Wei, 2020; Acharya et al., 2021). To achieve guarantees in
terms of the deviation of the data, these techniques rely on
the distributional assumption, which is not applicable in our
setting.

The classic algorithm for this problem is stochastic scalar
quantization, where each dimension of the data is stochas-
tically quantized to one of the fixed values (such as 0 or 1
in stochastic binary quantization). This provides an unbi-
ased estimation with reduced communication cost. It has
been shown that adding random rotation reduces quantiza-
tion error (Suresh et al., 2017) and variable-length coding
provides the near-optimal communication-error trade-off
(Alistarh et al., 2017; Suresh et al., 2017). Many variants
and improvements of the scalar quantization algorithms ex-
ist. For example, Terngrad (Wen et al., 2017) and 3LC
(Lim et al., 2019) use a three-level stochastic quantization
strategy. SignSGD uses the sign of the coordinate of gradi-
ents rather than quantizing it (Bernstein et al., 2018). 1-bit
SGD uses error-feedback as a mechanism to reduce the error
in quantization (Seide et al., 2014); error-feedback (Stich
and Karimireddy, 2020) is orthogonal to our work and can
be potentially used in combination. Mitchell et al. (2022)

proposes to learn the quantizer leveraging data distribution
across the clients using rate-distortion theory. Vargaftik et al.
(2021b) proposes DRIVE, an improvement of the random
rotation method by replacing the stochastic binary quan-
tization with the sign operator. This method is shown to
outperform other variants of scalar quantization. Recent
work of Vargaftik et al. (2021a) generalizes DRIVE to han-
dle any communication budget. Other techniques include
Sparsified SGD (Stich et al., 2018) and sketching based
approaches (Ivkin et al., 2019).

Beyond scalar quantization, vector quantization may lead
to higher worst-case communication cost (Gandikota et al.,
2021). Kashin’s representation has been used to quantize
a d-dimensional vector using less than d bits (Caldas et al.,
2018b; Chen et al., 2020; Safaryan et al., 2021). Davies
et al. (2021) use the lattice quantization method which will
be discussed below.

More broadly, our work is also related to non-quantization
methods to improve the communication cost of distributed
mean estimation, often under the context of distributed opti-
mization. Examples include gradient sparsification (Aji and
Heafield, 2017; Lin et al., 2018; Basu et al., 2019) and low
rank decomposition (Wang et al., 2018; Vogels et al., 2019).
These methods require assumptions of the data such as high
sparsity or low rank. The idea of using correlation between
local compressors has also been considered in Szlendak et al.
(2021) for gradient sparsification. The paper uses shared ran-
domness to select coordinates without-replacement across
clients, which is also shown to be advantageous to inde-
pendent masking. Without compression, (Yun et al., 2022)
studies the effect of randomness in local data reshuffling.
The paper shows that for both local and mini-batch SGD,
sampling indices without-replacement can outperform sam-
pling with-replacement counterparts in certain regimes.

Perhaps closest to our work is that of Davies et al. (2021);
Mayekar et al. (2021), who proposed algorithms with error
that depends on the variance of the inputs. However, these
works all need certain side information about the inputs,
and deviate from our work in two ways: first in Davies
et al. (2021), the clients need to know the input variance.
Secondly, both Davies et al. (2021); Mayekar et al. (2021)
require the server to know one of the client values to a high
accuracy. Finally, their information theoretically optimal
algorithm is not computationally efficient, and their efficient
algorithm is sub-optimal in logarithmic factors. We note that
correlated random variables are also used in Mayekar et al.
(2021). They use the same random variable to quantize
both the input vector and the side information. This is
very different from our proposed approach, which generates
correlated random variables which are used for different
input vectors.



3. Our Contributions
We propose correlated quantization that only requires a sim-
ple modification in the standard stochastic quantization al-
gorithm. Correlated quantization uses shared randomness to
introduce correlation between local quantizers at each client,
which results in improved error bounds. In the absence of
shared randomness, it can be simulated by the server send-
ing a seed to generate randomness to all the clients. We first
state the error guarantees below.

In one dimension, if all values lie in the range [l, r], the error
of standard stochastic quantization with k levels scales as
(Suresh et al., 2017)

O
(
(r − l)2

nk2

)
.

In this work, we show that the modified algorithm (Algo-
rithm 2) has error that scales as

O
(
min

(
σmd(r − l)

nk
,
(r − l)2

nk2

)
+

(r − l)2

n2k2

)
,

where σmd is the empirical mean absolute deviation of points
defined below:

σmd
def
=

1

n

n∑
i=1

|xi − x̄| . (1)

Informally, σmd models how concentrated the data points are.
Compared to other commonly used concentration measures,
such as worst-case deviation (Mayekar et al., 2021)

σmax
def
= max

i
|xi − x̄|,

and standard deviation (Davies et al., 2021)

σ
def
=

√√√√ 1

n

n∑
i=1

(xi − x̄)
2
,

it holds that σmd ≤ σ ≤ σmax ≤ r − l. Hence our result
implies bounds in terms of these concentration measures as
well.

When σmd < r−l
k , i.e., the data points are “close” to each

other, the proposed algorithm has smaller error than stochas-
tic quantization. Notice that it was shown in previous works
that better error guarantees can be obtained when the data
points have better concentration properties. However these
works rely on knowing a bound on the concentration radius
(Davies et al., 2021) or side information such as a crude
bound on the location of the mean (Davies et al., 2021;
Mayekar et al., 2021). Different from the above, our pro-
posed scheme doesn’t require any side information. More-
over, we remark that our proposed scheme only requires
a simple modification of how randomness is generated in
the standard stochastic quantization algorithm while these
algorithms are based on sophisticated encoding schemes
based on the availability of prior information.

Lower bound. When σmd is small, we further show that
in the one-dimensional case, our obtained bound is optimal
for any k-interval quantizers (see Definition 1), which is
commonly used in many state-of-the art compression al-
gorithms in distributed optimization including stochastic
quantization and our proposed algorithm. Moreover, when
each client is only allowed to use one bit (or constant bits),
the obtained bound is information-theoretically optimal for
any quantizers.

Extension to higher dimensions. In high dimensions, if
all values lie in Bd(R), the error of the min-max optimal
algorithms with k levels of quantization scales as (Suresh
et al., 2017)

Õ
(

R2

nk2

)
.

We show that an improvement similar to the previous result:

Õ
(
min

(
σd

mdR

nk
,
R2

nk2

)
+

R2

n2k2

)
,

where σd
md is the average ℓ2 distance between data points,

σd
md =

1

n

n∑
i=1

∥xi − x̄∥2. (2)

Similar to the one-dimensional case, it can be shown
that σd

md is upper bounded by maxi ∥xi − x̄∥2 and
( 1n
∑n

i=1 ∥xi − x̄∥22)1/2. And hence the same bound holds
for these measures as well.

We note that our dependence on standard deviation is linear.
This coincides with the results of Mayekar et al. (2021) for
mean estimation with side information. While the results of
one are not directly applicable to the other, understanding
the two results in the high-dimensional case remains an
interesting direction to explore.

Distributed optimization. Turning to the task of dis-
tributed optimization, the proposed mean estimation algo-
rithm can be used as a primitive in distributed SGD al-
gorithm. Following stochastic optimization literature, we
assume the gradient oracle g satisfies ∀w ∈ Ω,

• Unbiasedness: E[g(w)] = ∇F (w).

• Lipschitzness: ∥g(w)∥2 ≤ R.

• Bounded variance: E[∥g(w)−∇F (w))∥22] ≤ σ2.

We also assume that the function is convex and smooth. A
function F is H-smooth, if for all w,w′ ∈ Ω,

∥∇F (w)−∇F (w′)∥2 ≤ H∥w − w′∥2.

Using standard results on smooth convex optimization (e.g.,
Theorem 6.3 in Bubeck (2015)) and estimation error guar-
antee in Corollary 1, we obtain the following bound.
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Figure 1: Mean squared error for the toy problem.

Theorem 1. Suppose the objective function F (w) is convex
and H-smooth, using correlated quantization with k =

√
d

levels as the mean estimation primitive, distributed SGD
with T rounds and learning rate 1

H+1/η yields

E

[
F

(
1

T

T∑
t=1

wt

)]
−min

w∈Ω
F (w) ≤

(
H +

1

η

)
D2

T
+
η△2

2
,

where η > 0 and △2 = O
(

σR
n + R2

n2

)
1. Moreover, each

client only needs to send Θ(d) bits (constant bits per dimen-
sion) in each round.

Optimization algorithms based on stochastic rounding (Al-
istarh et al., 2017; Suresh et al., 2017) has convergence
rate of the same form with △′2 = O

(
R2

n

)
under the same

communication complexity. Notice that the mean squared
error (and therefore the convergence rate) we obtain is al-
ways better than that of the classic stochastic quantization
algorithm, and when σ < R the new algorithm gives faster
convergence. This corresponds to the case where the clients’
local gradients are better concentrated than their absolute
range, which is a mild assumption.

4. A Toy Example
Before we proceed further, we motivate our result with a
simple example. Suppose there are n devices and device i
has xi ∈ [0, 1]. Further, let’s consider the simple scenario
in which each client can only send one bit i.e., Qi can take
only two values. The popular algorithm for mean estimation
is stochastic quantization, in which client i sends Qi(xi)
given by

Qi(xi) =

{
1 with probability xi,

0 with probability 1− xi.
(3)

1Note that here we ignore the statistical variance term σ2

n
since

it is always smaller than the quantization error. The same applies
for the classic stochastic rounding algorithm.

Notice that Qi(xi) takes only two values and the server
computes the mean by computing their average

x̂ =
1

n

n∑
i=1

Qi(xi).

We first note that Qi(xi) is unbiased

E[x̂] = x̄.

The mean squared error of this protocol is

E(Qn, xn) =
1

n2

n∑
i=1

xi(1− xi).

To motivate our approach, we consider the special case when
n = 2 and further assume x1 = x2 = x. In this case, the
mean squared error of the stochastic quantizer is

E(Q2, x2) =
x(1− x)

2
. (4)

The key insight of correlated quantization is that if the first
client rounds up its value, the second client should round
down its value to reduce the mean squared error. To see
this, we first rewrite the original stochastic quantization Qi

slightly differently. For each i, let Ui be an independent
uniform random variable in the range [0, 1]. Then we can
rewrite Qi as

Qi(xi) = 1Ui<xi
.

To see the equivalence of the above definition and (3), ob-
serve that the probability of Ui < xi is xi. Hence 1Ui<xi

is
one with probability xi and zero otherwise.

For the special case of n = 2, we propose to modify the esti-
mator by making Uis dependent on each other. In particular,
let U1 be a uniform random variable in the range [0, 1] and
let U2 = 1 − U1. This can be implemented using shared
randomness. Let the modified estimator be as before

Q′
i(xi) = 1Ui<xi

.

Since Qi is an unbiased estimator, Q′
i is also an unbiased

estimator. We now compute the mean squared error of Q′

E(Q′2, x2)

= E

[(
Q′

1(x1) +Q′
2(x2)

2

)2
]
− x2

=
1

4
E
[
(1U1<x + 11−U1<x)

2
]
− x2

=
1

4
E [1U1<x + 11−U1<x + 2 · 1U1<x11−U1<x]− x2

=
1

4
E [1U1<x + 11−U1<x + 2 · 11−x<U1<x]− x2

=
1

4
(x+ x+ 2max(2x− 1, 0))− x2

=
x

2
+ max

(
x− 1

2
, 0

)
− x2.



We plot the mean squared error of the original quantizer
Q and the new quantizer Q′ in Figure 1. Observe that the
above mean squared error is uniformly upper bounded by
the mean squared error of the original quantizer (4). Our
goal is to propose a similar estimator for n devices, in d
dimensions, that has uniformly low error compared to Q
even when the devices have different values of xi.

5. Correlated Quantization in One Dimension
We first extend the above idea and provide a new quan-
tizer for bounded scalar values. For simplicity, we first
assume each X = [0, 1]. Recall that the goal is to estimate
1
n

∑n
i=1 xi. Let Qi(xi) be some quantization of xi. We ap-

proximate the average by 1
n

∑n
i=1 Qi(xi). As we discussed

in the previous section, we propose to use

Qi(xi) = 1Ui<xi
,

where Uis are uniform random variables between zero and
one, but are now correlated across the clients. We generate
Uis as follows. Let π denote a random permutation of
{0, 1, 2, . . . , n − 1}. Let πi denote the ith value of this
permutation. Let γi is a uniform random variable between
[0, 1/n). With these definitions, we let

Ui =
πi

n
+ γi.

Observe that for each i, Ui is a uniform random variable
over [0, 1]. However, they are now correlated across clients.
Hence the quantizer can be written as

Qi(xi) = 1πi
n +γi<xi

.

We illustrate why this quantizer is better with an example. If
all clients have the same value s/n, s ∈ {0, 1, . . . , n}, the
new quantizer can be written as

1

n

n∑
i=1

Qi(s/n) =
1

n

n∑
i=1

1πi
n +γi<

s
n

(a)
=

1

n

n∑
i=1

1πi
n < s

n

(b)
=

1

n

n∑
j=1

1 j−1
n < s

n
=

1

n

n∑
j=1

1j≤s =
s

n
,

where (a) uses the fact that the value of γi does not change
1πi

n +γi<
s
n

for this example and (b) uses the fact that π is
a random permutation of {0, 1, 2, . . . , n − 1}. We have
shown that the correlated quantizer has zero error in the
above example. In contrast, the standard stochastic quantizer
outputs

1

n

n∑
i=1

1Ui<
s
n

(c)
=

1

n

n∑
i=1

1 ⌊Uin⌋
n < s

n

=
1

n

n∑
i=1

1π′
i

n < s
n

,

where (c) follows from the fact that s is an integer and
π′
i = ⌊Uin⌋, a uniform random variable from the set

{0, 1, . . . , n− 1}. Moreover, π′
is are independent.

Algorithm 1 ONEDIMONEBITCQ
Input: x1, x2, . . . , xn, l, r.
Generate π, a random permutation of {0, 1, 2, . . . , n− 1}.
For i = 1 to n:

1. yi =
xi−l
r−l .

2. Ui =
πi

n + γi, where γi ∼ U [0, 1/n).

3. Qi(xi) = (r − l)1Ui<yi
.

Output: 1
n

∑n
i=1 Qi(xi).

The above example also provides an alternative view of
the proposed quantizer. If ∀i, xi = s/n, then the ran-
dom variables in the standard stochastic random quantizer
can be viewed as sampling-with-replacement from the set
{0/n, 1/n . . . , (n−1)/n} while the random variables in the
correlated quantizer can be viewed as an sampling-without-
replacement from the set {0/n, 1/n . . . , (n− 1)/n}. Since
sampling without replacement has smaller variance, the pro-
posed estimator performs better and in the particular case
of this example has zero error.

We will generalize the above result and show a data depen-
dent bound in its error in Theorem 2. For completeness, the
full algorithm when each input belongs to the range [l, r) is
given in Algorithm 1.

Theorem 2. If all the inputs lie in the range [l, r), the
proposed estimator ONEDIMONEBITCQ is unbiased and
the mean squared error is upper bounded by

3

n
· σmd(r − l) +

12(r − l)2

n2
,

where σmd is defined in (1).

We provide the proof of the theorem in Appendix A. Note
that σmd = 0 in the toy examples described before. We now
extend the results to k levels. A standard way of extending
one bit quantizers to multiple bits is to divide the inter-
val into multiple fixed length intervals and use stochastic
quantization in each interval. While this does provide good
worst-case bounds, we cannot get data-dependent bounds
in terms of mean deviation. This is because there can be
examples in which the samples lie in two different intervals
and using stochastic quantization in each interval separately
can increase the error. For example, if k = 4 and we divide
the [0, 1] into intervals [0, 1/3], [1/3, 2/3], [2/3, 1]. If all
points are in the set {1/3−ϵ, 1/3+ϵ}, then they will belong
to two different intervals, which yields looser bounds.

We overcome this, by dividing the input space into random-
ized intervals. Even though the points may lie in different
intervals with randomized intervals, we use the fact that the
chance of it happening is small to get bounds in terms of



Algorithm 2 ONEDIMKLEVELSCQ
Input: x1, x2, . . . , xn, l, r.
Let c1, c2, . . . , ck be k levels such that c1 is uniformly dis-
tributed in the interval

[
− 1

k , 0
)

and ci = c1 + (i − 1)β

where β = k+1
k(k−1) .

Generate π, a random permutation of {0, 1, 2, . . . , n− 1}.
For i = 1 to n:

1. yi =
xi−l

(r−l)β .

2. c′i = maxci<yi ci.

3. Ui =
πi

n + γi, where γi ∼ U [0, 1/n).

4. Qi(xi) = (r − l) · (c′i + β1Ui<yi
).

Output: 1
n

∑n
i=1 Qi(xi).

absolute deviation. More formally, let c1, c2, . . . , ck be k
levels such that c1 is uniformly distributed in the interval[
− 1

k , 0
)

and ci = c1+(i−1)β where β = k+1
k(k−1) . Observe

that with these definitions,

ck ≥ −1

k
+ (k − 1) · k + 1

k(k − 1)
= −1

k
+

k + 1

k
= 1.

Let
c′i = max

ci<xi

ci

If x ∈ [0, 1], we use the following algorithm:

Qi(xi) = c′i + βQ′
i

(
xi − c′i

β

)
,

where Q′
i is the two-level quantizer in Algorithm 1. The

full algorithm when each input belongs to the range [l, r) is
given in Algorithm 2 and we provide its theoretical guaran-
tee in Theorem 3. We provide the proof of the theorem in
Appendix B.

Theorem 3. If all the inputs lie in the range [l, r), k ≥ 3,
the proposed estimator ONEDIMKLEVELSCQ is unbiased
and the mean squared error is upper bounded by

12

n
·min

(
σmd · (r − l)

k
,
(r − l)2

k2

)
+

48(r − l)2

n2k2
,

where σmd is defined in (1).

6. Extensions to High Dimensions
To extend the algorithm to high-dimensional data, we can
quantize each coordinate independently using the above
quantization scheme. However such an approach is subopti-
mal. In this section, we show that the two approaches used
in Suresh et al. (2017) namely variable length coding and
random rotation can be used here.

6.1. Variable length coding

One natural way to extend the above algorithm to high
dimensions is to use ONEDIMKLEVELSSC on each co-
ordinate using k bits. Suresh et al. (2017); Alistarh et al.
(2017) observed that while each coordinate is quantized by
k bits, instead of using d · log2 k bits of communication, one
can reduce the communication cost by using variable length
codes such as Elias-Gamma codes or Arithmetic coding. We
refer to this algorithm as ENTROPYCQ. We use the same
approach and show the following corollary.

Corollary 1. If all the inputs lie in the range Bd(R), the
proposed estimator ENTROPYCQ is unbiased and the mean
squared error is upper bounded by

c

n
·min

(√
dσd

mdR

k
,
dR2

k2

)
+

c2d

n2k2
,

where σd
md is defined in (2) and c is a constant. Furthermore,

overall the quantizer can be communicated to the server in
O
(
d ·
(
1 + log2

(
(k−1)2

2d + 1
)))

+ k log2
(k+d)e

k + Õ(1)

bits per client in expectation.

The proof of unbiasedness and variance follows directly
from Theorem 3 applied to each coordinate. The proof of
communication cost is similar to that of (Suresh et al., 2017,
Theorem 4) and omitted. Based on the above corollary, we
can set k =

√
d bits and have a quantizer that uses O(d)

bits and has error

c

n
·min

(
σd

mdR,R2
)
+

cR2

n2
.

6.2. Random rotation

Instead of using variable length code, one can use a random
rotation matrix to reduce the L∞ norm of the vectors. We
use this approach and show the following result. The proof
is given in Appendix C. Similar to Suresh et al. (2017), one
can use the efficient Walsh-Hadamard rotation which takes
O(d log d) time to compute (Algorithm 3).

Corollary 2. If all the inputs lie in the range Bd(R), the
proposed estimator WALSHHADAMARDCQ has bias at
most 3R

√
2 log(dn)/(n2d3/2) and the mean squared error

is upper bounded by

c log(dn)

n
·
(
min

(
σd

mdR

k
,
R2

k2

)
+

R2

nk2
+

R2

n3d3

)
,

where σd
md is defined in (1) and c is a constant. Furthermore,

overall the quantizer can be communicated to the server in
d · log2 k + Õ(1) bits per client in expectation.

We note that with communication cost of O(d) bits, the
bounds with the random rotation are sub-optimal by a log-



Algorithm 3 WALSHHADAMARDCQ
Input: x1, x2, . . . , xn ∈ Rd, R.
For j ≤ d, let πj , a random permutation of {0, 1, 2, . . . , n−
1}.
Let W = 1√

d
HD, where H is a Hadamard matrix and D is

a diagonal matrix with independent Rademacher entries2.
For i = 1 to n:

1. yi =
√
d

R
√

8 log(dn)
·Wxi.

2. For j = 1 to d:

(a) y′i(j) = max(−1,min(yi(j), 1)).

For j = 1 to d:

1. z(j) = ONEDIMKLEVELSCQ(y′i(j), . . . , y
′
n(j),−1, 1).

Output: R
√

8 log(dn)√
d

W−1 · z.

arithmic factor compared to the variable length coding ap-
proach. However, it may be the desired approach in practice
due to ease of use or computation costs.

7. Lower Bound
In this section, we discuss information-theoretic lower
bounds on the quantization error. We will focus on the
one-dimensional case and show that correlated quantization
is optimal in terms of the dependence on σmd and r − l
under mild assumptions. For the general d-dimensional
case, whether the dependence on σd

md and R is tight is an
interesting question to explore.

In the one-dimensional case with one bit (or constant bits)
per client, we obtain the following lower bound, which
shows that the upper bound in Theorem 2 is tight up to
constant factors in terms of the dependence on σmd when
n = Ω̃((r − l)/σmd). Note that the condition is mild since
when n < (r − l)/σmd, the second term in Theorem 2,
(r − l)2/n2 > σmd(r − l)/n. As shown in Theorem 5,
the (r − l)2/n2 dependence can not be improved for k-
interval quantizers. Whether it can be improved for general
quantizers is an interesting future direction.

Theorem 4. For any l, r and σmd < l−r
2 , and any one-bit

quantizer Qn, when n > 8(r−l)
σmd

log((r − l)/σmd), there
exists a dataset xn ∈ [l, r)n with mean absolute deviation
O(σmd), such that

E(Qn, xn) ≥ σmd(r − l)

64n
.

2Both matrices are of dimension d× d. When d is not a power
of 2, to multiply with Hadamard matrices, we attach 0’s at the end
of the vectors without affecting asymptotic results.

(a) RMSE as a function of
σmd.

(b) RMSE as a function of
k.

(c) RMSE as a function of
n.

(d) RMSE with random ro-
tation.

Figure 2: Comparison of compression algorithms on mean
estimation task.

Turning to the k-level (log2 k bits) case, when σmd < r−l
2k ,

we are able to show that our estimator is optimal up to
constant factors for a more restricted class of k-interval
quantizers. k-interval quantizers include all quantization
schemes under which the preimage of each quantized mes-
sage, ignoring common randomness, is an interval. To make
the definition formal, we slightly abuse notation to assume
each quantizer Q admits another argument s ∈ {0, 1}∗,
which incorporates all randomness in the quantizer. Fix s,
Q(x, s) is a deterministic function of x.
Definition 1. A quantizer Q : [l, r)× {0, 1}∗ → [k] is said
to be a k-interval quantizer if ∀s ∈ {0, 1}∗, there exists k
non-overlapping intervals I1, . . . , Ik which partitions [l, r),
and ∀j ∈ [k], x1, x2 ∈ Ij , Q(x1, s) = Q(x2, s).

The class of k-interval quantizers includes many common
compression algorithms used in distributed optimization
such as stochastic quantization and our proposed algorithm.
For this restricted class of schemes, we get
Theorem 5. Given l < r ∈ R, k ∈ N and σmd < r−l

2k , for
any k-interval quantizer Qn, there exists a dataset xn ∈
[l, r)n with mean absolute deviation O(σmd), such that

E(Qn, xn) ≥ σmd(r − l)

64nk
+

(r − l)2

128n2k2
.

Under the condition, σmd < r−l
2k , the above theorem shows

that ONEDIMKLEVELSCQ is nearly-optimal in the class
of k-interval quantizers. We defer the proof of the theorems
to Appendix D.

8. Experiments
We demonstrate that the proposed algorithm outperforms
existing baselines on several distributed tasks. Before we



Table 1: Comparison of mean square error of compression
algorithms on distributed mean estimation.

Algorithm Synthetic MNIST
Independent 10.28(0.25) 0.466(0.014)
Independent + Rotation 3.29(0.19) 1.661(0.126)
TernGrad (log2(3) bits) 2.64(0.01) 0.621(0.006)
Structured DRIVE 1.38(0.01) 2.165(0.006)
Correlated 1.40(0.05) 0.141(0.004)
Correlated + Rotation 1.01(0.06) 0.238(0.012)

conduct a full comparison, we first empirically demonstrate
that our correlated quantization algorithm is better than exist-
ing independent quantization schemes (Suresh et al., 2017;
Alistarh et al., 2017). We implement all algorithms and
experiments using the open-source JAX (Bradbury et al.,
2018) and FedJAX (Ro et al., 2021) libraries 3. We sim-
ulated shared randomness by downstream communication
from server to clients (Szlendak et al., 2021).

Correlated vs independent stochastic quantization.
We first compare correlated and independent stochastic
quantizations on a simple mean estimation task. Let
x1, x2, . . . , xn be n i.i.d. samples over R1024, where co-
ordinate i is sampled independently according to µ(i) + U ,
where µ(i) is a uniform random variable between [0, 1] and
is fixed for all clients and U is a independent random vari-
able for each client in the range [−4σmd, 4σmd]. Note that
this distribution has a mean deviation of σmd. We first fix
the number of clients n to be 100, k = 2, and vary σmd. We
then fix σmd = 0.01, n = 100 and vary k. Finally, we fix
σmd = 0.01, k = 2 and vary n. The results are given in
Figures 2 (a), (b), (c) respectively. The experiments are av-
eraged over ten runs for statistical consistency. Observe that
in all the experiments, correlated quantization outperforms
independent stochastic quantization.

Effect of random rotation. We next demonstrate that
the correlated quantization benefits from random rotation
similar to independent quantization. Let x1, x2, . . . , xn

be n i.i.d. samples over R1024, where coordinate i is in-
dependently sampled according to µ(i) + U , where U
is a independent random variable for each client in the
range [−4σmd, 4σmd]. We let µ = (1.0,−1.0, 0.0, . . . , 0.0),
k = 2, and σmd = 0.01. We compare the results as a func-
tion of n in Figure 2 (d). Observe that random rotation im-
proves the performance of both correlated and independent
quantization. Furthermore, rotated correlated quantization
outperforms the remaining schemes.

In the following experiments, we compare our correlated

3https://github.com/google-research/
google-research/tree/master/correlated_
compression

quantization algorithm with several quantization baselines:
Independent, Independent+Rotation (Suresh et al., 2017),
TernGrad (Wen et al., 2017), and Structured DRIVE (Var-
gaftik et al., 2021b). Since the focus of the paper is quan-
tization, we only compare lossy quantization schemes and
do not evaluate the lossless compression schemes such as
arithmetic coding or Huffman coding, which can be applied
on any quantizer. We use 2-level quantization (one bit) for
all the algorithms, except TernGrad which uses 3 levels and
hence requires log2(3) bits per coordinate per client.

Distributed mean estimation. We next compare our pro-
posed algorithm to existing baselines on a sparse mean
estimation task. Let x1, x2, . . . , xn be n i.i.d. samples over
R1024, where coordinate i is sampled independently accord-
ing to µ(i) + U , where µ is a sparse vector with 1% sparse
entries and is fixed for all clients and U is a independent
random variable for each client in the range [−4σmd, 4σmd].
We also compare quantizers on the distributed mean estima-
tion task for the MNIST (d = 784) dataset distributed over
100 clients. The results for both for 10 repeated trials are in
Table 1. Observe that correlated quantizers perform best.

Distributed k-means clustering. In the distributed Lloyd’s
(k-means) algorithm, each client has access to a subset of
data points and the goal of a server is to learn k-centers by
repeatedly interacting with the clients. We employ quantiz-
ers to reduce the uplink communication cost from clients
to server and use the MNIST (d = 784) dataset and set
both the number of centers and number of clients to 10. We
split examples evenly amongst clients and use k-means++ to
select the initial cluster centers. The results for 20 communi-
cation rounds for 10 repeated trials are in Table 2. Observe
that correlated quantization performs the best.

Distributed power iteration. In distributed power iteration,
each client has access to a subset of data and the goal of
the server is to learn the top eigenvector. Similar to the
previous distributed k-means clustering, in the quantized
setting, we use quantization to reduce the communication
cost from clients to server and use the MNIST (d = 784)
dataset distributed evenly over 100 clients The results for 20
communication rounds for 10 repeated trials are in Table 2.
Observe that correlated quantizers outperform all baselines.

Federated learning. We finally evaluate the effectiveness
of the proposed algorithm in reducing the uplink communi-
cation costs in federated learning (McMahan et al., 2017).
We use the image recognition task for the Federated MNIST
dataset (Caldas et al., 2018a) provided by TensorFlow Feder-
ated (Bonawitz et al., 2019). This dataset consists of 341K
training examples with 10 label classes distributed across
3383 clients. We use quantizers to reduce the uplink com-
munication cost from clients to server and train a logistic
regression model for 1000 communication rounds of fed-
erated averaging for 5 repeated trials. The results are in

https://github.com/google-research/google-research/tree/master/correlated_compression
https://github.com/google-research/google-research/tree/master/correlated_compression
https://github.com/google-research/google-research/tree/master/correlated_compression


Table 2: Comparison of compression algorithms on a variety of tasks: distributed mean estimation, distributed k-means
clustering, distributed power iteration, and federated averaging on the MNIST dataset. For all tasks, we set the number of
quantization levels to two (one bit), except TernGrad which uses three quantization levels.

Algorithm Dist. k-means Dist. Power Iteration FedAvg
Objective Error Accuracy %

No quantization 39.43(0.12) 0.008(0.000) 89.31(0.01)
Independent 42.98(0.23) 0.242(0.005) 87.38(0.30)
Independent + Rotation 68.85(2.81) 0.267(0.016) 89.11(0.06)
TernGrad (log2(3) bits) 42.07(0.09) 0.100(0.001) 88.50(0.03)
Structured DRIVE 46.93(0.17) 0.370(0.001) 89.00(0.03)
Correlated 39.97(0.13) 0.055(0.002) 88.39(0.12)
Correlated + Rotation 42.21(0.17) 0.059(0.002) 89.20(0.04)

Table 2. Observe that correlated quantization with rotation
achieves the highest test accuracy.

9. Conclusion
We proposed a new quantizer for distributed mean estima-
tion and showed that the error guarantee depends on the
deviation of data points instead of their absolute range. We
further used this result to provide fast convergence rates for
distributed optimization under communication constraints.
Experimental results show that our proposed algorithm out-
performs existing compression protocols on several tasks.
We also proved the optimality of the proposed approach
under mild assumptions in one dimension. Extending the
lower bounds to high dimensions remains an interesting
open question.
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S. Caldas, J. Konečny, H. B. McMahan, and A. Tal-
walkar. Expanding the reach of federated learning by
reducing client resource requirements. arXiv preprint
arXiv:1812.07210, 2018b.

W.-N. Chen, P. Kairouz, and A. Ozgur. Breaking the
communication-privacy-accuracy trilemma. Advances in
Neural Information Processing Systems, 33:3312–3324,
2020.

P. Davies, V. Gurunanthan, N. Moshrefi, S. Ashkboos, and
D. Alistarh. New bounds for distributed mean estimation
and variance reduction. In International Conference on
Learning Representations, 2021.

V. Gandikota, D. Kane, R. K. Maity, and A. Mazumdar.
vqsgd: Vector quantized stochastic gradient descent. In
International Conference on Artificial Intelligence and
Statistics, pages 2197–2205. PMLR, 2021.

A. Garg, T. Ma, and H. Nguyen. On communication cost
of distributed statistical estimation and dimensionality.
Advances in Neural Information Processing Systems, 27:
2726–2734, 2014.

N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, R. Arora, et al.
Communication-efficient distributed sgd with sketching.
Advances in Neural Information Processing Systems, 32,
2019.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode,
R. Cummings, et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021. ISSN 1935-8237. doi:
10.1561/2200000083.
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A. Proof of Theorem 2
Theorem 2. If all the inputs lie in the range [l, r), the proposed estimator ONEDIMONEBITCQ is unbiased and the mean
squared error is upper bounded by

3

n
· σmd(r − l) +

12(r − l)2

n2
,

where σmd is defined in (1).

Proof. We first show the result when l = 0 and r = 1, one can obtain the final result by rescaling the quantizer operation

(l − u) ·Qi

(
xi

u− l

)
.

Hence in the following, without loss of generality, let l = 0, r = 1. We first show that Q is an unbiased equantizer

E[Qi(xi)] = E[1πi
n +γi<xi

].

Observe that πi

n + γi is a uniform random variable between [0, 1). Hence,

E[Qi(xi)] = E[1πi
n +γi<xi

] = Pr
(πi

n
+ γi < xi

)
= xi.

We now bound its variance. To this end let

yi =
⌊nxi⌋
n

.

We can rewrite the difference between estimate and the true sum as

n∑
i=1

xi −
n∑

i=1

Qi(xi) =

n∑
i=1

xi −
n∑

i=1

yi +

n∑
i=1

yi −
n∑

i=1

Qi(yi) +

n∑
i=1

Qi(yi)−
n∑

i=1

Qi(xi).

Since (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2,

E

( n∑
i=1

xi −
n∑

i=1

Qi(xi)

)2
 =3E

( n∑
i=1

xi −
n∑

i=1

yi

)2


+ 3E

( n∑
i=1

yi −
n∑

i=1

Qi(yi)

)2
+ 3E

( n∑
i=1

Qi(yi)−
n∑

i=1

Qi(xi)

)2
 .

We now bound each of the three terms in the above summation.

First term: Observe that for all i

|xi − yi| ≤
1

n
.

Hence, ∣∣∣∣∣
n∑

i=1

xi −
n∑

i=1

yi

∣∣∣∣∣ ≤
n∑

i=1

|xi − yi| ≤ n · 1
n
= 1.

Therefore,

E

( n∑
i=1

xi −
n∑

i=1

yi

)2
 ≤ 1.



Second term: To bound the second term,

E

( n∑
i=1

yi −
n∑

i=1

Qi(yi)

)2
 =

n∑
i=1

E
[
(yi −Qi(yi))

2
]
+

n∑
i=1

∑
j ̸=i

E [(yi −Qi(yi)) (yj −Qj(yj))]

=

n∑
i=1

yi(1− yi) +

n∑
i=1

∑
j ̸=i

E [(yi −Qi(yi)) (yj −Qj(yj))]

=

n∑
i=1

yi(1− yi) +

n∑
i=1

∑
j ̸=i

(E [Qi(yi)Qj(yj)]− yiyj) ,

where the second equality uses the fact that 1πi
n +γi<yi

is a Bernoulli random variable with parameter yi. We now bound
E [Qi(yi)Qj(yj)]− yiyj for i ̸= j. observe that

Qi(yi) = 1πi
n +γi<yi

.

However, since yi is an integral multiple of 1/n, and γi ∈ [0, 1/n), πi

n + γi < yi if and only if πi

n < yi. Hence,

Qi(yi) = 1πi
n <yi

.

Hence,

E [Qi(yi)Qj(yj)] = E
[
1πi

n <yi
1πj

n <yj

]
= Pr (πi < nyi ∩ πj < nyj) .

Since π is a random permutation,

Pr (πi < nyi ∩ πj < nyj) =
1

n(n− 1)
min(nyi, nyj) · (max(nyi, nyj)− 1)

=
nyiyj
(n− 1)

− min(yi, yj)

(n− 1)

=
nyiyj
(n− 1)

− yi + yj
2(n− 1)

+
|yi − yj |
2(n− 1)

.

Hence,

n∑
i=1

∑
j ̸=i
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i=1

∑
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nyiyj
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1
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2
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Hence,

E

( n∑
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Qi(yi)

)2
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(E [Qi(yi)Qj(yj)]− yiyj)

≤
n∑

i=1

yi(1− yi)+

n∑
i=1

∑
j ̸=i

|yi − yj |
2(n− 1)

+
1

n

(
(
∑
i

yi)
2

)
−
∑
i

yi

=

n∑
i=1

∑
j ̸=i

|yi − yj |
2(n− 1)

+
1

n

(( n∑
i=1

yi

)2)
−

n∑
i=1

y2i

≤
n∑

i=1

∑
j ̸=i

|yi − yj |
2(n− 1)

≤
n∑

i=1

∑
j ̸=i

|xi − xj |
2(n− 1)

+

n∑
i=1

∑
j ̸=i

1

2n(n− 1)

≤
n∑

i=1

∑
j ̸=i

|xi − xj |
2(n− 1)

+ 1.

Third term: Observe that
Qi(yi)−Qi(xi) = 1πi

n +γi<yi
− 1πi

n +γi<xi
.

Since xi ≥ yi, 1πi
n +γi<yi

implies 1πi
n +γi<xi

. Hence Qi(yi)−Qi(xi) takes at most two values 0,−1. Therefore,

Qi(yi)−Qi(xi) = −1yi≤
πi
n +γi<xi

.

Therefore,

E

( n∑
i=1

Qi(yi)−
n∑

i=1

Qi(xi)

)2


=

n∑
i=1

E
[
(Qi(yi)−Qi(xi))

2
]
+

n∑
i=1

∑
j ̸=i

E [(Qi(yi)−Qi(xi)) (Qj(yj)−Qj(xj))]

=

n∑
i=1

E
[
1yi≤

πi
n +γi<xi

]
+

n∑
i=1

∑
j ̸=i

E
[
1yi≤

πi
n +γi<xi

1
yj≤

πj
n +γj<xj

]
=

n∑
i=1

E
[
1yi≤

πi
n +γi<yi+1

]
+

n∑
i=1

∑
j ̸=i

E
[
1yi≤

πi
n +γi<yi+11yj≤

πj
n +γj<yj+1

]
=

n∑
i=1

E
[
1yi≤

πi
n <yi+1

]
+

n∑
i=1

∑
j ̸=i

E
[
1yi≤

πi
n <yi+11yj≤

πj
n <yj+1

]
≤

n∑
i=1

1

n
+

n∑
i=1

∑
j ̸=i

1

n(n− 1)

= 2.

Combining the analysis of the above three terms we get

E

( n∑
i=1

xi −
n∑

i=1

Qi(xi)

)2
 ≤

n∑
i=1

∑
j ̸=i

3|xi − xj |
2(n− 1)

+ 12.



Hence,

E(Qn, xn) ≤
n∑

i=1

∑
j ̸=i

3|xi − xj |
2n2(n− 1)

+
12

n2

≤ 3

2n
· 1

n(n− 1)

n∑
i=1

∑
j ̸=i

|xi − xj |+
12

n2
.

The lemma follows by observing that
1

n(n− 1)

n∑
i=1

∑
j ̸=i

|xi − xj | ≤ 2σmd.

B. Proof of Theorem 3
Theorem 3. If all the inputs lie in the range [l, r), k ≥ 3, the proposed estimator ONEDIMKLEVELSCQ is unbiased and
the mean squared error is upper bounded by

12

n
·min

(
σmd · (r − l)

k
,
(r − l)2

k2

)
+

48(r − l)2

n2k2
,

where σmd is defined in (1).

Proof. Similar to the proof of Theorem 2, without loss of generality, we let l = 0, r = 1. One can obtain the final result by
rescaling the quantizer via

(l − u) ·Qi

(
xi

u− l

)
.

The proof of unbiasedness is similar to the proof of Theorem 2 and is omitted. We now bound its variance. Let zi =
xi−c′i

β .
We wish to bound

n∑
i=1

xi −
n∑

i=1

Qi(xi) = β

(
n∑

i=1

zi −
n∑

i=1

Qi (zi)

)
.

Similar to the proof of Theorem 2, it can be shown that

E

( n∑
i=1

zi −
n∑

i=1

Qi(zi)

)2

|c′
 ≤

n∑
i=1

∑
j ̸=i

3|zi − zj |
2(n− 1)

+ 12.

Hence,

E

( n∑
i=1

xi −
n∑

i=1

Qi(xi)

)2

|c′
 ≤ β2

n∑
i=1

∑
j ̸=i

3|zi − zj |
2(n− 1)

+ 12β2.

If |xi − xj | ≥ β, then
|zi − zj | ≤ 1.

If |xi − xj | ≤ β, then

E[|zi − zj |] = Pr(c′i = c′j)E[|zi − zj |1c′i=c′j
] + Pr(c′i ̸= c′j)E[|zi − zj |1c′i ̸=c′j

]

≤ Pr(c′i = c′j)E[|zi − zj |1c′i=c′j
] + Pr(c′i ̸= c′j)

≤ Pr(c′i = c′j)
|xi − xj |

β
+ Pr(c′i ̸= c′j)

≤ |xi − xj |
β

+ Pr(c′i ̸= c′j)

≤ |xi − xj |
β

+
|xi − xj |

β
= 2

|xi − xj |
β

.



Hence,

E[|zi − zj |] ≤ 2

(
min

(
|xi − xj |

β
, 1

))
.

Therefore,

E

( n∑
i=1

xi −
n∑

i=1

Qi(xi)

)2
 ≤

n∑
i=1

∑
j ̸=i

β
3min (|xi − xj |, β)

(n− 1)
+ 12β2

≤ 3min

 n∑
i=1

∑
j ̸=i

β|xi − xj |
(n− 1)

, nβ2

+ 12β2

≤ 3min
(
2nβσmd, nβ

2
)
+ 12β2.

E(Qn, xn) ≤ 3

n
·min

(
2βσmd, β

2
)
+

12β2

n2
.

Combining with the fact that β ≤ 2/k yields the result.

C. Proof of Corollary 2
Corollary 2. If all the inputs lie in the range Bd(R), the proposed estimator WALSHHADAMARDCQ has bias at most
3R
√
2 log(dn)/(n2d3/2) and the mean squared error is upper bounded by

c log(dn)

n
·
(
min

(
σd

mdR

k
,
R2

k2

)
+

R2

nk2
+

R2

n3d3

)
,

where σd
md is defined in (1) and c is a constant. Furthermore, overall the quantizer can be communicated to the server in

d · log2 k + Õ(1) bits per client in expectation.

Proof. The communication cost follows by observing that we are communication k level of quantization for each coordinate.
We first bound the bias. Observe that

∥x̄− E[x̂]∥22 ≤ 1

n

n∑
i=1

∥∥∥∥∥xi −
R
√

8 log(dn)√
d

E[W−1 · zi]

∥∥∥∥∥
2

2

=
1

n

n∑
i=1

∥∥∥∥∥E
[
W−1 ·

(
W · xi −

R
√
8 log(dn)√

d
zi

)]∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

E

∥∥∥∥∥W−1 ·

(
W · xi −

R
√

8 log(dn)√
d

zi

)∥∥∥∥∥
2

2


≤ 1

n

n∑
i=1

E

∥∥∥∥∥W · xi −
R
√
8 log(dn)√

d
zi

∥∥∥∥∥
2

2


≤ 1

n

n∑
i=1

18R2 log(dn) Pr

( √
d

R
√
8 log(dn)

W · xi ̸= zi

)
,

where the last inequality follows from that when
√
d

R
√

8 log(dn)
W · xi ̸= zi, the error is at most

∥∥∥∥∥W · xi −
R
√

8 log(dn)√
d

zi

∥∥∥∥∥
2

2

≤ 18R2 log(dn).



Next we bound Pr

( √
d

R
√

8 log(dn)
W · xi ̸= zi

)
for each xi. For any x with ∥x∥ ≤ R,

Pr

( √
d

R
√
8 log(dn)

W · x ̸= z

)
≤

d∑
j=1

Pr

( √
d

R
√
8 log(dn)

[Wx](j) ̸= z(j)

)

≤
d∑

j=1

Pr

(
[Wx](j) ≥

√
8 log(dn))√

d
∥x∥2

)
(b)

≤ de−4 log(dn),

where (b) follows from McDiamid’s inequality. Hence,

∥x̄− E[x̂]∥22 ≤ 18R2 log(dn)

d3n4
.

To bound the mean squared error, observe that

E∥x̄− x̂]∥22 = E∥x̄− E[x̂]]∥22 + E∥x̂− E[x̂]]∥22
= ∥x̄− E[x̂]]∥22 + E∥x̂− E[x̂]]∥22
≤ ∥x̄− E[x̂]]∥22 + E∥Wx̂− E[Wx̂]]∥22

≤ 18R2 log(dn)

d3n4
+ E∥Wx̂− E[Wx̂]]∥22.

For j ∈ [d], let yn(j) = (y1(j), . . . , yn(j)) denote the scalar dataset which only consists of the jth coordinate of yn. Define
σmd(y

n(j)) to be the corresponding empirical mean absolute deviation.

E∥Wx̂− E[Wx̂]]∥22 =
R2(8 log(dn))

d
E∥z − E[z]]∥22

≤ R2(8 log(dn))

d

12

n
·

d∑
j=1

min

(
E[σmd(y

n′(j))]

k
,
1

k2

)
+

48d

n2k2


≤ R2(8 log(dn))

d

12

n
·

d∑
j=1

min

(
2E[σmd(y

n(j))]

k
,
1

k2

)
+

48d

n2k2


≤ R2(8 log(dn))

d

(
12

n
·min

(
2
∑d

j=1 E[σmd(y
n(j))]

k
,
d

k2

)
+

48d

n2k2

)

≤ R2(8 log(dn))

d

(
12

n
·min

(
2
√
d · E[σd

md(y
n)]

k
,
d

k2

)
+

48d

n2k2

)
(c)

≤ (8 log(dn))

(
12

n
·min

(
2Rσd

md(x
n)

k
,
R2

k2

)
+

48R2

n2k2

)
≤ 192 log(dn)

n
·min

(
Rσd

md(x
n)

k
,
R2

k2

)
+

392R2 log(dn)

n2k2
,

where (c) uses the fact that σd
md(y

n) =
√
d

R
√

8 log(dn)
σd

md(x
n) since yn is a scaled rotated version of xn. Combining the above

two results yields the result.

D. Proof of Lower bounds (Theorem 4 and Theorem 5)
A general k-level randomized quantizer Qn can be viewed as a distribution over Qdet, which contains all deterministic
mappings from [l, r]n to [k]n. Let Qrand be all randomized mappings from [l, r]n to [k]n. To establish a lower bound for



general quantizer, we use Yao’s minimax principle to reduce it to a lower bound over Qdet,

min
Qn∈Qrand

max
xn

E(Qn, xn) ≥ max
P

min
Qn∈Qdet

EXn∼P [E(Qn, Xn)] = max
P

min
Qn∈Qdet

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 .

(5)

In the rest of the proof, we focus on deterministic Qi’s and bound (5). Without loss of generality we assume l = 0. We first
prove the following general lemma, which will be useful to prove both lower bounds.

Lemma 1. Suppose under distribution P over [0, r]n, Xi’s are sampled i.i.d from p over [0, r], for any deterministic
quantizer Qn, we have

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≥ 1

n2

n∑
i=1

EXi∼p

[
(Xi − E [Xi | Qi(Xi)])

2
]
.

Proof. Since conditional expectation minimizes the mean squared error over all functions of x̂(Qn(Xn)), we have

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≥ EXn∼P

(E[ 1
n

n∑
i=1

Xi | Qn(Xn)

]
− 1

n

n∑
i=1

Xi

)2
 .

Note that since Xi’s are independent and Qn is deterministic, we have all Qi(Xi) are independent. Moreover, this implies
Qj(Xj) is independent of Xi for i ̸= j. Hence

E

[
1

n

n∑
i=1

Xi | Qn(Xn)

]
=

1

n

n∑
i=1

E [Xi | Qi(Xi)] .

Combining these, we get

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≥ 1

n2

n∑
i=1

EXi∼p

[
(Xi − E [Xi | Qi(Xi)])

2
]
.

Next we use Lemma 1 to prove Theorems 4 and 5.

Theorem 4. For any l, r and σmd < l−r
2 , and any one-bit quantizer Qn, when n > 8(r−l)

σmd
log((r − l)/σmd), there exists a

dataset xn ∈ [l, r)n with mean absolute deviation O(σmd), such that

E(Qn, xn) ≥ σmd(r − l)

64n
.

Proof. Consider the following distribution p over [0, r] where

p (x) =


σmd
2r if x = 0,
σmd
2r if x = r,

1− σmd
r if x = r

2 ,

0 otherwise.

We first show that if P is the distribution where Xn is sampled i.i.d from p,

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≥ σmd · r

32n
.



Applying Lemma 1, it is enough to show that for any Qi, we have

EXi∼p

[
(Xi − E [Xi | Qi(Xi)])

2
]
≥ σmd · r

32
.

Since Qi only outputs 1 bit, there must exist two numbers in {0, r/2, r} such that they are mapped to the same output. If

{0, r/2} are mapped to the same output, we have E [Xi | Qi(Xi) = Qi(0)] =
(

1−σmd
r

1−σmd
2r

)
r
2 ≥ r

4 . Hence,

EXi∼p

[
(Xi − E [Xi | Qi(Xi)])

2
]
≥ Pr (Xi = 0) · (E [Xi | Qi(Xi) = Qi(0)])

2

≥ σmd

2r

(r
4

)2
=

σmd · r
32

.

The same result holds when {r/2, r} are mapped to the same output. When {0, r} are mapped to the same output, we have

EXi∼p

[
(Xi − E [Xi | Qi(Xi)])

2
]
≥ Pr (Xi = 0 or r) · EXi|Qi(Xi)=Qi(0)

[
(Xi − E [Xi | Qi(Xi) = Qi(0)])

2
]

≥ σmd

r
×
(r
2

)2
=

σmd · r
4

.

The last step is to check the mean absolute deviation. The proof is not complete yet since not all samples Xn from the
distribution P has mean deviation O(σmd). Next we construct a distribution P ′ where all Xn ∼ P ′ has mean deviation
O(σmd) while the quantity in (5) is still lower bounded by Ω(σmd · r). We start by noting that the mean deviation can be
upper bounded as

1

n

n∑
i=1

|Xi −
1

n

n∑
i=1

Xi| ≤
1

n2

∑
i,j∈[n]

|Xi −Xj | =
1

n2

r

2

(
N0N r

2
+NrN r

2
+ 2N0Nr

)
,

where N0, N r
2
, Nr denote the number of appearances of 0, r

2 and r respectively. When N0 +Nr < 4nσmd
r , we have

1

n2

r

2

(
N0N r

2
+NrN r

2
+ 2N0Nr

)
≤ 1

n2

r

2

(
n · 4nσmd

r
+

(
2nσmd

r

)2
)

≤ 4σmd.

Since N0 +Nr is a binomial random variable with n trials and success probability σmd
r , by Chernoff bound, we have

Pr
(
N0 +Nr ≥ 4nσmd

r

)
≤ exp

(
−2nσmd

r

)
≤
(σmd

r

)16
.

Let P ′ be the distribution of Xn conditioned on the event that N0 +Nr < 4nσmd
r , we have

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≤ Pr

(
N0 +Nr <

4nσmd

r

)
EXn∼P ′

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2


+ r2Pr
(
N0 +Nr ≥ 4nσmd

r

)
,

since when N0 +Nr ≥ 4nσmd
r , the error is bounded by at most r2 since the the optimal mean lies in [0, r]. Hence we have

EXn∼P ′

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≥ EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
− r2Pr

(
N0 +Nr ≥ 4nσmd

r

)
≥ σmd · r

64n
.

This completes the proof using (5).



Theorem 5. Given l < r ∈ R, k ∈ N and σmd < r−l
2k , for any k-interval quantizer Qn, there exists a dataset xn ∈ [l, r)n

with mean absolute deviation O(σmd), such that

E(Qn, xn) ≥ σmd(r − l)

64nk
+

(r − l)2

128n2k2
.

Proof. We show that

E(Qn, xn) ≥ max

(
σmd(r − l)

32nk
+

(r − l)2

64n2k2

)
.

The lemma follows by the fact that maximum is lower bounded by the average. Note that here it would be enough to prove
the two terms in the above lower bound separately. Assuming l = 0, for the σmd·r

32nk term, we assume n = Ω( r
kσmd

) since
otherwise the second term dominates. We consider 2k distributions p1, p2, . . . , p2k where for j ∈ {1, . . . , 2k},

pj (x) =


kσmd
r if x = (j − 1) · r

2k ,

1− kσmd
r if x = j · r

2k ,

0 otherwise.

Then we define P̄ over [0, r]n as a uniform mixture of b distributions,

P̄ =
1

2k

2k∑
j=1

Pj .

where under Pj , Xi’s are n i.i.d samples from pj . Then we have for any deterministic quantization scheme Qn,

EXn∼P̄

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 =

1

2k

2k∑
j=1

EXn∼Pj

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2


Note that each Pj is a product distribution, hence applying Lemma 1, we have

EXn∼P̄

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 ≥ 1

2k

2k∑
j=1

1

n2

n∑
i=1

EXi∼pj

[
(Xi − E [Xi | Qi(Xi)])

2
]

=
1

n2

n∑
i=1

 1

2k

2k∑
j=1

EXi∼pj

[
(Xi − E [Xi | Qi(Xi)])

2
] .

Hence it is enough to show that for any k-interval quantization scheme, we have ∀i ∈ [n],

1

2k

2k∑
j=1

EXi∼pj

[
(Xi − E [Xi | Qi(Xi)])

2
]
≥ σmd · r

32k
.

A k-interval quantizer Qi only partitions the interval into k intervals. Hence among the 2k − 1 pairs of consecutive points
(j · r

2k , (j+1) · r
2k ), j ∈ {1, . . . , 2k− 1}, there exists a set S of indices with |S| ≥ k− 1 that satisfies ∀j ∈ S,Qi(j · r

2k ) =
Qi((j +1) · r

2k ). For these j’s, pj is supported on {j · r
2k , (j +1) · r

2k}. Hence Qi(Xi) doesn’t bring any information about
Xi. Hence we have

1

2k

2k∑
j=1

EXi∼pj

[
(Xi − E [Xi | Qi(Xi)])

2
]
≥ 1

2k

∑
j∈S

VarXi∼pj (Xi) ≥
σmd · r
32k

.

Similar to the proof of Theorem 4, we handle the requirement on mean absolute deviation, which we omit here for brevity.

For the r2

64n2k2 term, we consider the following 2nk datasets where for the jth dataset, we have ∀i ∈ [n],

xi = vj = (j − 1) · r

2nk
.



We abuse notation to denote the jth dataset as (vj)n. Consider distribution P which is uniform over all 2nk datasets. Then
we have for any deterministic Qn,

EXn∼P

(x̂(Qn(Xn))− 1

n

n∑
i=1

Xi

)2
 =

1

2nk

2nk∑
j=1

(x̂(Qn((vj)
n))− vj)

2
.

Note that there are n users, each with a k-interval quantizer. Similar to the previous construction, among the 2nk possible
values, there must exists at least nk − 1 disjoint pairs {j1, j2} such that

Qn((vj1)
n) = Qn((vj2)

n).

For each of these pairs,

(x̂(Qn((vj1)
n))− vj1)

2
+ (x̂(Qn((vj2)

n))− vj2)
2 ≥ 1

4
(vj1 − vj2)

2 ≥ r2

16n2k2
.

Hence we have
1

2nk

2nk∑
j=1

(x̂(Qn((vj)
n))− vj)

2 ≥ nk − 1

2nk
· r2

16n2k2
≥ r2

64n2k2
.


