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Abstract
Max-value entropy search (MES) is one of the
state-of-the-art approaches in Bayesian optimiza-
tion (BO). In this paper, we propose a novel
variant of MES for constrained problems, called
Constrained MES via Information lower BOund
(CMES-IBO), that is based on a Monte Carlo
(MC) estimator of a lower bound of a mutual in-
formation (MI). Unlike existing studies, our MI
is defined so that uncertainty with respect to fea-
sibility can be incorporated. We derive a lower
bound of the MI that guarantees non-negativity,
while a constrained counterpart of conventional
MES can be negative. We further provide the-
oretical analysis that assures the low-variability
of our estimator which has never been investi-
gated for any existing information-theoretic BO.
Moreover, using the conditional MI, we extend
CMES-IBO to the parallel setting while main-
taining the desirable properties. We demon-
strate the effectiveness of CMES-IBO by several
benchmark functions and real-world problems.

1. Introduction
Bayesian optimization (BO) has been widely studied as an
effective framework for expensive black-box optimization
problems. On the other hand, additional unknown con-
straints often exist in real-world problems of a variety of
fields such as scientific experiments, industrial product de-
signs, and automatic machine learning (AutoML). For ex-
ample, materials discovery can be seen as an optimiza-
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tion of a physical property of materials, such as conduc-
tivity, under constraints derived from other physical prop-
erties, such as stability. In the case of AutoML, for ex-
ample, constraints are useful to guarantee the classification
accuracy of minority classes for class-imbalanced datasets.
However, constrained black-box optimization is often quite
difficult because, in many practical problems, a measure-
ment comes at a high cost, and further, functional forms
of both the objective and the constraints are unknown. To
incorporate unknown constraint functions, constrained BO
(CBO) has also been studied (Gardner et al., 2014; Gel-
bart et al., 2014; Schonlau et al., 1998; Snoek, 2013). CBO
tries to achieve the sample-efficient constrained optimiza-
tion based on Bayesian models for objective and constraint
functions.

Max-value entropy search (MES) (Wang & Jegelka, 2017)
is one of the state-of-the-art approaches in BO. The basic
idea is to maximize the mutual information (MI) between
a querying point and the optimal objective value. For con-
strained problems, Perrone et al. (2019) have proposed an
extension of MES, but it is restricted to only one constraint
(note that although their main focus is on a setting in which
only a binary indicator of feasibility is observed for con-
straints, they also show the ‘real-valued feedback’ case in
the appendix). Although it is possible to consider a mul-
tiple constraint extension of this approach, which we call
constrained MES (CMES), the resulting MI approximation
can have a negative value (though the MI should be non-
negative) when the number of constraints is more than 5 as
we will show in Section 4.1. A more comprehensive review
of related studies is shown in Section 5.

In this paper, we propose a novel information-theoretic
CBO method called Constrained Max-value Entropy
Search via Information lower BOund (CMES-IBO), which
is based on a Monte Carlo (MC) estimator of a lower bound
of an MI. We first define the random ‘max-value’ of a con-
strained problem so that uncertainty with respect to fea-
sibility (whether the problem has a feasible region or not)
can be incorporated. Uncertainty of feasibility has not been
considered by existing information-theoretic CBO studies,
though for constrained problems in general, to identify the
feasibility of the problem is a key issue known as the fea-
sibility problem (Chinneck, 2007). Unlike CMES, our ac-
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quisition function guarantees non-negativity. We theoret-
ically and empirically verify that CMES-IBO can provide
reasonable acquisition function values even when CMES
provides negative values. Further, we provide theoretical
analysis that assures the low-variability of our estimator,
such as a concentration bound achieving an exponentially
fast convergence to the true lower bound in the number of
MC samples, which has never been investigated for any ex-
isting information-theoretic BO. Moreover, using the con-
ditional MI, we extend CMES-IBO to the parallel setting
while maintaining the desirable properties.

Our main contributions are summarized as follows:

1. We develop an MI lower bound based CBO called
CMES-IBO. Our MI is well-defined even when a fea-
sible region can be empty. The resulting MI approxi-
mation is quite simple and guarantees non-negativity.

2. We reveal advantageous properties of CMES-IBO
compared with the direct MES extension (CMES),
such as the smaller worst-case error of the MI esti-
mation. We also derive an estimation variability of
CMES-IBO that suggests robustness with respect to
the number of MC samples.

3. We further develop a parallel extension of CMES-
IBO, in which multiple queries can be issued simul-
taneously. The extension is based on a combination of
the conditional MI and the greedy selection.

We demonstrate the effectiveness of CMES-IBO by bench-
mark and real-world functions.

2. Preliminary
We are interested in the maximum value of the objective
function f : X 7→ R under C constraint functions gc :
X 7→ R for c = 1, . . . , C, whereX ⊂ Rd is an input space.
Let Xfeasible := {x | gc(x) ≥ zc, c = 1, . . . , C} be the
feasible region, where zc ∈ R is a given constant. The op-
timal solution of this constrained optimization problem is
written as x∗ := argmaxx∈Xfeasible

f(x). We consider the
setting that the functions f and g1, . . . , gC are unknown but
can be evaluated simultaneously for any given x ∈ X with
high observation cost. We assume that f and g1, . . . , gC
follow independent Gaussian processes (GPs) (Rasmussen
& Williams, 2005). Suppose that the observations are con-
taminated with additive Gaussian noises as y(f)x = f(x)+ε

and y
(gc)
x = gc(x) + ε for ∀c, where ε ∼ N (0, σ2

noise). For
the GP prior, we employ GP(0, k(x,x′)), which indicates
that the prior mean is 0 and covariance is specified by a
kernel function k : X × X 7→ R. Then, the predictive dis-
tribution for f(x) given D(f)

n = {(xi, y(f)xi )}ni=1 is derived

as follows:

f(x)|D(f)
n ∼ N (µ(f)(x), σ(f)2(x)),

µ(f)(x) = k⊤(K + σ2
noiseI

)−1
y(f),

σ(f)2(x) = k(x,x)− k⊤(K + σ2
noiseI

)−1
k,

where y(f) =
(
y
(f)
x1 , . . . , y

(f)
xn

)⊤
, k =(

k(x,x1), . . . , k(x,xn)
)⊤

, K ∈ Rn×n is a kernel
matrix whose (i, j) element is defined as k(xi,xj), and
I ∈ Rn×n is the identity matrix. The predictive distribu-
tions N

(
µ(gc)(x), σ(gc)

2
(x)
)

for gc can be obtained in the
same way using the observations y

(gc)
x1 , . . . , y

(gc)
xn . Note

that, for simplicity, we here assume the same kernels and
noise variances for all the functions, but both the settings
can be changed depending on the function.

3. Constrained Max-value Entropy Search via
Information Lower Bound

3.1. Max-value of Constrained Problem

First, we consider the definition of a random variable f∗,
which is the max-value of a constraint optimization prob-
lem. The straightforward definition is maxx∈Xfeasible

f(x),
employed in a prior work on the MES-based CBO (Perrone
et al., 2019). However, this definition is not well-defined
as a proper random variable when Xfeasible can be empty,
i.e., when Pr(Xfeasible = ∅) > 0. Note that Xfeasible is
randomly determined through GPs g1, . . . , gC , and thus,
Pr(Xfeasible = ∅) > 0 can occur even when the under-
lying unknown true constraint functions have a non-empty
feasible region. Thus, we define f∗ as follows:

f∗ :=

{
maxx∈Xfeasible

f(x), if Xfeasible 6= ∅,
−∞, otherwise.

(1)

Regarding the optimal value as −∞ when no feasible so-
lution exists is a common convention in classical opti-
mization literature (Boyd & Vandenberghe, 2004). The
schematic illustration of f∗ is shown in Fig. 1 (a). The fig-
ure indicates that our definition of p(f∗) can incorporate the
uncertainty about whether the problem is feasible or not.

3.2. Acquisition Function of CMES-IBO

Let

hx :=
(
f(x), g1(x), . . . , gC(x)

)⊤∈ RC+1,

be a vector concatenating the objective and all the con-
straint function values. Suppose that we already have the
datasetDt−1, which contains observations for the past t−1
queries. We consider selecting a next query xt by maximiz-
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Figure 1: Generative process of the optimal value f∗ and
truncation of the predictive distribution. (a) In the left two
plots, two sets of sample paths (red and green) are gener-
ated from GPs. The red sample path of g1 has the non-
empty feasible region Xfeasible while the green sample path
has an empty feasible region. The red star f̃∗ represents
the optimal value of the red sample path, and for the green
sample path, the optimal value is defined as −∞ as shown
in (1). The distribution of the optimal value is plotted in the
upper right figure. (b) The two contour plots represent the
density function p(hx|hx ∈ Af̃∗) = p(f(x), g1(x)|hx ∈
Af̃∗) for the feasible and infeasible cases, respectively.
For a given f̃∗, the density should be 0 in Af̃∗ , because
f(x) cannot be larger than the given f̃∗ for x such that
g1(x) ≥ z1.

ing the MI 1 between hx and f∗ given Dt−1:

MI(hx; f∗|Dt−1). (2)

Hereafter, we omit the conditioning by Dt−1 in MI, en-
tropy, density, and probability when it is obvious from
the context. For example, p(hx | f∗) indicates p(hx |
Dt−1, f∗). In MI, we use noiseless hx instead of noisy
(y

(f)
xi , y

(g1)
xi , . . . , y

(gC)
xi ) for computational simplicity.

Since directly evaluating the MI (2) is computationally in-

1Note that although p(f∗) can be seen as a mixture distribution
in which one of the components (the green distribution in Fig. 1)
consists of a single constant value (−∞), MI still can be defined
in this case. Details are shown in Appendix A.

tractable, we consider a lower bound derived as follows:

MI(hx; f∗) = Ef∗
[
Ehx|f∗

[
log

p(hx|f∗)
p(hx)

] ]
=Ef∗

[
Ehx|f∗

[
log

q(hx|f∗)
p(hx)

]
+DKL

(
p(hx|f∗)||q(hx|f∗)

)]
≥Ef∗

[∫
p(hx|f∗) log

q(hx|f∗)
p(hx)

dhx

]
, (3)

where DKL(·) is Kullback-Leibler (KL) divergence and
q(hx|f∗) is an arbitrary probability density function (PDF)
that has same support as p(hx|f∗). See Appendix A for the
derivation. The difference between the lower bound and the
MI is given as Ef∗

[
DKL

(
p(hx|f∗)||q(hx|f∗)

)]
, and thus,

the equality holds if p(hx|f∗) is equal to q(hx|f∗) for ∀f∗.

To use (3), we have to specify the distribution q(hx|f∗).
For this type of KL-based lower bounds, the variational ap-
proximation is a well-known approach by which the lower
bound is maximized with respect to q(hx|f∗). However,
the expectation and the integral with respect to f∗ and hx

in (3) make this optimization computationally too compli-
cated. Instead, we consider setting q(hx|f∗) as a specific
distribution that can be easily computed.

The optimal selection of q(hx|f∗) is p(hx|f∗), i.e., pre-
dictive distributions of GPs given the optimal value f∗
which we call a GP|f∗ . For all existing MES-based ap-
proaches, the GP|f∗ is required in a slightly different con-
text (see Section 4.1 for the case of the existing MES for
constrained problems). Since the GP|f∗ is difficult to eval-
uate, it is approximated by a distribution defined by trun-
cating the original GP predictive distribution at f∗ in al-
most all the existing methods (e.g., Wang & Jegelka, 2017;
Takeno et al., 2020; 2022; Perrone et al., 2019; Suzuki
et al., 2020). For example, in the case of the original MES,
p(f(x) | f∗) is replaced with the truncated normal distri-
bution p(f(x) | f(x) ≤ f∗), as pointed out in (Takeno
et al., 2020). This replacement makes the resulting acqui-
sition function simple and practical performance of MES-
based approaches with this replacement has been repeat-
edly shown. Therefore, we follow this truncation-based
approach.

In the case of constrained problems, when the optimal
value f∗ is fixed, f(x) > f∗ does not hold if gc(x) ≥ zc
for ∀c (i.e., x is feasible). This means that f(x) and gc(x)
are jointly truncated so that their densities become 0 in
Af∗ := (f∗,∞) × (z1,∞) × · · · × (zC ,∞) ⊂ RC+1.
In other words, hx should be in Af∗ ⊂ RC+1, which is
a complementary set of Af∗ , as illustrated in Fig. 1 (b).
Thus, we set q(hx|f∗) as the following truncated multi-
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variate normal (TMN) distribution:

q(hx|f∗) = p(hx | hx ∈ Af∗)

=

{
p(hx)/Zx(f∗) for hx ∈ Af∗ ,
0 for hx ∈ Af∗ ,

(4)

where Zx(f∗) = Pr(hx ∈ Af∗) is the normalization con-
stant.

By substituting TMN (4) into (3), we obtain a lower bound
L(x) as

L(x) := Ef∗
[∫

Af∗

p(hx|f∗) log
p(hx)/Zx(f∗)

p(hx)
dhx

]
= Ef∗

[
− logZx(f∗)

]
. (5)

See Appendix A for the detailed derivation. In (5), C + 1
dimensional integral with respect to hx is canceled out,
which is one of important benefits of our selection of
q(hx|f∗). By applying the MC approximation to Ef∗ in
(5), we obtain the CMES-IBO acquisition function

αIBO(x) = − 1

K

∑
f̃∗∈F∗

logZx(f̃∗), (6)

where F∗ is a set of sampled f∗ from the current GPs, f̃∗ ∈
F∗ represents each one of sampled values, and K = |F∗|.

Let Zx(f̃∗) := Pr(hx ∈ Af̃∗) = 1− Zx(f̃∗). For a given
f̃∗ ∈ F∗, we can compute Zx(f̃∗) easily by using

Zx(f̃∗) = 1− Zx(f̃∗)

= 1− Pr(f(x) ≥ f̃∗)
∏C
c=1 Pr(g(x) ≥ zc)

= 1−
(
1− Φ(γ(f)

x (f̃∗))
)∏C

c=1

(
1− Φ(γ(gc)

x (zc))
)
,

where γ
(f)
x (f̃∗) := (f̃∗ − µ(f)(x))/σ(f)(x), γ(gc)

x (zc) :=
(zc − µ(gc)(x))/σ(gc)(x), and Φ is the cumulative distri-
bution function (CDF) of the standard normal distribution.
This decomposition is possible because f and gc for ∀c are
assumed to be independent, and Af̃∗ is a hyperrectangle.

Consequently, the functional form of our acquisition func-
tion (6) becomes quite simple. The algorithm and com-
putational complexity for our CMES-IBO is shown in Ap-
pendix G. Although we assume that GPs are independent of
each other, CMES-IBO can also apply to the correlated set-
ting easily by computing Zx(f̃∗) = Pr(hx ∈ Af̃∗) as the
CDF of the multivariate (correlated) normal distribution.

3.3. Sampling f∗

When X is a finite set of a moderate size, f∗ can be sam-
pled from the joint predictive distributions of hx for all
candidate points x ∈ X . Otherwise (such as a continu-
ous X ), we employ an approach using the random Fourier

feature (RFF) (Rahimi & Recht, 2008). We first generate
approximate sample paths of objective and constraint func-
tions from Bayesian linear regression models using RFF,
and then, we solve a (white-box) constrained optimization
problem defined by the generated sample paths by using a
general solver (see Appendix G.1 for details). A similar ap-
proach has been commonly employed in the entropy-based
BO (e.g., Wang & Jegelka, 2017). Particularly when the
dataset Dt−1 does not contain any feasible solution (which
typically occurs at the beginning of the optimization), sam-
pled Xfesasible is often empty, as shown in the green sample
path in Fig. 1 (b). Therefore, if the solver cannot find any
feasible solution, f̃∗ is set as −∞ as defined in (1).

3.4. Parallelization

We consider a parallel extension, in which Q queries can be
evaluated at every iteration. Due to a space limitation, we
here only describe the main idea briefly (see Appendix B
for more detail). We employ a greedy selection of the Q
queries using the conditional mutual information (CMI).
Let Xq := {x(1), . . . ,x(q)} and Hq := {hx(1) , . . . ,hx(q)}
be sets of q inputs and output vectors already selected in
the greedy procedure (q < Q), respectively. To maximize
the MI after adding the (q + 1)-th query x, i.e., MI(Hq ∪
hx; f∗), we consider the decomposition

MI(Hq ∪ hx; f∗) = MI(Hq; f∗) + CMI(hx; f∗|Hq),

where CMI(hx; f∗|Hq) := EHq

[
MI(hx; f∗|Hq)

]
. Since

the first term does not depend on x, we only need to maxi-
mize CMI(hx; f∗|Hq).

By the same approach as (5), we can obtain the lower
bound of CMI(hx; f∗|Hq) as

L(x|Xq) := −EHq,f∗

[
logZx(f∗|Hq)

]
, (7)

where Zx(f∗|Hq) := Pr(hx ∈ Af∗ |Xq,Hq). See Ap-
pendix A for the derivation. By applying the MC estima-
tion, we obtain the acquisition function for the (q + 1)-th
query as

αIBO(x|Xq) = −
1

K

∑
(f̃∗,Hq)∈J

logZx(f̃∗|Hq), (8)

where J is a set of K sampled (f̃∗,Hq) from the current
GPs. Note that jointly sampling f̃∗ and Hq can be easily
performed by almost the same procedure as the sequential
case, and given f̃∗ and Hq , Zx(f̃∗|Hq) can be easily com-
puted through the GPs updated by Hq (details are in Ap-
pendix G.1 and B, respectively). Consequently, our parallel
extension is also reduced to a simple acquisition function.
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4. Analysis
We here consider differences of CMES-IBO from a more
direct application of the conventional MES, and we also
provide analysis on the estimation variability of our esti-
mator. Although we focus on the sequential case, both of
them also hold in the parallel case.

4.1. Comparison with Conventional MES

Although we employ the lower bound based approach to
derive CMES-IBO, Perrone et al. (2019) have proposed
a more direct extension of MES to CBO (Note that Per-
rone et al. (2019) mainly focus on the binary setting, in
which a binary value indicating feasible or not is only ob-
served). However, their derivation is restricted to only one
constraint (C = 1). To consider the relation with CMES-
IBO, we extend this original MES-based approach to the
multiple constraints case, which we refer to as CMES.

In CMES, the MI is approximated as

MI(hx; f∗) = H(hx)− Ef∗
[
H(hx | f∗)

]
≈ H(hx)− Ef∗

[
H(hx | hx ∈ Af∗)

]
(9)

≈ 1

K

∑
f̃∗∈F∗

{
Zx(f̃∗)

2Zx(f̃∗)
Rf̃∗ − logZx(f̃∗)

}
=: αCMES(x), (10)

where

Rf̃∗ =
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

1− Φ(γ
(f)
x (f̃∗))

+

C∑
c=1

γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

1− Φ(γ
(gc)
x (zc))

,

and H(·) is the differential entropy and ϕ is the PDF of
the standard normal distribution. See Appendix E for the
derivation. The first approximation (9) is the replacement
from p(hx | f∗) to p(hx | hx ∈ Af∗) in the entropy of the
second term, and the second approximation that derives the
next line is the MC estimation of Ef∗ (Note that although
the approximation strategy follows (Perrone et al., 2019),
f∗ here is based on our definition (1) because f∗ should be
a proper random variable to define the MI as we mentioned
in Section 3.1).

Although CMES can be seen as a constrained counterpart
of the original MES, the following lemma reveals that the
MI approximation of CMES (10) can be a negative value
when C > 5.
Lemma 4.1. When C > 5, for every x ∈ X , there exist
thresholds {zc}Cc=1 that result in Pr(αCMES(x) < 0) > 0.

See Appendix E.3 for an interpretation and the proof. In
contrast, for CMES-IBO, we have the following remark:
Remarks 4.1. Our acquisition function is bounded from
below by an average of probability of improvement (PI)

from f̃∗, i.e., αIBO(x) ≥
∑
f̃∗∈F∗

Pr(hx ∈ Af̃∗)/K ≥ 0,
from which we also see non-negativity.

This remark is immediately derived by applying the well-
known inequality log x ≤ x− 1 to (6). Note that Pr(hx ∈
Af̃∗) is PI from f̃∗ because it is the probability that f(x) ≥
f̃∗ and gc(x) ≥ zc for ∀c. The unconstrained MES also has
shown a relation with PI (Wang & Jegelka, 2017), while for
CMES, it is difficult to see an interpretable relation with
PI. Let the worst-case error be the largest error of the MI
approximation among all the possible optimal-value sam-
ples F∗. For problems in which Pr(αCMES(x) < 0) > 0,
the worst-case error of CMES-IBO is smaller than that of
CMES. Another important implication of the remark is that
although CMES-IBO considers a lower bound, αIBO(x)
should be substantially larger than 0 if x is promising in
the sense of the PI, which cannot be guaranteed for CMES
as shown in the following toy example.

Figure 2 shows a toy example in which all constraints
g1, . . . , gC are the same function just for simplicity (note
that the independence assumption on GP models does not
mean that observations of different functions cannot take
the same value) and change C from 4 to 7. CMES and
CMES-IBO are calculated with K = 10. In the figure, we
also provide a numerical approximation of the original MI
naı̈vely estimated by using the kernel density estimation
(KDE), denoted as KDE-MI. For KDE-MI, since we used
a large number of samples 10000 (which cannot be per-
formed in practice), we regard KDE-MI as a pseudo ground
truth. To demonstrate negativity of CMES, the threshold
zc (shown in Fig. 2 (b)) is set so that Rf̃∗ in CMES (10)
becomes large negative value around x = 0.9 particularly
when C is large. Then, in fact, CMES takes negative val-
ues around the global optimum of KDE-MI in the case of
C = 6 and 7. In contrast, CMES-IBO keeps the same
global optimum as KDE-MI for all C. Although CMES
has a negative value only when C > 5 as Lemma 4.1 in-
dicates, the acquisition values gradually decrease with the
growth of C. Although values of CMES-IBO are nearly
half of KDE-MI, we can clearly see they are highly corre-
lated. Further detail of this example is in Appendix E.4.

Note that, in practice, the problematic behavior of CMES
shown in Fig. 2 (c) does not occur frequently depending on
a given problem. Although we will see that CMES often
reasonably works in later experiments, the potential risk of
this negativity issue degrades the reliability of CMES.

4.2. Bounds for Estimation Variability

We here analyze variability of our MI estimator (6), that
is, how the MI estimator (6) deviates from its expectation
(5). The simplicity of our MI estimator (6) enables us to
derive the following theorem, while it is difficult to derive
a similar guarantee for CMES:
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Figure 2: In (a) and (b), the GPs for f and gc are shown,
respectively. In (c)-(e), CMES, CMES-IBO, and the KDE-
based MI approximation are shown, and each vertical dot-
ted line indicates the maximum.

Theorem 4.1. For every x ∈ X , our MI estimator (6) sat-
isfies Vf∗ [− logZx(f∗)] ≤ 2, where Vf∗ represents the
variance with respect to f∗. Moreover, for every ξ ≥ 0 and
x ∈ X , following concentration inequality holds

Pr
{
|αIBO(x)− L(x)| ≥ ξ

}
≤ min {U1, U2} , (11)

where U1 = 2
Kξ2 and U2 = 2 exp

[
−AKmin

(
ξ2

B2 ,
ξ
B

)]
with constants A and B.

See Appendix C for the proof.

The variance of our MI estimator with K = 1 can be
bounded by the constant 2, and this fact provides the bound
by U1 as a direct consequence of Chebyshev’s inequality.
Most importantly, U2 yields exponentially fast decay on K
and ξ in contrast to the linear and quadratic dependence by
U1. Although the convergence rate of U1 is worse than U2,
U1 may provide a tighter bound for specific values of K
and ξ. Note that our bound (11) holds for any MC sam-
ples K, i.e., it is not an asymptotic result such as the cen-
tral limit theorem. Moreover, U1 and U2 do not depend
on any parameter of GPs and the problem setting, such as
σ(f)2(x), σ(gc)

2
(x), and C. Our analysis can be seen as a

guarantee of the estimation robustness of CMES-IBO even
with a small K.

5. Related Work
Extensions of unconstrained BO methods to CBO have
been widely studied. The standard expected improvement
(EI) based approaches are called EI with Constraint (EIC)
(Schonlau et al., 1998; Snoek, 2013; Gelbart et al., 2014;
Gardner et al., 2014; Zhang et al., 2021). However, when
no feasible solution is obtained, the so-called ‘current best
solution’ can not be defined. To avoid this difficulty, heuris-

tic strategies, such as only using the feasible probability
(Gelbart et al., 2014) and introducing a threshold hyperpa-
rameter (Letham et al., 2019), have been considered, but
an appropriate remedy for this issue is still an open prob-
lem. Gramacy & Lee (2010) and Picheny (2014) con-
sider the expected reduction of EI and PI, respectively.
However, since these approaches require expensive numer-
ical integrations defined on the entire domain X , their ap-
plicability is limited. A Thompson Sampling (TS) based
method called Scalable Constrained BO (SCBO) (Eriks-
son & Poloczek, 2021) has been proposed, recently. Since
a next query in TS is directly determined by one sampled
x∗, the decision often has high variability. Further, when
sampled Xfeasible is empty, SCBO selects the input that has
the smallest sum of the constraint violations, but the ratio-
nale of this selection in a sense of TS is not clarified.

The augmented Lagrangian (AL), which is a classical ap-
proach to white-box constrained problems, has also been
combined with BO (Gramacy et al., 2016; Picheny et al.,
2016). In AL-based methods, initial parameters of a La-
grange multiplier and a penalty coefficient should be spec-
ified. In the classical white-box optimization, these param-
eters can be refined during a large number of iterations.
However, for expensive black-box problems, the number
of possible iterations is much smaller than the classical op-
timization, and the effect of the initial parameters can be
significant. Ariafar et al. (2019) proposed Alternating Di-
rection Method of Multipliers BO (ADMMBO) based on
the famous ADMM algorithm. ADMMBO is only for de-
coupled setting, in which each one of objective and con-
straint functions is observed separately. In this paper, we
only focus on the setting in which objective and constraint
functions are simultaneously observed.

Entropy-based approaches are also studied in CBO litera-
ture. Hernández-Lobato et al. (2015; 2016) proposed Pre-
dictive Entropy Search with Constraint (PESC), which is
an extension of a prior work on unconstrained problems
(Hernández-Lobato et al., 2014). PESC considers the infor-
mation gain of the optimum x∗, but complicated approxi-
mations, for which any relation with the original MI has not
been clarified, are required. Another well-known entropy-
based BO is MES, for which we already discussed in Sec-
tion 4.1. The idea of considering f∗ instead of x∗ was first
shown by Hoffman & Ghahramani (2015), and Wang &
Jegelka (2017) proposed the current standard form of MES
by introducing a simple approximation of the entropy.MES
for multi-objective problems with constraints has been re-
cently proposed by two papers (Belakaria et al., 2020;
Fernández-Sánchez et al., 2020). Fernández-Sánchez et al.
(2020) pointed out that the entropy evaluation of (Belakaria
et al., 2020) is incorrect and derived a multi-objective coun-
terpart of CMES (9), but they introduced multiple addi-
tional approximations by which the relation with the origi-
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nal MI is further unclear. Moreover, it is worth noting that
none of the information-theoretic CBO studies have con-
sidered the possibility of Xfeasible = ∅. See Appendix D
for a detailed discussion.

A simple approach to incorporating multiple constraints is
to transform it into a single constraint such as g(x) :=
minc(gc(x)−zc) ≥ 0. Both of fitting a GP directly to g(x)
and fitting GPs to gc(x) individually are possible strategies
in this case, but the former discards observations of each
gc(x) (only use the min value) and the latter makes g(x)
non-Gaussian. The binary setting approach (Perrone et al.,
2019) can also be used for this purpose, but then, observa-
tions of each gc(x) are discarded.

The parallel extension of CBO has not been widely stud-
ied. Letham et al. (2019) have shown the parallel CBO
based on EIC. Although Eriksson & Poloczek (2021) have
not focused on the parallelization, SCBO is applicable to
the parallel setting easily because of the nature of TS. For
MES, although Takeno et al. (2020; 2022) have proposed a
CMI based parallel BO for the multi-fidelity setting, their
approach is not based on a lower bound of CMI, and con-
strained problems have not been studied. Wilson et al.
(2018) discussed the MC-based parallel BO in general, but
they considered only ‘myopic maximal (MM) acquisition
functions.’ MES is not included in the class of MM acqui-
sition functions, and CBO was not considered in (Wilson
et al., 2018).

To our knowledge, no existing studies use a lower bound
of the MI for BO. Moss et al. (2021) recently proposed
a lower bound based extension of MES. However, their
bound is a lower bound of the ‘approximate’ MI used in the
original MES, which is not a lower bound of the MI, and
constrained problems have not been studied. Although we
only focus on constrained problems, considering the effec-
tiveness of the lower bound approach to the unconstrained
problem is one of our important future works.

Lastly, we mention regret analysis of the entropy-based
BO. Wang & Jegelka (2017) show the regret analysis of
‘one sample MES,’ in which only one optimal value is
sampled in the MC estimation. To our knowledge, no
other regret analysis is known for the entropy-based BO
((Belakaria et al., 2019) show an extension to the multi-
objective problem, but their regret can be negative value as
pointed out by (Suzuki et al., 2020)). However, the original
theorem of MES contains several technical problems. For
example, the theorem assumes that f follows a GP, but the
maximum of f is regarded as a deterministic variable in the
proof, which contradicts each other (more details including
other issues are in Appendix H). Therefore, convergence
guarantee is still an open problem for the entropy-based
BO.

6. Experiments
We demonstrate the performance of sequential opti-
mization by comparing with CMES, EIC (Gelbart et al.,
2014), a TS-based method referred to as TSC, and PESC
(Hernández-Lobato et al., 2015) in Spearmint (https:
//github.com/HIPS/Spearmint/tree/PESC).
Note that CMES is based on our definition of f∗ (1).
TSC is a variant of SCBO (Eriksson & Poloczek, 2021)
simplified by omitting the output transformation such as
the Gaussian copula-based transformation of the objective
and the trust region strategy. Since these two are general
strategies applicable to any acquisition functions, to
only focus on the difference of acquisition functions, we
do not employ them. Although the AL-based methods
(Gramacy et al., 2016; Picheny et al., 2016) are not shown
as baselines, they are outperformed by PESC and SCBO
in prior work (Hernández-Lobato et al., 2015; Eriksson &
Poloczek, 2021), respectively.

Performances on GP-derived synthetic functions, bench-
mark functions, and two real-world problems were eval-
uated by using the utility gap (UG), which is also em-
ployed in various prior work (Hernández-Lobato et al.,
2015; Picheny et al., 2016; Eriksson & Poloczek, 2021).
We set the recommendation at iteration t as x̂t =
argmaxx∈X µ(f)(x), s.t. ∀c, Pr(gc(x) ≥ zc) ≥ C

√
0.95.

Then, UG is defined as f∗ − f(x̂t) if the recommenda-
tion is feasible, otherwise f∗ − minx∈X f(x), which in-
dicates that an infeasible recommendation results in the
worst UG. The initial inputs are sampled by Latin hyper-
cube sampling (Loh, 1996). The sample size of all MC
approximations is set as 10. For the kernel function in
GPs, we used a linear combination of the linear kernel
kLIN : X×X → R and RBF kernel kRBF : X×X → R de-
fined as σ2

LINkLIN(x,x
′)+σ2

RBFkRBF(x,x
′), where σ2

LIN

and σ2
RBF are updated by the marginal likelihood maxi-

mization every 5 iteration, except for the GP-derived func-
tions in which all the methods employed the same fixed ker-
nels used to generate the true functions. We used kLIN be-
cause benchmark functions often contain linear functions.
For the GP-derived functions, we generated 10 constrained
problems for each of which the experiment is run 10 times,
and the mean and standard error of the total 100 trials are
reported. For the benchmark and the real-word functions,
we report the mean and the standard error of 10 random ini-
tializations. Other experimental details such as the number
of initial points are shown in Appendix I.

First, we focus on the results for the sequential querying
shown in Fig. 3.

GP-derived synthetic functions (a): The objective and
the C = 10 constraints are sampled from zero-mean GPs
with RBF kernels whose length scales are 0.2. The thresh-
olds are set as zc = −0.75 for ∀c, and the input do-

https://github.com/HIPS/Spearmint/tree/PESC
https://github.com/HIPS/Spearmint/tree/PESC


Sequential- and Parallel- Constrained Max-value Entropy Search via Information Lower Bound

main is [0, 1]2. We see that EIC and CMES-IBO outper-
formed other methods, and in particular, CMES is clearly
worse than CMES-IBO. Additionally, we run the experi-
ments with the ‘single constraint’ transformation of multi-
ple constraints described in Section 5, in which a GP fits
to minc=1,...,10(gc(x) − zc) as one constraint. The results
shown by dashed lines indicate that this approach deterio-
rated performance compared with their multiple constraints
counterpart.

Benchmark functions (b)-(e): We here show results on
four benchmark functions called Gardner1 (C = 1 and
d = 2), G1 (C = 9 and d = 13), G7 (C = 8 and
d = 10), and G10 (C = 6 and d = 8). Gardner1 (Gardner
et al., 2014) is a simple test problem constructed by sine
and cosine functions (see Appendix I for the detailed def-
inition). G1, G7, and G10 are from (Liang et al., 2006).
In CBO literature, empirical evaluations are typically per-
formed with C ≤ 2, and thus, the settings C = 9, 8 and
6 are large. Moreover, these three functions have large
input dimensions d. We see that CMES-IBO has supe-
rior or comparable performance to the other methods in
all the four plots. CMES also showed reasonable perfor-
mance, but we observed substantial differences compared
with CMES-IBO in Gardner1, G7, and G10. In G7, the av-
erage UG of CMES was larger than 10, while CMES-IBO
converged to a much smaller value than 10. In G10, the
differences of the average UG between CMES and CMES-
IBO may seem small because of the large vertical scale, but
after the iteration 30, the differences are larger than 30, and
the error bars are not overlapped. For the benchmark func-
tions, the results of PESC are also shown. Note that due
to the difficulty of rewriting the Spearmint specification,
some settings were not consistent with the other methods
(see Appendix I for detail). However, we can see that the
performance of PESC is particularly unstable for (c)-(e),
which is presumably caused by the difficulty of approxi-
mating information gain of the high dimensional x∗.

Reactor network design (f): In this problem, the product
concentration from a sequence of two continuously stirred
tank reactors is optimized with capital cost and physi-
cal phenomenon constraints (Manousiouthakis & Sourlas,
1992; Kumar et al., 2020). The input dimension is d = 6.
This problem has one inequality constraint and four equal-
ity constraints, and we replaced each equality constraint
with two inequality constraints, by which we have C = 9
inequality constraints. Since the equality constraints cannot
be strictly satisfied when evaluating UG, we set the toler-
ance error as 10−3. We can see that CMES-IBO also shows
faster convergence than other methods in this problem.

Hyperparameter optimization of neural network (g):
We tested a hyperparameter optimization of convolutional
neural network (CNN) for a class-imbalanced setting, in

which, typically, performance for minority classes can de-
teriorate. We consider optimizing the average accuracy of
all classes under the constraints that the recall of each one
of classes is larger than 0.5. We fitted the two-layer CNN
to the CIFAR10 dataset (Krizhevsky & Hinton, 2009), in
which we set the class sizes of labels 0, ..., 4 as 2500, and
the others are 5000. To control the imbalanceness, we gave
a weight wm to the loss function of class m = 1, . . . , 10
defined by wm =

(
N/(MNm)

)ρ
, where M = 10 is the

number of classes, N is the size of the training data, Nm

is the size of class m, and ρ is a hyperparameter. Setting
ρ > 0 gives larger weights to minority classes (scikit-learn2

employs ρ = 1), while ρ = 0 is reduced to the uniform
weighting. In addition to ρ ∈ [0, 2], we also tune other hy-
perparameters such as learning rate (1 dim), dropout rate (1
dim), and the number of channels (2 dim). As a result, we
have d = 5 and C = M = 10. Other details are shown
in Appendix I. CMES-IBO and EIC reduced UG rapidly at
the beginning of the iterations, and CMES-IBO achieved
a substantially smaller value than the other methods at the
end of the iterations.

Parallel Querying: For the parallel setting, we parallelize
EIC and TSC (see Appendix I for detail) and set the number
of parallel queries Q = 3. The prefix ‘P-’ indicates a paral-
lelized variant of each method (e.g., P-EIC and P-CMES).
The results are shown in Fig. 4. Here, G1, G7, and G10
benchmarks were used, and we see that, similarly to the
sequential case, CMES-IBO shows efficient convergences
compared with the other methods.

Overall, EIC and TSC showed reasonable performance, but
in some cases, their performances become much worse
compared with the best method in each plot by being
trapped at local optima. The performance of CMES was
mostly stable compared with EIC and TSC. However, par-
ticularly in some large C experiments such as (a) and (g) in
Fig. 3, CMES deteriorates compared to CMES-IBO. This
result is consistent with our analysis that CMES can show
problematic behavior when C is large.

Additional evaluations for different sample sizes K, and
the correlated extension are shown in Appendix J.

7. Conclusion
We proposed an information-theoretic constrained
Bayesian optimization method called CMES-IBO, derived
from a lower bound of the MI. We showed its several de-
sired properties, such as the interpretation of the infeasible
case, non-negativity, and the bounds of the estimation
variability. Moreover, we extended CMES-IBO to the

2https://scikit-learn.org/stable/modules/
generated/sklearn.utils.class_weight.
compute_class_weight.html

https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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Figure 3: Utility gap in sequential querying (average and standard error). The dashed lines in the synthetic function
experiment represent the ‘single constraint’ counterpart of each method that has the same color.
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Figure 4: Utility gap in parallel querying (average and stan-
dard error).

parallel setting. The effectiveness of our proposed method
was shown through various benchmark functions and
real-world problems. Although we only focus on MI
defined by the noiseless hx throughout the paper, the
extension for noisy observations is one of our future work.
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A. Derivation of Information Lower Bound
To derive our lower bound, we start from the following representation of the MI:

I(hx; f∗) = Ef∗
[∫

p(hx|f∗) log
p(hx|f∗)
p(hx)

dhx

]
. (12)

Note that since p(f∗) can be seen as a mixture distribution in which one of the components (the green distribution in Fig. 1)
consists of a single constant value (−∞), the expectation regarding f∗ for a given function b : R ∪ {−∞} 7→ R can be
defined as

Ef∗
[
b(f∗)

]
= Pr(f∗ = −∞)b(−∞) + Pr(f∗ 6= −∞)

∫
R
p(f∗|f∗ 6= −∞)b(f∗)df∗. (13)

The MI (12) defined through this expectation can be seen as a special case of an MI for a mixture distribution shown in
(Nair et al., 2007; Beknazaryan et al., 2019).

Then, our information lower bound can be derived as follows:

I(hx; f∗) = Ef∗
[∫

p(hx|f∗) log
p(hx|f∗)
p(hx)

dhx

]
= Ef∗

[∫
p(hx|f∗)

(
log

q(hx|f∗)
p(hx)

+ log
p(hx|f∗)
q(hx|f∗)

)
dhx

]
= Ef∗

[∫
p(hx|f∗) log

q(hx|f∗)
p(hx)

dhx +DKL

(
p(hx|f∗)||q(hx|f∗)

)]
≥ Ef∗

[∫
p(hx|f∗) log

q(hx|f∗)
p(hx)

dhx

]
= Ef∗

[∫
p(hx|f∗) log

p(hx|hx ∈ Af∗)
p(hx)

dhx

]
. (14)

In the last line, we replace q(hx|f∗) with p(hx|hx ∈ Af∗) as defined in (4). Here, from the definition of f∗, we see
p(hx|f∗) = p(hx|hx ∈ Af∗) = 0 for hx ∈ Af∗ . Additionally, in information theory, 0 log 0 is treated as zero based on
that limx→0 x log x = 0 (Cover & Thomas, 2006). Thus, we obtain

(14) = Ef∗
[∫

Af∗

p(hx|f∗) log
p(hx)

Zx(f∗)p(hx)
dhx

]
= −Ef∗

[∫
Af∗

p(hx|f∗) logZx(f∗)dhx

]
= −Ef∗

[
logZx(f∗))

∫
Af∗

p(hx|f∗)dhx

]
= −Ef∗ [logZx(f∗)].

Note that although the expectation Ef∗ is written as the mixture (13), the MC approximation can be directly performed
because a sample from the mixture distribution can be obtained through the procedure described in Section G.1, by which
our acquisition function (6) is derived.

B. Details of Parallelization
In this section, we provide the detailed derivation for the parallel setting omitted in the main paper. We assume that Q
workers are available by which we can select Q queries as a batch at every iteration. Let Xq := {x(1), . . . ,x(q)} be a set
of input queries and Hq := {hx(1) , . . . ,hx(q)} be a set of output vectors for an integer 1 ≤ q ≤ Q. A naı̈ve extension
is to maximize MI between HQ and f∗, i.e., MI(HQ; f∗), with respect to the queries XQ. However, this approach results
in a Qd dimensional acquisition function maximization, which is often extremely hard. Instead, we propose a greedy
approximation of maxXQ

MI(HQ; f∗) using the conditional mutual information (CMI).
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The q-th step of our greedy selection is defined as argmaxx(q) MI(Hq; f∗), where x(1), . . . ,x(q−1) are already fixed by the
previous steps. This procedure maximizes the additional information gain produced by hx(q) , which can be seen through
the following expansion:

MI(Hq; f∗) = MI(Hq−1; f∗) + CMI(hx(q) ; f∗|Hq−1),

where the second term is CMI(hx(q) ; f∗|Hq−1) := EHq−1

[
MI(hx(q) ; f∗|Hq−1)

]
. Importantly, the first term does not

depend on x(q) anymore. Therefore, we obtain argmaxx(q) MI(Hq; f∗) = argmaxx(q) CMI(hx(q) ; f∗|Hq−1), which
means that the greedy selection can be performed by the maximization of CMI.

Our lower bound approach used in (5) can be applied to CMI as follows:

CMI(hx(q) ; f∗|Hq−1) ≥ −EHq−1,f∗

[
log(1− Zx(q)(f∗|Xq−1))

]
=: Lpar(x

(q)), (7)

where Zx(q)(f∗|Xq−1) := Pr(hx(q) ∈ Af∗ |Xq−1,Hq−1). The derivation of this lower bound is omitted because it is almost

identical with the sequential case (see Appendix A). Suppose that m(f)

x(q) and s
(f)

x(q)

2
are the predictive mean and variance of

f(x) after conditioning byHq−1, respectively, and that m(gc)

x(q) and s
(gc)

x(q)

2
are those for gc(x). Then, from the independence

assumption, Zx(q)(f∗|Xq−1) =
(
1− Φ(η

(f)

x(q)(f∗))
)∏C

c=1

(
1− Φ(η

(gc)

x(q)(zc))
)
, where η

(f)

x(q)(f∗) =
(
f∗ −m

(f)

x(q)

)
/s

(f)

x(q) and

η
(gc)

x(q)(zc) =
(
zc − m

(gc)

x(q)

)
/s

(gc)

x(q) , c = 1, . . . , C. By applying the Monte Carlo estimation to the expectation in (7), we
obtain the acquisition function for the q-th query as

αIBO(x(q)|Xq−1) = −
1

K

∑
(f̃∗,Hq−1)∈J

log(1− Zx(q)(f̃∗|Xq−1)), (8)

where J is a set of K sampled (f̃∗,Hq−1) from the current GPs.

C. Proof of Theorem 4.1
Let f∗(1), . . . , f∗(K) be i.i.d. random variables sampled from the distribution of f∗, and let Dk := − log

(
1 − Pr(hx ∈

Af∗(k))
)
, whereAf∗(k) := (f∗(k),∞)× (z1,∞)× · · ·× (zC ,∞) for ∀k∈ {1, . . . ,K}. Then, our acquisition function can

be written as

αIBO(x) =
1

K

K∑
k=1

Dk.

For any b ∈ R ∪ {−∞}, the following inequality holds:

Pr(hx ∈ B) ≤ Pr(f∗ > b),

where B := (b,∞)× (z1,∞)× · · · × (zC ,∞). This is because hx ∈ B implies that (i) Xfeasible is not empty since at least
x is feasible and (ii) f∗ = maxx′∈Xfeasible

f(x′) ≥ f(x) > b. By substituting the sampled f∗(1), . . . , f∗(K) into b, we see

Pr(hx ∈ Af∗(k)) ≤ Pr(f∗ > f∗(k)),

and

1− Pr(hx ∈ Af∗(k)) ≥ 1− Pr(f∗ > f∗(k)) = F∗(f∗(k)), (15)

where F∗(b) := Pr(f∗ ≤ b) is CDF of f∗.

Let us consider the distribution of F∗(f∗(k)) induced by f∗(k). Define τ := Pr(f∗ = −∞). Then, f∗(k) = −∞ with
probability τ because f∗(k) is a random sample of f∗. This implies F∗(f∗(k)) = Pr(f∗ = −∞) = τ with probability τ .
Moreover, the CDF of F∗(f∗(k)), defined as Pr(F∗(f∗(k)) ≤ α), is continuous for α ∈ (τ, 1). Thus, as with the probability
integral transform (e.g., see (Casella & Berger, 2002)), Pr(F∗(f∗(k)) ≤ α) can be obtained as

Pr(F∗(f∗(k)) ≤ α) = Pr
(
F−1
∗
(
F∗(f∗(k))

)
≤ F−1

∗ (α)
)

= Pr
(
f∗(k) ≤ F−1

∗ (α)
)

= F∗
(
F−1
∗ (α)

)
= α,
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where F−1
∗ (·) is the quantile function of f∗. Consequently, CDF of F∗(f∗(k)) is obtained as,

Pr(F∗(f∗(k)) ≤ α) =

{
0 if α < τ,

α if α ≥ τ.

From above, F∗(f∗(k)) = τ with probability τ , and F∗(f∗(k)) ∼ Unif(τ, 1) with probability 1 − τ . Then, we define the
random variable Uk as follows:

Uk =

{
Ũk if f∗(k) = −∞,

F∗(f∗(k)) if f∗(k) 6= −∞,

where Ũk ∼ Unif(0, τ). In this definition, we have Uk ∼ Unif(0, τ) with probability τ , and Uk ∼ Unif(τ, 1) with
probability 1− τ . Therefore, Uk ∼ Unif(0, 1). Since F∗(f∗(k)) ≥ Uk from the definition, by combining (15), we obtain

1− Pr(hx ∈ Af∗(k)) ≥ F∗(f∗(k)) ≥ Uk. (16)

From this inequality and the monotonicity of logarithm, we can transform

Dk = − log
(
1− Pr(hx ∈ Af∗(k))

)
≤ − log

(
F∗(f∗(k))

)
≤ − log(Uk) =: Mk.

Dk and Mk are nonnegative random variables, and Pr(Dk ≤ Mk) = 1. Hence, we see that 0 ≤ EF∗ [Dk] ≤ EF∗ [Mk],
EF∗ [D

2
k] ≤ EF∗ [M

2
k ], and Pr(Dk ≥ b) ≤ Pr(Mk ≥ b) for ∀b ∈ R.

We will show that variance and concentration bounds for Dk can be derived from that of Mk. Using the inverse probability
integral transform (Casella & Berger, 2002), − log(Uk) follows an exponential distribution with the rate parameter λ = 1:

Mk = − log(Uk) ∼ exp(λ = 1).

Therefore, Ef∗(k)
[M2

k ] = 2, and we can derive the inequality below:

Vf∗(k)
[Dk] = Ef∗(k)

[D2
k]− Ef∗(k)

[Dk]
2

≤ Ef∗(k)
[D2

k]

≤ Ef∗(k)
[M2

k ]

= 2.

Moreover, we see that Dk satisfies the condition being a sub-exponential random variable (Proposition 2.7.1 (a) in Ver-
shynin, 2018), that is,

Pr(|Dk| ≥ ξ) = Pr(Dk ≥ ξ) ≤ Pr(Mk ≥ ξ) = exp(−ξ) for all ξ ≥ 0.

Consequently, Dk is a sub-exponential random variable, whose variance is bounded from above Vf∗(k)
[Dk] ≤ 2.

We can directly apply Chebyshev’s and Bernstein’s inequalities from the bound of variance and the fact that Dk is a
sub-exponential random variable. First, applying Chebyshev’s inequality, we can see immediately

Pr(|αIBO(x)− L(x)| ≥ ξ) ≤ 2

Kξ2
, (17)

for any ξ ≥ 0. Second, applying Bernstein’s inequality (Corollary 2.8.3 in Vershynin, 2018), we can derive

Pr(|αIBO(x)− L(x)| ≥ ξ) ≤ 2 exp

[
−AKmin

(
ξ2

B2
,
ξ

B

)]
, (18)

where A is a constant and B can be provided as a sub-exponential norm 3 (Definition 2.7.5 in Vershynin, 2018) of
Dk − Ef∗(k)

[Dk]. For all t ≥ 0 and x ∈ X , the sub-exponential norm ‖Dk − Ef∗(k)
[Dk]‖ψ1 can be bounded as

‖Dk − Ef∗(k)
[Dk]‖ψ1

≤ ‖Dk‖ψ1
+ ‖Ef∗(k)

[Dk]‖ψ1
(triangle inequality)

≤ ‖Mk‖ψ1 + ‖Ef∗(k)
[Mk]‖ψ1 (Pr(Dk ≤Mk) = 1)

= ‖Mk‖ψ1 + ‖1‖ψ1 (Ef∗(k)
[Mk] = 1)

= 2 + 1/ log 2. (Mk ∼ exp(λ = 1))

3The sub-exponential norm for a random variable X is defined as follows: ∥X∥ψ1
:= inf

{
ξ > 0 | E

[
exp

(
|X|/ξ

)]
≤ 2

}
.
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Therefore, B can be set as 2 + 1/ log 2. Consequently, we can derive Theorem 4.1 combining these two inequalities (17)
and (18).

The above derivations can be directly extended to the parallel setting. Let D(q)
k := − log

(
1−Pr(hx ∈ Af∗(k)|Hq−1)

)
and

αIBO(x|Xq−1) = 1/K
∑K
k=1 D

(q)
k . All the inequalities shown in the sequential case hold for an arbitrary dataset, which

can be the observed dataset Dt augmented by Hq . Thus, for an arbitrary fixed Hq(k), we obtain Ef∗(k)|Hq(k)

[
D

(q)
k

2]
≤ 2

and Pr
(
|D(q)

k | > ξ | Hq(k)
)
≤ exp(−ξ) for all ξ ≥ 0, where the expectation and probability are taken by f∗(k)|Hq(k),Dt.

Therefore, we obtain the bounds of the variance and the tail probability as follows:

Vf∗(k),Hq(k)

[
D

(q)
k

]
= Ef∗(k),Hq(k)

[
D

(q)
k

2]
− Ef∗(k),Hq(k)

[
D

(q)
k

]2 ≤ EHq(k)

[
Ef∗(k)|Hq(k)

[
D

(q)
k

2]]
≤ EHq(k)

[2] = 2,

Pr
(
|D(q)

k | > ξ
)
= EHq(k)

[
Pr
(
|D(q)

k | > ξ | Hq(k)
)]
≤ EHq(k)

[
exp(−ξ)

]
= exp(−ξ) for all ξ ≥ 0.

Consequently, D(q)
k is a sub-exponential random variable, whose variance is bounded from above by 2. Hence, we can

apply Chebyshev’s and Bernstein’s inequalities as with the sequential case.

D. Discussion on Infeasibility
Here, we discuss the case that sample paths generated for sampling f∗ do not have any feasible solution. Perrone et al.
(2019) defined f∗ as max f(x), s.t. gc(x) ≥ zc for ∀c = 1, . . . , C, by which the infeasible case is not considered.
However, particularly when the datasetDt−1 does not contain any feasible solution (which typically occurs at the beginning
of the optimization), it often occurs that a sample path generated for sampling f∗ does not have any feasible solution. An
illustrative example is shown in Figure 1 (a), in which the feasible region of the green sample path is empty. In fact, GPs
can generate an infeasible sample path, i.e., Pr(Xfeasible = ∅) > 0 unless we observe a noiseless feasible solution. Then,
there is a possibility that f∗ is not defined, by which MI even cannot be theoretically defined.

Other than using our definition of f∗ (1), another possible approach to avoiding this problem is to assume the existence of
feasible solutions in the GPs, but this approach has at least the following three disadvantages. First, this approach ignores
uncertainty about the existence of a feasible solution. Identifying the existence of a feasible solution for a given problem
is a key issue in constrained problems (called the feasibility problem (Chinneck, 2007)). However, information gain about
feasibility cannot be incorporated in this approach. Second, we need to generate sample paths that have feasible solutions
for sampling f∗. A naı̈ve approach is the rejection sampling, in which generated constraint functions are rejected if no
feasible solution exists, but this may require a huge number of samplings. Third, the predictive distribution of hx under
this condition p(hx | at least one feasible x exists) is not a Gaussian distribution anymore, and is analytically intractable.
This makes the entire computational procedures of both CMES-IBO and CMES much more complicated. Perrone et al.
(2019) did not mention the above issues at all and used the usual predictive distributions of GPs in the entire acquisition
function evaluation without any justification. Note that the same problem exists in the PES-based CBO (Hernández-Lobato
et al., 2015; 2016). On the other hand, our definition of f∗ (1) resolves the above issues.

We further discuss how CMES-IBO balances the effect of the objective and constraint functions when infeasible sample
paths are generated. For simplicity, we first consider the case of K = 1. The acquisition function (6) can be written as
− log(1 − Pimp × Pfea), where Pimp := Pr(f(x) ≥ f̃∗) and Pfea :=

∏C
c=1 Pr(gc(x) ≥ zc). In this criterion, Pimp and

Pfea represent benefits for obtaining a larger value of f(x) and for obtaining a feasible solution, respectively. If the sample
path does not have a feasible region, Pimp = Pr(f(x) ≥ −∞) = 1. Thus, only the probability of being feasible Pfea

is maximized. On the other hand, when K > 1, the balance of the effect of the objective and the constraint functions
are balanced through the frequency that sampled constraint functions have a feasible region among K samplings. If the
frequency is low, the probability of being feasible has a dominant effect, while if the frequency is high, the effect of the
objective function becomes strong. Note that sampled constraint functions can have feasible solutions even when the
dataset Dt−1 does not contain any feasible solution (as illustrated in Figure 1 (a)).

E. Constrained Extension of Conventional Max-value Entropy Search
We here extend cMES (Perrone et al., 2019) to the multiple constraints setting and the parallel setting, and further, we show
an example that its approximate MI can be negative.
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E.1. Acquisition Function of CMES

Following the conventional MES and cMES (Wang & Jegelka, 2017; Perrone et al., 2019), we approximate MI as below:

(2) = H(hx)− Ef∗
[
H(hx | f∗)

]
≈ H(hx)− Ef∗

[
H(hx | hx ∈ Af∗)

]
. (9)

For the approximation, the conditioning on f∗ in the second term is replaced with hx ∈ Af∗ following the existing
approach (Perrone et al., 2019). Further, the expectation over p(f∗) in the second term of (9) is also analytically intractable.
This expectation can be approximated by the MC estimation, for which we employ the same RFF-based approach described
in Appendix G.1. Thus, we obtain the following acquisition function as an approximation of (9):

αCMES(x) :=H(hx)−
1

K

∑
f̃∗∈F∗

H(hx | hx ∈ Af̃∗). (19)

The first term is easy to calculate because it is the entropy of the multivariate normal distribution. Hence, we need to
calculate the entropy in the second term H(hx | hx ∈ Af̃∗).

Although Perrone et al. (2019) derived a closed-form of the entropy of this TMN distribution specific for C = 1, for
C > 1, directly evaluating it is not trivial as pointed out by (Fernández-Sánchez et al., 2020). We show that another
analytical representation of this entropy actually can be derived for general C by transforming the domain of the integration
as follows:

H(hx | hx ∈ Af̃∗) =
∫
Af̃∗

− p(hx)

Zx(f̃∗)
log

p(hx)

Zx(f̃∗)
dhx

=

∫
− p(hx)

Zx(f̃∗)
log

p(hx)

Zx(f̃∗)
dhx +

∫
Af̃∗

p(hx)

Zx(f̃∗)
log

p(hx)

Zx(f̃∗)
dhx

=
1

Zx(f̃∗)

∫
−p(hx) log p(hx)dhx +

1

Zx(f̃∗)

∫
Af̃∗

p(hx) log p(hx)dhx + log(Zx(f̃∗))

=
1

Zx(f̃∗)

∫
−p(hx) log p(hx)dhx +

Zx(f̃∗)

Zx(f̃∗)

∫
Af̃∗

p(hx)

Zx(f̃∗)
log

p(hx)

Zx(f̃∗)
dhx + log(Zx(f̃∗)) +

Zx(f̃∗) log(Zx(f̃∗))

Zx(f̃∗)

=
H(hx)

Zx(f̃∗)
− Zx(f̃∗)

Zx(f̃∗)

∫
Af̃∗

−p(hx|hx ∈ Af̃∗) log p(hx|hx ∈ Af̃∗)dhx + log(Zx(f̃∗)) +
Zx(f̃∗) log(Zx(f̃∗))

Zx(f̃∗)

=
H(hx)

Zx(f̃∗)
−

Zx(f̃∗)H(hx | hx ∈ Af̃∗)
Zx(f̃∗)

+ log(Zx(f̃∗)) +
Zx(f̃∗) logZx(f̃∗)

Zx(f̃∗)
, (20)

where TMN p(hx|hx ∈ Af̃∗) is defined as

p(hx|hx ∈ Af̃∗) =

{
p(hx)/Zx(f̃∗) if hx ∈ Af̃∗
0 otherwise

.

In the last equation, Zx(f̃∗), Zx(f̃∗) and H(hx) are easy to compute. Although H(hx | hx ∈ Af̃∗) in the second term is
still the entropy of TMN, we show the calculation of this entropy in Appendix F for both independent and correlated cases.

Consequently, in the independent case, by substituting (20) into (19) and replacing H(hx) and H(hx | hx ∈ Af̃∗) with
their closed-forms (shown in Appendix F), we obtain

αCMES(x) =
1

K

∑
f̃∗∈F∗

Zx(f̃∗)

2(1− Zx(f̃∗))
Rf̃∗ − log(1− Zx(f̃∗)),

where

Rf̃∗ :=
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

1− Φ(γ
(f)
x (f̃∗))

+

C∑
c=1

γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

1− Φ(γ
(gc)
x (zc))

.
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In the correlated case, H(hx) and H(hx | hx ∈ Af̃∗) are also replaced with their closed-forms (shown in Appendix F),
and we obtain

αCMES(x) =
1

K

∑
f̃∗∈F∗

Zx(f̃∗)

2(1− Zx(f̃∗))

(
Tr
(
Σ−1(x)

(
ΣTN(x) + dd⊤))−C − 1

)
− log(1− Zx(f̃∗)), (21)

where Tr(·) is the trace of a matrix, µ(x) and Σ(x) are the expectation and covariance matrix of hx, respectively, µTN(x)
and ΣTN(x) are those for hx|hx ∈ Af̃∗ , and d = µTN(x)− µ(x). See Appendix F for details.

E.2. Parallelization of CMES

We can consider the CMI maximization in the same way as CMES-IBO. Suppose that we already select the q − 1 queries,
and we need to select the next q-th query. The CMI can be approximated as

EHq−1

[
I(hx(q) ; f∗|Hq−1)

]
= EHq−1

[
H(hx(q) |Hq−1)

]
−EHq−1,f∗

[
H(hx(q) |f∗,Hq−1)

]
≈ EHq−1

[
H(hx(q) |Hq−1)

]
−EHq−1,f∗

[
H(hx(q) |hx(q) ∈ Af∗ ,Hq−1)

]
As described in Appendix B, we define f(x)|Dt−1,Xq−1,Hq−1 ∼ N

(
m

(f)

x(q) , s
(f)

x(q)

2)
and gc(x)|Dt−1,Xq−1,Hq−1 ∼

N
(
m

(gc)

x(q) , s
(gc)

x(q)

2)
c = 1, . . . , C. Importantly, s(f)

x(q)

2
, s

(gc)

x(q)

2
, . . . , s

(gC)

x(q)

2
only depend on Xq−1, not Hq−1. Thus, given

Xq−1, the first term EHq−1

[
H(hx(q) |Hq−1)

]
can be calculated analytically. The second term is also calculated in the same

manner as CMES with given f̃∗ andHq−1 :

H(hx(q) | hx(q) ∈ Af̃∗ ,Hq−1) = H(hx(q) |Hq−1)−
Zx(q)(f̃∗|Xq−1)

2(1− Zx(q)(f̃∗|Xq−1))
R

(q)

f̃∗
+ log(1− Zx(q)(f̃∗|Xq−1)),

where

R
(q)

f̃∗
:=

η
(f)

x(q)(f̃∗)ϕ(η
(f)

x(q)(f̃∗))

1− Φ(η
(f)

x(q)(f̃∗))
+

C∑
c=1

η
(gc)

x(q)(zc)ϕ(η
(gc)

x(q)(zc))

1− Φ(η
(gc)

x(q)(zc))
.

Finally, by applying the MC approximation, we obtain the acquisition function below

αCMES(x(q)|Xq−1)=
1

|J |
∑

(f̃∗,Hq−1)∈J

Zx(q)(f̃∗|Xq−1)

2(1− Zx(q)(f̃∗|Xq−1))
R

(q)

f̃∗
− log(1− Zx(q)(f̃∗|Xq−1)). (22)

We can also derive the acquisition function in the correlated setting, but we omit the detailed derivation.

E.3. Interpretation and Proof of Lemma 4.1

Interpretation of negativity At first, we provide an intuition that the acquisition function of CMES becomes negative
when C > 5. In (9), CMES replaces Ef∗ [H(hx|f∗)] with Ef∗ [H(hx|hx ∈ Af∗)], in which the variable of the expectation
f∗ and the condition of the entropy hx ∈ Af∗ are not identical unlike Ef∗ [H(hx|f∗)]. Thus, (9) cannot be seen as an
MI anymore, and the non-negative guarantee is not maintained. The negativity is derived by minimizing αCMES(x) with
respect to {zc}Cc=1 in Lemma 4.1. The ‘C > 5’ is the boundary that an upper bound of this minimum becomes less than 0.

Proof Before the proof of Lemma 4.1, we prove the following auxiliary lemma:

Lemma E.1. Let a(γ) := γϕ(γ)
1−Φ(γ) for γ ∈ R. Then, minγ∈R a(γ) < −0.29.

Proof. Using the approximation of CDF (26.2.17 in Abramowitz & Stegun, 1964), we obtain

Φ(γ) = 1− ϕ(γ)(b1r + b2r
2 + b3r

3 + b4r
4 + b5r

5) + ϵ(γ), (23)

where

|ϵ(γ)| < 7.5× 10−8, r = 1/(1 + pγ), p = 0.2316419,

b1 = 0.319381530, b2 = −1.821255978, b3 = −0.356563782, b4 = 1.330274429, b5 = 1.781477937.
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By substituting (23) into a(γ), we obtain

a(γ) =
γ

b1r + b2r2 + b3r3 + b4r4 + b5r5 + ϵ(γ)/ϕ(γ)
for ∀γ ∈ R.

Since ϵ(γ)/ϕ(γ) =
√
2πeγ

2

ϵ(γ) < 9ϵ(γ) < 9× 7.5× 10−8 < 10−6 for γ ∈ [−1, 0], we obtain an upper bound

a(γ) <
γ

b1r + b2r2 + b3r3 + b4r4 + b5r5 + 10−6
for ∀γ ∈ [−1, 0]. (24)

This upper bound consists of elementary arithmetic that can be computed without approximations such as the numerical
integration. We evaluated this upper bound (24) with 28 digits of precision by decimal package (https://docs.
python.org/3/library/decimal.html) in Python, and we confirmed minγ∈R a(γ) < a(−0.84) < −0.29.

Next, we prove Lemma 4.1. By using log(1 − Z) ≥ (1 − 1
1−Z ) = −Z

1−Z for Z ∈ [0, 1), an upper bound of the CMES
acquisition function (10) can be derived as

1

K

∑
f̃∗∈F∗

{
Zx(f̃∗)

2(1− Zx(f̃∗))

(
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

1− Φ(γ
(f)
x (f̃∗))

+

C∑
c=1

γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

1− Φ(γ
(gc)
x (zc))

)
− log(1− Zx(f̃∗))

}

≤ 1

K

∑
f̃∗∈F∗

{
Zx(f̃∗)

2(1− Zx(f̃∗))

(
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

1− Φ(γ
(f)
x (f̃∗))

+

C∑
c=1

γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

1− Φ(γ
(gc)
x (zc))

)
−

(
−Zx(f̃∗)

1− Zx(f̃∗)

)}

=
1

K

∑
f̃∗∈F∗

Zx(f̃∗)

(1− Zx(f̃∗))

{
1

2

(
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

1− Φ(γ
(f)
x (f̃∗))

+

C∑
c=1

γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

1− Φ(γ
(gc)
x (zc))

)
+ 1

}
.

Since Zx(f̃∗)

1−Zx(f̃∗)
≥ 0, we see that the sign of the above upper bound is determined by

s(z1, . . . , zC) :=
1

2
a(γ(f)

x (f̃∗)) +
1

2

C∑
c=1

a(γ(gc)
x (zc)) + 1. (25)

Note that s is defined as a function of zc.

From Lemma E.1, we see

min
z1,...,zC

s(z1, . . . , zC) <
1

2
a(γ(f)

x (f̃∗))−
0.29C

2
+ 1.

Moreover, since f̃∗ is sampled from p(f∗) whose support is R, a(γ(f)
x (f̃∗)) can be smaller than−0.29. Hence, if 0.29(C+

1)/2 > 1, (25) can be negative. Thus, (10) can be negative when C > 5, since 0.29(C + 1)/2 = 0.29(6 + 1)/2 =
2.03/2 > 1 when C = 6.

E.4. Illustrative Example that CMES Takes a Negative Value

First, we describe the detailed setting of Figure 2 omitted in the main text. In the plots, we have 200 equally spaced
grid points as X . We sampled f∗ through the sampling from the predictive multivariate normal distribution on these grid
points. We assume the posterior of gc for ∀c are the same for brevity, and this may seem to contradict the assumption
that f and gc for ∀c are independent. However, since the independence assumption does not mean that observations
of different functions cannot take the same value, Fig. 2 does not contradict the assumption. In fact, this setting (same
observations for all constraints) is not an essential requirement for negativity. Typically, CMES (10) is negatively biased
when (zc − µ(gc)(x))/σ(gc)(x) ≈ −0.84 for ∀c that can happen even if observations are different for each constraint.
Moreover, since (zc − µ

(gc)
t−1(x))/σ

(gc)
t−1 (x) ≈ −0.84 suggests a high probability satisfying the c-th constraint Pr(gc(x) ≥

zc) ≈ 0.8, this negative bias can be a significant problem.

https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/decimal.html
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Figure 5: In (a) and (b), the predictions of f and gc are shown, respectively. The solid line and shaded area represent the
predictive mean and the credible interval, and the cross mark is the training data. The horizontal dotted line expresses zc.
In (c)-(e), CMES, CMES-IBO, and the KDE-based MI approximation for C = 4, 5, 6, and 7 are shown, and each vertical
dotted line indicates the maximum.

The detailed procedure of KDE-MI is as follows. We used the following representation of the MI (Nair et al., 2007)
because, in this form, KDE is required only for one dimensional densities:

MI(hx; f∗) = Ehx

[
Pr(f∗ = −∞|hx) log

Pr(f∗ = −∞|hx)

Pr(f∗ = −∞)
+ Pr(f∗ 6= −∞|hx) log

Pr(f∗ 6= −∞|hx)

Pr(f∗ 6= −∞)

+ Pr(f∗ 6= −∞|hx)

∫
p(f∗|hx, f∗ 6= −∞) log

p(f∗|hx, f∗ 6= −∞)

p(f∗|f∗ 6= −∞)
df∗

]
,

where the expectation over hx is approximated by the MC estimation with 10000 samples. The probabilities Pr(f∗ =
−∞|hx) and Pr(f∗ = −∞) are estimated by the percentage of infeasible samples in 10000 samples (Pr(f∗ 6= −∞|hx)
and Pr(f∗ 6= −∞) are estimated in the same way). The one-dimensional density functions p(f∗|f∗ 6= −∞) and
p(f∗|hx, f∗ 6= −∞) are estimated by KDE fitted to feasible samples among 10000 samples of f∗ and f∗|hx, respec-
tively. Note that p(f∗|hx) is approximated by generating 10000 f∗ for each MC sample of hx. We approximate the
one-dimensional integral with respect to f∗ in the outer expectation by Gauss–Legendre quadrature. We empirically con-
firmed that the estimation variance of this procedure was low enough.

Here, we show an additional example in Figure 5, in which the number of the MC samplings in CMES and CMES-IBO
is set as K = 10000. The other settings are the same as Figure 2. Since we set K as 10000 in Figure 5, we expect that
the MC estimation are highly accurate. For CMES, we see that the behavior is slightly improved compared with the case
of K = 10 in Figure 2 (In particular, the acquisition function of C = 5 in Figure 5 (c) is more reasonable than that of
Figure 2 (c)). However, in the case of C = 6 and 7, CMES still takes negative values. In this example, querying to the
inputs around 0.2 and 0.9 are obviously beneficial because both predictions of f(x) and gc(x) are large. In particular, the
inputs around 0.9 can be a better selection than around 0.2 because the probability of being feasible is the highest, while
the uncertainty is almost the same as around 0.2. The argmax of KDE-MI and CMES-IBO are the same point around 0.9
regardless of the number of constraints C. On the other hand, the acquisition function values of CMES for a point around
0.9 rapidly decrease with the number of constraints C. Although CMES selects a point around 0.9 for C = 4 and 5, but
for C = 6 and 7, CMES selects a point around 0.2.
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F. Derivation of Entropy of TMN
In this section, we derive the entropy of TMN truncated by a hyperrectangle H(hx|hx ∈ Af̃∗) for both independent and
correlated cases.

F.1. Independent Case

In this case, H(hx|hx ∈ Af̃∗) can be decomposed to the sum of the entropy of each element (Horrace, 2005):

H(hx|hx ∈ Af̃∗) = H
(
f(x)|f(x) ≥ f̃∗

)
+

C∑
c=1

H
(
gc(x)|gc(x) ≥ zc

)
.

The analytical form of the entropy of the one-dimensional truncated normal distribution is known (Michalowicz et al.,
2014), by which we obtain

H
(
f(x)|f(x) ≥ f̃∗

)
= log

(√
2πeσ(f)(x)(1− Φ(γ(f)

x (f̃∗)))
)
+
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

2
(
1− Φ(γ

(f)
x (f̃∗))

) ,
H
(
gc(x)|gc(x) ≥ zc

)
= log

(√
2πeσ(gc)(x)(1− Φ(γ(gc)

x (zc)))
)
+
γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

2
(
1− Φ(γ

(gc)
x (zc))

) .
Moreover, from the independence of each elements of hx, we see H(hx) =

log
(√

2πeσ(f)(x)
)
+
∑C
c=1 log

(√
2πeσ(gc)(x)

)
. Then, the entropy of TMN is obtained as

H(hx|hx ∈ Af̃∗) = H(hx) + log(Zx(f̃∗)) +
Rf̃∗
2

,

where

Rf̃∗ =
γ
(f)
x (f̃∗)ϕ(γ

(f)
x (f̃∗))

1− Φ(γ
(f)
x (f̃∗))

+

C∑
c=1

γ
(gc)
x (zc)ϕ(γ

(gc)
x (zc))

1− Φ(γ
(gc)
x (zc))

.

F.2. Correlated Case

Supposed that hx has a correlated distribution defined as

hx|Dt−1 ∼ N
(
µ(x),Σ(x)

)
,

where µ(x) and Σ(x) can be obtained by an arbitrary multi-output GP model (Rasmussen & Williams, 2005). Let µTN(x)
and ΣTN(x) be the expectation and covariance matrix of hx|hx ∈ Af̃∗ , respectively, whose analytical expressions are
known (G & Wilhelm, 2012). We denote Ehx|hx∈Af̃∗

, which is the expectation with respect to hx|hx ∈ Af̃∗ , as ETN for
brevity. Then, we can transform the entropy H(hx|hx ∈ Af̃∗) into

H(hx|hx∈Af̃∗)=ETN

[
− log p(hx|hx ∈ Af̃∗)

]
= ETN

[
− log

p(hx)

Z

]
= ETN

[
− log p(hx)

]
+ logZ

=
1

2
ETN

[(
hx − µ(x)

)⊤
Σ−1(x)

(
hx − µ(x)

)]
+
1

2
|2πΣ(x)|+ logZ

=
1

2
Tr
(
Σ−1(x)ETN

[(
hx − µ(x)

)(
hx − µ(x)

)⊤])︸ ︷︷ ︸
=:V

+
1

2
|2πΣ(x)|+ logZ,
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Algorithm 1 Sequential- and parallel- CMES-IBO.

1: function CMES-IBO(D0,X , Q,K)
2: for t = 0, . . . , T do
3: for k = 1, . . . ,K do
4: Sample f̃(k), g̃1(k), . . . , g̃C(k) from current GPs

5:
f̃∗(k) ←

{
maxx∈X̃feasible

f̃(k)(x), if X̃feasible 6= ∅,
−∞, otherwise,

where X̃feasible := {x | g̃c(x) ≥ zc, c = 1, . . . , C}
6: end for
7: F∗ = {f̃∗(k)}Kk=1

8: x
(1)
t ← argmaxx∈X αIBO(x) (6)

9: if Q > 1 then
10: for q = 2, . . . , Q do

11: J =
{(

f̃∗(k),
{(

f̃(k)(x
(q′)
t ), g̃1(k)(x

(q′)
t ), . . . , g̃C(k)(x

(q′)
t )

)⊤}q−1

q′=1

)}K
k=1

12: x
(q)
t ← argmaxx∈X αIBO

t (x|Xq−1) (8)
13: end for
14: end if
15: Evaluate f, g1, . . . , gC at Xq
16: Update D(f)

t ,D(g1)
t , . . . ,D(gC)

t adding new observations
17: end for
18: end function

where | · | is the determinant of a matrix. Further, by using d = µTN(x)− µ(x), we obtain

V = ETN

[(
hx − µTN(x) + d

)(
hx − µTN(x) + d

)⊤]
= ETN

[(
hx − µTN(x)

)(
hx − µTN(x)

)⊤
+d
(
hx − µTN(x)

)⊤
+
(
hx − µTN(x)

)
d⊤ + dd⊤]

= ETN

[(
hx − µTN(x)

)(
hx − µTN(x)

)⊤]
+dd⊤

= ΣTN(x) + dd⊤,

where we use ETN

[(
hx − µTN(x)

)]
= 0. Consequently, we can derive

H(hx|hx ∈ Af̃∗) =
1

2
Tr
(
Σ−1(x)

(
ΣTN(x) + dd⊤))+1

2
|2πΣ(x)|+ logZ.

G. Computation of CMES-IBO and CMES
In this section, we describe several computational details. First, we present the general algorithm for sequential- and
parallel- CMES-IBO in Algo. 1, where sequential CMES-IBO corresponds to the case that Q = 1. By replacing (6) and
(8) in Algo. 1 with those of CMES (10) and (22), this algorithm can also be seen as the algorithm for sequential- and
parallel- CMES.

G.1. Sampling from Posterior

Our proposed method needs to sample the maximum value f∗ defined by (1). We employ an approach using random Fourier
features (RFF) (Rahimi & Recht, 2008), which has been used in various entropy-based BO and CBO methods (Hernández-
Lobato et al., 2014; 2015; Wang & Jegelka, 2017). In the RFF-based sampling, RFF ϕ(x) ∈ RD are first generated,
and a Bayesian linear regression model f(x) ≈ ω⊤ϕ(x) with the coefficients ω ∈ RD is constructed. By sampling the
coefficients ω from the Gaussian posterior, a continuous sample path can be derived. Let f̃(k) and g̃c(k)(c ∈ {1, . . . , C})
be the k-th set of sample paths (k ∈ {1, . . . ,K}) for the objective and constraint functions. The k-th sample of f∗, can be
obtained by solving a constrained optimization problem maxx∈X f̃(k)(x), s.t. g̃c(k)(x) ≥ zc, c = 1, . . . , C. We can apply
any constrained optimization modules such as the method of moving asymptotes (Svanberg, 2002). Another approach
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would be the discretization-based sampling through multivariate normal distribution (Perrone et al., 2019), though the
number of discretization points strongly depends on the input dimension d for sufficiently accurate sampling.

For parallel querying, we need to sample the f∗ and Hq−1 simultaneously. By using RFF-based sampling, these random
variables are sampled from a joint distribution easily, i.e.,Hq−1 can be sampled as a value of the sample paths f̃(k)(x) and
g̃c(k)(x) at x ∈ Xq−1. Moreover, in the MC approximation for q > 1, we can reuse the sample paths f̃(k), g̃1(k), . . . , g̃C(k)

that are sampled at q = 1 as described in Algo. 1. Because of this reuse, the computational cost of parallel CMES and
CMES-IBO are much smaller than Q times that of sequential CMES and CMES-IBO, respectively.

G.2. Computational Complexity of CMES-IBO and CMES

Independent Case To generate sample paths, the Bayesian linear regression requires O(CD3 + KD2) for the given
RFF, but C,K, and D are usually not large values. The number of constraints C is often less than 10. In our empirical
observations, the performance of CMES-IBO were stable with a small number of MC samplings K such as 10. The dimen-
sion of the RFF features D is typically set as less than 1000. The complexity for solving the generated constraint problems
depends on the solver. Many gradient-based methods have been known for the white-box constrained optimization such
as the sequential quadratic programming and the interior point method. The gradient of a sample path can be obtained by
O(dD), and thus, those gradient-based solvers can be applied efficiently.

Once we obtain the samples of f∗, the acquisition functions CMES-IBO (6) and CMES (10) can be easily calculated for ∀x
by using the GP posterior of f and gc. Since we employ a standard GP model, the posterior can be computed with O(n3)
for a given kernel matrix, where n is the number of the observed points. Note that the O(n3) computation is required
only once through the acquisition function maximization, because by storing (K + σ2

noiseI)
−1, the predictive mean and

variance can be evaluated by O(n2) for a given x. In our setting, the function evaluation is assumed to be expensive, by
which we usually only have a moderate size of a training set (typically, at most several hundreds of points).

In the case of the parallel setting, we need m
(f)

x(q) and s
(f)2

x(q) , which are the predictive mean and variance of f(x) after
conditioning Hq−1. This conditional density is written as p(f(x) | f̃(k)(x(1)), . . . , f̃(k)(x

(q−1))), which can be easily
determined through the standard conditional Gaussian formula. Given the q× q predictive covariance matrix of the current
GP for x(q) and Xq−1, we can obtain m

(f)

x(q)(x) and s
(f)2

x(q) (x) with O(q3). For m(gc)

x(q) and s
(gc)2

x(q) , which are for constraint
functions, the same calculation can be applied.

Correlated Case For multi-output GP model, the posterior can be computed with O(C3n3). For CMES-IBO and
CMES, the computations of CDF of the multivariate normal distribution are needed in the correlated case, as shown
in Appendix F.2. CMES-IBO performs K times C + 1 dimensional CDF for the acquisition function (6), in which
Zx(f̃∗) = Pr(h ∈ Af̃∗) is now CDF of a correlated multivariate normal distribution. On the other hand, in addition to
these CDF computations, CMES performs K times computations of the expectation and covariance matrix of TMN in
the acquisition function (21), each of which needs computing C dimensional CDF C + 1 times and C − 1 dimensional
CDF C(C + 1)/2 times, respectively (G & Wilhelm, 2012). Using a well-known MC-based algorithm (Genz, 1992), the
computational complexity of CDF with respect to the dimension C is known to be O(C2). Therefore, the computational
complexity of CMES-IBO with respect to K and C is O(KC2), but that of CMES is O(KC4), which severely limits the
applicability of CMES to the large number of constraints.

H. Considerations on Regret Bound of MES
In this section, we describe flaws in the theoretical analysis of MES (Wang & Jegelka, 2017). We use the same notation
as (Wang & Jegelka, 2017) throughout this section. Wang & Jegelka (2017) showed the bound of simple regret rT :=
maxx∈X f(x)−maxt∈[1,T ] f(xt) as follows:

Theorem H.1 (Theorem 3.2 in (Wang & Jegelka, 2017)). Let F be the cumulative probability distribution for the maximum
of any function f sampled from GP (µ, k) over the compact search space X ⊂ Rd, where k(x,x′) ≤ 1, ∀x,x′ ∈ X . Let
f∗ = maxx∈X f(x) and w = F (f∗) ∈ (0, 1), and assume the observation noise is iid N (0, σ2). If in each iteration t,

the query point is chosen as xt = argmaxx∈X γyt∗(x)
ψ(γyt

∗
(x))

2Ψ(γyt
∗
(x)) − log(Ψ(γyt∗(x))), where γyt∗(x) =

yt∗−µt(x)
σt(x)

and yt∗ is
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drawn from F , then with probability at least 1− δ, in T ′ =
∑T
i=1 logw

δ
2πi

number of iterations, the simple regret satisfies

rT ′ ≤
√

CρT
T

(νt∗ + ζT ), (26)

where C = 2/ log(1 + σ−2) and ζT = (2 log(πT

δ ))
1
2 , πi satisfies

∑T
i=1 π

−1
i ≤ 1 and πt > 0, and t∗ = argmaxt νt with

νt ≜ minx∈X ,yt∗>f∗ γyt∗(x), and ρT is the maximum information gain of at most T selected points.

In this theorem, the simple regret for ‘one sample MES’ is analyzed, in which only one max-value is sampled at every
iteration in the algorithm. We summarize five main flaws in this theorem as follows (note that each of them is related to
each other):

1. From the assumption f ∼ GP(µ, k), the max-value f∗ is a random variable, but it is not treated as a random variable
in their analysis. For example, Lemma C.1 in (Wang & Jegelka, 2017) obviously assumes that f(xt) follows the
Gaussian distribution, and therefore, treating f∗ as a deterministic variable contradicts the assumption of this lemma.
This problem closely related to other flaws, and thus, it is difficult to correct.

2. In BO literature, usually, the number of iterations is represented by T , and Wang & Jegelka (2017) use this notation
except for the theorem. On the other hand, in the theorem, the number of iteration is represented by T ′ instead of T ,
and the variable T in the bound (26) is defined by the number of ‘partitioning’ of the entire iterations in their proof.
Each partition is defined so that it satisfies a probabilistic condition related to max-values, which we omit details
here. An important issue is that, for this replaced T , dependency on the actual number of iterations is not clarified.
Therefore, (26) does not reveal the convergence rate with respect to the number of iterations.

3. Since νt∗ depends on yt∗ in each iteration, νt∗ is a random variable. This variable remains in the final upper bound,
but the convergence rate of νt∗ has not been shown.

4. In the theorem, Wang & Jegelka (2017) assumed that yt∗ is drawn from the prior F . This assumption clearly does not
match the basic idea of MES that selects the next query based on the mutual information estimated through samples
of the max-value from the ‘posterior’ distribution.

5. Wang & Jegelka (2017) claimed that the above simple regret bound can adapt to the setting that yt∗ is drawn from the
posterior. However, this claim is not proven and not obvious. In the proof, Wang & Jegelka (2017) implicitly assumed
Pr(yt∗ < f∗, y

t+1
∗ < f∗) = Pr(yt∗ < f∗) Pr(y

t+1
∗ < f∗). Through the basic formula of the joint probability of

independent variables, this decomposition is allowed if f∗ is deterministic, and yt∗ and yt+1
∗ are independent of each

other. However, both of these two conditions are not satisfied in the case of sampling from the posterior. For the first
condition, as we already mention, f∗ should be a random variable (actually, this first condition is not satisfied even
for the case of sampling from the prior). For the second condition, when yt∗ and yt+1

∗ are sampled from posterior, yt∗
depends on Dt−1 and yt+1

∗ depends on Dt. However, since Dt−1 ⊂ Dt, dependency obviously exists between yt∗ and
yt+1
∗ (note that now Dt−1 and Dt are also random variables not only because of the random noise of observations,

but also the randomness in the acquisition function). In the proof, the decomposition is not justified when the two
conditions are not satisfied. This decomposition plays a key role in the proof, and we consider that the above issue is
not easy to avoid.

We first tried to extend this theorem to our constrained problem, but we consider that correcting the above issues is at least
not trivial. Therefore, theoretical analysis of the MES-based methods (even for the simple unconstrained case) is still an
open problem, to the best of our knowledge.

I. Details of Experimental Settings
In this section, we describe additional details of experimental settings.

I.1. Other Experimental Settings

Observations for objective and constraint functions are standardized so that they have zero mean and unit variance, re-
spectively, before the regression at every iteration. We used the open-source library called GPy (GPy, since 2012) for
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the GP regression. The candidate intervals of hyperparameters σ2
LIN and σ2

RBF are set to [0, 1], and the variance of the
noise σ2 is set to 10−6. As we mentioned in the main paper, other hyperparameters are chosen by marginal likelihood
maximization. We employed an Automatic Relevance Determination (ARD) for the RBF kernel. Thus, the RBF kernel has
a hyperparameter ℓ := (ℓ1, . . . , ℓd)

⊤ ∈ Rd, and it is written as

kRBF(x,x
′) := exp

(
−1

2

d∑
i=1

(xi − x′
i)

2

ℓ2i

)
,

where xi and x′
i are the i-th elements of x and x′, respectively. For each one of ℓi for i = 1, . . . , d, we set the same interval

of the candidate value. For the benchmark functions and the reactor network design problem, we set ℓi ∈ [10−1si, 10si],
where si is the length of the interval for the possible value of xi in the input domain, and the thresholds zc = 0 for
c = 1, . . . , C. For the CNN hyperparameter optimization problem, we set ℓi ∈ [10−1, 2] and the thresholds zc = 0.5
for c = 1, . . . , C. We used the method of moving asymptotes (Svanberg, 2002) in NLopt (Johnson, since 2008) for the
constrained optimization of the sample path in CMES-IBO, CMES, TSC, and their parallel extensions. The numbers of
initial points are set as 3 for the GP-derived synthetic function, 5 for the two-dimensional benchmark functions, 5d for the
Hartmann6 function, and 25 for others. Finally, the hyperparameter M of P-EIC is selected as the minimum of the current
observations.

I.2. Settings for PESC

Due to the difficulty of rewriting the Spearmint specification, the default settings such as for kernels and inner optimization
were used. Although PESC has the same number of initial points, their locations are not identical to other methods because
of the same reason.

I.3. Details of Benchmark Functions

Here, we provide detailed information on benchmark functions. Note that we change the sign from the original functions
if it is required to formalize as the maximization problem.

Gardner1 Gardner1 is a simple test problem in which functions are constructed by sine and cosine functions (Gardner
et al., 2014). The input dimension d = 2, the input domain X = [0, 6]2, and the number of constraints C = 1. The
detailed forms of functions are

f(x) = − cos(2x1) cos(x2)− sin(x1),

g1(x) = − cos(x1) cos(x2) + sin(x1) sin(x2) + 0.5.

Gardner2 Gardner2 also has a simple form, but its feasible region is very small (Gardner et al., 2014). The input dimen-
sion d = 2, the input domain X = [0, 6]2, and the number of constraints C = 1. The detailed forms of functions
are

f(x) = − sin(x1)− x2,

g1(x) = − sin(x1) sin(x2)− 0.95.

Gramacy The Gramacy function is from (Gramacy et al., 2016). The input dimension d = 2, the input domain X =
[0, 1]2, and the number of constraints C = 2. The detailed forms of functions are

f(x) = −x1 − x2,

g1(x) =
1

2
sin(2π

(
x2
1 − 2x2)

)
+x1 + 2x2 − 1.5,

g2(x) = −x2
1 − x2

2 + 1.5.

Hartmann6 The Hartmann6 function is used in (Letham et al., 2019). The input dimension d = 6, the input domain
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X = [0, 1]6, and the number of constraints C = 1. The detailed forms of functions are

f(x) =

4∑
i=1

αi exp

(
−

6∑
j=1

Aij(xj − Pij)
2

)
,

g1(x) = −‖x− x′‖+ 1,

where

α = (1.0, 1.2, 3.0, 3.2)⊤,

A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

I.4. Details of CNN hyperparameter optimization problem

We used PyTorch (Paszke et al., 2019) to constract the CNN model. The search domaion for this problem is set as
follows: the learning rate in {10−3, 10−2, 10−1, 100}, the dropout rate in {2−4, 2−3, 2−2, 2−1}, the number of chennels
in {23, 24, 25, 26} for two layers, and the coefficient ρ in {0, 0.1, . . . , 1.9}. Thus, the size of input domain |X | = 5120.
To define x, we apply log10 and log2 transformation to the learning rate and the other inputs except for ρ, respectively.
Moreover, we apply the logit transformation to accuracy and recall for transforming the output domain from [0, 1] to R.
Under the setting zc = 0.5 for c = 1, . . . , 10, the number of feasible points is 28, which is only about 0.5% (≈ 28/5120)
of the entire candidates X . The unconstrained optimal point of the accuracy argmaxx∈X f(x) is different from the
constrained optimal point x∗, meaning that the unconstrained optimization of the average accuracy sacrifices recalls of
some classes. For the training of CNN, we used the default weighted cross-entropy loss function in PyTorch, which is
defined as follows:

LOSS(l, l̂) =

N∑
i=1

− wli∑M
m=1 wm

log l̂i,li ,

where l = (l1, . . . , lN ) ∈ RN , li is a correct label of i-th data, l̂i,m is a predicted probability that i-th data has label m, and
a (i,m) element of l̂ ∈ RN×M is l̂i,m.

J. Additional Experiments
J.1. Results with the Different Number of MC samples

By using benchmark functions from CBO literature, we here show the results with three different numbers of MC samples
K = 1, 10, and 50 of CMES and CMES-IBO. Figure 6 shows that even with small K = 1, these two methods maintain
reasonable performance compared with other methods. In particular, for CMES-IBO, this result can be explained by the
fact that αIBO(x) can be seen as the PI from f̃∗ even with K = 1 (Remark 4.1).

J.2. Experimental Results of the Utility Gap Defined by Best Observed Value

Figure 7 shows the utility gap defined by the best observed value, which is min{f∗ − f(xi) | (xi, yi) ∈ Dt−1, gc(xi) ≥
zc,∀c} when feasible solution is already obtained, otherwise f∗−minx∈X f(x). We see that all the plots show the similar
behavior as Fig. 3. This indicates that the recommendation x̂t is mostly selected around the training data since x̂t is
chosen under constraints Pr(gc(x) ≥ zc) ≥ C

√
0.95 for ∀c. Note that PESC is not shown in Fig. 7 since Spearmint does

not provide the best observed values.
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Figure 6: Utility gap of benchmark functions with different K (average and standard error).
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Figure 7: Utility gap defined by the best observed value in sequential querying (average and standard error).

J.3. Experiment for Correlated Synthetic Function

We evaluate the performance of CMES-IBO with correlated GPs on synthetic functions (d = 3 and C = 3). Because of its
high computational complexity, we did not employ CMES here (see Appendix G.2). The objective and C = 3 constraints
were sampled from GPs with the RBF kernel, and the length scales of the kernels were 0.1. All the correlation coefficients
among the objective and constraint functions were set as 0.5. The same settings of GPs for the function generation were
also used in each BO method. The number of initial points is set as 5. The threshold for constraints were set as zc = 0
for ∀c, and the input domain was [0, 1]3. We sampled 5 sets of functions, and the experiment of each set ran 10 times.
We report the mean and standard error of these 50 trials. Figure 8 shows the result. C-CMES-IBO denotes the correlated
extension of CMES-IBO. We see that C-CMES-IBO improves CMES-IBO in this case and is superior to the other methods.
Although the correlated model can improve performance when the true function has a strong correlation, we mainly focus
on the independent setting because the efficiency is often comparable to the correlated model, and the computations of
independent CMES-IBO is much simpler than correlated case.

J.4. Experiment for Computational Time Evaluation

In Table 1, we evaluate computational time of the acquisition function maximization at t = 30. EIC and TSC were relatively
faster than the others. CMES-IBO and CMES took longer times because of sampling of f∗ for which we need to solve
constraint optimization problems K times, while the acquisition function maximization itself was fast enough because of
their simple closed forms of the acquisition functions. Although it is not shown here, PESC has the same computational
requirement for sampling x∗ because the same constraint optimization problems need to be solved. It is worth noting that
the K times sampling of f∗ can be accelerated by computing in parallel because each one of the samplings is independent.

Table 1: Computational time (sec.) for the Gramacy function at t = 30 (mean ± standard error)

sampling of f∗ optimization of α(x)
EIC NA 1.148 ± 0.287
TSC NA 2.670 ± 0.464

CMES 20.728 ± 1.498 0.780 ± 1.317
CMES-IBO 21.836 ± 0.933 1.163 ± 2.130
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Figure 8: Utility gap of correlated GP-derived synthetic functions (average and standard error).


