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Abstract
Deep neural network-based classifiers have been
shown to be vulnerable to imperceptible pertur-
bations to their input, such as ℓp-bounded norm
adversarial attacks. This has motivated the de-
velopment of many defense methods, which are
then broken by new attacks, and so on. This pa-
per focuses on a different but related problem of
reverse engineering adversarial attacks. Specifi-
cally, given an attacked signal, we study condi-
tions under which one can determine the type of
attack (ℓ1, ℓ2 or ℓ∞) and recover the clean signal.
We pose this problem as a block-sparse recovery
problem, where both the signal and the attack are
assumed to lie in a union of subspaces that in-
cludes one subspace per class and one subspace
per attack type. We derive geometric conditions
on the subspaces under which any attacked sig-
nal can be decomposed as the sum of a clean
signal plus an attack. In addition, by determin-
ing the subspaces that contain the signal and the
attack, we can also classify the signal and deter-
mine the attack type. Experiments on digit and
face classification demonstrate the effectiveness
of the proposed approach.

1. Introduction
Deep neural network based classifiers have been shown to
be vulnerable to imperceptible perturbations to their inputs,
which can cause the classifier to incorrectly classify a data-
point. (Biggio et al., 2013; Szegedy et al., 2014). Examples
of such adversarial attacks include the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) and the Projected
Gradient Method (PGD) (Madry et al., 2018a), where small
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additive perturbations are made to the input that are bounded
in ℓp norm and designed to maximize the loss of the clas-
sifier. In response to these attacks, many defense methods
have been developed, including Randomized Smoothing
(Cohen et al., 2019). However, such defenses have been
broken by new attacks, and so on, leading to a cat and mouse
game between new attacks (Athalye et al., 2018a;b; Carlini
& Wagner, 2017a; Uesato et al., 2018; Athalye & Carlini,
2018) and new defenses (Madry et al., 2018b; Samangouei
et al., 2018; Zhang et al., 2019; Papernot et al., 2016; Ku-
rakin et al., 2016; Miyato et al., 2017; Zheng et al., 2016).

This paper focuses on the less well studied problem of re-
verse engineering adversarial attacks. Specifically, given a
corrupted signal x′ = x+δ, where x is a “clean” signal and
δ is an ℓp-norm bounded attack, the goal is to determine the
attack type (ℓ1, ℓ2 or ℓ∞) as well as the original signal x.

Challenges. In principle, this problem might seem impossi-
ble to solve since there could be many pairs (x, δ) that yield
the same x′. A key challenge is hence to derive conditions
under which this problem is well posed. We propose to
address this challenge by leveraging results from the sparse
recovery literature, which show that one can perfectly re-
cover a signal x from a corrupted version x′ = x+δ0 when
both x and δ0 are sparse in a meaningful basis. Specifically,
it is shown in (Wright & Ma, 2010) that if x is sparse with
respect to some signal dictionary Ds, i.e., if x = Dscs for
a sparse vector cs, and δ0 is also sufficiently sparse, then
the solution (c∗, δ∗) to the convex problem

min
c
∥c∥1 + ∥δ∥1 s.t. x′ = Dsc+ δ (1)

is such that c∗ = cs and δ∗ = δ0. In other words, one can
perfectly recover the clean signal as x = Dsc

∗ = Dscs
and the corruption δ0 by solving the convex problem in (1).

Unfortunately, these classical results from sparse recovery
are not directly applicable to the problem of reverse engi-
neering adversarial attacks due to several challenges:

1. An attack δ may not be sparse. Indeed, δ is usually
assumed to be bounded in ℓp norm, where p = 1, 2,∞.
While results from sparse recovery can be extended to
bounded ℓ2 errors, e.g. (Candès et al., 2006) consid-
ers the case where δ is ℓ2-bounded, such results only
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guarantee stable recovery, instead of exact recovery, of
sparse vectors cs close to c∗.

2. One of our goals is to determine the attack type. To do
so, we need to exploit the fact that δ is not an arbitrary
vector, but rather a function of the attack type, the loss,
the neural network and x (e.g., in the PGD method δ is
the projection of the gradient of the loss with respect to
x onto the ℓ2 ball). The challenge is to devise an attack
model that, despite these complex dependencies, is
amenable to results from sparse recovery. In particular,
we wish to impose structure on δ that correlates its
sparsity pattern to the attack type.

3. Another goal is to correctly classify x′ despite the
attack δ. This is at odds with most sparse recovery re-
sults, which focus on reconstruction rather than classi-
fication. The main exceptions are the sparse and block-
sparse representation classifiers (Wright et al., 2009;
Elhamifar & Vidal, 2012), which divide the dictionary
Ds into blocks corresponding to different classes and
exploit the sparsity pattern of cs to determine the class
of x. But such classifiers are different from the neural
network classifier given to us.

Paper contributions. This paper proposes a framework
based on structured block-sparsity for addressing some of
these challenges. Our key contributions are the following.

First, we develop a structured block-sparse model, a condi-
tion we show holds in a variety of settings, for decomposing
attacked signals under three main assumptions about the
signal and underlying network:

1. We assume that the signal x′ to be classified is the sum
of a clean signal x plus an ℓp-norm bounded adversarial
attack δ, i.e., x′ = x+ δ, i.e., additive attacks.

2. We assume that the clean signal x is block sparse with
respect to a dictionary of signals Ds, i.e. x = Dscs,
where Ds can be decomposed into multiple blocks,
each one corresponding to one class, and cs is block-
sparse i.e. cs is only supported on a sparse number of
blocks, but not necessarily sparse within those blocks.

3. We assume that the the ℓp-norm bounded adversar-
ial attack also admits a block-sparse representation in
the columnspace of a dictionary Da, which contains
blocks corresponding to different ℓp bounded attacks.

Second, we study conditions under which the aforemen-
tioned assumptions are feasible. In particular, we prove
that ℓp attacks can be expressed as a structured block-sparse
combination of other attacks for general loss functions when
the attacked deep classifier satisfies some local linearity as-
sumptions (e.g. ReLU networks).

Third, to determine the attack type and reconstruct the clean
signal, we solve a convex optimization problem of the form:

min
cs,ca

∥cs∥1,2+∥ca∥1,2 s.t. x′ = Dscs+Daca. (2)

Here, ∥ · ∥1,2 is the ℓ1/ℓ2 norm that promotes structured
block-sparsity on cs and ca exploiting the structure of Ds

and Da. For this optimization problem, we derive geometric
data-dependent conditions under which the attack type and
the clean signal can be recovered. These conditions rely on
a special covering radius of Ds and Da and a generalization
of angular distance induced by the ℓ1/ℓ2 norm.

Fourth, since solving (2) can be computationally expen-
sive due to the potentially large size of dictionaries Ds and
Da, we develop an efficient active set homotopy algorithm
by first relaxing the constrained problem to a regularized
problem instead and solving a sequence of subproblems
restricted to certain blocks of Ds and Da.

Finally, we perform experiments on digit and face classifi-
cation datasets to complement our theoretical results and
demonstrate not only the robustness of block-sparse mod-
els on attacks arising from a union of ℓp perturbations, but
also the effectiveness of our models in classifying the attack
family.

2. Related Work

Structured representations for data classification. Sparse
representation of signals has achieved great success in ap-
plications such as image classification (Yang et al., 2009b;
Mairal et al., 2008), action recognition (Yang et al., 2009a;
Castrodad & Sapiro, 2012), and speech recognition (Gem-
meke et al., 2011; Sainath et al., 2011) (see (Wright et al.,
2010; Julien Mairal & Ponce, 2012) for more examples).
These works rely on the assumption that data from a specific
class lie in a low-dimensional subspace spanned by training
samples of the same class. Hence, correct classification of
amounts to recovering the correct sparse representation of
the signal on the columnspace of a certain dictionary. How-
ever, these works do not account for adversarially corrupted
inputs, which pose significant challenges and are studied in
this work.

Structured representations for adversarial defenses. In
the adversarial learning community, denoising-based de-
fense strategies that leverage structured data representations
have been recently proposed e.g. the work of (Samangouei
et al., 2018) and (Moosavi-Dezfooli et al., 2018) (see (Niu
et al., 2020) for a comprehensive survey). However, these
approaches do not perform attack classification, and the key
advantage of our approach is joint recovery of the signal
and attack. To the best of our knowledge, our work is the
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first one to study this problem from a theoretical perspective.
Additionally, even though our main goal is not to develop
simply a stronger defense, we can compare the signal clas-
sification stage of our approach to defenses for a union of
perturbation families simultaneously. Work such as (Tramer
& Boneh, 2019; Maini et al., 2020b; Croce & Hein, 2019)
develop adversarial training variants to tackle this problem.
Our approach is distinct from adversarial training in that
it requires no retraining of the neural network and can be
applied post-hoc to adversarial examples.

Detection of Adversarial Attacks. There is a vast litera-
ture on the detection of adversarial attacks, which work on
the problem of detecting whether any example is an adver-
sarial example or a clean example. These methods can be
categorized into unsupervised and supervised methods, e.g.
(Metzen et al., 2017) and (Grosse et al., 2017). We refer the
reader to (Bulusu et al., 2020) for a comprehensive survey
on these methods. Our task is fundamentally different in
that given an attacked image, we aim to classify the type
of attack used to corrupt the image, and moreover provide
theoretical guarantees under which this recovery is feasible.
For this problem, (Maini et al., 2020a) provide a method to
classify attack perturbations similar to our work; however,
they classify between ℓ1, ℓ2 attacks vs. ℓ∞ attacks only.

3. Block-sparse model of ℓp attacked signals
Assume we are given a deep classifier fθ : X → Y , where
X is the input space, Y is the output space and θ are the
classifier weights. Assume the classifier is trained using a
loss function L : Y × Y → R+. Assume also an additive
attack model x′ = x + δ, where the attack δ is a small
perturbation to the input x that causes the classifier to make
a wrong prediction, i.e., fθ(x′) ̸= fθ(x).

We restrict our attention to ℓp-norm bounded attacks, i.e.
δ ∈ ∆p = {δ ∈ Rn : ∥δ∥p ≤ ϵ}, which are crafted by
finding a perturbation to x that maximizes the loss, i.e.:

max
δ∈∆p

L(fθ(x+ δ), y). (3)

Since solving this problem can be costly, a common practice
is to maximize a first-order approximation of the loss. Let-
ting g = ∇xL(fθ(x), y), we obtain the following gradient-
based attacks for p = 1, 2,∞, respectively:

δ1 = ϵ a, δ2 = ϵ
g

∥g∥2
, δ∞ = ϵ sign(g), (4)

where a denotes a unit norm vector where ai⋆ =
sign(gi⋆) for i⋆ := argmaxi |gi|. Note that ℓp attacks de-
pend on the gradient of the loss with respect to the classifier
input, the classifier output, the value of p ≥ 1 used in the
ℓp-norm, and the attack strength ϵ > 0.

3.1. Validity of the block-sparse signal model

We assume that the clean signal x (or features extracted
from it) can be expressed in terms of a dictionary of signals
Ds with coefficients cs, i.e. x = Dscs. We also assume
that Ds can be decomposed into r blocks, one per class,
and that its columns are unit norm. Letting Ds[i] ∈ Rn×mi

denote the dictionary for the ith class and cs[i] ∈ Rmi the
corresponding set of coefficients, we can write the clean
signal as

x =

r∑
i=1

Ds[i]cs[i]. (5)

A priori this might seem like a strong assumption, which
is violated by many datasets. However, we argue that the
validity of this model depends on the choice of the dictio-
nary (fixed or learned), the choice of additional structure on
the coefficients (e.g, sparse, block-sparse), and the choice
of a data embedding (e.g., fixed features such as SIFT, or
unsupervised learned deep features).

For example, as is common in image denoising, the dic-
tionary Ds could be chosen as a Fourier or wavelet basis
and the coefficients sparse with respect to such basis. Al-
ternatively, as is common in face classification (Belhumeur
& Kriegman, 1998; Basri & Jacobs, 2003; Ho et al., 2003)
where each class can be described by a low-dimensional
subspace, Ds could be chosen as the training set and differ-
ent blocks of the dictionary could correspond to different
classes (subspaces). These results will motivate us to report
experiments on face classification datasets, such as YaleB
(Lee et al., 2005), for which our modeling assumptions are
satisfied.

Even when the data from one class cannot be well ap-
proximated by a linear subspace, we note that the model
x = Dscs is actually nonlinear with (structured) sparsity
constraints on cs. Indeed, in manifold learning, data is often
approximated locally by a subspace of nearest neighbors
(Roweis & Saul, 2000; Elhamifar & Vidal, 2011). When cs
is block sparse, the model Dscs thus generates data on a
manifold by stitching locally linear approximations. This
will motivate our experiments on the MNIST dataset, where
the set of all images of one digit is not a linear subspace, but
our model still performs well.

3.2. Structured block-sparse attack model

We assume that the attack δ ∈ ∆p can be expressed in
terms of an attack dictionary Da with coefficients ca, i.e.,
δ = Daca. We also assume that the columns of Da are
unit norm and that the dictionary can be decomposed into
a blocks, one per attack type. Moreover, we assume that
the columns of Da are chosen as ℓp attacks evaluated at
points in the training set. Therefore, each block of Da can
be further subdivided into r subblocks, one per class. As
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a consequence, the dictionary Da is composed of r × a
blocks, Da[i][j] ∈ Rn×kij , each one corresponding to data
points from the ith class and jth attack type. Decomposing
ca according to the block structure of Da so that ca[i][j] ∈
Rkij is the vector of coefficients corresponding to block
Da[i][j], we obtain the following threat model:

δ =

r∑
i=1

a∑
j=1

Da[i][j]ca[i][j]. (6)

Observe that when δ is an ℓp attack evaluated at one of the
points in the training set, the vector of coefficients ca is 1-
sparse. In general, however, δ will be evaluated at a test data
point. In the next section, we will show in this case, we still
expect δ to be 1-block sparse for attacks on neural networks
with ReLU activations. That is, we expect an attack of a
certain type evaluated at a test point from one of the classes
to be well approximated as a sparse linear combination of
attacks of the same type but evaluated at other training data
points from the same class.

3.3. Validity of the attack model for ReLU networks

Consider a ReLU network fθ : X → Rr, mapping the input
to a point in Rr, where r is the number of classes. The
network is composed of k layers, each consisting of an
affine transformation followed by a ReLU non-linearity, i.e.

fθ(x) = Wk(. . . (W2(W1x+ b1)+ + b2)+ . . .)+ + bk,
(7)

where θ = (Wk, . . . ,W2,W1) denotes the parameters
and (·)+ is the pointwise ReLU operation. The classi-
fication decision is then an argmax operation given by
argmaxi=1...r |z

x,k
i |, where zkx = fθ(x) is the network

output.

ReLU networks partition the input space into several polyhe-
dral regions, inside each of which the network behaves like
an affine map (Balestriero & Baraniuk, 2020). Specifically,
the affine region around x is given by the set of all points x′

that produce the same sign pattern as x after the ReLU acti-
vations at all the intermediate layers. More formally, defin-
ing ζl(x) = sgn(Wl(. . . (W2(W1x+b1)++b2)+ . . .)+
bl) to be the sign pattern at layer l for the input x, the neural
network fθ behaves as an affine function fθ(x) = P⊤

S x+q

in the region S = {x′ : (ζ1(x′), ζ2(x′), . . . , ζk(x′)) =
(ζ1(x), ζ2(x), . . . , ζk(x))}. Therefore, the gradient of a
loss L(fθ(x), y) in for all x′ ∈ S is equal to

∇xL(fθ(x
′), y) =

∂fθ(x
′)

∂x′ ∇zk
x
L(zkx, y)

= PS∇zk
x
L(zkx, y)

(8)

where the last part of (8) comes by the affine approximation
of the output of the ReLU network i.e., fθ(x) = P⊤

S x+ q

Thus, the gradient of the loss function of a ReLU network
at a test point in S lives in the columnspace of a matrix PS .
That being said, the gradient of the loss at a test point can be
expressed as a linear combination of the gradients at training
samples in the same region S. Note that this property holds
true for popular loss functions e.g. cross-entropy loss, mean
squared loss, etc. Moreover, we further assume that training
samples in S belong to the same class, which is a reasonable
assumption to make for ReLU networks (Sattelberg et al.,
2020).

Hence, for any test point lying in region S, if there exists
a training datapoint of the same class and also in S, then
there will exist a vector ca that is a feasible solution of (2)
and block-sparse in the columnspace of Da with only one
non-zero block (assuming that the δ comes from a single
attack from the family). Recent works (Lee et al., 2019)
show that ReLU networks can be trained to have large linear
regions, hence it is reasonable to expect that S contains a
training point.

4. Reverse engineering of ℓp-bounded attacks
In Section 3 we introduced a block-sparse model of attacked
signals, x′ = Dscs +Daca, where Ds is a dictionary of
clean signals (typically the training set), Da is a dictionary
of attacks (typically ℓp attacks on the training set), and cs
and ca are block-sparse vectors whose nonzero coefficients
indicate the class and the attack type. In this section, we
show how to reverse engineer the attack and clean signal.

4.1. Block sparse optimization approach

Assume that test sample x′ has been corrupted by an attack
of a single type. Since x′ belongs to only one of the classes,
we expect vectors cs and ca to be 1-block-sparse. Therefore,
the problem of reverse engineering ℓp attacks can be cast
as a standard block-sparse optimization problem, where we
minimize the total number of nonzero blocks in cs and ca
needed to generate x′, i.e.

min
cs,ca

r∑
i=1

I(∥cs[i]∥2) +
a∑

j=1

I(∥ca[i][j]∥2)


s.t. x′ = Dscs +Daca,

(9)

where I(·) is the indicator function, i.e., I(x) = 1 if x ̸= 0
and I(x) = 0 if x = 0. As is common in block-sparse
recovery (Elhamifar & Vidal, 2012), a convex relaxation of
the problem of minimizing the number of nonzero blocks is
given by:

min
cs,ca

r∑
i=1

∥cs[i]∥2 +
a∑

j=1

∥ca[i][j]∥2

s.t. x′ = Dscs +Daca,

(10)
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where the sum of the ℓ2 norms of the blocks, also known
as the ℓ1/ℓ2 norm, is a convex surrogate for the number of
nonzero blocks.

4.2. Active Set Homotopy Algorithm

In practice, we further relax the problem and solve the regu-
larized noisy version of problem (10), which can be written
in the form,

min
cs,ca

1

2
∥x′ −Dscs −Daca∥22

+ λs

r∑
i=1

∥cs[i]∥2 + λa

a∑
j=1

∥ca[i][j]∥2.
(11)

Because the size of the dictionaries Ds and Da can be large,
it is crucial to develop scalable algorithms to solve the above
optimization problem. Furthermore, the choice of λs and
λa play a crucial role in enforcing the correct level of block-
sparsity. High values of these parameters will drive the
solutions cs, ca to the zero vector, and too low values will
result in a solution that is not block-sparse as desired. To
address both issues, we develop an active-set based homo-
topy algorithm. The main insight is that instead of solving
an optimization problem using the full data matrix, we can
restrict Ds and Da to the blocks that correspond to non-
zero blocks of the optimal cs and ca. Using the optimality
conditions of problem (11), we can derive an algorithm that
maintains a list of block indices for both cs and ca, denoted
as the active sets Ts and Ta, and solve reduced subproblems
based on these indices, significantly reducing runtime. The
details of the derivation can be found in the Appendix.

Additionally, to pick proper values of λs and λa, we employ
techniques from homotopy methods in sparse optimization
to construct a sequence of decreasing values for λs and λa

(Malioutov et al., 2005). Traditionally, homotopy methods
for ℓ1 minimization use the fact that the solution path as
a function of regularization strength is piecewise linear,
with breakpoints when the support of the solution changes.
However, with the block-sparsity constraint, the path is
nonlinear (Yau & Hui, 2017), and thus we approximate this
path using a sequence of λ values. The initial value of λs

and λa is chosen to be a hyperparameter γ ∈ (0, 1) times
the value that produces the all-zeros vector based on the
optimality conditions. In Algorithm 1 in the Appendix, we
provide the details of the active set homotopy algorithm.

5. Theoretical analysis of the block-sparse
minimization problem

In this section, we provide geometrically interpretable con-
ditions under which the true signal class and attack type,
which is generated by a single ℓp perturbation type, can

be recovered from the nonzero blocks of cs, ca using the
proposed block-sparse minimization approach given in (10).

At first sight, one may think that existing conditions for
block-sparse recovery in a union of low-dimensional sub-
spaces (Elhamifar & Vidal, 2012), which require the sub-
spaces to be disjoint and sufficiently separated, might be
directly applicable to our problem. However, the adversar-
ial setting presents several additional challenges. First, we
do not need conditions for all block pairs, but only for the
block pair formed by one signal subspace and one signal-
attack subspace. Second, the two non-zero blocks are not
independent from each other, because if we determine the
signal-attack block (i∗, j∗), then we also determine the sig-
nal block i∗. Third, we need to disentangle not only one
signal class from another, but also one attack type from
another, and signals from attacks.

In the following, we address these three challenges. Specifi-
cally, we significantly improve on the block-sparse recov-
ery results of (Elhamifar & Vidal, 2012) by getting rid of
the strong assumption of disjointness among all pairs of
subspaces spanned by the blocks of the dictionaries. More-
over, our analysis goes one step beyond previous efforts
(e.g. (Wang et al., 2017)) to generalize the subspace-sparse
recovery results (You & Vidal, 2015a;b) in the following
ways. First, we focus on block-sparse recovery in a union
of dictionaries as opposed to (Wang et al., 2017), which fo-
cuses on a single dictionary. Second, our problem has more
specific structure i.e., the dependency of non-zero blocks
of the signal (see Remark 5.2). Third, our conditions are
based on different newly introduced geometric measures i.e.
covering radius and angular distances induced by the ℓ1/ℓ2
norm. This leads to our first main result (Theorem 5.5).
Finally, we provide an additional result (see Theorem 5.8),
which relaxes Theorem 5.5 by involving the angular dis-
tances between points in a set of Lebesgue measure zero
(instead of all points in the direct sum of the signal and
attack subspaces) and a finite set.

Proposition 5.1 gives a necessary and sufficient condition for
recovering the correct signal and attack by solving problem
(10). Let I = {1, 2, . . . , r} and J = {1, 2, . . . , a} denote
the indices for the blocks of Ds and Da and vectors cs and
ca respectively. We define the correct-class minimum ℓ1/ℓ2
vectors ĉ∗s, ĉ

∗
a with non-zero blocks ĉ∗s[i

∗] and ĉ∗a[i
∗][j∗] as

{ĉ∗s, ĉ∗a} ≡ argmin
cs,ca

∥cs[i∗]∥2 + ∥ca[i∗][j∗]∥2

s.t. x′ = Ds[i
∗]cs[i

∗] +Da[i
∗][j∗]ca[i

∗][j∗],
(12)

and the wrong-class minimum ℓ1/ℓ2 norm vectors c̃∗s, c̃
∗
a as,
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{c̃∗s, c̃∗a} ≡

argmin
cs,ca

∑
i∈I\{i∗}

∥cs[i]∥2 +
∑

i∈I,j∈J\{j∗}

∥ca[i][j]∥2

s.t.

x′ =
∑

i∈I\{i∗}

Ds[i]cs[i] +
∑

i∈I,j∈J\{j∗}

Da[i][j]ca[i][j]

(13)

Note that the non-zero blocks of c̃∗s and c̃∗a do not corre-
spond to the correct signal and attack.

Proposition 5.1. The correct classes of the signal x ∈
Sxi∗ and the attack δ ∈ Sδi∗,j∗ , with Sxi∗ ∩ Sδi∗j∗ = ∅, can
be recovered by solving (10) if and only if, ∀i∗, j∗,∀x′ ∈
(Sxi∗ ⊕ Sδi∗,j∗),x ̸= 0, the ℓ1/ℓ2 norm of the correct-class
minimum ℓ1/ℓ2 vectors ĉ∗s, ĉ

∗
a is strictly less that of the

wrong-class minimum ℓ1/ℓ2 norm vectors c̃∗s, c̃
∗
a, i.e.,

∥ĉ∗s∥1,2 + ∥ĉ∗a∥1,2 < ∥c̃∗s∥1,2 + ∥c̃∗a∥1,2. (14)

Remark 5.2. Note that disjointness between Sxi∗ and Sδi∗j∗
is necessary if we want to recover the class of the signal and
the attack. However, in case that disjointness is violated,
we can still guarantee the recovery of the correct class of
the signal since we know that attacks depend on the signal
class.

Next, we aim to provide more geometrically interpretable
conditions for the recovery of the signal and attack classes.
First, we generalize the standard angular distance originally
used for ℓ1 norm minimization problems, (You & Vidal,
2015a), to the particular case of ℓ1/ℓ2 norm minimization.

Definition 5.3. LetD be a set of unit ℓ2 norm columns of the
dictionary D = [D[1],D[2], . . . ,D[c]] with D[i] ∈ Rn×m.
The angular distance between the atoms in D and a vector
v ∈ Rn is defined as,

θ1,2(v,±D) = cos−1

(
1√
m
∥D⊤ v

∥v∥2
∥∞,2

)
. (15)

This definition can also be extended to a set of vectors V as

θ1,2(V,±D) = inf
v∈V

cos−1

(
1√
m
∥D⊤ v

∥v∥2
∥∞,2

)
.

(16)
Similarly, we define a generalized version of the covering
radius of a set induced by the ℓ1/ℓ2 norm.

Definition 5.4. The covering radius γ1,2(D) of a set D
consisting of the columns of matrix D is defined as,

γ1,2(±D) = sup{θ1,2(v,±D),v ∈ Sn−1 ∩ span(D)}.
(17)

Note that the covering radius captures how well-separated
the atoms of the blocks of D[i] are, and is a decreasing
function of the distance between atoms.

Let Di∗j∗ be the set that contains the columns of
Ds[i

∗],Da[i
∗][j∗], and D−

i∗j∗ the set with all remaining
columns of the blocks Ds[i], ∀i ∈ I \ i∗ and Da[i][j] for
i ∈ I and j ∈ J \ j∗. We now provide a sufficient condi-
tion, which ensures the recovery of the correct classes of the
signal and the attack.

Theorem 5.5. The correct classes of the signal and the
attack of an adversarially perturbed signal in Si∗ ⊕ Si∗j∗
can be recovered by solving problem (10), if the following
primary recovery condition (PRC)

γ1,2(±Di∗j∗) < θ1,2(Sxi∗ ⊕ Sδi∗j∗ ,±D−
i∗j∗) (18)

holds for the dictionaries Ds and Da.

Theorem 5.5 offers a geometric intuition for recovery guar-
antees. Note that (18) depends only on the properties of the
dictionaries Ds and Da. Specifically, (18) is easier satis-
fied when a) the covering radius of Di∗j∗ is small, meaning
that columns of both Ds[i

∗] and Da[i
∗][j∗] are well dis-

tributed in Sxi∗ and Sδi∗j∗ respectively or b) the atoms of
the remaining blocks of Ds,Da are sufficiently away from
Si∗ ⊕ Si∗j∗ .

Next, we derive the dual recovery condition (DRC), which
only needs to hold a subset of points in Si∗ ⊕ Si∗j∗ called
as dual points. Before illustrating the DRC, we first define
the polar set induced by the ℓ1,2 norm and the dual points.

Definition 5.6. The polar of the set D containing the
columns of matrix D induced by the ℓ1,2 norm is defined as

Ko
ℓ1,2(D) = {v ∈ R(D) :

1√
m
∥D⊤v∥∞,2 ≤ 1}. (19)

whereR(D) is the range of D.

Definition 5.7. The set of dual points of matrix D, denoted
as A(D), is the set of extreme points of Ko

ℓ1,2
(D), which is

the polar set of D.

Theorem 5.8. The correct classes of the signal and the
attack can be recovered by solving problem (10), if the
following dual recovery condition (DRC) is satisfied

γ1,2(Di∗j∗) < θ1,2
(
A (Di∗j∗) ,±D−

i∗j∗

)
, (20)

Theorem 5.8 requires the covering radius of Di∗j∗ to be
smaller than the minimum angular distance between the
dual points of Di∗j∗ , which form a set of Lebesgue measure
zero, and elements of the set D−

i∗j∗ .
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6. Experiments
In this section, we present experiments on the Extended
YaleB Face dataset and the MNIST dataset.

6.1. Experimental Setup

Network architectures and attack evaluation. For
the YaleB Face dataset, we train a simple 3-layer fully-
connected ReLU neural network with 256 hidden units per
layer, which already serves as a strong baseline obtaining
96.3% accuracy. For the MNIST dataset, we train a 4-layer
convolutional network, identical to the architecture from
(Carlini & Wagner, 2017c). All networks are trained with a
cross-entropy loss.

We consider the family of {ℓ1, ℓ2, ℓ∞} PGD attacks. ℓ1
PGD refers to the Sparse ℓ1 PGD attack from (Tramer &
Boneh, 2019). For optimization, we use the active set ho-
motopy algorithm developed in Section 4.2. The Appendix
contains full experimental details.

Metrics. We choose Ds as a dictionary whose columns are
the flattened training images, and Da is a dictionary whose
columns are the ℓp perturbations for each training image.
For each block in Ds and Da, we subsample 200 training
datapoints to limit the dictionary size, and we normalize
the columns of the dictionary to unit ℓ2 norm to keep the
same scaling for all blocks. For a given perturbed image x′,
we run Algorithm 1 to obtain the output coefficients ĉs and
ĉa. We define the predicted block indices for the signal and
attack dictionaries to be:

î = argmin
i
∥x′ −Ds[i]ĉs[i]−Daĉa∥2 (21)

ĵ = argmin
j
∥x′ −Dsĉs −Da [̂i][j]ĉa [̂i][j]∥2 (22)

Using these indices, we define two classification methods
and one attack detection method:

1. SBSC (Structured Block-Sparse Classifier): This
method predicts the class of the test image as î.

2. SBSC+CNN (Denoiser): From ĉs, this method com-
putes a denoised image as x̂ = Ds [̂i]ĉs [̂i] and then
predicts the class of the test image from the output
of the original network at the denoised datapoint, i.e.
fθ(x̂)

3. SBSAD (Structured Block-Sparse Attack Detector):
This method returns ĵ, which represents the predicted
attack type of the test image.

For each method, we report the accuracy of prediction
with respect to the ground truth label. For the SBSC and
SBSC+CNN methods, the label is the correct label of the

test image, while for SBSAD, the label is the true ℓp per-
turbation type that was applied to the test image. As a
naive block-sparse classifier baseline, we denote BSC as a
block-sparse classifier which does not model the structure
of the attack perturbation, but simply models x′ = Dscs
(Elhamifar & Vidal, 2012). We also consider a BSC+CNN
baseline, which predicts the class from fθ(Ds [̂i]ĉs [̂i]) as
above, except ĉs is obtained from the BSC problem.

6.2. YaleB Face Dataset

We first evaluate our method on images from the Extended
YaleB Face Dataset (Lee et al., 2005), a 38-way classifi-
cation task. While the adversarial learning literature does
not usually evaluate attacks on this dataset, we choose it
because it exhibits the self-expressiveness property. Indeed,
face images of an individual under varying lighting condi-
tions have been shown to lie in a low-dimensional subspace
(Belhumeur & Kriegman, 1998; Basri & Jacobs, 2003; Ho
et al., 2003). Our goal is to complement our theoretical re-
covery guarantees by demonstrating the effectiveness of our
approach in determining the correct signal and attack type,
which is illustrated in Table 1. For all perturbation types, we
observe the SBSC approach significantly improves upon the
accuracy of the undefended model, indicating the successful
decoupling of the signal and attack. One phenomenon we
see is the remarkable robustness of block-sparse classifiers,
even without attack modelling. The BSC baseline consis-
tently improves the adversarial accuracy of the undefended
model; however, the low BSC+CNN accuracy indicates that
there is still significant noise in the data modelling. On
the other hand, the SBSC and SBSC+CNN are able to im-
prove over the BSC baseline by around 20%, indicating that
explicitly modelling the attack helps signal classification
for both the block-sparse classifier as well as the original
classification network.

6.3. MNIST

Despite the simplicity of the MNIST dataset, networks
trained on MNIST are still brittle to attacks that arise from a
union of perturbations. Specifically, in (Maini et al., 2020b),
the authors observe that most state-of-the-art adversarial
training defenses for MNIST are only robust to one type of
ℓp attack.

Baselines. While we emphasize that our approach is not pri-
marily a defense, but rather a principled attack classification
and signal decoupling algorithm, we can still compare our
signal classification accuracy to a variety of state of the art
methods for defending against a union of attacks. First, we
consider classifiers M1, M2, M∞ trained with adversarial
training (Madry et al., 2017) against ℓ1, ℓ2, or ℓ∞ perturba-
tions, respectively. Next, we compare against variants of
adversarial training: the MAX, AVG and MSD approaches
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Table 1. Adversarial image and attack classification accuracy on YaleB dataset. BSC denotes the block-sparse classifier baseline, SBSC
denotes the structured block-sparse signal classifier, SBSC+CNN denotes the denoised model, and SBSAD denotes the structured
block-sparse attack detector.

Yale-B CNN BSC BSC+CNN SBSC SBSC+CNN SBSAD

ℓ∞ PGD (ϵ = 0.02) 15.1% 79% 2% 97% 93% 52%
ℓ2 PGD (ϵ = 0.75) 4.2% 51% 2% 96% 87% 76%
ℓ1 PGD (ϵ = 15) 53.7% 81% 3% 96% 93% 39%

Average 24.3% 70.3% 2.3% 96.3% 91% 55.7%

Table 2. Adversarial image and attack classification accuracy on digit classification of MNIST dataset. See above table for column
descriptions. The clean accuracy represents the accuracy of the method with unperturbed test inputs.

MNIST CNN M∞ M2 M1 MAX AVG MSD BSC SBSC SBSC+CNN SBSAD

Clean accuracy 98.99% 99.1% 99.2% 99.0% 98.6% 98.1% 98.3% 92% 94% 99% -
ℓ∞ PGD (ϵ = 0.3) 0.03% 90.3% 0.4% 0.0% 51.0% 65.2% 62.7% 54% 77.27% 76.83% 73.2%
ℓ2 PGD (ϵ = 2.0) 44.13% 68.8% 69.2% 38.7% 64.1% 67.9% 70.2% 76% 85.34% 85.17% 46%
ℓ1 PGD (ϵ = 10.0) 41.98% 61.8% 51.1% 74.6% 61.2% 66.5% 70.4% 75% 85.97% 85.85% 36.6%

Average 28.71% 73.63% 40.23% 37.77% 58.66% 66.53% 67.76% 68.33% 82.82% 82.61% 51.93%

Unseen Attacks

ℓ∞ MIM (ϵ = 0.3) 0.02% 92.3% 11.2% 0.1% 70.7% 76.7% 71.0% 59.5% 74.3% 74.2% 79.0%
ℓ2 C-W (ϵ = 2.0) 0% 79.6% 74.5% 44.8% 72.1% 72.4% 74.5% 89.1% 87.1% 87.1% 60.4%
ℓ2 DDN (ϵ = 2.0) 0% 63.9% 70.5% 40.0% 62.5% 64.6% 69.5% 88.8% 87.2% 87.1% 57.8%

Average 0% 78.6% 52.06% 28.3% 68.43% 71.23% 71.66% 79.13% 82.86% 82.8% 65.73%

(Maini et al., 2020b; Tramer & Boneh, 2019). Finally, we
compare against the BSC baseline.

Quality of Defense. Table 2 summarizes our results on the
MNIST dataset. The top half demonstrates that our pro-
posed block-sparse approach improves upon state of the
art adversarial training defenses against a union of attacks
from ℓ2, ℓ1, and ℓ∞ PGD attacks by about 15% on average.
The high accuracy of the Denoiser+CNN model also shows
that Ds [̂i]ĉs [̂i] is a good model of the denoised data. Sur-
prisingly, even though the block-sparse classifier is not the
strongest baseline for MNIST, as indicated by the relatively
low clean accuracy of 94%, we observe that it is much more
robust to ℓp perturbations than the neural network models
as the strength of the attack increases.

Performance on unseen test-time attacks. Our dictionary
Da consists of {ℓ1, ℓ2, ℓ∞} PGD attacks, so the SBSAD
must predict one of these three classes. However, we can
evaluate our method on test-time attacks that are non-PGD
ℓp attacks for p ∈ {1, 2,∞}. The second half of Table 2
demonstrates the accuracy of our method on the ℓ∞ Mo-
mentum Iterative Method (MIM) (Dong et al., 2018), the ℓ2
Carlini-Wagner (C-W) attack (Carlini & Wagner, 2017b),
and the ℓ2 Decoupled Direction and Norm (DDN) attack
(Rony et al., 2019). The block-sparse baseline performs
remarkably well at denoising even though it does not model

the attack structure. In principle, it does not make sense for
our method to capture these attacks through Da; however
on average, we still observe a slight increase in accuracy
by modelling some portion of the perturbation through the
SBSC method. Perhaps more surprisingly, our method still
has high attack classification accuracy, indicating that for
the purposes of determining the attack family, the attacks
can be well-approximated by a linear combination of PGD
attacks.

7. Conclusion
In this paper, we studied the conditions under which we can
reverse engineer adversarial attacks by determining the type
of attack from a corrupted signal. We provided a structured
block-sparse optimization approach to model not only the
signal as a block-sparse combination of datapoints, but also
the attack perturbation as a block-sparse combination of
attacks. Under this optimization approach, we derived theo-
retical conditions under which recovery of the correct signal
and attack type is feasible. Finally, we experimentally veri-
fied the validity of the structured block-sparse optimization
approach on the YaleB and MNIST datasets. We believe
there are many directions to further study the properties
of block-sparse classifiers, such as introducing non-linear
embedding dictionaries.
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A. Theoretical Results
We first give the proof of Proposition 5.1, which is based on the proofs of relevant results in subspace-sparse recovery
(Theorem 2, (Elhamifar & Vidal, 2013; You & Vidal, 2015b;a)) and atomic representation-based recovery (Lemma 2, (Wang
et al., 2017).

A.1. Proof of Proposition 5.1.

Proof. ( =⇒ )

We first prove that (14) is a sufficient condition for recovering the correct class i∗ of the signal x and (i∗j∗) of the attack δ.
Let c∗s, c

∗
a be optimal solutions of the problem

{c∗s, c∗a} ≡ argmin
cs,ca

∥cs∥2 + ∥ca∥2

s.t. x′ = Dscs +Daca,
(23)

The correct classes of the signal and the attack can be recovered when c∗s[i] = 0 for i ̸= i∗ and c∗a[i][j] = 0 for i ̸= i∗ and
j ̸= j∗. We prove the sufficiency of condition of (14) for correct recovery of the classes of signal and attack by contradiction.
Let us assume that there exist cs[i] ̸= 0 for i ̸= i∗ and c∗a[i][j] ̸= 0 for i ̸=∗, j ̸= j∗ and define a vector x̃ as,

x̃ = x′ −Ds[i
∗]c∗s[i

∗] +Da[i
∗][j∗]ca[i

∗][j∗] =
∑
i ̸=i∗

Ds[i]c
∗
s[i] +

∑
i∈I,j ̸=j∗

Da[i][j]c
∗
a[i][j]. (24)

Since x′ ∈ Sxi∗ ⊕ Sδi∗j∗ , from (24) we deduce that x̃ will have a representation on Sxi∗ ⊕ Sδi∗j∗ , which will be a feasible
solution of the following block-sparse optimization problem.

{ĉ∗,x̃s , ĉ∗,x̃a } ≡ argmin
cs,ca

∥cs[i∗]∥2 + ∥ca[i∗][j∗]∥2

s.t. x̃ = Ds[i
∗]cs[i

∗] +Da[i
∗][j∗]ca[i

∗][j∗],
(25)

where ĉ∗s, ĉ
∗
a are the correct-class minimum ℓ1/ℓ2 norm vectors supported on ĉ∗s[i

∗] and ĉ∗a[i
∗][j∗]. Moreover, from the (24)

we can also see that x̃ is also belong to the span of the union of subspaces of remaining blocks of the dictionaries and hence
the following problem

{c̃∗,x̃s , c̃∗,x̃a } ≡ argmin
cs,ca

∑
i∈I\{i∗}

∥cs[i]∥2 +
∑

i∈I,j∈J\{j∗}

∥ca[i][j]∥2

s.t. x̃ =
∑

i∈I\{i∗}

Ds[i]cs[i] +
∑

i∈I,j∈J\{j∗}

Da[i][j]ca[i][j]
(26)

with I = {1, 2, . . . , r} and J = {1, 2, . . . , a}, will have feasible solutions. From (24), we can get,

x′ = x̃+Ds[i
∗]c∗s[i

∗] +Da[i
∗][j∗]c∗a[i

∗][j∗]

= Ds[i
∗]
(
ĉ∗,x̃s [i∗] + c∗s[i

∗]
)
+Da[i

∗][j∗]
(
ĉ∗,x̃a [i∗][j∗] + c∗a[i

∗][j∗]
) (27)

From (27) we can see that vectors the pair of vectors ĉ∗,x̃s + c∗s supported on the i∗th block and ĉ∗,x̃a + c∗a, supported on the
(i∗, j∗)th block will be a feasible solution of (23). We will have,

∥ĉ∗,x̃s [i∗] + c∗s[i
∗]∥2 + ∥ĉ∗,x̃a [i∗][j∗] + c∗a[i

∗][j∗]∥2 ≤
∥ĉ∗,x̃s [i∗]∥2 + ∥c∗s[i∗]∥2∥2 + ∥ĉ∗,x̃s [i∗][j∗]∥2 + ∥c∗a[i∗][j∗]∥2

< ∥c̃∗,x̃s ∥1,2 + ∥c∗s[i∗]∥2 + ∥c̃∗,x̃a ∥1,2 + ∥c∗a[i∗][j∗]∥2 ≤∑
i ̸=i∗

∥c∗s[i]∥2 + ∥c∗s[i∗]∥2∥2 +
∑

i∈I,j ̸=j∗

∥c∗a[i][j]∥2 + ∥∥c∗a[i∗][j∗]∥2 = ∥c∗s∥1,2 + ∥c∗a∥1,2,

(28)

where the second to the last inequality comes for the condition (14) of the Proposition. The last inequality in (28) appears
due to optimality of c̃∗s, c̃

∗
a in (26) and the fact that a vector supported on the blocks of c∗s[i] for i ̸= i∗ and c∗a[i][j] for i ̸= i∗,
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j ̸= j∗ is also a feasible solution of (26), yet not optimal. Hence we have arrived at a contradiction since by optimality
of c∗s, c

∗
a the inequality ∥ĉ∗,x̃s + c∗s∥1,2 + ∥ĉ∗,x̃a + c∗a∥1,2 < ∥c∗s∥1,2 + ∥c∗a∥1,2 can not be true. We thus proved that the

sufficiency of the condition (14) for correct recovery of signal and attack classes.

(⇐=) Let first define ĉ∗,x
′

s , ĉ∗,x
′

a , c̃∗,x
′

s , c̃∗,x
′

a as

{ĉ∗,x̃s , ĉ∗,x̃a } ≡ argmin
cs,ca

∥cs[i∗]∥2 + ∥ca[i∗][j∗]∥2

s.t. x′ = Ds[i
∗]cs[i

∗] +Da[i
∗][j∗]ca[i

∗][j∗],
(29)

and the wrong-class minimum ℓ1/ℓ2 norm vectors c̃∗s, c̃
∗
a as,

{c̃∗,x
′

s , c̃∗,x
′

a } ≡ argmin
cs,ca

∑
i∈I\{i∗}

∥cs[i]∥2 +
∑

i∈I,j∈J\{j∗}

∥ca[i][j]∥2

s.t. x′ =
∑

i∈I\{i∗}

Ds[i]cs[i] +
∑

i∈I,j∈J\{j∗}

Da[i][j]ca[i][j]
(30)

Recall that the correct classes of the signal and the attack for an x′ ∈ Sxi∗ ⊕ Sδi∗j∗ can be recovered when the optimal c∗s, c
∗
a

are non-zero only at blocks c∗s[i
∗] and c∗a[i

∗][j∗]. In that case, it also holds that ∥c∗s∥1,2+ ∥c∗a∥1,2 = ∥ĉ∗,x′

s ∥1,2+ ∥ĉ∗,x
′

a ∥1,2.
We will show that if the correct classes of the signal and the attack can be recovered for x′ then the condition (14) is true.

For that we assume that the solution c̃∗,x
′

s , c̃∗,x
′

a is also feasible for problem (23) otherwise condition (14) is trivially satisfied
since the RHS of (14) becomes +∞.

Assume now that condition (14) is not true, i.e.,

∥ĉ∗,x̃s ∥1,2 + ∥ĉ∗,x̃a ∥1,2 ≥ ∥c̃∗,x
′

s ∥1,2 + ∥c̃∗,x
′

a ∥1,2 (31)

that will imply,
∥c∗s∥1,2 + ∥c∗a∥1,2 ≥ ∥c̃∗,x

′

s ∥1,2 + ∥c̃∗,x
′

a ∥1,2 (32)

and from optimality of c∗s, c
∗
a and feasibility of ĉ∗,x

′

s , ĉ∗,x
′

a at problem (23), we will have that equality will hold, i.e.,

∥c∗s∥1,2 + ∥c∗a∥1,2 = ∥c̃∗,x
′

s ∥1,2 + ∥c̃∗,x
′

a ∥1,2. (33)

The latter means that there will be an optimal solution {c̃∗,x′

s , c̃∗,x
′

a } of (23) with non-zero blocks at indices corresponding
to wrong classes of the signal and the attack when (31) holds true (i.e. condition (14) is false) which contradicts the initial
assumption for the correct recovery of the classes of the signal and the attack.

Let Di∗j∗ be the set of atoms, which contains the columns of the blocks of dictionaries of the signal and the attack that
correspond to the correct classes i.e., [Ds[i

∗],Da[i
∗][j∗]]. Recall from (19) that the relative polar set of ±Di∗j∗ induced by

the ℓ1,2 norm is given as,

Ko
ℓ1,2(±Di∗j∗) = {v ∈ span(Si∗ ∪ Si∗j∗) :

1√
m
∥[Ds[i

∗],Da[i
∗][j∗]]⊤v∥∞,2 ≤ 1} (34)

where span(Si∗ ∪ Si∗j∗) is the column-space of [Ds[i
∗],Da[i

∗][j∗]]⊤]. Next we define the circumradius of a convex body.

Definition A.1. (Circumradius) The circumradius of a convex body P denoted as R(P) is defined as the radius of the
smallest euclidean ball containing P .

In our case, we will use the circumradius of the convex hull of the set Ko
ℓ1,2

(±Di∗j∗), denoted as R(Ko
ℓ1,2

(±Di∗j∗)).

Lemma A.2 shows the relationship between the covering radius of a set induced be ℓ1,2 norm and corresponding circumradius
of its relative polar set.

Lemma A.2. It holds that cos (γ1,2(±D)) = 1
R(Ko

ℓ1,2
(±D)) .
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Proof. Our proof is based on that of the relevant result for the sparse recovery given in (Robinson et al., 2019). The covering
radius γ1,2(D) is defined as

γ1,2(±D) = sup{θ1,2(v,±D),v ∈ Sn−1 ∩ span(D)} = sup
v∈Sn−1∩span(D)

{cos−1

(
1√
m
∥D⊤v∥∞,2

)
} (35)

Getting the cosine of γ1,2(±D) we have,

cos (γ1,2(±D)) = cos

(
sup

v∈Sn−1∩span(D)

{cos−1

(
1√
m
∥D⊤v∥∞,2

)
}

)
= inf

v∈Sn−1∩span(D)

1√
m
∥D⊤v∥∞,2 (36)

The circumradius R(Ko
ℓ1,2

(±D)) of the relative polar set Ko
ℓ1,2

(±D) is given by,

R(Ko
ℓ1,2(±D)) = sup{∥v∥2 :

1√
m
∥D⊤v∥∞,2 ≤ 1,v ∈ span(D)} (37)

We want to prove that,

inf
v∈Sn−1∩span(D)

1√
m
∥D⊤v∥∞,2 =

1

sup{∥v∥2 : 1√
m
∥D⊤v∥∞,2 ≤ 1,v ∈ span(D)}

(38)

Let w∗ and v∗ be optimal solutions of the optimization problems appearing at the LHS and RHS of (38), respectively. Let
us now define v̄ =

√
mw∗

∥D⊤w∗∥∞,2
and w̄ = v∗

∥v∗∥2
. We have that ∥w∗∥2 = 1 and v̄ satisfies the constraints appearing the

optimization problem at the RHS of (38) i.e., 1√
m
∥D⊤v̄∥∞,2 ≤ 1 and v̄ ∈ span(D). Hence, we will have,

∥v̄∥2 =

√
m∥w∗∥2

∥D⊤w∗∥∞,2
=

√
m

∥D⊤w∗∥∞,2
≤ ∥v∗∥2 (39)

where the last inequality arises by the fact that v̄ is a feasible but not optimal solution of the problem at the RHS of (38).
Moreover, for w̄ = v∗

∥v∗∥2
we have that w̄ ∈ Sn−1 and w̄ ∈ span(D). Therefore, w̄ satisfies the constraints and it will be a

feasible solution of of the optimization problem at the LHS of (38). From that we can deduce that

1√
m
∥D⊤w̄∥∞,2 =

1√
m

∥D⊤v∗∥∞,2

∥v∗∥2
≤ 1

∥v∗∥2
(40)

From optimality of w∗ at the LHS of (38) we will have

1

∥v∗∥2
≥ 1√

m
∥D⊤w∗∥∞,2 →

√
m

∥D⊤w∗∥∞,2
≥ ∥v∗∥2 (41)

By combining (39) and (41) we get the result.

A.2. Proof of Theorem 5.5

Without loss of generality for the proofs of theorems 5.5 and 5.8 we scale the dictionaries Ds,Da by 1√
m

, where m is the
size of the blocks. The primal problem denoted as P ( 1√

m
Ds,

1√
m
Da,x

′) is given as,

P (
1√
m
Ds,

1√
m
Da,x

′) := argmin ∥cs∥1,2 + ∥ca∥1,2 s.t. x′ =
1√
m
Dscs +

1√
m
Daca (42)

and the dual of (42),

D(
1√
m
Ds,

1√
m
Da,x

′) := argmax⟨w,x′⟩ s.t. ∥[ 1√
m
Ds,

1√
m
Da]

⊤w∥∞,2 ≤ 1 (43)

where w is the dual variable.
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Proof. We will prove the theorem by showing that the condition

γ1,2(±Di∗j∗) < θ1,2(Si∗ ∪ Si∗j∗ ,±D−
i∗j∗) (44)

implies the necessary and sufficient condition of Proposition 1, i.e.,

∥ĉ∗s∥1,2 + ∥ĉ∗a∥1,2 < ∥c̃∗s∥1,2 + ∥c̃∗a∥1,2 (45)

Let us focus on 1√
m
Ds[i

∗], 1√
m
Da[i

∗][j∗] and denote as p( 1√
m
Ds[i

∗], 1√
m
Da[i

∗][j∗],x′), d( 1√
m
Ds[i

∗], 1√
m
Da[i

∗][j∗],x′)

the values of the objective functions of the primal and dual problems, respectively. Due to convexity, strong duality holds,
hence we have,

p(
1√
m
Ds[i

∗],
1√
m
Da[i

∗][j∗]x′) = d(
1√
m
Ds[i

∗],
1√
m
Da[i

∗][j∗],x′) = ⟨w,x′⟩ (46)

Let us now decompose the dual variable w ∈ Rn as w = w⊥ +w∥, where w∥ ∈ Si∗ ∪ Si∗j∗ and w⊥ ⊥ w∥. For (46) we
have,

p(
1√
m
Ds[i

∗],
1√
m
Da[i

∗][j∗],x′) = d(
1√
m
Ds[i

∗],
1√
m
Da[i

∗][j∗],x′) =

⟨w,x′⟩ = ⟨w∥,x′⟩ ≤ ∥w∥∥2∥x′∥2 ≤ ∥x′∥2
1

cos(γ1,2(±Di∗j∗))

(47)

where the last inequality follows from Lemma (A.2), by taking into account that w∥ a) belongs to the dual polar set
Ko

ℓ1,2
(Di∗j∗) b) w∥ ∈ Si∗ ∪ Si∗j∗ and hence is a feasible solution of the optimization problem at the RHS of (38).

Let us now focus the primal problem,

p(
1√
m
D−

s ,
1√
m
D−

a x
′) = min

cs,cs

∥cs∥1,2 + ∥ca∥1,2 s.t. x′ =
1√
m
D−

s cs +
1√
m
D−

a ca (48)

and assume that there exist solutions c∗s, c
∗
a ∈ P ( 1√

m
D−

s ,
1√
m
D−

a x
′)) such that x′ = D−

s c
∗
s +D−

a c
∗
a. We will have,

∥x′∥22 = x′⊤
(

1√
m
D−

s c
∗
s +

1√
m
D−

a c
∗
a

)
≤ ∥D−,⊤

s

x′

∥x′∥2
∥∞,2∥x′∥2∥c∗s∥1,2 + ∥D−,⊤

a

x′

∥x′∥2
∥∞,2∥x′∥2∥c∗a∥1,2

≤ cos(θ1,2(
x′

∥x′∥2
,D−

i∗,j∗))∥x
′∥2 (∥cs∥1,2 + ∥ca∥1,2)︸ ︷︷ ︸

p( 1√
m

D−
s , 1√

m
D−

a x′)

→ p(
1√
m
D−

s ,
1√
m
D−

a x
′) ≥ ∥x′∥2

cos(θ1,2(
x′

∥x′∥2
,D−

i∗,j∗))

(49)

By combining (47) with (49) we get,

∥x′∥2
1

cos(γ1,2(±Di∗j∗))
<

∥x′∥2
cos(θ1,2(

x′

∥x′∥2
,D−

i∗,j∗))
→

γ1,2(±Di∗j∗)) < θ1,2(
x′

∥x′∥2
,D−

i∗,j∗))

(50)

and hence the last inequality is a sufficient condition for (45).

A.3. Proof of Theorem 5.8

We first prove prove the following Lemma.
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Lemma A.3. If the Dual Recovery Condition holds i.e., γ1,2(Di∗j∗) < θ1,2
(
A (Di∗j∗) ,±D−

i∗j∗

)
then ∀v ∈ A(Di∗j∗) it

holds 1√
m
∥[D−,⊤

s ,D−,⊤
a ]v∥∞,2 < 1.

Proof. We have that ∀v ∈ A(Di∗j∗) it holds 1√
m
∥[Ds[i

∗],Da[i
∗][j∗]]⊤v∥∞,2 ≤ 1. Hence, due to Lemma A.2 we have

that ∥v∥2 ≤ 1
cos(γ1,2(Di∗j∗ )

. We will have,

1√
m
∥[D−

s ,D
−
a ]

⊤v∥∞,2 =
1√
m
∥[D−

s ,D
−
a ]

⊤ v

∥v∥2
∥∞,2∥v∥2 ≤

cos(θ1,2(v,D−
i∗j∗))

cos(γ1,2(Di∗j∗))
< 1 (51)

Next we will prove the following Lemma,
Lemma A.4. If 1√

m
∥[D−,⊤

s ,D−,⊤
a ]v∥∞,2 < 1 ∀v ∈ A(Di∗j∗) then the necessary and sufficient condition for suc-

cessful recovery of the correct class of the signal and the attack given in (14) i.e, p( 1√
m
Ds[i

∗], 1√
m
Da[i

∗][j∗],x′) <

p( 1√
m
D−

s ,
1√
m
D−

a ,x
′) holds.

Proof. Let us define the following constrained optimization problem,

max⟨x′,w⟩ s.t.
1√
m
∥[Ds[i

∗],Da[i
∗][j∗]]⊤,w∥∞,2 ≤ 1,w ∈ span(Di∗j∗) (52)

Using standard convex optimization arguments we can deduce that the optimal solution of the above problem w will be an
extreme point of the convex set defined by {w : 1√

m
∥[Ds[i

∗],Da[i
∗][j∗]]⊤w∥∞,2 ≤ 1,w ∈ span(Di∗j∗)} hence w will

belong to the set of dual points A(Di∗j∗). Let us now state the following problem,

max⟨x′,w⟩ s.t.
1√
m
∥[Ds[i

∗],Da[i
∗][j∗]]⊤w∥∞,2 ≤ 1, (53)

Note that (53) does not constrain w to belong in span(Di∗j∗). As a result, there might be optimal solutions w not in
span(Di∗j∗). However, we can deduce that there will always exist a w span(Di∗j∗) that will be an optimal solution and a
dual point. This can be deduced if we express a candidate solution w∗ as w∗ = w⊥ +w∥ where w∥ ∈ span(Di∗j∗).

Let us now assume that there exists a {cs, ca} ∈ P ( 1√
m
D−

s ,
1√
m
D−

a ,x
′). We will have x′ = 1√

m
D−

s cs +
1√
m
D−

a ca. On
the other hand, there will be w∗ ∈ A(Di∗j∗) that will be a dual optimal solution of D( 1√

m
Ds[i

∗], 1√
m
Da[i

∗][j∗],x′) i.e.,

p(
1√
m
Ds[i

∗],
1√
m
Da[i

∗][j∗],x′) = d(
1√
m
Ds[i

∗],
1√
m
Da[i

∗][j∗],x′) = ⟨w∗,x′⟩ = ⟨w∗,
1√
m
(D−

s cs +D−
a ca)⟩ ≤

1√
m
∥[D−

s ,D
−
a ]

⊤w∗∥∞,2 (∥cs∥1,2 + ∥ca∥1,2) < p(
1√
m
D−

s ,
1√
m
D−

a ,x
′)

(54)

Theorem 5.8 is proved by combining Lemmas A.3 and A.4.

A.4. Derivation of the Active Set Homotopy Algorithm and Algorithm Details

Consider the optimization problem in Equation (11). We denote the objective as L(x′,Ds,Da, λs, λa). We can write the
optimality conditions with respect to cs and ca for this problem. For any block i of Ds, the optimality conditions with
respect to cs are:

Ds[i]
T (x′ −Dsc

∗
s −Dac

∗
a) = λs

c∗s
∥c∗s∥2

if c∗s[i] ̸= 0 (55)∥∥Ds[i]
T (x′ −Dsc

∗
s −Dac

∗
a)
∥∥
2
≤ λs if c∗s[i] = 0 (56)
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Algorithm 1 Active Set Homotopy Algorithm
Results:ĉ∗a, ĉ

∗
s

Initialize : ĉ0s, ĉ
0
a ← 0,0, T 0

s , T
0
a ← ∅, ∅, k ← 1

Set : γ ∈ (0, 1)
while T k+1

s ̸⊆ T k
s and T k+1

a ̸⊆ T k
a do

ok ← x′ −Ds[T
k
s ]ĉ

k
s [T

k
s ]−Da[T

k
a ]ĉ

k
a[T

k
a ]

λk
s ← γ ·maxi

∥∥Ds[i]
Tok

∥∥
2

λk
a ← γmaxi,j

∥∥Da[i][j]
Tok

∥∥
2

îk ← argmaxi
∥∥Da[i]

Tok
∥∥
2

ĵk ← argmaxj maxi
∥∥Da[i][j]

Tok
∥∥
2

Add îk and ĵk to T k
s and T k

a respectively.
Solve problem (11) with any solver using Ds[T

k
s ],Da[T

k
a ], λ

k
s , λ

k
a and compute ĉk+1

s and ĉk+1
a .

k ← k + 1
end while

For any block (i, j) of Da, the optimality conditions with respect to ca are:

Da[i][j]
T (x′ −Dsc

∗
s −Dac

∗
a) = λ2

c∗a
∥c∗a∥2

if c∗a[i][j] ̸= 0 (57)∥∥Da[i][j]
T (x′ −Dsc

∗
s −Dac

∗
a)
∥∥
2
≤ λ2 if c∗a[i][j] = 0 (58)

First, we derive a value of λs and λs such that the optimal cs and ca are the all-zero vectors.

Lemma A.5. Let λs ≥
∥∥DT

s x
′
∥∥
∞,2

= supi
∥∥Ds[i]

Tx′
∥∥
2

and λa ≥
∥∥DT

a x
′
∥∥
∞,2

= supi,j
∥∥Da[i][j]

Tx′
∥∥
2
. Then, the

values of c∗s and c∗a that minimize L(x′,Ds,Da, λs, λa)) are the all-zero vectors.

Proof. We begin with the proof of showing that λs =
∥∥DT

s x
′
∥∥
∞,2

is sufficient so that c∗s is the all-zeroes vector. Looking
at Equation (56), we see that for a block of c∗s to be 0, a sufficient condition is that the norm of the gradient of the fitting
term of the objective is less than λs. This immediately gives that if for all blocks i,

∥∥Ds[i]
T (x′ −Dsc

∗
s −Dac

∗
a)
∥∥
2
≤ λs (59)

then the optimal c∗s must be 0 based on the optimality conditions. For simplicity in the proof, we will assume that the
sufficient condition for ca to be the zero vector holds, which will be shown after. This implies that if λs ≥

∥∥DT
s x

′
∥∥
∞,2

=

supi
∥∥Ds[i]

Tx′
∥∥
2
, then the c∗s that minimizes L(x′,Ds,Da, λs, λa)) is the all-zeros vector. The same argument applies

for λa, for which we have that if λa ≥
∥∥DT

a x
′
∥∥
∞,2

= supi,j
∥∥Da[i][j]

Tx′
∥∥
2
, then c∗a is the all-zeros vector. Jointly fixing

both λs and λa, we have a sufficient condition for c∗s and c∗a being zero.

The proof strategy of the above lemma suggests that if we knew the value of c∗s and c∗a, then we can find a value of λs and
λa such that minimizing L(x′,Ds,Da, λs, λa)) yields c∗s and c∗a; however, obviously, we do not know the value of c∗s and
c∗a. Namely, the value of the regularization parameters depends on the residual x′ −Dsc

∗
s −Dac

∗
a, which we denote as

o∗ or the oracle point. The homotopy algorithm for solving LASSO ℓ1 minimization problems proceeds by starting from
the all-zeros solution and calculating the decrease in λ that results in one non-zero element added to the support of the
optimal solution. This works because the optimal solution plotted as a function of the regularization parameter is piecewise
linear. For the block-sparse optimization problem, also known as group-LASSO, it is well-known that the solution path
is nonlinear (Yau & Hui, 2017). Thus, we use the natural heuristic of starting with the value of λs and λa that produces
the all-zero vector, scaling the value by some hyperparameter γ ∈ (0, 1), and estimating the oracle point o by solving
L(x′,Ds,Da, γλs, γλa). From o, we can then again calculate a value of λs and λa and iterate. This alternating algorithm
forms the basis of the active set homotopy algorithm. Since we begin from the all-zero vector and reduce λs and λa, we can
maintain an active set of non-zero coordinates and only solve subproblems restricted to these non-zero blocks for efficiency
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Figure 1. Results on the MNIST dataset with varying attack strength ϵ. The SBSC and SBSC+CNN curves show the accuracy of the
structured block-sparse classifier and denoiser at predicting the correct class. Note that these curves overlap almost fully, thus both are not
clearly visible. BSC denotes the naive block-sparse baseline. The SBSAD curve denotes the accuracy of the attack detector at predicting
the correct attack type. Best viewed in color.

purposes. In Algorithm 1, we see the full algorithm detailed. Note that we overload the notation Ds[Ts] and Da[Ta] to
denote the submatrices of Ds and Da corresponding to the block indices in the sets Ts and Ta.To solve the subproblems,
we use the cvxpy package (Diamond & Boyd, 2016; Agrawal et al., 2018) with the SCS solver run for a maximum of 50
iterations.

A.5. Experimental Details

Layer Type Size
Convolution + ReLU 3× 3× 32
Convolution + ReLU 3× 3× 32

Max Pooling 2× 2
Convolution + ReLU 3× 3× 64
Convolution + ReLU 3× 3× 64

Max Pooling 2× 2
Fully Connected + ReLU 200
Fully Connected + ReLU 200
Fully Connected + ReLU 10

Table 3. Network Architecture for the MNIST dataset

A.5.1. MNIST

The network architecture for the MNIST dataset is given in Table 3. The network on MNIST is trained using SGD for 50
epochs with learning rate 0.1, momentum 0.5, and batch size 128.

All PGD adversaries were generated using the Advertorch library. The ℓ∞ PGD adversary (ϵ = 0.3) used a step size
α = 0.01 and was run for 100 iterations. The ℓ2 PGD adversary (ϵ = 2) used a step size α = 0.1 and was run for 200
iterations. The ℓ1 PGD adversary (ϵ = 10) used a step size α = 0.8 and was run for 100 iterations. These hyperparameters
are identical to the hyperparameters for the adversarial training baselines, to enable a fair comparison.

A.5.2. YALEB

For the YaleB dataset, we train a three-layer fully-connected network, where each hidden layer contains 256 neurons
followed by a ReLU activation. We train this network using SGD for 75 epochs with learning rate 0.05, momentum 0.5, and
batch size 128. All PGD adversaries were generated using the Advertorch library. The ℓ∞ PGD adversary (ϵ = 0.1) used a
step size α = 0.003 and was run for 100 iterations. The ℓ2 PGD adversary (ϵ = 5) used a step size α = 0.02 and was run
for 200 iterations. The ℓ1 PGD adversary (ϵ = 15) used a step size α = 1.0 and was run for 100 iterations.
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Figure 2. Qualitative experiments on the reconstruction of a digit from the MNIST dataset.

A.6. Extended Experiments on MNIST Dataset

Tradeoff between signal and attack detection. For ℓ∞ attacks, the SBSC method does not serve as an effective defense
compared to the baselines. One possible explanation for this phenomenon is the relationship between the SBSC and SBSAD
methods, since both are predicted jointly from Algorithm 1. Specifically, in Figure 1, we see an explicit tradeoff between the
choice of ϵ in terms of the signal classification and attack detection accuracy. As ϵ increases, we expect the attacks to be
easier to distinguish among the family of attacks; however, as the noise increases, classifying the correct label becomes
harder regardless of the accuracy of the predicted attack type. Note that in this figure, the dictionaries Ds and Da are kept
fixed using the same ϵ values as in Table 2, and only the ϵ of the attacked test images is varied. Additionally, Figure 1
demonstrates that explicitly modeling the perturbation and adding further structure to block-sparse optimization methods
helps improve the accuracy of the block-sparse classifier, as our method outperforms the BSC method that only models
x′ = Dscs. As ϵ increases, the method remains robust to perturbations, while the accuracy of the undefended network
continues to degrade.

Qualitative results. Figure 2 shows an example of the reconstruction of one digit from the MNIST dataset using the
SBSC+CNN method perturbed using all perturbation types. The SBSC method performs a smoothing that is able to denoise
across various perturbation types and remove visible noise patterns in the corrupted image. The CNN classifier then correctly
classifies the resulting denoised image.


