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Abstract
Coreset (or core-set) is a small weighted subset
Q of an input set P with respect to a given mono-
tonic function f : R→ R that provably approxi-
mates its fitting loss

∑
p∈P f(p · x) to any given

x ∈ Rd. Using Q we can obtain an approxima-
tion of x∗ that minimizes this loss, by running
existing optimization algorithms on Q. In this
work we provide: (i) A lower bound which proves
that there are sets with no coresets smaller than
n = |P | for general monotonic loss functions. (ii)
A proof that, with an additional common regu-
larization term and under a natural assumption
that holds e.g. for logistic regression and the sig-
moid activation functions, a small coreset exists
for any input P . (iii) A generic coreset construc-
tion algorithm that computes such a small coreset
Q in O(nd+ n log n) time, and (iv) Experimen-
tal results with open-source code which demon-
strate that our coresets are effective and are much
smaller in practice than predicted in theory.

1. Introduction
Traditional algorithms in computer science and machine
learning are usually tailored to handle off-line finite datasets
that are stored in memory. However, many modern systems
do not use this computational model. For example, GPS
data from millions of smartphones, high definition images,
YouTube videos, Twitter tweets, or audio signals from smart
homes arrive in a streaming fashion. The era of Internet of
Things (IoT) provides us with wearable devices and mini-
computers that collect data sets that are being gathered by
ubiquitous information-sensing mobile devices and wireless
sensor networks (Hellerstein, 2008; Segaran & Hammer-
bacher, 2009; Feldman et al., 2013b).
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Challenges. Using such devices and networks pose a series
of challenges:
(i) Limited memory. In such systems, the input is an infi-
nite stream of batches that may grow in practice to petabytes
of raw data, and cannot be stored in memory. Hence, only
one-pass over the data and small memory are allowed.
(ii) Parallel and distributed computations. To leverage
the power of multithreading and multiple processing units
(as in GPUs), we are required to design variants of our algo-
rithms which can run in parallel. Furthermore, if the dataset
is distributed among many machines, e.g. on a “cloud", there
is an additional problem of non-shared memory, which may
be replaced by expensive and slow communication between
the machines. (iii) Larger data. As those devices become
more widespread, the amounts of data gathered and commu-
nicated between them becomes even larger. This might pose
a challenge even for the algorithms previously regarded as
efficient.

Weak or no theoretical guarantees. Due to the modern
computation models above, learning trivial properties of the
data may become non trivial, as stated in (Feldman et al.,
2013b). These problems are especially common in machine
learning applications, where the common optimization prob-
lems and models may be, already in the off-line settings
NP-hard.

Alternative approach. Instead of designing, from scratch,
a new algorithm to solve the problem at hand, an alternative
approach is to provably summarize the data into a small
representative subset, and to prove that applying existing
algorithms, both heuristics and provable methods, on this
small summarizations, will yield an output which approx-
imates the result of running the same algorithms on the
original (full) data. However, applying those algorithms on
this small subset will be (i) much faster, and (ii) will help
handle the complex data models above.

1.1. Coresets

Coresets, which are usually a small weighted subset of the
input, suggest a natural solution or at least a very generic ap-
proach to address the above challenges. Coresets have some
promising theoretical guarantees, while still leveraging the
success of existing heuristics, as explained above.
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Coresets and machine learning. We can use the notion
of coresets, see formal definition below, for improving the
performance of machine learning algorithms. Most ma-
chine learning algorithms essentially solve an optimization
problem over some set of training data. By constructing
a coreset for this training data, we can: (i) greatly reduce
the time it takes to train a model, simply by training it or
tuning its hyperparameters on the (small) coreset instead
of the (big) input data, and (ii) allow support for stream-
ing, parallel, and distributed data. This is by the useful
the very well known merge-and-reduce property of coresets
that allow them to handle big data; see formal details e.g.
in (Agarwal et al., 2004) and (Feldman, 2020). Although
the coreset provides guarantees for the approximation of
the Mean Squared Error (MSE) of the training data, it can
be shown that for some problems, a coreset can also pro-
vide guarantee for the approximations of the generaliza-
tions error. For example, when using Bayesian inference,
it was shown in (Huggins et al., 2016) that a model which
is based on coreset for the log likelihood function, has a
marginal likelihood which is guaranteed to approximate the
true marginal likelihood. The same can be shown for max-
imum likelihood estimation. The popular measure for the
goodness of fit of an estimator is the the log-likelihood ratio:
ln Λ(θ̂) = L(θ̂) − supθ∈Θ L(θ). The log-likelihood ratio
of a model which is based on a coreset, uniformly approx-
imates the log-likelihood ratio of the full model. Further-
more, coresets have been shown to practically improve the
generalization error for machine learning algorithms (Hug-
gins et al., 2016; Feldman et al., 2011; Munteanu et al.,
2018)

Coresets for monotonic functions. In this paper we focus
on coresets for monotonic continuous functions, that is: we
assume that we are given a set P of n points in Rd, and a
non-decreasing monotonic functions f : R → R>0. For a
given error parameter ε ∈ (0, 1), we wish to compute an
ε-coreset Q ⊆ P , with a weight function u : Q → [0,∞)
that provably approximates the fitting cost of P for every
x ∈ Rd, up to a multiplicative factor of 1± ε, i.e.,

(1−ε)
∑
p∈P

f(p·x) ≤
∑
p∈Q

w(p)f(p·x) ≤ (1+ε)
∑
p∈P

f(p·x);

see Definition 2.2. Although it seems rather theoretic, many
real world problems can be formulated using similar func-
tions, including: (i) Sigmoid, (ii) Logistic regression, (iii)
SVM, (iv) Linear classifiers, (v) `p regression, and (vi)
Gaussian Mixture Models (GMMs); for further details and
examples we refer the reader to the surveys (Agarwal et al.,
2005; 2013; Phillips, 2016; Braverman et al., 2016; Bachem
et al., 2017; Feldman, 2020; Maalouf et al., 2021).

1.2. Our contribution

(i) We provide an impossibility bound that proves that, for
non-decreasing monotonic loss function, there are no small
coresets in general. We do this by providing an example of
an input set of points P , for which no coreset of size smaller
than |P | exists; see Section 3.

(ii) Following the bound above, we can either give up on
the generic coreset paradigm, or add natural assumptions
and modifications to the targeted functions f . In this paper
we choose the second option; We add a regularization term
to the loss function, which, in most cases, is added anyway
to avoid overfitting (Schölkopf et al., 2002; Bishop, 1995).
In fact, in some cases, this new term is crucial as some
functions are minimized only for x approaching infinity if
this term is omitted. For example, the regularization term
we add to the sigmoid function is ‖x‖22 /k, where k > 0
defines the trade-off between minimizing the function and
the complexity of the set of parameters. While minimizing
such functions may still be NP-hard (Šíma, 2002), we prove
that a small coreset Q exists for any input set P , for the
sigmoid and logistic regression functions; see Section 5.
However, the proof holds for a wider family of functions.

(iii) We provide a generic algorithm that computes the core-
set Q above in O(nd+ n log n) time. Unlike most existing
works, our algorithm can construct a coreset for the sigmoid
and logistic regression functions, as well as a wider set of
functions; see Algorithm 1.

(iv) Open source code for our algorithms is given (Code,
2022), along with extensive experimental results on both
synthetic and real-world public datasets; see Section 6.

1.3. Related Work

In (Har-Peled, 2006), Har-Peled shows how to construct a
coreset of one dimensional points sets (d = 1) for sums of
single variable real valued functions. In the scope of ma-
chine learning most of the research involves clustering tech-
niques (Feldman et al., 2013a; Feldman & Schulman, 2012;
Jubran et al., 2020; Feldman et al., 2007; Cohen-Addad
et al., 2021; Braverman et al., 2021) and regressions (Bout-
sidis et al., 2013; Dasgupta et al., 2009; Zheng & Phillips,
2017), including a recent coreset for decision trees (Jubran
et al., 2021). Several coresets were constructed for unsu-
pervised learning problems including coresets for Gaussian
mixture models (Feldman et al., 2011), and SVM (Tsang
et al., 2005; Har-Peled et al., 2007). Other works handle
general families of supervised learning problems (Tukan
et al., 2020; Maalouf et al., 2019).

The work by (Huggins et al., 2016) introduces lower bounds
on the total sensitivity of the logistic regression problem that
is used in this paper. It also introduces an upper bound for
the total sensitivity and coreset size based on k-clustering
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coresets. However the bounds hold only for input set P
from very specific distributions (roughly, when P is well
separated into k clusters).

In (Munteanu et al., 2018), a lower bound of Ω (n/ log n)
points, on the size of a coreset for a two dimensional logistic
regression was introduced. To find a coreset, the authors
have introduced a measure of the data µ, which depends
on the log-ratio between the positive and negative labeled
points, and have shown that for data sets in which µ is suffi-
ciently small a coreset of size O(poly(log n)) exist. Instead
of imposing assumptions on the above input-related mea-
sure, in this work we add a regularization term to the loss
function which, as we show, makes the coreset construction
task feasible. There does not seem to be a direct relation
between our work and the measure µ used in (Munteanu
et al., 2018).

The main tool of this work uses the unified framework pre-
sented in (Feldman & Langberg, 2011), which was recently
improved in (Braverman et al., 2016). We also use the reduc-
tion from L∞ coresets that approximates maxp∈P f(p · x)
to our L1 coreset (sum of loss) which was introduced
in (Varadarajan & Xiao, 2012).

1.4. Paper Organization

Section 2 describes preliminary results which we utilize in
our coreset construction algorithm. In Section 3 we give
examples of input sets which have no non-trivial coreset (i.e.,
smaller than the input size), for general monotonic functions.
In Section 4 we introduce our main coreset construction
algorithm. We then prove the correctness of this algorithm
for the sigmoid and logistic regression activation functions.
In Section 6 we provide our experimental results along with
a discussion.

2. Preliminaries
In what follows we first describe the coreset construction
framework of (Feldman & Langberg, 2011). The framework
is based on a non-uniform sampling of the input, according
to some importance distribution over the input points. This
distribution assigns higher values to points of higher influ-
ence on the optimization problem at hand. Now, in order to
keep the sample unbiased, the sampled points are reweighted
reciprocal to their sampling probability. To quantify the in-
fluence of a single point on the optimization problem, Feld-
man and Langberg suggested in (Langberg & Schulman,
2010) a term called sensitivity, which we define later in this
section. Using the sensitivity, a sampling-based coreset can
be constructed, whose size depends on the total sensitivity
over the input points, a complexity measure of the family of
models, called the VC-dimension, and an error parameter
ε ∈ (0, 1) that controls the trade-off between coreset size

and approximation accuracy. Bounding the VC-dimension
of the loss functions handled in this paper is straightforward;
see formal details in Section D at the appendix. Hence, the
majority of the paper is devoted to bound the sensitivity of
each point.

We now formally define the sensitivity of every input point,
with respect to a given problem at hand.
Definition 2.1 (Sensitivity (Feldman & Langberg, 2011;
Langberg & Schulman, 2010)). Let (P,w,X, c) be a tuple
called query space, where P is a finite set of elements,
w : P → [0,∞) is a weight function, X is a set called
queries (models), and c : P×X → [0,∞) is a loss function.
The sensitivity of a point p ∈ P with respect to (P,w,X, c)
is defined as

s(p) := sP,w,X,c (p) = sup
x∈X

w (p) c (p,x)∑
p′∈P w (p′) c (p′,x)

,

where the supremum is over every x ∈ X such that the
denominator is positive . The total sensitivity of the query
space is denoted by t(P ) := t(P,w,X, c) =

∑
p∈P s(p).

One of the contributions of (Feldman & Langberg, 2011) is
to establish a connection to the theory of range spaces and
the well known VC-dimension. Informally, the (VC) dimen-
sion of a given problem is a measure of its combinatorial
complexity (Anthony & Bartlett, 2009). For completeness,
a formal definition is given at the appendix; see Section D.

Feldman and Langberg also show how to compute, without
further assumptions, a small weighted set (Q, u), where
Q ⊆ P , that will approximate the total cost C (P,w,x) of
the input (P,w), for every query x ∈ X , up to a multiplica-
tive factor of 1± ε. Such a set, which we call a coreset, is
defined as follows.
Definition 2.2 (ε-coreset). Let (P,w,X, c) be a query
space (see Definition 2.1), and ε ∈ (0, 1) be an error param-
eter. An ε-coreset for (P,w,X, c) is a weighted set (Q, u)
such that for every x ∈ X ,∣∣∣∣∣∣

∑
p∈P

w (p) c (p,x)−
∑
q∈Q

u (q) c (q,x)

∣∣∣∣∣∣
≤ ε ·

∑
p∈P

w(p)c(p,x).

In (Feldman & Langberg, 2011), a lower bound is given for
the required coreset size, as a function of the total sensitivity
t(P ). This bound was later made tighter in (Braverman
et al., 2016). The following theorem describes the random
sampling scheme for coreset construction using the sensitiv-
ity framework, and describes the required sample (coreset)
size.
Theorem 2.3 (coreset construction (Braverman et al., 2016;
Feldman & Langberg, 2011)). Let (P,w,X, c) be a query
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space of VC-dimension d and total sensitivity t. Let
ε, δ ∈ (0, 1). Let Q be a random sample of |Q| ≥
10t
ε2

(
d log t+ log

(
1
δ

))
i.i.d points from P , such that every

p ∈ P is sampled with probability 1
t · sP,w,X,c (p). Let

u (p) = t·w(p)
sP,w,X,c(p)|Q| for every p ∈ Q. Then, with proba-

bility at least 1− δ, (Q, u) is an ε-coreset of (P,w,X, c).

3. Lower Bounds
In what follows, we consider query spaces (P,w,Rd, c),
where c(x,p) = f(x · p) for some non-decreasing mono-
tonic function f . We prove that not all such query spaces
admit a non-trivial coreset, by providing an example of an
input sets P for which every coreset must be of size |P |.

No coreset. Consider a 2-dimensional circle C ⊆ R3 in
3-dimensional space, which is the intersection of the unit
sphere and a non-affine plane (does not pass through the
origin) that is parallel to the XY plane. For every point
p ∈ P , let πp be a plane in R3 that passes through the
origin which isolates p from the rest of the set, and let xp

be a vector orthogonal to πp, such that p ·xp > 0; see Fig 1.
Such a plane exists since the points are on a 2D circle that
is not centered around the origin.

Now, for intuition, consider the logistic regression cost func-
tion: c(x,p) = log(1 + ep·x). Let p ∈ P and let xp be
the query vector orthogonal to the plane πp which separates
p from the rest of the set. Since p is the only point on the
positive side of xp, it holds that p · xp > 0 whereas for
every other point p′, p′ ·xp < 0. Moreover as ‖xp‖ grows,
p · xp goes to∞ and p′ · xp grows to −∞. Thus the cost
c(xp,p) = log(1 + ep·xp) of p, goes to∞ and the cost of
every other point goes to 0. Therefore, p has a sensitivity of
1. In this case, intuitively, every coreset must include p or
else it cannot provide a good approximation to the cost of
the original (full) set. Since this argument holds for every
p ∈ P , any coreset for P must include all points in P . Thus,
no non-trivial coreset exists in this case. Putting it differ-
ently, the above discussion shows that if the sensitivity of
every point in P is 1 then the size of every coreset is Ω(n);
see Lemma A.1 in the appendix for a formal statement.

Note that the above holds true not only for logistic regression
but for any function f that satisfies limx→∞

f(−x)
f(x) = 0.

This is formally stated in the following theorem. A formal
proof is given in Section A of the appendix.

Theorem 3.1. Let f : R → (0,∞) be a non-decreasing
monotonic function that satisfies limx→∞

f(−x)
f(x) = 0, and

let c (x,p) = f (x · p) for every x,p ∈ Rd. Let ε ∈ (0, 1),
n ≥ 1 be an integer, and w : Rd → (0,∞). There is a set
P ⊂ Rd of |P | = n points such that if (Q, u) is an ε-coreset
of
(
P,w,Rd, c

)
then Q = P .

Figure 1. (Left): A set of points P in R3 (red and green points), a
plane πp separating p from P \ {p} and the vector xp orthogonal
to πp. (Right): A top-down view of the data on the left. The dotted
line ` is the intersection of πp and the plane containing P . All
the points to the right (left) of ` are projected onto the positive
(negative) side of xp.

A different lower bound was also suggested in (Munteanu
et al., 2018). However, while our formulation of the prob-
lem at hand is not directly comparable to the formulation
in (Munteanu et al., 2018), their bound is Ω(n/ log n),
which holds only for logistic regression. It also handles
only a specific one-pass streaming data model. We suggest
a different bound of Ω(n) which holds for a wider range of
functions and computational models.

Adding assumptions. The above counter-example and for-
mal claim motivate the necessity of adding assumptions
on the loss function, as described in the following section.
Mainly, a regularization term needs to be added. This term
is usually added anyway, both in theory and in practice, to
reduce the complexity of the model and avoid overfitting.

4. Coresets For Monotonic Bounded
Functions

From the previous section, we conclude that an additional
constraint must be imposed on the problem at hand in or-
der to construct a small coreset. To better understand the
required constraint, recall the reason for the lower bound
from the example at Section 3; the (problematic) points with
sensitivity 1 were the points which had very large values of
x · p. This can happen when ‖x‖ is very large or when ‖p‖
is large. For the moment, assume that ‖p‖ is small (we will
later see how ‖p‖ affects the size of the coreset). The stan-
dard technique for preventing the parameters from growing
too large is to add a regularization term, which is widely
used in many real world problems (Schölkopf et al., 2002;
Kukačka et al., 2017). As it happens to be, adding a regular-
ization term also advances us towards our goal of construct-
ing a coreset, as was also noted e.g., in (Samadian et al.,
2020; Tukan et al., 2021). To see this, consider a regular-
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ized variant of the loss function: c(x,p) = f (x · p) + ‖x‖
k .

Since f is bounded, when ‖x‖ grows to infinity the value of
the regularization dominates the loss. Thus, in this case, all
points have approximately the same loss, and are all equally
unimportant. In other words, the sensitivity of those points
can not be 1.

Comparison to prior works. Coresets for the problem
at hand are not new. However, our coreset has a provable
upper bound on its size for every given dataset P . This
bound depends only on the desired error ε. However, the
size of the logistic regression coreset, e.g., as in (Mai et al.,
2021) depends on a data-dependent parameter µ(P ) that
may be arbitrarily large for some datasets.

The common case for the value of the regularization pa-
rameter k is k = n1−κ for κ ∈ (0, 1); see e.g., in (Curtin
et al., 2019; Mai et al., 2021). In practice, we observed
that the values of k have only a small effect on the coresets
approximation accuracy; see Section 6.

4.1. L∞ coresets

We now address the common case, in which for some x ∈ X
and every two points, p1, p2 ∈ P the values of p1 · x
and p2 · x do not greatly differ. To do so, we will reduce
our problem to the problem of constructing an L∞ coreset,
which is defined as follows.
Definition 4.1. (L∞ coreset(Varadarajan & Xiao, 2012))
Let (P,w,X,c) be a query space and ε > 0. An ε − L∞
coreset is a subset Q ⊆ P such that maxp∈P c(p,x) ≤
(1 + ε) maxq∈Q c(q,x) for every x ∈ X .

We will now focus on constructing an L∞ coreset. We
will then show how to leverage this L∞ coreset to obtain a
coreset as defined in Definition 2.2.

Consider a monotonic non-decreasing function f : R →
(0,M ], a query x ∈ X and a point p ∈ P such that p·x > 0.
Since f is a monotonic function, f(0) ≤ f(p · x). Hence,

max
p′∈P

f(p′ · x) ≤M =
M

f(0)
f(0) ≤ M

f(0)
f(p · x),

Therefore, for a query x, if a point p falls on the positive
side of the line defined by x we can say this point is an L∞
coreset. But what if the point falls on the negative side of
the line? Since f is monotonic, we know that if p · x < 0
then, f(p · x) < f(−p · x), but if f is sufficiently “well
behaved” then as long as the distance between −p · x and
p · x is not too large, then the distance between f(−p · x)
and f(p · x) is also bounded. Specifically, we can assume
there is a constant b > 0 such that

f(−p · x) < b · f(p · x)

which implies that even if p falls on the negative side of the
line, then p is an L∞ coreset.

Assumptions and conclusions made so far. Before we
conclude the results of this section, we must conduct the
assumptions and conclusions we have made so far. We have
assumed that the distance between −p · x and p · x is not
too large. We can bound the distance as follows:

| − p · x− (p · x)| = |2p · x| ≤ 2 ‖x‖ ‖p‖ .

From the discussion in the beginning of the section, adding
regularization will guarantee that ‖x‖ can not grow arbitrar-
ily large. As for the ‖p‖ term, we expect the coreset to be
somehow affected by this term in order to ensure the above
property. Indeed, this is one of the main terms which affect
the sensitivity of the input points. Hence, the final coreset
will be more likely to choose points with larger norm.

We conclude that every point p ∈ P is an ε−L∞ coreset for
sufficiently large ε that depends on properties of the function
(M,f(0) and b) and on ‖p‖. This is formally stated in the
following lemma.
Lemma 4.2 (L∞ coresets). Let P ⊂ Rd be a finite set,
M,k > 0 be constants, f : R→ (0,M ] be non-decreasing
function and g : [0,∞)→ [0,∞) be a function. For every
x ∈ Rd and p ∈ P define ck (p,x) = f (p · x) + g(‖x‖)

k .
Put p ∈ P and suppose there is bp > 0 such that for every

z > 0, f (‖p‖ z) + g(z)
k ≤ bp

(
f (−‖p‖ z) + g(z)

k

)
. Then

{p} is an ε− L∞ coreset with ε = M
f(0) (bp + 1)− 1.

Algorithm 1 MONOTONIC-CORESET(P, k,m)
1: Input: A set P = {p1, · · · , pn} of points in Rd,

a real valued regularization term k > 0, and
an integer m ≥ 1.

2: Output: A pair (Q, u) where |Q| = m and u : Q →
[0,∞); see Theorems 5.1-5.2.

3: Sort the points in P = {p1, · · · ,pn} by their length,
i.e., ‖p1‖ ≤ · · · ≤ ‖pn‖ .

4: s(pi) :=
c ·
√
k ‖pi‖+ 2

i
for every i ∈ [n] {c is a

sufficiently large constant.}
5: Set t←

∑n
i=1 s(pi)

6: Pick an i.i.d random sample Q ⊆ P of |Q| ≥
min {m,n} from P , where every p ∈ P is chosen
with probability s(p)/t.

7: u (p) :=
1

|Q|Prob (p)
for every p ∈ Q

8: return (Q, u)

4.2. From L∞ coresets to coresets

We now describe how to leverage an L∞ coreset to bound
the sensitivity of every input point.

Intuition behind Algorithm 1. LetQ be an ε−L∞ coreset
of P . Intuitively, since the points in Q provide a (1 + ε)-
approximation to the maximal cost, we would require a
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random sampling scheme to choose these points with rela-
tively high probability (compared to points in P \Q). Let
Q2 be an ε− L∞ coreset of P \Q. Using the same reason-
ing, we would require the probability of sampling points in
Q2 to be greater then the probability of sampling a point in
P \Q \Q2, but less than the probability of sampling a point
in Q. Using this logic, we can continue to construct L∞
coresets and remove them from the set of remaining points.
The probability of every point p ∈ P should intuitively be
proportional to 1

i , where i is the index of the L∞ coreset
which contains p. Phrasing this differently: for every p,
the sensitivity of p is proportional to 1

i . In (Varadarajan &
Xiao, 2012) it was proven that by repeatedly constructing
L∞ coresets as described above, one can bound the total
sensitivity and construct a coreset. Fig. 2 illustrates the
above reduction.

The following lemma gives the formal statement for the
algorithm described above. The lemma is based on Lemma
3.1 in (Varadarajan & Xiao, 2012).

Lemma 4.3. Let c : Rd × Rd → (0,∞). Suppose that for
some ε ∈ (0, 1) there is a non-decreasing function ∆ε(n)
so that for any P ′ ⊆ Rd of size n there is an ε − L∞
coreset of size at most ∆ε(n) for (P ′,1,Rd, c). Then, for
any P ⊆ Rd of size n we can compute an upper bound
s(p) on the sensitivity sP,1,Rd,c(p) for each p ∈ P , so that∑
p∈P sP,1,Rd,c(p) ≤ (1 + ε)∆ε(n) lnn.

Figure 2. Coreset construction illustration. Upper left: Con-
struct an L∞ coreset Q1 from P . Upper right: Remove Q1 from
P and construct an L∞ coreset Q2 for P \Q1. Lower left: Con-
tinue to do so until the sets Q1, Q2, · · · cover the entire set P .
Lower right: Sample a subset of P , such that every point p ∈ P
is sampled with probability proportional to 1

i
, where p ∈ Qi.

The resulting set, after a re-weighting reciprocal to its sampling
probability, is a coreset. See more details in the intuition behind
Algorithm 1 in Section 4.2.

A minor pitfall. The algorithm described above, assumes
that all of the L∞ coresets have the same approximation
constant ε. However, this assumption does not hold in our
case since the approximation constants of the L∞ coresets
we have constructed in the previous section depend on ‖p‖.
Fortunately, we can still use the same general idea as before:
in every iteration of the algorithm we have multiple choices
to construct an L∞ coreset, we must choose the correct
order of construction so the total sensitivity will be the
smallest. To understand this optimal order, we need to
understand how the sensitivity of a point s(p) depends on
the approximation constant ε. As was shown in (Varadarajan
& Xiao, 2012), s(p) linearly depends on 1/ε, or in our case
‖p‖, and on 1/i where is i is the index of the point in some
ordering. Thus for every point p, s(p) is proportional to
‖p‖ /i. To minimize the total sensitivity we will prefer
first to choose the points with smaller norms, so that the
sensitivity of the points with the larger norms will be divided
by a greater constant i. Algorithm 1 gives a suggested
implementation for the algorithm from the discussion above
and the following theorem formally states the results. A full
proof is given in the appendix.

Theorem 4.4. Let M,k > 0 be constants, P ⊆ Rd be
a set of points, f : R → (0,M ] be a monotonic non-
decreasing function, and ck (p′, x) = f (p′ · x) + g(‖x‖)

k
for every x ∈ Rd and p′ ∈ P . Suppose there is b : P →
(0,∞) such that for every p ∈ P and every z > 0 we

have f (‖p‖ z) + g(z)
k ≤ b(p)

(
f (−‖p‖ z) + g(z)

k

)
. Let

bmax ∈ arg maxp∈P b(p), t = (1 + M
f(0)bmax) lnn, and

ε, δ ∈ (0, 1). Lastly, let dV C be the VC-dimension of
(P,1,Rd, ck). Then, there is a weighted set (Q, u), where
Q ⊆ P and |Q| ∈ O

(
t
ε2

(
dV C log t+ log 1

δ

))
, such that

with probability at least 1− δ, (Q, u) is an ε-coreset for the
query space (P,1,Rd, ck).

Discussion behind Theorem 4.4. The above theorem sug-
gests a sufficient condition for the existence of a coreset,
in the case of a monotonic non-decreasing function f , to
which a regularization term is added. The proof of this theo-
rem is constructive; it combines the above condition with
Lemma 4.3 in order to bound the sensitivity of every input
point p ∈ P and also gives an upper bound to the total sen-
sitivity; see Section B.2 of the appendix. As an example, the
following section constructs a coreset for the sigmoid and
logistic regression activation functions by proving that the
above condition is indeed met. However, the above theorem
is not limited to those activation functions, and can be uti-
lized for many other functions. Given this sensitivity upper
bound, the coreset construction algorithm is straightforward:
it simply samples the input set P based on the sensitivity
distribution, and assigns appropriate weights to the sampled
points. The only thing left to determine is the sample size
required in order to achieve some predefined approximation
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error ε. A suggested implementation for the sigmoid and
logistic regression functions is given in Algorithm 1.

5. Example Applications - Coresets for
Sigmoid and Logistic Regression

In this section, we leverage the framework derived in the
previous section in order to construct, as an example, a
coreset for the sigmoid and logistic regression activations;
see Theorems 5.1 and 5.2 respectively. The full proofs are
placed in Section C.2 of the appendix.

Overview of Theorems 5.1-5.2. The following theorems
construct a coreset for sums of sigmoid functions and for
the logistic regression log-likelihood, for normalized in-
put sets. Here, f(p · x) is the loss (e.g., a sigmoid func-
tion) of a specific input point p to a candidate classifier that
is parametrized by x. The coreset approximates the sum∑
p f(p · x) of this function (i.e., sum of sigmoids) over

different input points.

To do so, we: (i) prove that the sufficient condition from
Lemma 4.2 and Theorem 4.4 in the previous section is met
for both the sigmoid and the logistic regression functions;
see Lemma C.5 and Lemma C.6 in the appendix respec-
tively. (ii) Based on the sufficient condition, we give an up-
per bound for the sensitivity of every input point as well as
bound the total sensitivity; see Lemma C.7 and Lemma C.9
in the appendix respectively. (ii) Lastly, we combine the
above with the coreset construction framework from Theo-
rem 2.3 to obtain a provable sampling algorithm for coreset
construction, as formally stated in Theorems 5.1-5.2. An im-
portant ingredient in this construction was an upper bound
for the VC-dimension of the relevant query spaces. An up-
per bound of O(d2) for both functions is given in Section D
of the appendix.

Theorem 5.1. Let P be a set of n points in the unit ball
of Rd, ε, δ ∈ (0, 1), k > 0 be a sufficiently large con-
stant, and let t = (1 + k) log n. For every p, x ∈ Rd, let
csigmoid,k (p,x) = 1

1+e−p·x + ‖x‖2
k . Finally, let (Q, u) be

the output of a call to MONOTONIC-CORESET(P, k,m),
where m ∈ Ω

(
t
ε2

(
d2 ln t+ ln 1

δ

))
; see Algorithm 1. Then,

with probability at least 1 − δ, (Q, u) is an ε-coreset for
(P,1,Rd, csigmoid,k). Moreover, |Q| ∈ O(m), and (Q, u)
can be computed in O(nd+ n log n) time.

Theorem 5.2. Let P be a set of n points in the unit
ball of Rd, ε, δ ∈ (0, 1), R, k > 0 where k is a
sufficiently large constant, and t = R log n(1 + Rk).
For every p ∈ Rd,x ∈ B(0, R) let clogistic,k(p,x) =

log (1 + ep·x) + ‖x‖2
k . Finally, let (Q, u) be the out-

put of a call to MONOTONIC-CORESET(P, k,m) where
m ∈ Ω

(
t
ε2

(
d2 ln t+ ln 1

δ

))
; see Algorithm 1. Then,

with probability at least 1 − δ, (Q, u) is an ε-coreset for
(P,1,Rd, clogistic,k). Moreover, |Q| ∈ O(m) and (Q, u)

can be computed in O(nd+ n log n) time.

Supporting additional activation functions. The above
theorems give two example activation functions that our
framework supports. However, the framework is not limited
to those functions only. To support other functions, one must
prove the sufficient condition to obtain the sensitivity upper
bound, which can be then simply plugged into Algorithm 1
to obtain the desired coreset. In Section C.3 we give the
formal statements for some of the additional applications of
our framework, namely the support vector machine (SVM)
problem.

6. Experiments
We implemented Algorithm 1 in Pythonm, and, in this sec-
tion, we evaluate its empirical results both on synthetic and
real-world datasets. We utilizes the sorting function from
the Numpy library to implement Line 4.1 of Algorithm 1.
Rather than competing with existing solvers, our coreset is
simply a pre-processing step which reduces the input size.
To this end, we apply existing solvers as a black box on our
small coreset. The results show that a coreset of size only
1% of the original data can represent the full data with an
error ε smaller than 0.001. Open-source code can be found
in (Code, 2022).

Competing methods. Our main competing method is a
random sampling scheme. As implied by the theoretical
analysis, “important” points, i.e., with high sensitivity, are
sampled with high probability in our coreset construction
algorithm. However, such points are sampled with probabil-
ity roughly 1/n using the naive uniform sampling. Hence,
we expect the coreset would yield results much better than
a uniform sampling scheme. With that said, we chose real-
world databases with relatively uniform data, in order to
demonstrate the effectiveness of our coreset even in such
cases. Even in this case, the improvement over uniform
sampling is consistent and usually significant.

Other existing methods are not directly comparable, since
they do not optimize our same regularized objective func-
tion, and have different assumptions. This is directly stated
e.g. in (Munteanu et al., 2018; Tukan et al., 2020) and (Mai
et al., 2021). Moreover, we could not find an open and stable
implementation for more of those methods.

Datasets used. We used the following datasets:
(i) Synthetic dataset. This data contains a set of n =
20, 010 points in R2. 20, 000 of the points were gen-
erated by sampling a two dimensional normal distribu-
tion with mean µ1 = (10, 000, 10, 000) and covariance
matrix Σ1 = ( 0.0025 0

0 0.0025 ) and 10 points were gener-
ated by sampling a two dimensional normal distribution
with mean µ2 = (−9998,−9998) and covariance matrix
Σ2 = ( 0.0025 0

0 0.0025 ). Our goal was to have one large clus-
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ter near 10, 000 and another small cluster near −10, 000,
both with variance that was chosen uniformly from [0, 0.1].
No “cherry picking” here.
(ii) Bank marketing dataset (Moro et al., 2014). It con-
tains n = 20, 000 numerical valued records in d = 10
dimensional space with. The data was generated for direct
marketing campaigns of a Portuguese banking institution.
Each record represents a marketing call to a client, that aims
to convince him/her to buy a product (bank term deposit). A
binary label (yes or no) was added to each record. We used
the numerical values of the records to predict if a subscrip-
tion was made.
(iii) Wine Quality dataset (Cortez et al., 2009; Wang &
Zhang, 2013; Elidan, 2010; Kajino et al., 2012). It con-
tains n = 6497 numerical valued records in d = 12 dimen-
sional space.

Experiments. We conducted the following experiments:
(i) Sigmoid Activation. For a given size m we computed a
coreset of size m using Algorithm 1. We used the datasets
above to produce coresets of size 5 ln(n) ≤ m ≤ 20 ln(n),
where n is the size of the full data. We then normalized
the data and found the optimal solution to the problem
with values of k = 100, 500, 1000, 5000 using the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) iterative method
for solving unconstrained nonlinear optimization problems.
We repeated the experiment with a uniform sample of size
m. For each optimal solution that we have found, we com-
puted the sum of sigmoids and denoted these "approximated
solutions" by C1 and C2 for our algorithm and uniform sam-
pling respectively. The "ground truth" Ck was computed
using BFGS on the entire dataset. The empirical error is
then defined to be Et =

∣∣ Ct

Ck − 1
∣∣ for t = 1, 2. For every

size m we computed E1 and E2 100 times and calculated
the mean of the results.
(ii) Logistic Regression. Similarly, we produced coresets
and uniform samples of size 5 ln(n) ≤ m ≤ 40 ln(n) and
maximized the regularized log-likelihood using the BFGS
algorithm. For every sample size we calculated the negative
test log-likelihood. Every experiment was repeated 20 times
and the results were averaged. All the results are presented
in Fig. 3.

Discussion. As seen in Fig. 3, our coreset outperforms the
random sampling scheme as of accuracy, and is more stable
(which can be seen in the standard deviation). For small
sample sizes, the coreset provides a very small approxima-
tion error in practice, unlike the pessimistic theory which
suggests bigger error. In this case, the coreset produces
errors much smaller than the uniform sampling scheme. As
the sample sizes grow, both the coreset and the random sam-
ple simply contain a big portion of the original full data,
and hence their output errors decrease and also becomes
more similar, as predicted. Furthermore, the coreset con-
struction takes a neglectable amount of time from the total

running time of computing a coreset and running the BFGS
algorithm on the coreset. In fact, the speed-up in practice
can be predicted as follows: (i) The most time consuming
step in our algorithm is the sorting step, which is near linear
and very efficient in practice, and (ii) The BFGS requires
quadratic running time. Hence, for data of size n = 20, 000,
computing a coreset of size ∼ 1% of the input and running
BFGS on it would be up to two orders of magnitude faster
than running BFGS on top of the full data.

Moreover, while in theory our results hold only for suffi-
ciently large values of k, in practice we tested multiple k
values and witnessed a neglectable effect on the results. This
is common in coresets paper where the worst-case theoret-
ical bounds are too pessimistic and ignore structure in the
data.

7. Conclusions and Future Work
We provided a new coreset construction algorithm which
computes a coreset for sums of sigmoid functions, which
is NP-hard to minimize, and logistic regression, where a
coreset in (Huggins et al., 2016) were suggested but with
no support for regularization term, and no provable worst
case bounds on the size of the coreset. Our construction
algorithm is easily applicable to other functions as well. The
coreset is of size near-logarithmic in the input size and can
be computed in near-linear time. In most coreset paper, and
in this paper in particular, coresets of size m can provably
handle streaming and distributed data using O(m) memory,
and insertion/deletion of points in O(m) time. This is using
the standard and widely used techniques (Braverman et al.,
2016; Lu et al., 2020).

Experimental results demonstrate that our coreset outper-
forms a standard sampling method, both in accuracy and
stability. The experiments prove that empirically, our core-
set is very effective; A coreset of size less than 1% of the
input suffices to produce a small error of ε = 0.001. Fu-
ture work includes relaxing the assumptions required on the
handled functions, which is the main downside of our work,
and hopefully generalizing our results for additional widely
common functions.
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A. No Coreset for General Monotonic Functions
In this section, we provide the full proofs behind the impossibility bound claims presented in Section 3.

The following lemma proves that if the sensitivity of every input point is 1 in a given query space, then there is no non-trivial
coreset for the query space.

Lemma A.1 (Lower bound via Total sensitivity). Let (P,w,X, c) be a query space, and ε ∈ (0, 1). If every p ∈ P has
sensitivity sP,w,X,c (p) = 1, then for every ε-coreset (Q, u) we have Q = P .

Proof. Let (Q, u) be a weighted set, where Q ⊂ P . It suffices to prove that (Q, u) is not an ε-coreset for P . Denote

umax ∈ arg max
p∈Q

u (p) , and wmin ∈ arg min
p∈P

w (p) .

Let p ∈ P \Q. By the assumption sP,w,X,c (p) ≥ 1, there is xp ∈ X such that

w (p) c (p,xp)

C (P,w,xp)
= 1 >

umax

umax
− wmin (1− ε)

umax
.

Multiplication by C(P,w,xp) yields

w (p) c (p,xp) >

umax − wmin (1− ε)
umax

· C (P,w,xp) .
(1)

We have that

C (Q, u,xp) =
∑
q∈Q

u (q) c (q,xp)

=
∑
q∈Q

u (q)

w (q)
w (q) c (p,xp) ≤ umax

wmin

∑
q∈Q

w (q) c (q,xp)

≤ umax

wmin

∑
p′∈P\{p}

w (p) c (p′,xp) (2)

=
umax

wmin
(C (P,w,xp)− w (p) c (p,xp))

<
umax

wmin
C (P,w,xp)

(
1− umax − wmin (1− ε)

umax

)
(3)

= (1− ε)C (P,w,xp) ,

where (2) is by the assumption p ∈ P \Q, and (3) is by (1). Hence Q cannot be used to approximate C(P,w,xp) and thus
is not an ε-coreset for P .

To prove there are query spaces (P,w,X, c) which admit no non-trivial coreset, we are left to formally prove there exists a
set of points for which the sensitivity of every point is 1. Together with the lemma above, this will complete the proof.

Similarly to the idea behind the counter example in Section 3, the idea behind finding a set for which every point has
sensitivity 1 is to find a set of points in which every point is linearly separable from the rest of the set. Such a set was shown
to exist in (Huggins et al., 2016).

Lemma A.2 ((Huggins et al., 2016)). There is a finite set of points P ⊆ Rd such that for every p ∈ P and R > 0 there is
yp ∈ Rd of length ‖yp‖ ≤ R such that yp · p = −R, and for every q ∈ P \ {p} we have yp · q ≥ R.

The following theorem stems from the combination of the above claims. Consider the query space (P,w,X, c), where
P is the set of points from the lemma above, and c(x,p) = f(x · p) for every x,p ∈ Rd, where f : R → (0,∞) is a
non-decreasing monotonic function. The theorem proves that, with respect to the query space (P,w,X, c), the sensitivity of
every point in P is 1. We generalize a result from (Huggins et al., 2016) by considering weighted data and by letting the
cost be any function upholding the conditions of Theorem A.3.
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Theorem A.3 (Theorem 3.1). Let f : R→ (0,∞) be a non-decreasing monotonic function that satisfies limx→∞
f(−x)
f(x) = 0,

and let c (x,p) = f (x · p) for every x,p ∈ Rd. Let ε ∈ (0, 1), n ≥ 1 be an integer, and w : Rd → (0,∞). There is a set
P ⊂ Rd of |P | = n points such that if (Q, u) is an ε-coreset of

(
P,w,Rd, c

)
then Q = P .

Proof. Let P ⊆ Rd be the set that is defined in Lemma A.2, and let p ∈ P , and R > 0. By Lemma A.2, there is yp ∈ Rd
such that yp · p = −R, and for every q ∈ P \ {p} we have −yp · q ≤ −R. By this pair of properties,

f (−yp · p) = f (R) and f (−yp · q) ≤ f (−R) ,

where in the last inequality we use the assumption that f is non-decreasing. By letting xp = −yp, we have

w(q)f (xp · q)

w(p)f (xp · p)
=
w(q)f (−yp · q)

w(p)f (−yp · p)
≤ w(q)f (−R)

w(p)f (R)
.

Therefore, by letting wmax ∈ arg maxp∈P w (p),

sP,w,Rd,c (p) ≥ w (p) f (xpu · p)∑
q∈P w (q) f (xp · q)

=
w (p) f (xp · p)

w (p) f (p · xp) +
∑

q∈P\{p} w (q) f (xp · q)

=
1

1 +
∑

q∈P\{p}
w(q)f(xp·q)
w(p)f(xp·p)

≥ 1

1 +
∑
q∈P\{p}

w(q)f(−R)
w(p)f(R)

≥ 1

1 + (n− 1) wmaxf(−R)
w(p)f(R)

.

We also have

lim
R→∞

wmaxf (−R)

w (p) f (R)
=
wmax

w(p)
lim
R→∞

f (−R)

f (R)
= 0,

where the last derivation holds by the assumption on f . Thus we obtain

sP,w,Rd,c (p) = sup
R>0

1

1 + (n− 1) wmaxf(−R)
w(p)f(R)

= 1.

Theorem A.3 then follows from the last equality and Lemma A.1.

B. L∞-Coresets
Lemma B.1 (Lemma 4.2). Let P ⊂ Rd be a finite set, M,k > 0 be constants, f : R→ (0,M ] be non-decreasing function
and g : [0,∞) → [0,∞) be a function. For every x ∈ Rd and p ∈ P define ck (p,x) = f (p · x) + g(‖x‖)

k . Put p ∈ P .
Suppose there is bp > 0 such that for every z > 0

f (‖p‖ z) +
g (z)

k
≤ bp

(
f (−‖p‖ z) +

g (z)

k

)
. (4)

Then {p} is an ε− L∞ coreset with ε = M
f(0) (bp + 1)− 1, i.e., for every x ∈ Rd

max
p′∈P

ck (p′,x) ≤ M

f (0)
(bp + 1) ck (p,x) .

Proof. Let x ∈ Rd and q ∈ P such that x · q > 0. We have, by the monotonic properties of f ,

f (0) ≤ f (x · q) . (5)
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Hence,

max
p′∈P

f (x · p′) ≤M =
M

f (0)
f (0) ≤ M

f (0)
f (x · q) , (6)

where the first inequality is since f is bounded by M , and the last inequality is by (5). By adding g(‖x‖)
k to both sides of (6)

and since 1 ≤ M
f(0) we obtain,

max
p′∈P

ck(p′, x) = max
p′∈P

f (x · p′) +
g (‖x‖)
k

≤ M

f (0)
f (x · q) +

g (‖x‖)
k

≤ M

f (0)

(
f (x · q) +

g (‖x‖)
k

)
.

(7)

The rest of the proof follows by case analysis on the sign of x · p, i.e. (i) x · p ≥ 0 and (ii) x · p < 0.

Case (i): x · p ≥ 0. Substituting q = p in (7) yields

max
p′∈P

ck(p′, x) ≤ M

f (0)

(
f (x · p) +

g (‖x‖)
k

)
=

M

f (0)
ck(p, x) ≤ M

f (0)
(bp + 1)ck(p, x),

(8)

where the last inequality follows by the assumption bp > 0. Case (ii): x · p < 0. In this case x · (−p) > 0. Substituting
q = −p in (7) yields

max
p′∈P

ck(p′, x) ≤ M

f (0)

(
f (x · (−p)) +

g (‖x‖)
k

)
(9)

≤ M

f (0)

(
f (‖x‖ ‖p‖) +

g (‖x‖)
k

)
(10)

≤ M

f (0)
bp

(
f (−‖x‖ ‖p‖) +

g (‖x‖)
k

)
(11)

≤ M

f (0)
bp

(
f (x · p) +

g (‖x‖)
k

)
, (12)

=
M

f(0)
bpck(p, x) ≤ M

f(0)
(bp + 1)ck(p, x), (13)

where (10) and (12) are by the Cauchy-Schwartz inequality and the monotonicity of f , and (11) follows by substituting
z = ‖x‖ in the main assumption of the lemma.

B.1. From ε− L∞ coresets to ε-coresets

In what follows is the full proof for Lemma 4.3. We prove that the algorithm described in Section 4.2, which constructs a
series of L∞ coresets, can indeed give an upper bound on the sensitivity of every input element as well as a near logarithmic
upper bound on the total sensitivity.

Lemma B.2 (Lemma 4.3). Let c : Rd × Rd → (0,∞). Suppose that for some ε ∈ (0, 1) there is a non-decreasing
function ∆ε(n) so that for any P ′ ⊆ Rd of size n there is an ε− L∞ coreset of size at most ∆ε(n) for (P ′,1,Rd, c). Then,
for any P ⊆ Rd of size n we can compute an upper bound s(p) on the sensitivity sP,1,Rd,c(p) for each p ∈ P , so that∑
p∈P sP,1,Rd,c(p) ≤ (1 + ε)∆ε(n) lnn.

Proof. The proof is constructive. We build a sequence of subsets P1 ⊇ P2 ⊇ · · · ⊇ Pm, where P = P1, m ≤ n, and
|Pm| ≤ ∆ε(n). We construct the sequence as follows. If |Pi| ≤ ∆ε(n) the sequence stops. Otherwise, we compute an L∞
ε-coreset Ci for (Pi,1,Rd, c) of size |Ci| ≤ ∆ε(n). We now define Pi+1 = Pi \ Ci.
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Put i ∈ [m]. We now upper bound the sensitivity sP,1,Rd,c(q) for every q ∈ Ci by 1+ε
i and upper bound the total sensitivity∑

p∈P s(p) ≤ (1 + ε)∆ε(n) lnn.

Put x ∈ R and q′ ∈ Ci, and consider 1 ≤ j ≤ i. Let qj ∈ Cj be the points in the ε − L∞ coreset Cj such that
c(qj , x) = maxq∈Cj

c(q, x). We now have that

c(q′, x) ≤ max
p∈Pj

c(p, x) ≤ (1 + ε) max
q∈Cj

c(q, x) = (1 + ε)c(qj , x) (14)

where the first derivations holds since, by construction, q′ ∈ Pj . The second derivation is by the definition of an ε−L∞
coreset. We thus obtain that

c(q′, x)∑
p∈P c(p, x)

≤ c(q′, x)∑i
`=1 c(q`, x)

≤ 1 + ε

i
, (15)

where the second derivation holds since {qj | 1 ≤ j ≤ i} ⊆ P , and the last derivation is by (14). Since (15) holds for any
x ∈ Rd, we obtain that the sensitivity of q′ is upper bounded by

sP,1,Rd,c(q
′) = sup

x∈Rd

c(q′, x)∑
p∈P c(p, x)

≤ 1 + ε

i
.

Hence, for every q′ ∈ Ci we have that sP,1,Rd,c(q
′) ≤ 1+ε

i . Now, the total sensitivity can be bounded by

∑
p∈P

sP,1,Rd,c(p) =

m∑
i=1

(1 + ε)|Ci|
i

≤ ∆ε(n)

m∑
i=1

1 + ε

i
≤ (1 + ε)∆ε(n) lnn.

B.2. Coreset sufficient condition

In what follows we give the full proof for Theorem 4.4. The proof is constructive in the sense that it gives an upper bound
for the sensitivity of every input point and upper bounds the total sensitivity by a term which is near logarithmic in the input
size.

Theorem B.3 (Theorem 4.4). Let M,k > 0 be constants, P ⊆ Rd be a set of points, f : R→ (0,M ] be a monotonic non-
decreasing function, and ck (p′, x) = f (p′ · x) + g(‖x‖)

k for every x ∈ Rd and p′ ∈ P . Suppose there is b : P → (0,∞)
such that for every p ∈ P and every z > 0

f (‖p‖ z) +
g (z)

k
≤ b(p)

(
f (−‖p‖ z) +

g (z)

k

)
. (16)

Let bmax ∈ arg maxp∈P b(p), t = (1 + M
f(0)bmax) lnn, and ε, δ ∈ (0, 1). Lastly, let dV C be the VC-dimension of

(P,1,Rd, ck). Then, there is a weighted set (Q, u), where Q ⊆ P and

|Q| ∈ O
(
t

ε2

(
dV C log t+ log

1

δ

))
,

such that with probability at least 1− δ, (Q, u) is an ε-coreset for the query space (P,1,Rd, ck).

Proof. For p ∈ P we have that

max
p′∈P

ck (p′,x) ≤ M

f (0)
(bp + 1) ck(p,x) ≤ (17)

M

f (0)
(bmax + 1) ck(p,x). (18)

Where (17) is by substituting in Lemma 4.2 and (18) holds since for every p ∈ P , b(p) ≤ bmax. Let ε(p) :=[(
M
f(0) (b(p) + 1)

)
− 1
]

for every {p} ∈ P and let ε =
(
M
f(0) (bmax + 1)

)
− 1. Thus, for every p ∈ P , we have

that {p} is an ε(p)-L∞ coreset which is a ε-L∞ coreset.
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In Lemma 4.3, a sequence of distinct L∞ coresets that cover the entire set P C1 ∪ · · · ∪ Cm ⊆ P are constructed. For every
p ∈ P , let i(p) be the index of the L∞ coreset Ci(p) such that p ∈ Ci(p). Plugging ε and ∆ε(n) = 1 in Lemma 4.3 and its
proof yields that we can upper bound the sensitivity of every p ∈ P by

sP,1,Rd,ck(p) ≤ 1 + ε(p)

i(p)
≤ 1 + ε

i(p)
=

(
M
f(0) (bmax + 1)

)
i(p)

,

where i(p) is the index of p when sorting the points in P by their norm. Furthermore, the total sensitivity is bounded by

t(P,1,Rd, ck) =
∑
p∈P

(
M
f(0) (bmax + 1)

)
i(p)

∈ O
(

(1 +
M

f(0)
bmax) lnn

)
.

Observe that sensitivity of p ∈ P depends on ε(p) =
[(

M
f(0) (b(p) + 1)

)
− 1
]

divided by the index i(p). Hence,
empirically, to obtain smaller total sensitivity, we would prefer to reorder P such that points p with larger value of b(p) are
divided by larger values i(p). Therefore, we can simply sort the points of P according to the values of the function b, from
smallest to largest. Thus, points p with larger value of b(p) are given larger index i(p).

Theorem 4.4 now immediately follows from Theorem 2.3.

C. Main Proofs
In this section, we first prove a series of technical claims. We then utilize those claims to prove the main results of this work.

C.1. Technical Claims

Lemma C.1. Let f : R→ (0,∞) be a monotonic increasing function such that f(0) > 0. Let c, k > 0. There is exactly
one number xkc > 0 that simultaneously satisfies the following claims.

(i) f
(
−
√
ckxkc

)
= x2

kc.

(ii) For every x > 0, if f
(
−
√
ckx
)
> x2 then x < xkc.

(iii) For every x > 0, if f
(
−
√
ckx
)
< x2 then x > xkc.

(iv) There is k0 > 0 such that for every k′ ≥ k0
1

xkc
≤
√
ck′.

Proof. Let g(x) = x2. Define
hkc(x) = f(−

√
ckx)− g(x). (19)

(i): It holds that
hkc(0) = f(0) (20)

and
hkc

(√
f(0) + 1

)
< 0, (21)

where (21) holds since f
(
−
√
ckx
)
≤ f(0) for every x > 0, and g

(√
f(0) + 1

)
= f(0) + 1. From (20) and (21) we

have that 0 ∈
[
hkc

(√
f (0) + 1

)
, hkc(0)

]
. Using the Intermediate Value Theorem (Theorem E.1) we have that there is

x1 ∈
(

0,
√
f(0) + 1

)
such that

hkc(x1) = 0. (22)
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We prove that x1 is unique. By contradiction. Assume that there is x2 6= x1 such that

hkc(x1) = hkc(x2) = 0. (23)

Wlog assume that x1 < x2. By The Mean Value Theorem (Theorem E.2), there is r ∈ (x1, x2) such that

h′kc(r) =
hkc(x2)− hkc(x1)

x2 − x1
(24)

= 0, (25)

where (25) is by (23). The derivative of hkc is

h′kc(x) =
(
f
(
−
√
ckx
)
− g(x)

)′
(26)

=−
√
ckf ′

(
−
√
ckx
)
− g′(x) < 0, (27)

where (26) is by (19) and (27) is since f is monotonic increasing and thus f ′(x) > 0 for every x ∈ R and x, k, c > 0. (27)
is a contradiction to (25). Thus the Assumption (23) is false and x1 is unique.

By (19) and (22)
f
(
−
√
ckx1

)
= g(x1). (28)

By letting xkc = x1 and recalling that g(x) = x2 we obtain

f
(
−
√
ckxkc

)
= x2

kc.

(ii): Let x > 0 such that f
(
−
√
ckx
)
> x2. Plugging this and the definition g(x) = x2 in (19) yields

hkc(x) > 0. (29)

We already proved that h′kc(x) < 0 always. By the Inverse of Strictly Monotone Function Theorem (Theorem E.3) we have
that the inverse h−1

kc of hkc is a strictly monotone decreasing function. Applying h−1
kc on both sides of (29) gives

x < xkc.

(iii): Let x > 0 such that f
(
−
√
ckx
)
< x2. By this and by the definition of g and (19) we have

hkc(x) < 0. (30)

We already proved that h′kc(x) < 0 always. By the Inverse of Strictly Monotone Function Theorem (Theorem E.3) we have
that hkc has a strictly monotone decreasing inverse function h−1

kc . Applying h−1
kc on both sides of (30) gives

x > xkc.

(iv): We need to prove that there is k0 such that for every k′ > k0 we have

xkc ≥
1√
ck′

(31)

By contradiction, assume that for every k′ > 0,

xkc <
1√
ck′

. (32)

Since f is increasing and by (32) −c
√
kxkc > −1 we have that

f
(
−
√
ckxkc

)
> f(−1). (33)
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where (33) holds since f is increasing and by (32) −
√
ckxkc > −1. Since limk→∞

1
ck = 0, there is k0 > 0 such that for

every k > k0

f (−1) >
1

ck

> x2
kc,

(34)

where (34) is by (32). Plugging (34) in (33) yields

f
(
−c
√
kxkc

)
> x2

kc. (35)

In contradictions to (i). Thus

xkc ≥
1√
ck

(36)

Lemma C.2. Let f be either the sigmoid or the logistic regression function and let x1,1 > 0 which is obtained by applying
Lemma C.1(i) with f and k = c = 1. Then, For every x ≥ 0

f (x) + x2

f (−x) + x2
≤ max

{
2,

2

x2
1,1

}
.

Proof. Let x ≥ 0. Substituting k = c = 1 in Lemma C.1(i) yields that f (−x1,1) = x2
1,1. We show that f(x)+x2

f(−x)+x2 ≤

max
{

2, 2
x2
1,1

}
via the following case analysis. (i) f (x) ≥ x2 and f (−x) ≥ x2, (ii) f (x) ≥ x2 and f (−x) < x2, (iii)

f (x) < x2and f (−x) ≥ x2, and (iv) f (x) < x2and f (−x) < x2.

Case (i): f (x) ≥ x2 and f (−x) ≥ x2. Since f (−x) ≥ x2, by substituting k = c = 1 in Lemma C.1(ii), we have that
x ≤ x1,1. Hence

f (−x) + x2 ≥f (−x) (37)
≥f (−x1,1) (38)

=x2
1, (39)

where (37) is since x2 > 0, (38) is since f is increasing and x ≤ x1,1, and (39) is by definition of x1,1. By adding f (x) to
both sides of the assumption f (x) ≥ x2 of Case (i) we obtain

2f (x) ≥ f (x) + x2. (40)

By (40) and (39) we obtain
f (x) + x2

f (−x) + x2
≤ 2f (x)

x2
1,1

≤ 2

x2
1,1

≤ max

{
2,

2

x2
1,1

}
. (41)

where the second inequality holds since f(x) ≤ 1 due to f being the sigmoid function.

Case (ii): f (x) ≥ x2 and f (−x) < x2. Since f (−x) < x2, substituting k = c = 1 in Lemma C.1(iii), there is x1,1 such
that

f (−x) + x2 ≥x2 (42)

>x2
1,1, (43)

where (42) is since f is a positive function and (43) is since x > x1,1 . By adding f (x) to both sides of the assumption
f (x) ≥ x2 of Case (ii) we have that

f (x) + x2 ≤ 2f (x) . (44)
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By (44)) and (43) we obtain
f (x) + x2

f (−x) + x2
≤ 2f (x)

x2
1,1

≤ 2

x2
1,1

≤ max

{
2,

2

x2
1,1

}
. (45)

where the second inequality holds since f(x) ≤ 1 due to f being either the sigmoid or the logistic regression function.

Case (iii): f (x) < x2and f (−x) ≥ x2. By adding x2 to both sides of the assumption f (x) < x2 of Case (iii) we have that

f (x) + x2 ≤ 2x2. (46)

Furthermore, since f (−x) > 0 we have that
f (−x) + x2 ≥ x2. (47)

Combining (46) and (47) we obtain

f (x) + x2

f (−x) + x2
≤ 2x2

x2
≤ 2 ≤ max

{
2,

2

x2
1,1

}
. (48)

Case (iv): f (x) < x2 and f (−x) < x2. By adding x2 to both sides of the assumption f (x) < x2 of Case (iv) we have
that

f (x) + x2 ≤ 2x2. (49)

Furthermore, since f (−x) > 0 we have that
f (−x) + x2 ≥ x2. (50)

Combining (49) and (50) we obtain

f (x) + x2

f (−x) + x2
≤ 2x2

x2
≤ 2 ≤ max

{
2,

2

x2
1,1

}
. (51)

Combining the results of the case analysis: (41), (45), (48),and (51) we have that

f (x) + x2

f (−x) + x2
≤ max

{
2,

2

x2
1,1

}
. (52)

Lemma C.3. Let f be the sigmoid function, let x1,1 be as in Lemma C.2, and let c > 0. Assume that there is D > 1 such
that f(cy)

f
(

y√
k

) ≤ D for every y ≥ 0 and k > 0. Then, there is k0 > 0 such that for every k ≥ k0 and for every x ≥ 0,

f (
√
cx) + x2

k

f (−
√
cx) + x2

k

≤ 3Dmax

{
2,

2

x2
1,1

}
ck.

Proof. Let x ≥ 0 and k, c > 0. We have that

f (cx) +
x2

k
≤Df

(
x√
k

)
+
x2

k
(53)

≤Dmax

{
2,

2

x2
1,1

}(
f

(
− x√

k

)
+
x2

k

)
, (54)

where (53) holds since f(cy)

f
(

y√
k

) < D for every y ≥ 0 and (54) holds since x2

k ≤ D
x2

k , and since, by Lemma C.2, for every

positive z we have that
f (z) + z2

f (−z) + z2
≤ max

{
2,

2

x2
1,1

}
.
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Dividing (54) by f (−
√
cx) + x2

k yields

f (cx) + x2

k

f (−
√
cx) + x2

k

≤ Dmax

{
2,

2

x2
1,1

} f
(
− x√

k

)
+ x2

k

f (−
√
cx) + x2

k

 . (55)

We now proceed to bound Rck =
f
(
− x√

k

)
+ x2

k

f(−
√
cx)+ x2

k

. By denoting z = x√
k

we have that

Rck =
f (−z) + z2

f
(
−
√
ckz
)

+ z2
. (56)

We now compute an upper bound for Rck using the following case analysis: (i) f (−z) ≥ z2 and f
(
−
√
ckz
)
≥ z2,

(ii) f (−z) < z2 and f
(
−
√
ckz
)
< z2, (iii), and (iv) f (−z) < z2 and f

(
−
√
ckz
)
≥ z2. Let zck > 0 be such that

f
(
−
√
ckzck

)
= z2

ck as given by Lemma C.1(i). There are four cases

Case (i): f (−z) ≥ z2 and f
(
−
√
ckz
)
≥ z2. Since f

(
−
√
ckz
)
≥ z2, by Lemma C.1(iii) we have that z ≤ zck. Thus

f
(
−
√
ckz
)
≥f
(
−
√
ckzck

)
(57)

=z2
ck, (58)

where (57) holds since f is monotonic and z ≤ zck, and (58) is from the definition of zck. Furthermore, by adding f (−z)
to both sides of the assumption f (−z) ≥ z2, we have that

f (−z) + z2 ≤ 2f (−z) . (59)

Substituting (59) and (58) in (56) yields

Rck =
f (−z) + z2

f
(
−
√
ckz
)

+ z2
≤ 2f (−z)

z2
ck

≤ 1

z2
ck

, (60)

where the last inequality, is since f(−z) ≤ 1/2 for every z ≥ 0.

Case (ii): f (−z) < z2 and f
(
−
√
ckz
)
< z2. By adding z2 to both sides of the assumption f (−z) < z2, we have that

f (−z) + z2 ≤ 2z2. (61)

Furthermore, since f
(
−
√
ckz
)
> 0 we have that

f
(
−
√
ckz
)

+ z2 ≥ z2. (62)

Combining (61) and (62) yields

Rck =
f (−z) + z2

f
(
−
√
ckz
)

+ z2
≤ 2z2

z2
= 2. (63)

Case (iii): f (−z) ≥ z2 and f
(
−
√
ckz
)
< z2. Since f

(
−
√
ckz
)
< z2, by Lemma C.1 we have that z > zck. Thus

f
(
−
√
ckz
)

+ z2 ≥ z2 ≥ z2
ck. (64)
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By adding f (−z) to both sides of the assumption f (−z) ≥ z2, we have that

2f (−z) ≥ f (−z) + z2. (65)

Substituting (64) and (65) in (56) yields

Rck =
f (−z) + z2

f
(
−
√
ckz
)

+ z2
≤ 2f (−z)

z2
ck

≤ 1

z2
ck

. (66)

Case (iv): f (−z) < z2 and f
(
−
√
ckz
)
≥ z2. By adding z2 to both sides of the assumption f (−z) < z2, we have that

f (−z) + z2 ≤ 2z2. (67)

Since f
(
−
√
ckz
)
> 0 we have that

f
(
−
√
ckz
)

+ z2 > z2. (68)

Plugging (67) and (68) in (56) yields

Rck =
f (−z) + z2

f
(
−
√
ckz
)

+ z2
≤ 2z2

z2
= 2. (69)

Combining the results of the case analysis: (60), (63), (66),and (69) we have that

Rck ≤ 2 +
1

z2
ck

. (70)

Furthermore, there exists k0 > 0 such that for every k ≥ k0,

1

z2
ck

≤ ck. (71)

Substituting (71) in (70) yields
Rck ≤ 2 + ck, (72)

by (55) we have
f (cx) + x2

k

f (−
√
cx) + x2

k

≤ Dmax

{
2,

2

x2
1,1

}
Rck.

Substituting (72) in the last term gives

f (cx) + x2

k

f (−
√
cx) + x2

k

≤ Dmax

{
2,

2

x2
1,1

}
(2 + ck) .

It holds that for every k ≥ 1
c we have 2 ≤ 2ck plugging this in the above term yields

f (cx) + x2

k

f (−
√
cx) + x2

k

≤ 3Dmax

{
2,

2

x2
1,1

}
ck.

The following lemma is similar to Lemma C.3 above, but for the logistic regression function. The proof is similar to the
proof of Lemma C.3.
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Lemma C.4. Let f be the logistic regression function, let x1,1 be as in Lemma C.2, and let c,R > 0. Assume that there is
D > 1 such that f(cy)

f
(

y√
k

) ≤ D for every y ≥ 0 and k > 0. Then, there is k0 > 0 such that for every k ≥ k0 and for every

0 ≤ x ≤ R,
f (cx) + x2

k

f (−cx) + x2

k

≤ 3RDmax

{
2,

2

x2
1,1

}
ck.

Lemma C.5. Let f(x) = 1
1+e−x for every x ∈ R and let c > 0. Then, there is k0 > 0 such that for every k ≥ k0 and for

every x ≥ 0

f (cx) + x2

k

f (−cx) + x2

k

≤ 66ck

Proof. It holds that f (0) > 0. Applying Lemma C.1 with k = c = 1 yields x1,1 such that f (−x1,1) = x2
1,1. We now

bound x1,1. Calculation shows that

f
(
−
√

ln (1.2)
)
>
(√

ln (1.2)
)2

.

Plugging x =
√

ln (1.2), k = 1, c = 1 in Lemma C.1(ii) yields

x1,1 ≥
√

ln (1.2). (73)

By applying Lemma C.2 with f we have

f (x) + x2

f (−x) + x2
≤ max

{
2,

2

x2
1,1

}
≤ 11, (74)

where the last inequality is by (77).

Since f (y) ≤ 1 for every y > 0 and f
(
x√
k

)
≥ 1

2 , for every c, k > 0 we have that

f (cx)

f
(
x√
k

) ≤ 2. (75)

Applying Lemma C.3 with f,D = 2 yields
f (cx) + x2

k

f (−cx) + x2

k

≤ 66kc. (76)

Lemma C.6. Let f = log(1 + ex) for every x ∈ R and let c,R > 0. Then, there is k0 > 0 such that for every k ≥ k0 and
for every 0 ≤ x ≤ R

f(cx) + x2

k

f(−cx) + x2

k

≤ 3R
log
(
2ecR

)
log(2)

kc.

Proof. Let 0 ≤ x ≤ R. Applying Lemma C.1 with k = c = 1 yields x1,1 such that f (−x1,1) = x2
1,1. We now bound x1,1.

By simple calculations we have that

f
(
−
√

ln (1.2)
)
>
(√

ln (1.2)
)2

.

Plugging x =
√

ln (1.2), k = 1, c = 1 in Lemma C.1(ii) yields

x1,1 ≥
√

ln (1.2). (77)

For every c, k > 0, since x ≤ R and f is non-decreasing we have that

f (cx) ≤ f (cR) , (78)
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furthermore, since x ≥ 0 and f is increasing we have that

f

(
x√
k

)
≥ log (2) . (79)

We have that

f (cx)

f
(
x√
k

) ≤ f (cR)

log (2)
(80)

=
log
(
1 + ecR

)
log (2)

(81)

≤
log
(
2ecR

)
log (2)

, (82)

where (80) is by (78) and (79), (81) is by the definition of f and (82) holds since Rc > 0. Applying Lemma C.4 with

f,D =
log(2ecR)

log(2) yields

f (cx) + x2

k

f (−cx) + x2

k

≤ 3R
log
(
2ecR

)
log (2)

kc. (83)

C.2. Proofs of Our Main Claims

We start by proving the main claims with respect to the sigmoid activation function; see Lemma C.7 and Theorem C.8. We
then prove the main claims for the logistic regression activation function; see Lemma C.9 and Theorem C.10.

Lemma C.7. Let P = {p1, . . . ,pn} ⊂ Rd be a set of points, sorted by their length. I.e. ‖pi‖ ≤ ‖pj‖ for every

1 ≤ i ≤ j ≤ n. Let k > 0 be a sufficiently large constant and csigmoid,k(p,x) = 1
1+e−p·x + ‖x‖2

k for every x ∈ Rd and

p ∈ P . Then the sensitivity of every pj ∈ P is bounded by s(p) = sP,1,Rd,csigmoid,k
(p) ∈ O

(
‖pj‖k+1

j

)
, and the total

sensitivity is

t =
∑
p∈P

s(p) ∈ O

log n+ k

n∑
j=1

‖pj‖
j

 .

Proof. Define f(z) = 1
1+e−z and g(z) = z2 for every z ∈ R. Let x ∈ Rd, pj ∈ P and i ∈ [1, j] be an integer. We

substitute c = ‖pi‖ in Lemma C.5 to obtain that for every z > 0

f(‖pi‖ z) + z2

k

f(−‖pi‖ z) + z2

k

≤ 66 ‖pi‖ k.

Denote bpi
= 66 ‖pi‖ k and multiply the above term by f (−‖pi‖ z) + z2

k to get

f (‖pi‖ z) +
z2

k
≤ bpi

(
f (−‖pi‖ z) +

z2

k

)
.

Substituting in Lemma 4.2 p = pi, f (z) = 1
1+e−z , g (z) = z2,M = 1, f (0) = 1

2 yields

max
p′∈P

csigmoid,k (p′,x) ≤ 2 (bpi
+ 1) csigmoid,k (pi,x) . (84)

Thus

csigmoid,k (pj ,x) ≤max
p′∈P

csigmoid,k (p′,x) (85)

≤2 (bpi
+ 1) csigmoid,k (pi,x) , (86)
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where (92) is since pj ∈ P and (93) is by (84). Dividing both sides by 2 (bpi
+ 1) yields

csigmoid,k (pi,x) ≥ csigmoid,k (pj ,x)

2 (bpi
+ 1)

. (87)

We now proceed to bound the sensitivity of pj . Since the set of points {p1, . . . ,pj} is a subset of P , and since the cost
function csigmoid,k (pj ,x) is positive we have that

∑
p′∈P

csigmoid,k (p′,x) ≥
j∑
i=1

csigmoid,k (pi,x) . (88)

By summing (94) over i ≤ j, we obtain

j∑
i=1

csigmoid,k (pi,x) ≥ csigmoid,k(pj ,x)

j∑
i=1

1

2(bpi + 1)

≥ csigmoid,k(pj ,x)
j

2(bpj
+ 1)

,

(89)

where the last inequality holds since bpi = 66 ‖pi‖ k ≤ bpj
for every i ≤ j. Combining (95) and (96) yields∑

p′∈P
csigmoid,k(p′,x) ≥ jcsigmoid,k(pj ,x)

2(bpj + 1)
(90)

Therefore, the sensitivity is bounded by

sP,1,Rd,csigmoid,k
(pj) = sup

x∈Rd

csigmoid,k(pj ,x)∑
p′∈P csigmoid,k(p′,x)

≤
2(bpj + 1)

j
≤ 2(66 ‖pj‖ k + 1)

j
.

Summing this sensitivity bounds the total sensitivity by

n∑
j=1

2(66 ‖pj‖ k + 1)

j
∈ O

log n+ k

n∑
j=1

‖pj‖
j

 .

In what follows is the main claim and proof for the sigmoid activation function.

Theorem C.8 (Theorem 5.1). Let P be a set of n points in the unit ball of Rd, ε, δ ∈ (0, 1), and k > 0 be a sufficiently
large constant. For every p, x ∈ Rd, let csigmoid,k (p,x) = 1

1+e−p·x + ‖x‖2
k . Finally, let (Q, u) be the output of a call

to MONOTONIC-CORESET(P, ε, δ, k); see Algorithm 1. Then, with probability at least 1 − δ, (Q, u) is an ε-coreset for
(P,1,Rd, csigmoid,k). Moreover, for t = (1 +k) log n we have |Q| ∈ O

(
t
ε2

(
d log t+ log 1

δ

))
, and (Q, u) can be computed

in O(dn+ n log n) time.

Proof. By (Huggins et al., 2016), the dimension of (P,w,Rd, c) is at most d + 1, where (P,w) is a weighted set, P ⊆
Rd, and c(p, x) = f (p · x) for some monotonic and invertible function f . By Lemma C.7, the total sensitivity of
(P,1,Rd, csigmoid,k) is bounded by

t ∈ O

log n+ k

n∑
j=1

‖pj‖
j

 = O

log n+ k

n∑
j=1

1

j


= O ((1 + k) log n) ,
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where the last equality holds since the input points are in the unit ball.

Plugging these upper bounds on the dimension and total sensitivity of the query space in Theorem 2.3, yields that a call to
Algorithm 1, which samples points from P based on their sensitivity bound, returns the desired coreset (Q, u). The running
time is dominated by sorting the length of the points in O(n log n) time after computing them in O(nd) time.

Lemma C.9. Let P = {p1, . . . ,pn} ⊂ Rd be a set of points, sorted by their length, i.e. ‖pi‖ ≤ ‖pj‖ for every

1 ≤ i ≤ j ≤ n. Let R > 0, k > 0 be a sufficiently large constant and clogistic,k(p,x) = log(1 + ep·x) + ‖x‖2
k for every

x ∈ B(0, R) and p ∈ P . Denote by B(0, R) the ball of radius R centered at the origin. Then the sensitivity of every

pj ∈ P is bounded by s(p) = sP,1,B(0,R),clogistic,k(p) ∈ O
(
R3‖pj‖k+R2

j

)
, and the total sensitivity is

t =
∑
p∈P

s(p) ∈ O

R2 log n+R3k

n∑
j=1

‖pj‖
j

 .

Proof. Define f(z) = log(1 + ez) and g(z) = z2 for every z ∈ R. Let x ∈ Rd, pj ∈ P and i ∈ [1, j] be an integer. We
substitute c = ‖pi‖ in Lemma C.6 to obtain that for every z > 0

f(‖pi‖x) + x2

k

f(−‖pi‖x) + x2

k

≤ 3R
log
(
2e‖pi‖R

)
log(2)

k ‖pi‖ .

Denote bpi = 3R
log

(
2e‖pi‖R

)
log(2) k ‖pi‖ and multiply the above term by f(−‖pi‖ z) + z2

k to get

f(‖pi‖ z) +
z2

k
≤ bpi

(
f(−‖pi‖ z) +

z2

k

)
.

Substituting in Lemma B.1 p = pi, f(z) = log(1 + ez), g(z) = z2,M = log(1 + eR), f(0) = log(2) yields

max
p′∈P

clogistic,k(p′,x) ≤

log(1 + eR)(bpi
+ 1)clogistic,k (pi,x)

log(2)
.

(91)

Thus

clogistic,k(pj ,x) ≤ max
p′∈P

clogistic,k(p′,x) ≤ (92)

log(1 + eR)(bpi + 1)clogistic,k (pi,x)

log(2)
, (93)

where (92) is since pj ∈ P and (93) is by (91). Dividing both sides by log(1+eR)
log(2) (bpi

+ 1) yields

clogistic,k(pi,x) ≥ clogistic,k(pj ,x)
log(1+eR)
log(2) (bpi

+ 1)
. (94)

We now proceed to bound the sensitivity of pj . Since the set of points {p1, . . . ,pj} is a subset of P , and since the cost
function clogistic,k(pj ,x) is positive we have that

∑
p′∈P

clogistic,k(p′,x) ≥
j∑
i=1

clogistic,k(pi,x). (95)



Coreset for Scalable Learning of Monotonic Kernels

By summing (94) over i ≤ j, we obtain

j∑
i=1

clogistic,kpi,x) ≥

clogistic,k(pj ,x)

j∑
i=1

log(2)

log(1 + eR)(bpi + 1)
≥

clogistic,k(pj ,x)
j log(2)

log(1 + eR)(bpj
+ 1)

,

(96)

where the last inequality holds since bpi = 3R log(1+eR)
log(2) ‖pi‖ k ≤ bpj

for every i ≤ j. Combining (95) and (96) yields

∑
p′∈P

clogistic,k(p′,x) ≥ j log(2)clogistic,k(pj ,x)

log(1 + eR)(bpj + 1)
(97)

Therefore, the sensitivity is bounded by

sP,1,B(0,R),clogistic,k(pj) =

sup
x∈B(0,R)

clogistic,k(pj ,x)∑
p′∈P clogistic,k(p′,x)

≤

log(1 + eR)(bpj + 1)

j log(2)
≤

log(1 + eR)
(

3R log(1+eR)
log(2) ‖pj‖ k + 1

)
j log(2)

.

Thus, sP,1,B(0,R),clogistic,k(pj) ∈ O
(
R3‖pj‖k+R2

j

)
. Summing this sensitivity bounds the total sensitivity by

n∑
j=1

R3 ‖pj‖ k +R2

j
∈ O

R2 log n+R3k

n∑
j=1

‖pj‖
j

 .

In what follows is the main claim and proof for the logistic regression function.

Theorem C.10 (Theorem 5.2). LetP be a set of n points in the unit ball of Rd, ε, δ ∈ (0, 1),R, k > 0 where k is a sufficiently
large constant, and t = R log n(1 + Rk). For every p ∈ Rd,x ∈ B(0, R) let clogistic,k(p,x) = log (1 + ep·x) + ‖x‖2

k .
Finally, let (Q, u) be the output of a call to MONOTONIC-CORESET(P, k,m) where m ∈ Ω

(
t
ε2

(
d2 ln t+ ln 1

δ

))
; see

Algorithm 1. Then, with probability at least 1− δ, (Q, u) is an ε-coreset for (P,1,Rd, clogistic,k). Moreover, |Q| ∈ O(m)
and (Q, u) can be computed in O(nd+ n log n) time.

Proof. By (Huggins et al., 2016), the dimension of (P,w,Rd, c) is at most d+1, where (P,w) is a weighted set, P ⊆ Rd, and
c(p, x) = f (p · x) for some monotonic and invertible function f . By Lemma C.9, the total sensitivity of (P,1,Rd, clogistic,k)
is bounded by

t ∈ O

R2 log n+R3k

n∑
j=1

‖pj‖
j

 =

O

R2 log n+R3k

n∑
j=1

1

j

 = O
(
R2 log n(1 +Rk)

)
,

where the last equality holds since the input points are in the unit ball.
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Plugging these upper bounds on the dimension and total sensitivity of the query space in Theorem 2.3, yields that a call to
MONOTONIC-CORESET, which samples points from P based on their sensitivity bound, returns the desired coreset (Q, u).
The running time is dominated by sorting the length of the points in O(n log n) time after computing them in O(nd) time.
Sampling m = |Q| points from n points according to such a given distribution takes O(1) time after pre-processing of O(n)
time.

C.3. Additional Problems

Theorem C.11. Let P be a set of n points in the unit ball of Rd, ε, δ ∈ (0, 1), R, k > 0 where k is a sufficiently large
constant, and t = R log n(1 +Rk). For every p ∈ Rd,x ∈ B(0, R) let csvm,k(p,x) = max (0, 1 + p · x) + ‖x‖2

k . Finally,
let (Q, u) be the output of a call to MONOTONIC-CORESET(P, k,m) where m ∈ Ω

(
t
ε2

(
d2 ln t+ ln 1

δ

))
; see Algorithm 1.

Then, with probability at least 1 − δ, (Q, u) is an ε-coreset for (P,1,Rd, clogistic,k). Moreover, |Q| ∈ O(m) and (Q, u)
can be computed in O(nd+ n log n) time.

The proof of the theorem above follows similarly to the proof of Theorem C.10 from the previos section.

D. Bounding the VC-dimension
In what follows we first give the formal definition of the VC dimension of a given query space. We then formally bound the
VC dimensions of the sigmoid and logistic regression cost functions.

Definition D.1 (VC-dimension). (Feldman & Langberg, 2011; Vapnik & Chervonenkis, 1971) For a query space (P,w,X, c)
we define

range (x, r) = {p ∈ P | w (p) c (p.x) ≤ r} ,

for every x ∈ X and r ≥ 0 . The (VC) dimension of (P,w,X, c) is the size |G| of the largest subset G ⊆ P such that have

|{G ∩ range (x, r) |x ∈ X, r ≥ 0}| = 2|G|.

Theorem D.2 (Theorem 8.14 in (Lucic et al., 2017) and generalized in (Lucic et al., 2017)). Let h be a function from
Rm × Rd to {0, 1}, determining the class

H = {hθ(·) | hθ : X → R++, θ ∈ Rm} .

Suppose that h can be computed by an algorithm that takes as input the pair (θ, x) ∈ Rm × Rn and returns hθ(x) after no
more than t of the following operations:

1. the arithmetic operations +,−,× and / on real numbers,

2. jumps conditioned on >,≥, <,≤,= and 6= comparisons of real numbers, and

3. output 0, 1

and no more than p operations of the exponential function x → ex on real numbers, then the VC-dimension of H is
O(m2p2 +mp(t+ log(mp))).

Lemma D.3 (VC-dimension of the Sigmoid loss function). Let k > 0 be a constant and (P,w,Rd, csigmoid,k) be a

query space where csigmoid,k(p,x) = 1
1+e−p·x + ‖x‖2

k for every x ∈ Rd and p ∈ P . Then the VC-dimension of
(P,w,Rd, csigmoid,k) is at most O(d2).

Proof. Observe that for every x ∈ Rd and p ∈ P we can evaluate csigmoid,k(p,x) using t ∈ O(d) addition, multiplication,
and division operations and p ∈ O(1) operations of the exponential function x → ex. Then, by Theorem D.2, the
VC-dimension of (P,w,Rdcsigmoid,k) is bounded by O(d2).

Lemma D.4 (VC-dimension of the Logistic Regression loss function). Let k > 0 be constants and (P,1,Rd, clogistic,k)

be a query space where clogistic,k(p,x) = log(1 + ep·x) + ‖x‖2
k for every x ∈ Rd and p ∈ P . Then the VC-dimension of

(P,1,Rd, c) is at most O(d2).
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Proof. We first bound the VC-dimension of (P,1,Rd, g), where

g(p,x) = ec(p,x) = (1 + ep·x)e
‖x‖2

k .

Observe that we can evaluate g(p,x) using t ∈ O(d) addition, multiplication, and division operations and p ∈ O(1)
operations of the exponential function x→ ex. Then, by Theorem D.2, the VC-dimension of (P,1,Rd, g) is bounded by
O(d2).

We now show that the VC-dimension of (P,1,Rd, c) is upper bounded by the VC-dimension of (P,1,Rd, g). Recall that
for the query space (P,1,Rd, c) and every x ∈ Rd and r ≥ 0 we have that range(x, r) = {p ∈ P | c(p,x) ≤ r}. For the
query space (P,1,Rd, g) and every x ∈ Rd and r ≥ 0 we have that range′(x, r) = {p ∈ P | g(p,x) ≤ r}.

For every r ≥ 0 let rg := er. Then we have that

range(x, r) = {p ∈ P | c(p,x) ≤ r} =
{
p ∈ P | ec(p,x) ≤ er

}
= {p ∈ P | g(p,x) ≤ rg} = range′(x, rg).

Therefore, for every G ⊆ P we have that

|{G ∩ range (x, r) |x ∈ X, r ≥ 0}| ≤ |{G ∩ range′ (x, rg) |x ∈ X, rg ≥ 0}| .

Hence, by the definition of VC-dimension (see Definition D.1), we have that the VC-dimension of the query space
(P,1,Rd, c) is upper bounded by the VC-dimension of the query space (P,1,Rd, g) which is upper bounded by O(d2).

E. Known results
For completeness, in what follows we formally state known claims, which were utilized in the proofs of the previous
sections.

Theorem E.1 (Intermediate Value Theorem). Let a, b ∈ R such that a < b and let f : [a, b]→ R be a continuous function.
Then for every u such that

min {f (a) , f (b)} ≤ u ≤ max {f (a) , f (b)} ,

there is c ∈ (a, b) such that f (c) = u.

Theorem E.2 (Mean Value Theorem). Let a, b ∈ R such that a < b and f : [a, b]→ R a continuous function on the closed
interval [a, b] and differentiable on the open interval (a, b) . Then there is c ∈ (a, b) such that

f ′ (c) =
f (b)− f (a)

b− a
.

Theorem E.3 (Inverse of Strictly Monotone Function Theorem). Let I ⊆ R. Let f : I → R be strictly monotonic function.
Let the image of f be J . Then f has an inverse function f−1and

• If f is strictly increasing then so is f−1.

• If f is strictly decreasing then so is f−1.


