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Abstract
The definition of Linear Symmetry-Based Dis-
entanglement (LSBD) formalizes the notion of
linearly disentangled representations, but there
is currently no metric to quantify LSBD. Such a
metric is crucial to evaluate LSBD methods and to
compare to previous understandings of disentan-
glement. We propose DLSBD, a mathematically
sound metric to quantify LSBD, and provide a
practical implementation for SO(2) groups. Fur-
thermore, from this metric we derive LSBD-VAE,
a semi-supervised method to learn LSBD repre-
sentations. We demonstrate1 the utility of our
metric by showing that (1) common VAE-based
disentanglement methods don’t learn LSBD repre-
sentations, (2) LSBD-VAE, as well as other recent
methods, can learn LSBD representations needing
only limited supervision on transformations, and
(3) various desirable properties expressed by ex-
isting disentanglement metrics are also achieved
by LSBD representations.

1. Introduction
Learning low-dimensional representations that disentangle
the underlying factors of variation in data is considered
an important step towards interpretable machine learning
with good generalization. To address the fact that there is
no consensus on what disentanglement entails and how to
formalize it, Higgins et al. (2018) propose a formal def-
inition for Linear Symmetry-Based Disentanglement, or
LSBD, arguing that underlying real-world symmetries give
exploitable structure to data (see Sect. 3).

*Equal contribution 1Eindhoven University of Technology
(TU/e), Eindhoven, The Netherlands 2Eindhoven Artificial In-
telligence Systems Institute (EAISI), Eindhoven, the Nether-
lands 3Prosus, Amsterdam, The Netherlands. Correspondence
to: Loek Tonnaer <l.m.a.tonnaer@tue.nl>, Luis A. Pérez Rey
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LSBD emphasizes that the variability in data observations
is often due to some transformations, and that good data rep-
resentations should reflect these transformations. A typical
setting is that of an agent interacting with its environment.
An action of the agent will transform some aspect of the
environment and its observation thereof, but keeps all other
aspects invariant. It is often easy and cheap to register the
actions that an agent performs and how they transform the
observed environment, which can provide useful informa-
tion for learning disentangled representations.

However, there is currently no general metric to quantify
LSBD. Such a metric is crucial to properly evaluate methods
aiming to learn LSBD representations and to relate LSBD to
previous definitions of disentanglement. Although previous
works have evaluated LSBD by measuring performance on
downstream tasks (Caselles-Dupré et al., 2019) or by mea-
suring specific traits related to LSBD (Painter et al., 2020;
Quessard et al., 2020), none of these evaluation methods
directly quantify LSBD according to its formal definition.

We propose DLSBD, a well-formalized and generally appli-
cable metric that quantifies the level of LSBD in learned data
representations (Sect. 4). We show an intuitive justification
of this metric, as well as its theoretical derivation. We also
provide a practical implementation to compute DLSBD for
common SO(2) symmetry groups. Furthermore, we show
that our metric formulation can be used to derive a semi-
supervised method to learn LSBD representations, which
we call LSBD-VAE (Sect. 5). To make LSBD-VAE more
widely applicable, we also demonstrate how to disentangle
symmetric properties from other non-symmetric properties,
and how to quantify this disentanglement with DLSBD.

We show the utility of DLSBD by quantifying LSBD in a
number of settings, for a variety of datasets with underly-
ing SO(2) symmetries and other non-symmetric properties
(Sect. 6 & 7). First, we evaluate common VAE-based disen-
tanglement methods and show that most don’t learn LSBD
representations. Second, we evaluate LSBD-VAE and other
recent methods that specifically target LSBD, showing that
they can obtain much better DLSBD scores while needing
only limited supervision on transformations. Third, we com-
pare DLSBD with existing disentanglement metrics, show-
ing that various desirable properties expressed with these
metrics are also achieved by LSBD representations.

https://github.com/luis-armando-perez-rey/lsbd-vae
https://github.com/luis-armando-perez-rey/lsbd-vae
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2. Related Work
Plenty of works have focused on learning and quantify-
ing disentangled representations recently, but research has
shown that there is little consensus about the exact definition
of disentanglement and methods often do not achieve it as
well as they proclaim (Locatello et al., 2019). To introduce
some much-needed formalization, Higgins et al. (2018) pro-
posed to define disentanglement with respect to symmetry
transformations acting on the data. They used group theory
to provide two formal definitions, which we refer to as (Lin-
ear) Symmetry-Based Disentanglement, or (L)SBD. In this
paper we focus only on LSBD, not SBD.

Several methods have been proposed to learn LSBD repre-
sentations (Caselles-Dupré et al., 2019; Painter et al., 2020;
Quessard et al., 2020). These methods also learn to repre-
sent the transformations acting on the input data, assuming
various levels of supervision on these transformations. Other
methods have previously focused on capturing transforma-
tions of the data outside the context of disentanglement as
well (Cohen & Welling, 2015; Sosnovik et al., 2019; Worrall
et al., 2017).

Although some of these works do propose metrics that mea-
sure some aspect of LSBD, none of them provide a general
metric that directly quantifies LSBD according to its for-
mal definition and for any data representation. Painter et al.
(2020) mention two metrics: Independence Score measures
whether the actions of the subgroups have effects on inde-
pendent vector spaces, Factor Leakage only measures the
number of dimensions in which the subgroup actions are
encoded, which is not a property required by LSBD. Neither
are general quantifications of LSBD. Additionally, Ques-
sard et al. (2020) also propose a “metric”, but this is in fact
a loss component particular to their group representation
parameterization and cannot be used as a general metric for
LSBD.

3. Linear Symmetry-Based Disentanglement
Higgins et al. (2018) provide a formal definition of linear
disentanglement that connects symmetry transformations
affecting the real world (from which data is observed) to
the internal representations of a model. The definition is
grounded in concepts from group theory, we provide a more
detailed description of these concepts in Appendix A.

The definition2 considers a group G of symmetry transfor-
mations acting on the data space X through the group action
· : G × X → X . In particular, G can be decomposed as
the direct product of K groups G = G1 × . . . × GK . A

2The original definition actually considers an additional set of
world states W , but our definition is more practical and can be
shown to be the same under mild conditions, see Appendix B.

model’s internal representation of data is modeled with the
encoding function h : X → Z that maps data to the embed-
ding space Z. The definition for Linearly Symmetry-Based
Disentangled (LSBD) representations then formalizes the
requirement that a model’s encoding h should reflect and
disentangle the transformation properties of the data, and
that the transformation properties of the model’s encoding
should be linear. The exact definition is as follows:

Definition: Linear Symmetry-Based Disentanglement
(LSBD) A model’s encoding map h : X → Z, where
Z is a vector space, is LSBD with respect to the group
decomposition G = G1 × . . .×GK if

1. there is a decomposition of the embedding space Z =
Z1 ⊕ . . .⊕ ZK into K vector subspaces,

2. there are group representations for each subgroup in the
corresponding vector subspace ρk : Gk → GL(Zk),
k ∈ {1, . . . ,K}

3. the group representation ρ : G → GL(Z) acts on Z as

ρ(g) · z = (ρ1(g1) · z1, . . . , ρK(gK) · zK), (1)

for g = (g1, . . . , gK) ∈ G and z = (z1, . . . , zK) ∈ Z
with gk ∈ Gk and zk ∈ Zk.

4. the map h is equivariant with respect to the actions of
G on X and Z, i.e. , for all x ∈ X and g ∈ G it holds
that h(g · x) = ρ(g) · h(x).

Furthermore, we say that a group representation ρ is linearly
disentangled with respect to the group decomposition G =
G1 × . . .×GK if it satisfies criteria 1 to 3 from the LSBD
definition above.

4. Quantifying LSBD: DLSBD

4.1. Intuition: Measuring Equivariance with Dispersion

To motivate our metric, let’s first assume a setting in which
a suitable linearly disentangled group representation ρ is
known. Let’s further assume that the dataset of observations
can be expressed with respect to G acting on some base
point x0 ∈ X , i.e. {xn}Nn=1 = {gn ·x0}Nn=1. Formally, this
assumes that the action of G on X is regular. In this case,
we can use the inverse group elements g−1

n to transform
each data point toward the base point x0, i.e.

x0 = g−1
1 · x1 = . . . = g−1

N · xN . (2)

Since ρ is linearly disentangled, we only need to measure
the equivariance of the encoding map h to quantify LSBD.
Equivariance is achieved when h(g ·x) = ρ(g) ·h(x), for all
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Figure 1: A dataset of images from a rotating object ex-
pressed in terms of the group G = SO(2) acting on a base
image x0. It is possible to quantify the level of LSBD of
an encoding map h by measuring its equivariance with re-
spect to a group representation ρ. Since all data has been
generated from x0, equivariance can be measured as the
dispersion of the points {ρ(g−1

n ) · h(xn)}Nn=1.

g ∈ G, x ∈ X . Given the dataset described above, we can
check this property for x ∈ {xn}Nn=1 and g ∈ {gn}Nn=1.3

In particular, from Equation (2) we can see that we have
equivariance if

h(x0) = ρ(g−1
1 ) · h(x1) = . . . = ρ(g−1

N ) · h(xN ). (3)

This not only characterizes perfect equivariance, but also
allows for an efficient way to quantify how close we are to
true equivariance, by measuring the dispersion of the points
{ρ(g−1

n ) · h(xn)}Nn=1.4 Given a suitable norm ∥ · ∥Z in Z,
we can thus quantify LSBD in this setting as

1

N

N∑
n=1

∥∥ρ(g−1
n ) · h(xn)−M∗∥∥2

Z
,

with M∗ =
1

N

N∑
n′=1

ρ(g−1
n′ ) · h(xn′),

(4)

i.e. we compute the mean M∗ of {ρ(g−1
n ) · h(xn)}Nn=1 and

use the average squared distance to this mean for points in
{ρ(g−1

n ) · h(xn)}Nn=1 as our LSBD metric, see Fig. 1.

However, this formulation requires knowing the right lin-
early disentangled group representation and a suitable norm
in Z. Moreover, it implicitly assumes a uniform probabil-
ity measure over the group elements {gn}Nn=1. In the next
section we formulate our metric for a more general setting.

3Note that {gn}Nn=1 can be used to describe all known group
transformations between elements in the dataset by means of com-
position and inverses, since xi = gi · (g−1

j · xj). Thus it suffices
to check equivariance for these N group transformations.

4Note that we do not actually need to know x0 nor h(x0).

4.2. DLSBD: A Metric for LSBD

Generalizing the ideas from the previous section with con-
cepts from measure theory, we propose a metric to measure
the level of LSBD of any encoding h : X → Z given a data
probability measure µ on X , provided that µ can be written
as the pushforward GX(·, x0)#ν of some probability mea-
sure ν on G by the function GX(·, x0) for some base point
x0. More formally,

µ(A) = GX(·, x0)#ν(A)

= ν ({g ∈ G | GX(g, x0) ∈ A}) ,
(5)

for Borel subsets A ⊂ X . Note that this is only possible if
the action GX is transitive.

For example, the situation of a dataset with N datapoints
{xn}Nn=1 = {gn · x0}Nn=1 corresponds to the case in which
ν and µ are empirical measures on the group G and data
space X , respectively:

ν :=
1

N

N∑
i=1

δgi , µ :=
1

N

N∑
i=1

δxi
. (6)

We define the metric DLSBD for an encoding h and a mea-
sure µ as

DLSBD :=

inf
ρ∈P(G,Z)

∫
G

∥∥ρ(g)−1 · h(g · x0)−Mρ,h,x0

∥∥2
ρ,h,µ

dν(g),

with Mρ,h,x0
=

∫
G

ρ(g′)−1 · h(g′ · x0)dν(g
′), (7)

where the norm ∥ · ∥ρ,h,µ is a Hilbert-space norm depending
on the representation ρ, the encoding map h : X → Z,
and the data measure µ. More details of this norm can be
found in Appendix C. Moreover, P(G,Z) denotes the set
of linearly disentangled representations of G in Z. Lower
values of DLSBD indicate better disentanglement, zero being
optimal.

4.3. Practical Computation of DLSBD

There are two main challenges for computing the metric of
Equation (7). First, to calculate the integrals in the formula,
all possible datapoints that can be expressed as g · x0 with
g ∈ G = G1×· · ·×GK must be available. Second, the infi-
mum of the integrals over all possible linearly disentangled
representations must be estimated. This requires finding the
possible invariant subspaces Z = Z1 ⊕ · · · ⊕ ZK induced
by the encoding h over which the group representations are
disentangled.

We present a practical implementation of an upper bound
to DLSBD for an encoding function h given a dataset X
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Figure 2: Consider a dataset modeled by a group decomposition G = G1 × · · · × GK acting on x0 and embedded in a
latent space Z via h. In this example the subgroup Gk = SO(2) models the rotations of an airplane. Other subgroups G ̸=k

could also be acting e.g. changes in airplane color. The first step to calculate the disentanglement of Gk is to construct a set
of data embeddings Zk ⊆ Z whose variability is due to Gk. These embeddings are then projected into a 2-dimensional
space through PCA. For these projected embeddings we can describe the group representations in a simple parametric form
ρk,w. For a given ρk,w the equivariance of Gk is measured as the dispersion after applying the action of the inverse group
representation ρ−1

k,w.

generated by some known group transformations. This
approximation of DLSBD is designed for a group decom-
position G = G1 × · · · × GK where each Gk = SO(Dk)
with k ∈ {1, . . . ,K} the group of rotations in Dk dimen-
sions. This implementation approximates the integrals of
Equation (7) by using the empirical distribution of X . The
invariant subspaces of Z to the subgroup actions are found
by applying a suitable change of basis. In the new basis,
the disentangled group representations are expressed in a
parametric form whose parameters are optimized to find
the tightest bound to DLSBD. See Fig. 2 for an intuitive
description of the process.

Assume there is a dataset X that can be modeled in terms of
the group decomposition G = G1 × · · ·Gk. For each Gk

subgroup there is a set of known group elements Gk ⊆ Gk

uniformly sampled such that the dataset is described in terms
of all elements in G = G1 × · · · × GK and a base point x0

as X = {(g1, . . . , gK) · x0|gk ∈ Gk, k ∈ {1, . . . ,K}} .

For each subgroup Gk we construct a set of encoded
data Zk ⊆ Z whose variability should only depend
on the action of Gk. The set Zk is given by Zk =
{zk(g1, . . . , gK)|gj ∈ Gj , j ∈ {1, . . . ,K}}, in which

zk(g1, . . . , gK) = h((g1, . . . , gK) · x0)

− 1

|Gk|
∑
g′∈Gk

h((g1, . . . , gk−1, g
′, gk+1, . . . , gK) · x0).

(8)

Similar to Cohen & Welling (2014), we find a suitable
change of basis that exposes the invariant subspace Zk cor-
responding to the k-th subgroup Gk. The new basis is ob-
tained from the eigenvectors resulting from applying Princi-
pal Component Analysis (PCA) to Zk. Each element in Zk

is projected into the first Dk eigenvectors. The new set is de-
noted as Z ′

k ⊆ RDk with elements z′k(g1, . . . , gK) ⊆ RDk

that are the projected versions of zk(g1, . . . , gK).

Quessard et al. (2020) describe how one could parameterize
the subgroup representations of SO(Dk) for arbitrary Dk

but here we will focus on Gk = SO(2). In this case, we
can parameterize each subgroup representation in terms of a
single integer parameter ω ∈ Z as ρk,ω(gk) corresponding
to a 2× 2 rotation matrix whose angle of rotation is ω mul-
tiplied by the known angle associated to the group element
gk ∈ Gk = SO(2). For this subgroup we can approximate
the Mρ,h,x0 in Equation (7) as Mk,ω given by

Mk,ω =
1

|G|
∑

(g1,...,gK)∈G

ρk,ω(g
−1
k ) · z′(g1, . . . , gK). (9)

Similar to Equation (7) we would like to find the optimal
ρk,ω that minimizes the integral over the group represen-
tations. We can define a parameter search space Ω ⊆ Z,
e.g. Ω = [−10, 10] for finding the optimal ω ∈ Ω that
minimizes the dispersion, this is expressed in the following
equation

D(k)
LSBD =

min
ω∈Ω

1

|G|
∑

(g1,..,gK)∈G

∥ρk,ω(g−1
k )·z′(g1, .., gK)−Mk,ω∥2.

(10)

Each D(k)
LSBD measures the degree of equivariance of the

projected embeddings for each k-th subgroup corresponding
to the best fitting group representation. The upper bound
to the metric is finally obtained by averaging across all
subgroups: DLSBD ≤ 1

K

∑K
k=1 D

(k)
LSBD.
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Our practical implementation of DLSBD is for SO(2) sub-
groups, however the procedure can in principle be extended
to other subgroups as well. A practical implementation of
the metric requires (i) identifying the subspaces invariant
to a subgroup and (ii) identifying a parametric representa-
tion of the subgroup that can be fitted to the subspace data
representations. In cases where the exact form of the sub-
group is unknown, an option is to use the method by Pfau
et al. (2020) to factorize the submanifolds associated with
different generative factors.

5. Learning LSBD: LSBD-VAE
In this section we present LSBD-VAE, a semi-supervised
VAE-based method to learn LSBD representations. The
main idea is to train an unsupervised Variational Autoen-
coder (VAE) (Kingma & Welling, 2014; Rezende et al.,
2014) with a suitable latent space topology, and use our met-
ric as an additional loss term for batches of transformation-
labeled data.

Assumptions LSBD-VAE requires some knowledge
about the group structure G that is to be disentangled. Con-
cretely, the group and its decomposition G = G1×. . .×GK

should be known, as well as a suitable linearly disentangled
group representation ρ : G → GL(Z) and a latent space
Z = Z1 ⊕ . . .⊕ ZK . Moreover, we assume there exists an
embedded submanifold ZG ⊆ Z such that the action of G
on Z restricted to ZG is regular, and ZG is invariant under
the action. Only ZG will then be used as the codomain for
the encoding map, h : X → ZG.

We demonstrate the assumptions above for the common
group structure G = SO(2) × SO(2). For the group rep-
resentation ρ = ρ1 ⊕ ρ2, with Z = R2 ⊕ R2, we can use
rotation matrices in R2 for ρ1 and ρ2. We can then use
1-spheres S1 = {z ∈ R2 : ∥z∥ = 1} for the embedded
submanifold: ZG = S1 × S1. In this case, the action of G
on Z restricted to ZG is indeed regular, and ZG is invariant
under the action.

Requiring the group structure G to be known is a relatively
strong assumption, which limits the practical applicability
of our method. However, a group structure can often be
given as expert knowledge, like the presence of cyclic fac-
tors such as rotation, or in situations where transformations
between observed data can easily be acquired such as in
reinforcement learning.

Unsupervised Learning on Latent Manifold To learn
encodings only on the latent manifold ZG, we use a Dif-
fusion Variational Autoencoder (∆VAE) (Perez Rey et al.,
2020). ∆VAEs can use any closed Riemannian manifold
embedded in a Euclidean space as a latent space (or latent
manifold), provided that a certain projection function from

the Euclidean embedding space into the latent manifold is
known and the scalar curvature of the manifold is available.
The ∆VAE uses a parametric family of posterior approx-
imates obtained from a diffusion process over the latent
manifold. To estimate the intractable terms of the negative
ELBO, the reparameterization trick is implemented via a
random walk.

In the case of S1 as a latent (sub)manifold, we consider
R2 as the Euclidean embedding space, and the projection
function5 Π : R2 → S1 normalizes points in the embedding
space: Π(z) = z/|z|. The scalar curvature of S1 is 0.

Semi-Supervised Learning with Transformation Labels
Caselles-Dupré et al. (2019) proved that LSBD represen-
tations cannot be inferred from a training set of unlabeled
observations, but that access to the transformations between
data points is needed. They therefore use a training set of
observation pairs with a given transformation between them.

However, we posit that only a limited amount of supervision
is sufficient. Since obtaining supervision on transformations
is typically more expensive than obtaining unsupervised ob-
servations, it is desirable to limit the amount of supervision
needed.

Therefore, we augment the unsupervised ∆VAE with a su-
pervised method that makes use of transformation-labeled
batches, i.e. batches {xm}Mm=1 such that xm = gm · x1 for
m = 2, . . . ,M , where the transformations gm (and thus
their group representations ρ(gm)) are known and are re-
ferred to as transformation labels. The simplified version
of the metric from Equation (4) can then be used for each
batch as an additional loss term (with x0 = x1), as it is
differentiable under the assumptions described above (using
the Euclidean norm).

We make a small adjustment to Equation (4) for the purpose
of our method, since the mean computed there does not
typically lie on the latent manifold ZG. Thus, we use the
projection Π from the ∆VAE to project the mean onto ZG.
Writing the encodings as zm := h(xm), the additional loss
term for a transformation-labeled batch {xm}Mm=1 becomes

LLSBD =

1

M

M∑
m=1

∥∥∥∥∥ρ(g−1
m ) · zm −Π

(
1

M

M∑
m=1

ρ(g−1
m ) · zm

)∥∥∥∥∥
2

,

(11)

where g1 = e, the group identity.

Moreover, instead of feeding the encodings
zm to the decoder, we use ρ(gm) · z, where

5This projection function is not defined for z = 0, but this
value does not occur in practice.
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(a) Square (b) Arrow (c) Airplane

(d) ModelNet40 (e) COIL-100

Figure 3: Example images from each of the datasets used. Each row shows different examples from a single factor changing.

dec.

dec.

dec.

enc.

enc.

enc.

Figure 4: Overview of the supervised part of LSBD-VAE.

z = Π
(

1
M

∑M
m=1 ρ(g

−1
m ) · zm

)
. This encourages

the decoder to follow the required group structure. This
only affects the reconstruction loss component of the
∆VAE.

Fig. 4 illustrates the supervised part of our method for a
transformation-labeled batch {xm}Mm=1. The loss function
is the regular ELBO (but with adjusted decoder input as
described above) as used in ∆VAE plus an additional term
γ · LLSBD, where γ is a weight hyperparameter to control
the influence of the supervised loss component. By alternat-
ing unsupervised and supervised training (using the same
encoder and decoder), we have a method that makes use of
both unlabeled and transformation-labeled observations.

6. Experimental Setup
Data We evaluate the disentanglement of several models
on three different image datasets (Square, Arrow, and Air-
plane) with a known group decomposition G = SO(2) ×
SO(2) describing the underlying transformations. For each
subgroup a fixed number of |Gk| = 64 with k ∈ {1, 2}
transformations is selected. The datasets exemplify differ-
ent group actions of SO(2): periodic translations, in-plane
rotations, out-of-plane rotations, and periodic hue-shifts.

In real settings, not all variability in the data can be modelled

by the actions of a group. Therefore, we also evaluate the
same models on two datasets ModelNet40 (Wu et al., 2014)
and COIL-100 (Nene et al., 1996) that consist of images
from various objects (i.e. non-symmetric variation) under
known out-of-plane rotations (SO(2) symmetries). In many
settings it is easy to obtain labels for such rotations, e.g.
when the camera or object angle is controlled by an agent.
See Fig. 3 for examples of the datasets. For more details,
see Appendix E.

Note that we do not evaluate our LSBD-VAE method and
DLSBD metric on traditional disentanglement datasets as
evaluated by Locatello et al. (2019), since these datasets
lack a clear underlying group structure. However, our results
on the ModelNet40 and COIL-100 datasets show that our
method can disentangle properties with a group structure
from properties without such a structure.

LSBD-VAE with Semi-Supervised Labelled Pairs For
the Square, Arrow, and Airplane datasets we test LSBD-
VAE with transformation-labeled batches of size M = 2.
More specifically, for each experiment we randomly select
L disjoint pairs of data points, and label the transformation
between the data points in each pair. We vary the number
of labeled pairs L from 0 (corresponding to a ∆VAE) to
N/2 (in which case each data point is involved in exactly
one labeled pair). We set the weight γ of the supervised
loss component to γ = 100 for all experiments. We choose
M = 2 for our experiments since it is the most limited
setting for LSBD-VAE. Higher values of M would provide
stronger supervision, so successful results with M = 2
imply that good results can also be achieved for higher
values of M (but not necessarily vice versa).

For the COIL-100 and ModelNet40 datasets, we train LSBD-
VAE on batches containing images of one particular object
from all different angles (72 and 64 for COIL-100 and Mod-
elNet40, respectively). Each batch is labelled with transfor-
mations (g1, e), . . . , (gM , e), where gm represent rotations,
and the unit transformation e indicates that the object is
unchanged. To represent the rotations we use a S1 latent
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(a) Datasets with SO(2)× SO(2) symmetries
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Figure 5: DLSBD scores for all methods on all datasets

space as in ∆VAE, whereas for the object identity we use a
5-dimensional Euclidean space with standard Gaussian prior
as in regular VAEs. LSBD is measured as the disentangle-
ment of rotations in the latent space. For these experiments
we used γ = 1.

LSBD-VAE with Paths of Consecutive Observations It
is often cheap to obtain transformation labels in settings
where we can apply simple transformations and observe
its effect, such as an agent navigating its environment. By
registering actions (e.g. rotate left over a given angle) and
the resulting observations, we can construct a path of con-
secutive views with known in-between transformations. We
can then use these paths to train a LSBD-VAE.

For the datasets with G = G1 × G2 = SO(2) × SO(2)
(Square, Arrow, Airplane), we generate random paths by
consecutively applying one randomly chosen transforma-
tion from {g1, g−1

1 , g2, g
−1
2 } where gk ∈ Gk for k ∈ {1, 2},

starting from randomly chosen observations. In our exper-
iments, we generate 50 paths of length 100, and gk cor-
responds to an SO(2) transformation corresponding to an
angle of 3

642π radians. Example paths can be found in Fig. 8
in the Appendix.

For the COIL-100 and ModelNet40 datasets there is only
one group to disentangle. Therefore, similar random walks
are not very meaningful here, and we do not evaluate them
for these datasets.

Other Disentanglement Methods We furthermore test
a number of known disentanglement methods for com-
parison, including traditional disentanglement methods as
well as methods focusing on LSBD. In particular, we use
disentanglement lib (Locatello et al., 2019) to train
a regular VAE (Kingma & Welling, 2014; Rezende et al.,
2014), β-VAE (Higgins et al., 2017), CC-VAE (Burgess

et al., 2018), FactorVAE (Kim & Mnih, 2018), and DIP-
VAE-I/II (Kumar et al., 2018). We also include two weakly-
supervised models, AdaGVAE and AdaMLVAE (Locatello
et al., 2020), which are trained on pairs of data with few
changing factors, to test whether this kind of supervision
is helpful for LSBD. Furthermore we evaluate the method
from Quessard et al. (2020) that focuses on LSBD. We also
tested ForwardVAE (Caselles-Dupré et al., 2019), but show
only limited results since we were not able to reproduce any
reasonable results for our datasets.

Most of these methods have no notion of an underlying
group structure, and thus do not give a fully fair comparison
with our LSBD-VAE method. However, we emphasize that
the main goal of our experiments is to investigate properties
of disentangled representations from both the traditional and
the LSBD perspective.

Disentanglement Metrics We use encodings from all
methods to evaluate DLSBD, as well as common traditional
disentanglement metrics from disentanglement lib:
Beta (Higgins et al., 2017), Factor (Kim & Mnih, 2018),
SAP (Kumar et al., 2018), DCI Disentanglement (Eastwood
& Williams, 2018), Mutual Information Gap (MIG) (Chen
et al., 2018), and Modularity (MOD) (Ridgeway & Mozer,
2018).

Further Details More information about the architectures,
epochs and hyperparameters can be found in Appendix F.
For the traditional disentanglement methods trained on
Square, Arrow and Airplane datasets the latent spaces have
4 dimensions, since these are the minimum number of di-
mensions necessary to learn LSBD representations for an
underlying SO(2)× SO(2) symmetry group, see (Higgins
et al., 2018; Caselles-Dupré et al., 2019). For COIL-100
and ModelNet40 we use latent spaces with 7 dimensions for
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a fair comparison with the LSBD-VAE method.

7. Results: Evaluating LSBD with DLSBD

We now highlight three key observations from our experi-
mental results. In particular, we differentiate between the
methods (VAE, β-VAE, CC-VAE, FACTOR, DIP-I, DIP-
II) and metrics (BETA, FACTOR, SAP, DCI, MIG, MOD)
that approach disentanglement in the traditional sense, and
methods (∆VAE, QUESSARD, LSBD-VAE) and metric
(DLSBD) that focus specifically on LSBD. The full quantita-
tive results can be found in Appendix H. Further qualitative
results can be found in Appendix G.

7.1. Traditional Disentanglement Methods Don’t Learn
LSBD Representations

Fig. 5 summarizes the DLSBD scores (lower is better) for
all methods on all datasets. Bars show the mean scores
over 10 runs for each method, the vertical lines represent
standard deviations. LSBD-VAE/L indicates our method
trained on L labelled pairs (LSBD-VAE/0 corresponds to the
unsupervised ∆VAE), LSBD-VAE/full indicates our method
where all images are involved in exactly one labelled pair.
and LSBD-VAE/paths indicates our method trained with
paths of consecutive observations. Note that LSBD-VAE
obtained very good scores (near 0) on the Arrow and Square
datasets, hence the missing bars.

None of the traditional disentanglement methods achieve
good DLSBD scores, even if they score well on other tra-
ditional disentanglement metrics. This implies that LSBD
isn’t achieved by traditional methods. Moreover, from the
full results in Appendix H we see that the traditional meth-
ods on these datasets do not achieve good scores on all
traditional metrics. In particular, SAP, DCI, and MIG scores
are low. We believe this is a result of the cyclic nature of the
symmetries underlying our datasets, further emphasizing
the need for disentanglement methods that can capture such
symmetries.

The SAP and MIG scores measure to what extent generative
factors are disentangled into a single latent dimension. How-
ever, since the factors in our dataset are inherently cyclic
due to their symmetry structure, they cannot be properly rep-
resented in a single latent dimension, as shown by Perez Rey
et al. (2020). Instead, at least two dimensions are needed
to continuously represent each cyclic factor in our data. A
similar conclusion was made by Caselles-Dupré et al. (2019)
and Painter et al. (2020).

DCI disentanglement measures whether a latent dimension
captures at most one generative factor. This is accomplished
by measuring the importance of each latent dimension in
predicting the true generative factor using boosted trees.
However, since the generative factors are cyclic, the per-

formance of the boosted tree classifiers is far from optimal,
thus providing more importance to several dimensions in
predicting the generative factors and giving overall lower
DCI scores.

7.2. LSBD-VAE and other LSBD Methods Can Learn
LSBD Representations with Limited Supervision on
Transformations

From Fig. 5 we observe that methods focusing specifically
on LSBD can score higher on DLSBD, showing that they
are indeed more suitable to learn LSBD representations. In
particular, LSBD-VAE got very good DLSBD scores for all
datasets. Moreover, our experiments on the Arrow, Airplane,
and Square datasets also show that only limited supervision
suffices to obtain good DLSBD scores with low variability,
either with few transformation-labelled pairs or with paths
of consecutive observations that are easy to obtain in agent-
environment settings.

We only partially managed to reproduce the results from
Quessard et al. (2020) on our datasets. Their method scored
fairly well on the Airplane, ModelNet40, and COIL-100
datasets, but did not do well on the Square and Arrow dataset
in our experiments.

Furthermore, we tested ForwardVAE by Caselles-Dupré
et al. (2019), but we could not produce any reasonable re-
sults on our datasets. Therefore, we do not include scores for
this method. We did manage to reproduce ForwardVAE’s
results on the Flatland dataset used in the original paper,
for which we computed a mean DLSBD score of 0.012 with
standard deviation 0.001 over 10 runs, confirming that For-
wardVAE indeed learns LSBD representations for Flatland.

7.3. LSBD Representations Also Satisfy Previous
Disentanglement Notions

Our results also indicate that LSBD captures various de-
sirable properties that are expressed by traditional disen-
tanglement metrics. In Fig. 6 we compare DLSBD scores
with scores for previous disentanglement metrics. Note that
for DLSBD lower is better, whereas for all other metrics
higher is better. As we noted before, good scores on tra-
ditional disentanglement metrics don’t necessarily imply
good DLSBD scores. Conversely however, methods that
score well on DLSBD also score well on many traditional
disentanglement metrics, often even outperforming the tra-
ditional methods. In particular, from the full results (see
Appendix H) we see that LSBD-VAE matches or outper-
forms the traditional methods on the BETA, FACTOR and
MOD metrics, and achieves much better scores for the DCI
metric where traditional methods scored poorly.

The MIG and SAP scores are still low for methods focusing
on LSBD. This is expected however, as explained earlier in
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Figure 6: Comparing DLSBD to previous disentanglement metrics

Section 7.1. This was also observed by Painter et al. (2020)
for different datasets.

8. Conclusion
We presented DLSBD, a metric to quantify Linear Symmetry-
Based Disentanglement (LSBD) as defined by Higgins et al.
(2018). We used this metric formulation to motivate LSBD-
VAE, a semi-supervised method to learn LSBD representa-
tions given some expert knowledge on the underlying group
symmetries that are to be disentangled.

We used DLSBD to evaluate various disentanglement meth-
ods, both traditional methods and recent methods that specif-
ically focus on LSBD, and showed that LSBD-VAE can
learn LSBD representations where traditional methods fail
to do so. We also compared DLSBD to traditional disen-
tanglement metrics, showing that LSBD captures many of
the same desirable properties that are expressed by exist-
ing disentanglement methods. Conversely, we also showed
that traditional disentanglement methods and metrics do not
usually achieve or measure LSBD.

Challenges that remain are expanding and testing LSBD-
VAE and DLSBD on different group structures, towards more
practical applications, as well as focusing on the utility of
LSBD representations for downstream tasks.
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A. Preliminaries: Group Theory
In this appendix, we summarize some concepts from group theory that are important to understand the main text of the
paper. Group theory provides a useful language to formalize the notion of symmetry transformations and their effects. For a
more elaborate discussion we refer the reader to the book from Hall (2015) on group theory.

Group A group is a non-empty set G together with a binary operation ◦ : G×G → G that satisfies three properties:

1. Associativity: For all f, g, h ∈ G, it holds that f ◦ (g ◦ h) = (f ◦ g) ◦ h.

2. Identity: There exists a unique element e ∈ G such that for all g ∈ G it holds that e ◦ g = g ◦ e = g.

3. Inverse: For all g ∈ G there exists an element g−1 ∈ G such that g−1 ◦ g = g ◦ g−1 = e.

Direct product Let G and G′ be two groups. The direct product, denoted by G×G′, is the group with elements (g, g′) ∈
G×G′ with g ∈ G and g′ ∈ G′, and the binary operation ◦ : G×G′ → G×G′ such that (g, g′) ◦ (h, h′) = (g ◦h, g′ ◦h′).

Lie group A Lie group is a group where G is a smooth manifold, this means it can be described in a local scale with a set
of continuous parameters and that one can interpolate continuously between elements of G.

Group action Let A be a set and G a group. The group action of G on A is a function GA : G×A → A that has the
properties 6

1. GA(e, a) = a for all a ∈ A

2. GA(g, (GA(g
′, a)) = GA(g ◦ g′, a) for all g, g′ ∈ G and a ∈ A

Regular action The action of G on A is regular if for every pair of elements a, a′ ∈ A there exists a unique g ∈ G such
that g · a = a′.

Group representation A group representation of G in the vector space V is a function ρ : G → GL(V ) (where GL(V )
is the general linear group on V ) such that for all g, g′ ∈ G ρ(g ◦ g′) = ρ(g) ◦ ρ(g′) and ρ(e) = IV , where IV is the identity
matrix.

Direct sum of representations The direct sum of two representations ρ1 : G → GL(V ) in V and ρ2 : G → GL(V ′) in
V ′ is a group representation ρ1 ⊕ ρ2 : G → GL(V ⊕ V ′) over the direct sum V ⊕ V ′, defined for v ∈ V and v′ ∈ V ′ as:

(ρ1 ⊕ ρ2)(g) · (v, v′) = (ρ1(g) · v, ρ2(g) · v′) (12)

B. Linear Symmetry-Based Disentanglement: Definition with respect to World States
Higgins et al. (2018) provide a formal definition of linear disentanglement that connects symmetry transformations affecting
the real world (from which data is generated) to the internal representations of a model. In the main text, we provide a
definition from the perspective of a group action on the data directly, but the original definition considers an extra conceptual
world state as well. Here, we describe the original setting in more detail, and explain why we choose a more direct and
practical version of the definition.

The definition assumes the following setting. W is the set of possible world states, with underlying symmetry transformations
that are described by a group G and its action · : G×W → W on W . In particular, G can be decomposed as the direct
product of K groups G = G1 × . . . × GK . Data is obtained via an observation function b : W → X that maps world
states to observations in a data space X . A model’s internal representation of data is modeled with the encoding function
h : X → Z that maps data to the embedding space Z. Together, the observation and the encoding constitute the model’s
internal representation of the real world f : W → Z with f(w) = h ◦ b(w). The definition for Linearly Symmetry-Based
Disentangled (LSBD) representations then formalizes the requirement that a model’s internal representation f should reflect

6To avoid notational clutter, we write GA(g, a) = g · a where the set A on which g ∈ G acts can be inferred from the context.
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and disentangle the transformation properties of the real world, and that the transformation properties of the model’s internal
representations should be linear.

The original definition considers G acting on W and involves the model’s internal representation f : W → Z, but since we
do not directly observe W it is more practical to evaluate LSBD with respect to the encoding map h : X → Z instead. If the
action of G on W is regular7 and the observation map b : W → X is injective8 though, we can instead define LSBD with
respect to the action of G on X and the encoding map h, as shown in the main text.

C. Inner Product
To describe the norm ∥ · ∥ρ,h,µ used in the definition of DLSBD we start with an arbitrary inner product (·, ·) on the linear
latent space Z. Assume that ρ is linearly disentangled and accordingly splits in irreducible representations ρk : G → Zk

where Z = Z1 ⊕ · · · ⊕ ZK for some K ∈ N. We will define a new inner product ⟨·, ·⟩ρ,h,µ on Z as follows. First of all we
declare Zk and Zm to be orthogonal with respect to ⟨·, ·⟩ρ,h,µ if k ̸= m. We denote by πk the orthogonal projection on Zk.

For z, z′ ∈ Zi, we set

⟨z, z′⟩ρ,h,µ := λ−1
k,h,µ

∫
g∈G

(ρ(g) · z, ρ(g) · z′)dm(g) (13)

where m is the (bi-invariant) Haar measure normalized such that m(G) = 1 and set

λk,h,µ :=

∫
X

∫
G

∥πk(h(x))∥2dm(g)dµ(x) (14)

if the integral on the right-hand side is strictly positive and otherwise we set λk := 1. This construction completely specifies
the new inner product, and it has the following properties:

• the subspaces Zk are mutually orthogonal,

• ρk(g) is orthogonal on Zk for every g ∈ G, in other words ρk maps to the orthogonal group on Zk. Moreover, ρ maps
to the orthogonal group on Z. This follows directly from the bi-invariance of the Haar measure and the definition of
⟨·, ·⟩ρ,h,µ.

• If πk is the orthogonal projection to Zk, then∫
X

∥πk(h(x))∥2ρ,h,µdµ(x) = 1 (15)

if the integral on the left is strictly positive.

For an arbitrary pair z, z′ ∈ Z the inner product ⟨·, ·⟩ρ,h,µ is given by

⟨z, z′⟩ρ,h,µ =

K∑
k=1

λ−1
k,h,µ

∫
g∈G

(ρ(g) · πk(z), ρ(g) · πk(z
′))dm(g) (16)

D. Evaluation of Equivariance by DLSBD

We will now give an alternative expression for the disentanglement metric DLSBD, since it will more visibly relate to
the definition of equivariance. To avoid notational cluttering, in this section we will denote the norm ∥ · ∥ρ,h,µ as ∥ · ∥∗.
Let ρ ∈ P(G,Z) be a linear disentangled representation of G in Z. By expanding the inner product (or by using usual

7This assumption holds in most practical cases with a suitable description of G.
8This is typically the case, but if not it can be solved through active sensing, see Soatto (2011).
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computation rules for expectations and variances), we first find that∫
G

∥∥∥∥ρ(g)−1 · h(g · x0)−
∫
G

ρ(g′)−1 · h(g′ · x0)dν(g
′)

∥∥∥∥2
∗
dν(g)

=

∫
G

∥∥ρ(g)−1 · h(g · x0)
∥∥2
∗ dν(g)−

∥∥∥∥∫
G

ρ(g)−1 · h(g · x0)dν(g)

∥∥∥∥2
∗

=
1

2

∫
G

∫
G

∥ρ(g)−1 · h(g · x0)− ρ(g′)−1 · h(g′ · x0)∥2∗dν(g)dν(g′).

(17)

We now use that ρ maps to the orthogonal group for (·, ·)∗, so that we can write the same expression as

1

2

∫
G

∫
G

∥ρ(g ◦ g′−1)−1 · h(((g ◦ g′−1) · g′) · x0)− h(g′ · x0)∥2∗dν(g)dν(g′). (18)

This brings us to the alternative characterization of DLSBD as

DLSBD = inf
ρ∈P(G,Z)

1

2

∫
G

∫
G

∥ρ(g ◦ g′−1)−1h(((g ◦ g′−1) · g′) · x0)− h(g′ · x0)∥2∗dν(g)dν(g′). (19)

In particular, if for every data point x there is a unique group element gx such that x = gx · x0, the disentanglement metric
DLSBD can also be written as

inf
ρ∈P(G,Z)

1

2

∫
G

∫
X

∥ρ(g ◦ g−1
x )−1h((g ◦ g−1

x ) · x)− h(x)∥2∗dν(g)dµ(x), (20)

in which the equivariance condition appears prominently. The condition becomes even more apparent if ν is in fact the Haar
measure itself, in which case the metric equals

inf
ρ∈P(G,Z)

1

2

∫
G

∫
X

∥ρ(g)−1 ◦ h(g · x)− h(x)∥2∗dm(g)dµ(x). (21)

E. Datasets
All datasets contain 64× 64 pixel images. The Square, Arrow and Airplane datasets have a known group decomposition
G = SO(2)×SO(2) describing the underlying transformations. In these three datasets, for each subgroup a fixed number of
|Gk| = 64 with k ∈ {1, 2} transformations is selected. Each image is generated from a single initial data point upon which
all possible group actions are applied, resulting in datasets with |G1| · |G2| = 4096 images. The datasets exemplify different
group actions of SO(2): periodic translations, in-plane rotations, out-of-plane rotations, and periodic hue-shifts, see Fig. 7.

The ModelNet40 and the COIL-100 datasets consist of different objects rotating with respect to a vertical axis (out-of-plane
rotation). For these datasets the group G = SO(2) describes the underlying transformations that each object undergoes, see
Fig. 7. The different objects can be seen as non-symmetric variability in the data. In this particular case, each object has its
own base-point x0 from which data is generated. The metric DLSBD is then evaluated per object instance for the group
G = SO(2), the value of DLSBD is calculated and averaged across all available objects. Fig. 8 shows some example paths
of consecutive observations for the Square, Arrow, and Airplane datasets, as explained in Sect. 6.

Square This dataset consists of a set of images of a black background with a square of 16× 16 white pixels. The dataset
is generated applying vertical and horizontal translations of the white square considering periodic boundaries.

Arrow This dataset consists of a set of images depicting a colored arrow at a given orientation. The dataset is generated by
applying cyclic shifts of its color and in-plane rotations. The cyclic color shifts were obtained by preselecting a fixed set of
64 colors from a circular hue axis. The in-plane rotations were obtained by rotating the arrow along an axis perpendicular to
the picture plane over 64 predefined positions.

Airplane This dataset consists of renders obtained using Blender v2.7 (Community, 2020) from a 3D model of an airplane
within the ModelNet40 dataset (Wu et al., 2014) (this dataset is provided for the convenience of academic research only).
We created each image by varying two properties: the airplane’s color and its orientation with respect to the render camera.
The orientation was changed via rotation with respect to a vertical axis (out-of-plane rotation). The colors of the model were
selected from a predefined cyclic set of colors similar to the arrow rotation dataset.
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(a) Square (b) Arrow (c) Airplane

(d) ModelNet40 (e) COIL-100

Figure 7: Example images from each of the datasets used. Each image corresponds to an example data point for a
combination of two factors, e.g. color and orientation. The factors change horizontally and vertically. The boundaries for
the Square, Arrow and Airplane dataset are periodic. For the ModelNet40 and COIL-100 dataset, the vertical direction
represents different object instances and the horizontal direction represents the rotation of the corresponding object.

ModelNet40 This dataset also consists of a dataset of renders obtained using Blender v2.7 (Community, 2020) from the
626 training 3D models within the airplane category of the ModelNet40 dataset (Wu et al., 2014). We created each image by
varying each airplane’s orientation with respect to the render camera, via rotation with respect to a vertical axis (out-of-plane
rotation). In this case we used 64 orientations for each object, i.e. |G| = 64, for a total of 626 objects, thus the dataset
consists of 40,064 images.

COIL-100 This dataset (Nene et al., 1996) consists of images from 100 objects placed on a turntable against a black
background. For each object, 72 views of the rotated object are provided. The original images have a resolution of 128×128
and were re-scaled to 64 × 64 to match our other datasets. In this case for each object |G| = 72, thus the total dataset
consists of 7200 images. This dataset is intended for non-commercial research purposes only. This dataset was obtained
using TensorFlowDatasets (2021).

F. Experimental Settings and Hyperparameters
F.1. Architectures

Table 1 shows the encoder and decoder architectures used for almost all methods and datasets. The encoder’s last layer
depends on the method. For VAE, cc-VAE, FactorVAE, DIP-I, DIP-II, two dense layers with 4 units each were used. For
LSBD-VAE and ∆VAE two dense layers with 4 and 2 units each were used. For Quessard a single dense layer with 4 units
was used. The only model that was not trained with this architectures was LSBD-VAE/0 method for the ModelNet40 dataset
the reason for this choice was that during training the loss was getting NaN values, in this case the architecture used was that
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(a) Square

(b) Arrow

(c) Airplane

Figure 8: Example paths of consecutive observations.

of Table 2.

Table 1: Encoder and decoder architectures used in most methods.

ENCODER

INPUT SIZE (64,64, NUMBER CHANNELS)
CONV FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONV FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONV FILTERS 64, KERNEL 4, STRIDE 2, RELU
CONV FILTERS 64, KERNEL 4, STRIDE 2, RELU
DENSE UNITS 256, RELU
DENSE(X2) UNITS DEPEND ON METHOD

DECODER

INPUT SIZE (NUMBER OF LATENT DIMENSIONS)
DENSE UNITS 256, RELU
DENSE UNITS 4*4*64, RELU
RESHAPE (4,4,64)
CONVT FILTERS 64, KERNEL 4, STRIDE 2, RELU
CONVT FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONVT FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONVT FILTERS (NUMBER CHANNELS), KERNEL 4, STRIDE 2, SIGMOID

F.2. Hyperparameters

Table 3 shows the hyperparameters used to train each model for all datasets. Table 4 shows the hyperparameters used to
train the LSBD-VAE models for each dataset. In the latter case, the number of epochs for the LSBD-VAE model were
increased. The range of values used for the scale parameter t were increased for ModelNet40 and COIL-100 datasets since
it was noticed that this provided better results in terms of data reconstruction and disentanglement. For the Arrow dataset, a
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Table 2: Encoder and decoder architecture used to train LSBD-VAE/0 for ModelNet40 dataset.

ENCODER

INPUT SIZE (64, 64, NUMBER CHANNELS)
DENSE UNITS 512, RELU, BATCH NORMALIZATION
DENSE UNITS 256, RELU, BATCH NORMALIZATION
DENSE(X2) UNITS DEPEND ON METHOD

DECODER

INPUT SIZE (NUMBER OF LATENT DIMENSIONS)
DENSE UNITS 256, RELU, BATCH NORMALIZATION
DENSE UNITS 512, RELU, BATCH NORMALIZATION
DENSE UNITS 64*64*NUMBER OF CHANNELS, SIGMOID
RESHAPE (64, 64, NUMBER OF CHANNELS)

value of γ = 1 was producing unstable results. However, the values 10, 100, 1000 or even 10000 were producing good
results without significant changes among them. Therefore the value 100 was used for the datasets with the same structure
(Square, Arrow and Airplane). For the ModelNet40 and COIL-100 the experiments showed that this hyperparameter for
values as high as 10000 could affect the reconstructions, thus a lower value γ = 1 was chosen.

The training of the weakly-supervised models AdaGVAE and AdaMLVAE was done with a data generator that organized
the available training data into pairs. The only condition introduced in Locatello et al. (2020) to train these models was to
provide paired data with few factors changing among them. For our datasets, two factors change.

Table 3: Model hyperparameters for all datasets

MODEL PARAMETERS

VAE TRAINING STEPS 30000
β-VAE β = 5, TRAINING STEPS 30000
CC-VAE β = 5,γ = 1000, cmax = 15, ITERATION THRESHOLD 3500, TRAINING STEPS 30000
FACTOR γ = 1, EPOCHS 30000
DIP-I λod = 1, λd = 10, TRAINING STEPS 30000
DIP-II λod = 1, λd = 1, TRAINING STEPS 30000
ADAGVAE β = 1, EPOCHS 500
ADAMLVAE β = 1, EPOCHS 500
QUESSARD λ = 0.01, TRAJECTORIES 3000

Table 4: LSBD-VAE hyperparameters for all datasets

DATASETS PARAMETERS

SQUARE, ARROW, AIRPLANE t ∈ [10−10, 10−9], γ = 100.0, EPOCHS 1500
MODELNET40 t ∈ [10−10, 10−5], γ = 1.0, EPOCHS 1500
COIL-100 t ∈ [10−10, 10−5], γ = 1.0, EPOCHS 6000

F.3. Hardware & Running Time

The hardware used across all experiments was a DGX station with 4 NVIDIA GPUs V100 and 32GB . Only one
GPU was used per experiment. The running time for the LSBD-VAE across all 9 degrees of supervision L ∈
{0, 256, 768, 1024, 1280, 1536, 1792, 2048} and all 10 runs (total 9 · 10 repetitions) for the datasets were: Arrow 33 ± 4
minutes Airplane 29± 4 minutes and Square 28± 4 minutes. The running time for the LSBD-VAE across 2 degrees of
supervision and 10 runs (total 2 · 10 repetitions) for ModelNet40 was 136± 10 minutes and for COIL-100 90± 6 minutes.
For the method from (Quessard et al., 2020) the training times were approximately 30 minutes across all datasets. The
training times for the methods from disentanglement lib (Locatello et al., 2019) were not measured.



Quantifying and Learning Linear Symmetry-Based Disentanglement

F.4. Code Licenses

The disentanglement lib (Locatello et al., 2019) code is registered with an Apache 2.0 License while the code used
to reproduce the method by Quessard et al. (2020) is registered with an MIT license.

G. Qualitative Results
G.1. Data Generation

Inspecting data generated by a model can help understand the structure of the learnt latent space in a qualitative way. Fig. 9
shows generated data obtained by sampling and decoding ten latent variables for each of the models trained on the COIL-100
and ModelNet40 airplanes datasets. Each latent variable is sampled from the prior over the latent space and decoded to
produce an image.

In general, all models but one produce similar results consisting of objects with unclear shape or identity. It is important
to highlight the AdaGVAE weakly-supervised model trained on COIL-100 since it appears to have a degenerate decoder
producing only yellow objects. Such behaviour occurs for all ten trained instances of the AdaGVAE model.

Even though the randomly generated images seem to have no clear identity or shape for COIL-100, LSBD-VAE allows
to better determine the identity of such sampled models, by showing multiple orientations thanks to the structure of its
latent space. LSBD-VAE uses a latent space combining an S1 manifold encouraged to encode information about the SO(2)
rotations and an Euclidean latent space encouraged to represent the information about the object’s identity.

By first sampling a latent variable from the Euclidean latent space and combining it with a set of regularly spaced latent
variables along S1 we can observe some consistency in object identity, see Fig. 10. Such data generation cannot be directly
obtained from traditional disentanglement methods since there is no clear direction representing either the object identities
or the orientations.

G.2. Object Interpolation

Next, we will show how the latent space is structured among the latent variables representing the objects’ identities for
models trained with COIL-100. We show the generated data obtained from decoding linearly interpolated latent variables
between different objects to show the transitions between objects and orientations.

For LSBD-VAE the interpolation is simple; first the latent variables associated to the identity of the start and end objects are
estimated by averaging the Euclidean latent variables of all images per object. Second, the linear interpolation between the
object identity latent variables of the start and end object is calculated to generate a path through the object identity space.
Finally, the estimated identity variables in the path are combined with regularly spaced variables in the orientation space S1

and decoded. See Fig. 12b (a).

In the case of the traditional disentanglement methods we cannot produce a latent variable representing an object’s identity,
so there is no clear traversal between objects. In this case, a linear interpolation between an image from the start object to
and end object is calculated and the latent variables are decoded, see Fig. 12b. Notice that we cannot easily produce an
image of an object with an arbitrary orientation since we do not know the shape of the loop in the latent space representing
an object.

Fig. 11 shows the generated images obtained by interpolating between two objects. We only show cc-VAE representing
traditional models since that method attained the lowest DLSBD. A particularly interesting interpolation is between the
wooden object and the orange cat figure. The interpolation of cc-VAE shows how a green object is also crossed in between
while LSBD-VAE shows a consistent transition between the objects a visual explanation of this observation is presented in
Fig. 12b (b).
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(a) COIL 100 (b) ModelNet40 Airplanes

Figure 9: Images obtained by decoding latent variables sampled according to the prior over the latent space for different
models trained on the COIL-100 and ModelNet40 airplanes datasets.

H. Full results
The full results for all experiments on all datasets are given in Tables 5, 6, 7, 8, and 9. We report the mean and standard
deviation over 10 runs for each experiment.

H.1. Limited Supervision Suffices to Learn LSBD Representations

The results obtained from Tables 5, 6, 7 show that we do not need transformation-labels for all data points, only a subset
of labeled pairs is sufficient to learn LSBD representations. To further highlight this, Fig. 13 shows DLSBD scores for
LSBD-VAE trained on the Square, Arrow, and Airplane datasets respectively, for various values for the number of labeled
pairs L. For each L and each dataset, we trained 10 models so we can report box plots of the DLSBD scores.

For low values of L we see worse scores and high variability. But for slightly higher L, scores are consistently good, starting
already at L = 512 for the Square, L = 768 for the Arrow, and L = 256 for the Airplane. This corresponds to respectively
25%, 37.5%, and 12.5% of the data being involved in a labeled pair. Moreover, we see that with just a little supervision we
outperform the best traditional method on DLSBD. Overall, these results suggest that with some expert knowledge (about
the underlying group and a suitable representation) and limited annotation of transformations, LSBD can be achieved.

H.2. Quessard Arrow

In the main text we mentioned that we did not reproduce good results with Quessard et al. (2020)’s method on the Arrow
and Square dataset. We highlight a particular case for the Arrow dataset, where the method clearly learns the rotations of
the arrow but fails to learn color. Fig. 14 shows reconstructed Arrow images. Since color isn’t learned well, this example
doesn’t get a good DLSBD score, even though rotation is properly linearly disentangled.
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(a) Latent space structure
(b) Generated data

Figure 10: Image generation by traversing the circular latent variable for a sampled object identity. The high dimensional
Euclidean space is depicted as a single dimension in a hyper-cylinder. (a) The latent variable corresponding to the identity is
sampled from the prior over the Euclidean latent space and combined with regularly spaced latent variables on S1. (2) Each
row presents the decoded images for a fixed Euclidean latent variable while each column shows the images for a fixed latent
variable on S1. The images are obtained from decoding the latent variables with LSBD-VAE/full trained on the COIL-100
dataset.
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(a) cc-VAE (b) LSBD-VAE

Figure 11: Images produced from the decoding of interpolated latent variables using cc-VAE and LSBD-VAE trained with
COIL-100. Three interpolations between two objects are shown. Each column represents the transitions between objects
while each row shows images that should correspond to different orientations.
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(a) Interpolation across Z = S1 × RD

(b) Interpolation across Z = RD

Figure 12: Diagrams illustrating the interpolation between the latent variables associated to two objects. (a) Interpolation
across a hyper-cylinder within Z = S1 × RD used by LSBD-VAE. (b) Interpolation across Z = RD of traditional
disentanglement models. In the traditional disentanglement models the linear interpolation can show the crossing of the
latent codes associated to unexpected objects.
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Figure 13: Box plots for DLSBD scores over 10 training repetitions for different numbers of labeled pairs L, for all datasets.
The red line indicates the best-performing traditional disentanglement method.

(a) Input (b) Reconstructions

Figure 14: Results from Quessard et al. (2020)’s method on the Arrow dataset



Quantifying and Learning Linear Symmetry-Based Disentanglement

Table 5: Scores for the Square dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

.945±.061 .835±.140 .019±.004 .009±.005 .013±.004 .579±.202 .634±.440

β-VAE
.980±.033 .913±.095 .021±.006 .017±.011 .021±.014 .642±.147 .732±.488

CC-VAE
.508±.023 .000±.000 .003±.002 .007±.002 .014±.004 .222±.110 1.905±.023

FACTOR
.974±.048 .910±.104 .020±.003 .019±.017 .017±.010 .712±.183 .667±.428

DIP-I
.972±.042 .861±.097 .020±.005 .010±.002 .011±.002 .618±.117 1.109±.312

DIP-II
.930±.119 .848±.137 .018±.004 .010±.004 .015±.007 .607±.207 .907±.559

ADAGVAE
.841±.230 .707±.386 .009±.009 .024±.015 .012±.005 .473±.185 .666±.378

ADAMLVAE
.737±.208 .465±.403 .008±.008 .016±.006 .013±.007 .338±.128 1.063±.387

QUESSARD
.504±.021 .000±.000 .004±.003 .007±.004 .018±.008 .354±.213 1.686±.294

LSBD-VAE
.970±.079 .913±.121 .018±.003 .052±.052 .018±.004 .884±.183 .749±.554/0

LSBD-VAE
1.000±.000 1.000±.001 .021±.004 .267±.152 .027±.007 .986±.023 .104±.147/256

LSBD-VAE
1.000±.000 1.000±.000 .021±.006 .393±.022 .025±.005 .999±.000 .000±.000/512

LSBD-VAE
1.000±.000 1.000±.000 .019±.004 .387±.014 .025±.004 .999±.000 .000±.000/768

LSBD-VAE
1.000±.000 1.000±.000 .022±.005 .398±.020 .024±.003 .999±.000 .000±.000/1024

LSBD-VAE
1.000±.000 1.000±.000 .023±.003 .389±.016 .023±.003 .999±.000 .000±.000/1280

LSBD-VAE
1.000±.000 1.000±.000 .022±.004 .398±.013 .027±.002 .999±.000 .000±.000/1536

LSBD-VAE
1.000±.000 1.000±.000 .020±.004 .397±.016 .027±.005 .999±.000 .000±.000/1792

LSBD-VAE
1.000±.000 1.000±.000 .021±.006 .380±.027 .027±.005 .999±.000 .000±.000/FULL

LSBD-VAE
.005±.002/PATHS
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Table 6: Scores for the Arrow dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

1.000±.000 .646±.032 .017±.004 .009±.003 .013±.004 .961±.012 1.316±.193

β-VAE
.999±.002 .588±.045 .018±.004 .008±.002 .015±.005 .898±.032 1.178±.065

CC-VAE
.982±.056 .707±.102 .019±.004 .011±.005 .016±.004 .980±.038 1.013±.096

FACTOR
1.000±.000 .659±.028 .017±.003 .008±.003 .014±.002 .935±.037 1.526±.125

DIP-I
1.000±.000 .624±.042 .020±.004 .008±.002 .012±.003 .967±.027 1.521±.113

DIP-II
1.000±.000 .644±.064 .020±.004 .009±.003 .013±.004 .973±.011 1.616±.102

ADAGVAE
1.000±.000 .656±.137 .016±.005 .020±.009 .009±.004 .973±.042 1.620±.147

ADAMLVAE
.997±.008 .706±.168 .017±.007 .019±.009 .011±.004 .943±.111 1.395±.117

QUESSARD
1.000±.000 .596±.032 .016±.006 .008±.004 .017±.008 .999±.000 1.183±.412

LSBD-VAE
1.000±.001 .664±.105 .016±.002 .009±.004 .019±.005 .897±.108 1.627±.104/0

LSBD-VAE
1.000±.000 .662±.046 .017±.005 .009±.004 .020±.005 .963±.010 1.475±.121/256

LSBD-VAE
1.000±.000 .956±.119 .021±.006 .297±.157 .023±.003 .967±.092 .245±.474/512

LSBD-VAE
1.000±.000 1.000±.000 .022±.006 .390±.022 .026±.003 .999±.000 .000±.000/768

LSBD-VAE
1.000±.000 1.000±.000 .022±.003 .396±.026 .026±.006 .999±.000 .000±.000/1024

LSBD-VAE
1.000±.000 1.000±.000 .019±.005 .401±.018 .026±.004 .999±.000 .000±.000/1280

LSBD-VAE
1.000±.000 1.000±.000 .019±.005 .397±.017 .026±.007 .999±.000 .000±.000/1536

LSBD-VAE
1.000±.000 1.000±.000 .020±.004 .399±.018 .026±.004 .999±.000 .000±.000/1792

LSBD-VAE
1.000±.000 1.000±.000 .020±.006 .444±.186 .027±.004 .999±.000 .000±.000/FULL

LSBD-VAE
.016±.006/PATHS



Quantifying and Learning Linear Symmetry-Based Disentanglement

Table 7: Scores for the Airplane dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

1.000±.001 .947±.054 .023±.005 .013±.005 .020±.017 .801±.045 1.342±.084

β-VAE
1.000±.001 .997±.005 .018±.005 .036±.012 .028±.012 .816±.104 1.481±.129

CC-VAE
.858±.194 .646±.353 .010±.006 .021±.011 .018±.009 .969±.034 1.481±.174

FACTOR
1.000±.000 .984±.015 .020±.003 .021±.008 .026±.013 .810±.040 1.382±.171

DIP-I
1.000±.000 .994±.008 .022±.004 .029±.012 .026±.012 .842±.073 1.289±.150

DIP-II
.998±.005 .972±.031 .021±.004 .022±.013 .030±.019 .780±.054 1.367±.129

ADAGVAE
.962±.120 .892±.314 .013±.009 .026±.016 .010±.008 .733±.264 1.029±.288

ADAMLVAE
1.000±.000 .995±.007 .019±.009 .035±.011 .017±.009 .861±.073 .994±.275

QUESSARD
.999±.003 .987±.026 .018±.007 .016±.009 .018±.005 .795±.107 .558±.239

LSBD-VAE
.536±.065 .000±.000 .002±.001 .007±.004 .005±.003 .956±.046 1.165±.180/0

LSBD-VAE
1.000±.000 1.000±.000 .022±.006 .144±.011 .023±.004 .870±.039 .153±.021/256

LSBD-VAE
1.000±.000 1.000±.000 .023±.008 .151±.015 .020±.004 .846±.032 .168±.022/512

LSBD-VAE
1.000±.000 1.000±.000 .022±.004 .140±.014 .022±.005 .832±.034 .180±.030/768

LSBD-VAE
1.000±.000 1.000±.000 .020±.005 .160±.015 .022±.005 .859±.032 .165±.021/1024

LSBD-VAE
1.000±.000 1.000±.000 .024±.004 .153±.013 .022±.003 .876±.016 .151±.015/1280

LSBD-VAE
1.000±.000 1.000±.000 .021±.005 .160±.016 .022±.004 .896±.025 .140±.018/1536

LSBD-VAE
1.000±.000 1.000±.000 .022±.005 .163±.022 .023±.003 .904±.016 .138±.010/1792

LSBD-VAE
1.000±.000 1.000±.000 .016±.008 .161±.024 .021±.006 .913±.018 .132±.009/FULL

LSBD-VAE
.185±.017/PATHS
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Table 8: Scores for the Modelnet40 Airplanes dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

.995±.004 .838±.030 .013±.002 .013±.002 .009±.002 .415±.058 .393±.110

β-VAE
.995±.005 .857±.045 .012±.003 .015±.003 .009±.002 .447±.067 .285±.045

CC-VAE
.997±.003 .818±.093 .011±.003 .017±.004 .011±.003 .567±.063 .281±.191

FACTOR
.996±.004 .856±.052 .012±.002 .014±.003 .010±.003 .444±.077 .388±.096

DIP-I
.988±.009 .783±.070 .012±.002 .013±.002 .008±.001 .343±.082 .416±.142

DIP-II
.994±.006 .832±.042 .013±.003 .014±.003 .011±.002 .433±.080 .379±.130

ADAGVAE
.996±.006 .775±.079 .010±.006 .014±.006 .013±.004 .421±.092 .476±.218

ADAMLVAE
.996±.006 .784±.055 .012±.006 .014±.005 .014±.004 .445±.040 .580±.141

QUESSARD
.907±.192 .727±.384 .010±.005 .015±.007 .009±.004 .563±.108 .134±.294

LSBD-VAE
.990±.009 .863±.038 .011±.003 .015±.003 .014±.003 .538±.103 .731±.068/0

LSBD-VAE
1.000±.000 .990±.004 .012±.005 .052±.009 .020±.006 .947±.007 .041±.007/FULL

Table 9: Scores for COIL 100 dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

1.000±.000 .674±.049 .014±.003 .016±.003 .011±.002 .986±.001 .463±.030

β-VAE
1.000±.001 .740±.024 .015±.004 .014±.004 .013±.003 .982±.001 .579±.095

CC-VAE
.999±.003 .723±.026 .013±.005 .014±.003 .013±.004 .985±.001 .406±.057

FACTOR
1.000±.001 .684±.041 .014±.002 .012±.002 .013±.004 .984±.001 .490±.024

DIP-I
.999±.002 .631±.025 .013±.004 .012±.002 .010±.002 .986±.001 .525±.109

DIP-II
1.000±.001 .643±.043 .013±.003 .014±.002 .011±.002 .985±.001 .568±.079

ADAGVAE
1.000±.000 .672±.021 .015±.007 .016±.005 .014±.006 .984±.001 .431±.049

ADAMLVAE
1.000±.000 .688±.027 .011±.003 .015±.006 .018±.009 .984±.002 .400±.076

QUESSARD
1.000±.000 .780±.044 .014±.004 .014±.002 .011±.003 .973±.004 .396±.055

LSBD-VAE
1.000±.001 .739±.047 .014±.003 .014±.001 .011±.001 .982±.004 .515±.099/0

LSBD-VAE
1.000±.000 .655±.028 .015±.004 .029±.003 .013±.003 .802±.056 .112±.026/FULL


