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Abstract

Despite the vast literature on sparse Gaussian
graphical models, current methods either are
asymptotically tuning-free (which still require
fine-tuning in practice) or hinge on computation-
ally expensive methods (e.g., cross-validation) to
determine the proper level of regularization. We
propose a completely tuning-free approach for es-
timating sparse Gaussian graphical models. Our
method uses model-agnostic regularization param-
eters to estimate each column of the target preci-
sion matrix and enjoys several desirable proper-
ties. Computationally, our estimator can be com-
puted efficiently by linear programming. Theoret-
ically, the proposed estimator achieves minimax
optimal convergence rates under various norms.
We further propose a second-stage enhancement
with non-convex penalties which possesses the
strong oracle property. Through comprehensive
numerical studies, our methods demonstrate fa-
vorable statistical performance. Remarkably, our
methods exhibit strong robustness to the violation
of the Gaussian assumption and significantly out-
perform competing methods in the heavy-tailed
settings.

1. Introduction

Undirected graphical models are ubiquitous in the general
field of machine learning. Learning the edge of an undi-
rected graph G with nodes X1,..., X, is equivalent to
estimating the dependence structure among these d ran-
dom variables. Specifically, if (j,%) is an edge in the
graph G, then X; and X}, are dependent conditioned on
the rest of variables. In Gaussian graphical models, where
X = (Xq1,...,X4) ~ Ny(0,%), the conditional depen-
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dence structure is encoded in the sparsity pattern of the
precision matrix @ = £~ €, = 0 when (4, k) is not
an edge in G (Lauritzen, 1996). Also known as the covari-
ance selection problem (Dempster, 1972), we are primarily
interested in estimating €2 using n observations of the d-
dimensional random vector X .

It is well-known that this problem becomes challenging in
the high dimensional settings where d > n. Regularization
becomes a common strategy for feasible estimation of high-
dimensional Gaussian graphical models. Inducing sparsity
is an especially favorable choice of regularization since
non-zero entries in €2 correspond to the edges in G.

In literature, there are essentially two types of sparsity-
inducing estimators in Gaussian graphical models. One
type of methods is based on penalized likelihood estimation,
which includes the graphical lasso (GLasso) (Yuan & Lin,
2007; Friedman et al., 2007; Banerjee et al., 2008) as an
example. Likelihood-based methods are usually less favor-
able in terms of theoretical properties (Rothman et al., 2008;
Ravikumar et al., 2011; Mazumder & Hastie, 2012; Yu &
Bien, 2017). An alternative type of approach that is more
amenable to theoretical analysis estimates €2 in a column-
by-column fashion, where each column is estimated by a
regularized linear regression problem. For example, to esti-
mate each column of €2, Meinshausen & Biihlmann (2006)
use Lasso (Tibshirani, 1996), Yuan (2010) use the Dantzig
selector (Candes & Tao, 2007), Sun & Zhang (2013) use the
scaled Lasso (Sun & Zhang, 2012), Liu & Wang (2017) use
the SQRT-Lasso (Belloni et al., 2011).

The optimal performance of these methods typically de-
pends on choosing the proper value of regularization param-
eter, which usually relies on unknown population quanti-
ties. In practice, determining the level of regularization in-
volves computationally intensive procedures, such as cross-
validation. The only exceptions, as far as we know, are the
strongly related TIGER (Liu & Wang, 2017) and the scaled
Lasso (Sun & Zhang, 2013). Although both methods greatly
simplify the tuning procedure, the claimed tuning-free prop-
erty only holds asymptotically. The computational caveats
of these methods include (1) enforcing the same tuning pa-
rameter value to be used for estimating all columns of €2,
and (2) the common tuning parameter value includes a con-
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stant that still requires fine-tuning. These limitations call
for the development of a completely tuning-free estimator
whose level of regularization can be determined without any
tuning and is fully adaptive to each column problem of €2.

Furthermore, in many applications such as finance, neuro-
science, and genetics, the underlying data generating distri-
bution is often heavy-tailed. Methods that assume normality
conditions usually lead to less satisfying performance (Fine-
gold & Drton, 2011; de Miranda Cardoso et al., 2021).

Contributions: In this paper, we propose a completely
tuning-free method in high-dimensional Gaussian graph-
ical models. Our estimator possesses the completely piv-
otal property, so the regularization parameter for each col-
umn problem does not depend on any unknown parameters
and can easily be computed. Theoretically, our method
achieves the minimax optimal rate of convergence for a
well-studied matrix class under different norms. We fur-
ther propose a second-stage enhancement using non-convex
penalties which enjoys the oracle property. Through com-
prehensive numerical studies, we demonstrate the favorable
performance of the proposed methods and illustrate their
robustness to the violation of the Gaussian assumption.

Notation: For the rest of the paper, we let operator |-| denote
absolute value for a scalar and cardinal number of a set.
For a vector a € R?, a; denotes its i-th element. We
define the £, norm of a vector as |||, = (32, | |") /P
for 0 < p < 00, and ||af|c = max; |a;|. For a matrix
A € R"™4, A, denotes its (3, k) entry, A, ; denotes the
j-th column of A, and A, _; denotes the submatrix of A
with j-th column removed. We denote the matrix £,, norm
as ||All, = max|y,—1 [[AV]|,, and matrix Frobenius norm
as |Allp = (3,4 |A;x|*)'/2. Finally, A > 0 denotes that
the matrix A is positive definite.

2. Method

2.1. Column-by-column estimation of Gaussian
graphical models

Consider a d-dimensional multivariate Gaussian random
vector X = (X1,...,X4) ~ N(0,X). Given a data matrix
X € R™*4 where each row of X is assumed to be inde-
pendent and following the same distribution as X, we are
interested in estimating the precision matrix Q = 371,

It is well known that for each j = 1,...,d, the
joint normality implies the following conditional distri-
bution X;[X_; ~ Na_1(Z;—;[B-; ;] 7' X_;, %;,; —
X, -2, -;17'%_; ), which is equivalent to the follow-
ing linear model (by implicitly conditioning on X _;):

X;=XT,89 +¢, (1)

where 80) = [£_; _;]7'X_; and¢; ~ N (0,0%) with

UJZ = 2]'7]‘ — 2]‘,_]‘ [E—j,—j}ilz—j,f By the block matrix
inversion formula, we have

Q=05 and  Q_;; =028V,
It suggests that an estimate of the j-th column of €2 can be
obtained by estimating the regression coefficients 3(7) and
the error variance O'j2- of the linear model in (1). Thus, the
problem of estimating 2 can be formulated as a series of d
regression problems, each of which estimates one column

of 2.

Note from (2) that the sparsity pattern in an estimate of
BY) is equivalent to the sparsity pattern of the estimated
j-th column of €2 under joint normality. This observation
drives many recently proposed methods, most of which are
built upon various regularized regression techniques. How-
ever, these methods either require computationally intensive
procedures (e.g., cross-validation) to carefully choose the
proper level of regularization, which depends on certain
unknown population parameters, or are tuning-free asymp-
totically and still require tuning in finite samples.

2.2. Our proposed method: gRankLasso

In this paper, we propose the graphical Rank Lasso estimator
(gRankLasso) of Gaussian graphical models, where each
column of €2 is estimated using Rank Lasso (Wang et al.,
2020). Specifically, to estimate the j-th column of €2 using
the data matrix X € R™*?, we use the following rank loss
function

Qi(B)=Mn-1'Y >

k=1 m#k

X |(Xkj = Xing) = (Xi,—j — X —5)8],  3)

which is the summation of absolute pairwise difference
(among the n observations) of the linear model predictions
when X is regressed on all other variables X_;. In non-
parametric regression, this loss is equivalent to, up to a
constant, the Jaeckel’s dispersion function with Wilcoxon
scores (Jaeckel, 1972; Hettmansperger & McKean, 2010).
Then the estimate of the j-th column of €2 can be obtained
by

BY) = argmin{Q;(B) + ;118II1}, )

BERI-1
7 =YX~ X BV,
Q=1/63, Q. ;; =89

Wang et al. (2020) show that the subgradient of );(3) eval-
uated at the true 8U) is

2Q;(B)
L =
IZ 708 |pgo
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= —2[n(n —1)] ZXT_j ngn @) _ @y,

m#k

where sign(a) is the sign of a scalar a. It follows that

St Sign(e)) — eil)) = 2. rank(e}))) — (n +1),

where rank(eéj )) denotes the rank of e,(ﬁj )
among {ej @ e;j)}, which are iid. Thus
{rank(€; @ )), rank( g ))} follows a uniform distribution
on the random permutations of integers {1,2,...,n}. As

suggested in Wang et al. (2020), for ¢ > 1 and « € [0, 1],
we choose the regularization parameter \; in (4) so that
A= Q. (T - a),

where Q[Lljl‘x (1 — @) denotes the (1 — a/)—quantile of the
distribution of ||L; || «. This choice of \; can easily be sim-
ulated using Algorithm 1. Furthermore, this A; satisfies the
subgradient condition (Bickel et al., 2009; Biihlmann & Van
De Geer, 2011) of the Rank Lasso objective function in (4)
for each column problem with high probability (Wang et al.,
2020). The values of « and c are theoretical necessities, and
o = 0.1 and ¢ = 1.01 work well in practice. Moreover, the
optimization problem in (4) can be formulated as a linear
programming (LP), which can be solved efficiently using
any standard LP solver.

Algorithm 1 Simulate \;, forj =1,...,d

Input: X € R"*4, o € [0,1],¢ > 1,B €N
forkinl: B do
for jinl:ddo
r < arandom permutation of the integers 1 : n
¢+—2-r—(n+1)
L[] + ¢ [2[n(n — 1))~
end for
end for
Output: \; < Quantile(L;, 1

(X*,—j)quHoo

a),forj=1,...,d

Although recently there have been numerous tuning-free
methods in high-dimensional linear models (Wang, 2013;
Lederer & Miiller, 2015; Chichignoud et al., 2016; Belloni
etal., 2017; Yu & Bien, 2019), we argue that the Rank Lasso
is an especially attractive candidate for column-by-column
estimation of €. First of all, the Rank Lasso enjoys the
completely pivotal property, which means that the theoreti-
cally optimal regularization parameter does not depend on
any unknown model parameters and adjusts to both the dis-
tribution of random errors and the structure of the design
matrix. Hence, we allow regularization parameters \; to
be different for estimating different columns. Furthermore,
the regularization parameters \; can be easily simulated
from data, which is extremely efficient to compute without
any fine tuning. Thirdly, among other regression methods
that share similar properties, the Rank Lasso is significantly

more efficient in Gaussian settings (Wang et al., 2020). Fi-
nally, it was also noted that the Rank Lasso estimator is
robust to heavy-tailed errors. This auxiliary property makes
it appealing for many data applications where the stringent
multivariate Gaussian assumption is not guaranteed.

2.3. A second-stage improvement

The ¢; penalty used in (4), while being computationally
friendly, is known to induce estimation bias (Tibshirani,
2011). Therefore, many non-convex penalties (Fan & Li,
2001; Zhang, 2010, among others) have been proposed to
circumvent this issue. We present a second-stage improve-
ment with non-convex penalties (Wang et al., 2020) us-
ing gRankLasso as an initial estimator. Specifically, for
1<j<d,

BY) — argmin(Q; (8 +an BINIBiLY, ()

BER i=1
57 =Xy = Xe i BY3,
Q=1/57, Q;;=-Q;89,

where 3) is obtained in (4) and p,(+) denotes the deriva-
tive of a non-convex penalty function p,(-) with a tuning
parameter 7 > 0. The second-stage improvement applies
to a general class of non-convex penalties, which will be
described in Section 3. The optimization problem in (5) can
also be solved efficiently using LP standard solver.

Note that a tuning parameter 7 is required in the general
non-convex penalty in (5), which needs light tuning. At
a higher computational cost, we show in Section 3 that
with a proper choice of 7, the second-stage enhancement
achieves stronger theoretical guarantees than gRankLasso.
Particularly, the second-stage enhancement enjoys the ora-
cle property, meaning that it performs as if one knows the
support of the true €.

Practically, to ensure that the estimate of €2 is symmetric, we
set ng = Q" = min{€2;;, Q;;} and stm = stm =
min{€;;, Q;;} for i # j. This additional symmetrization
step does not affect the theoretical analysis as shown in Cai
etal. (2011).

3. Theoretical analysis

In this section, we study the theoretical properties of the
proposed estimators. Let S; = {i : ¢ # j,Q;; # 0}
be the support of the off-diagonal part of the j-th column
of ©. We define the matrix class M(s, My) = {Q =
QT e R4 Q= 0,67 < Apin(Q) < Apan () <
&, maxi<j<a |95 < s,]|Q1 < Mg}, where € is a positive
constant, A, () and A (€2) are minimum and max-
imum eigenvalues of €2, and My may scale with d. We
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assume the following conditions:

(C1) Q € M(s, My),

(C2) s%logd = o(n).

Condition (C1) requires that the true precision matrix has a
bounded minimum and maximum eigenvalues, and is sparse
column-wise. Condition (C2) allows the maximum degree
of the graph encoded by true €2 to grow with d in a certain
rate.

3.1. Main theorems

Theorem 3.1. (Matrix {1 norm and spectral norm rates)
With the adaptive choice of A\j,j = 1,...,d from Algorithm
1, under assumptions (C1) and (C2), we have

12— Q2 < | - Q|; < CsM,y

log d
n

with probability at least 1 — O(1/d), where C is an absolute
constant.

Theorem 3.1 shows the convergence rate of matrix estima-
tion under the matrix ¢; and spectral norms. This is the
minimax optimal rate of convergence for the matrix class
M(s, My) (Theorem 4 in Yuan, 2010).

Corollary 3.2. (Frobenius norm rate) With the adaptive
choice of \; for j = 1,...,d from Algorithm 1, under
assumptions (Cl1) and (C2), we have

. 1
192 = Q|| p < CsMay d :Lgd

with probability at least 1 — O(1/d), where C' is an absolute
constant.

The convergence rate under the Frobenius norm is worse
than the minimax optimal rate by a factor of /s (Rothman
et al., 2008; Cai et al., 2016; Liu & Wang, 2017). Whether
gRankLasso could achieve the minimax optimal rate under
the elementwise max-norm as well as the Frobenius norm is
an interesting future research (Cai et al., 2011; Kelner et al.,
2020).

Next, we show the strong oracle property and the faster
convergence rate using the second-stage enhancement. We
assume the following conditions on the general non-convex
penalty functions:

1. p,(t) is increasing and concave for ¢ € [0, +00), and
has a continuous derivative p; () on (0, 4+00).

2. py(t) has a singularity at the origin, 4.e. p; (0+) > 0,
which can be standardized so that p;, (0+) = 7.

3. There exist constants a; > 0 and as > 1 such that
py(t) > ain forall 0 < ¢ < agn; and p)(t) = 0 for
all t > aqn.

These general conditions hold for many non-convex penalty
functions, including the two popular choices SCAD (Fan
& Li, 2001) and MCP (Zhang, 2010). We show that the
second-stage improvement performs as if one knows the
sparsity pattern of the true €. Specifically, let € be the
oracle estimator of €2 defined as follows: Fori < j < d

B(j) = argmin Q](ﬁ)v

supp(B)CS;
57 =Xy — X BY3,
Qy=1/57, Q. =-;89.

That is, B(j ) is the minimizer of the rank loss function
Q;(B) in (3) when the support of the j-th column of Q
is known. Using a non-convex penalty such as SCAD or
MCP, we can show the oracle property of our second-stage
estimator.

Theorem 3.3. Let S be the second-stage estimator of )
using gRankLasso Q as an initial estimator. Suppose the
conditions in Theorem 3.1 are satisfied and the non-convex
penalty function satisfies the general conditions above. Fur-
thermore, suppose s = O(n®), n = O(n~(172)/2)
log d = n*3, and nonzero entries of the true S satisfies

rzri? Q] > b~ (7o) (6)

where aq,as,as,a4,b are positive constants such that
2a1 < as < ag < 1anday + az < ag, then we have

Q=0Q, and
logd

~ ~ s
Q-—Q: <|I—-Q|1 <C1Mg— + CoM,
| ll2 < || h <G a7+ CeMa
with probability at least 1 — O(1/d), where Cy,Cy are
absolute constants.

Theorem 3.3 states that under the minimal signal strength
condition (6), the second-stage improvement recovers the
true support as the oracle estimator does, i.e., Q= Q.
Furthermore, it achieves a significantly faster convergence
rate. The minimum condition on the magnitude of the true
non-zero entries (6) is mild and standard to prove support
recovery results and the oracle property (Meinshausen &
Biihlmann, 2006; Cai et al., 2011; Wang et al., 2016). Re-
markably, we do not need to impose the stringent irrepre-
sentable condition (IC, Zhao & Yu, 2006; Ravikumar et al.,
2011). Intuitively, the conditions on the values of a; to
a4 provides a theoretical trade-off among the sparsity level
(a1), the shrinkage effect of the non-convex penalties (as),
the ambient dimension (a3), and the minimal signal strength
(a4) in obtaining the oracle property: the denser the true
precision matrix is (a; larger), the stronger minimal sig-
nal strength is required (a4 larger), the larger value of 7
(ag larger) is necessary for the non-convex penalties, or a
smaller dimension can be handled (a3 smaller).
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Table 1. Theoretical properties of different ¢;-regularized methods.

METHOD | II-[l1 MINIMAX OPTIMAL | |- || MINIMAX OPTIMAL | TUNING-FREE
CLIME X X X
GLASSO WITH IC WITH IC X
SCIO WITH IC WiITH IC X
GRAPHICAL DANTZIG SELECTOR Vv X X
TIGER V4 Vv ASYMPTOTIC
GRANKLASSO Vv X COMPLETE

3.2. Comparison to existing methods

In Table 1, we summarize theoretical properties of different
¢1-regularized estimators. Specifically, SCIO (Liu & Luo,
2015) achieves the same convergence rate as gRankLasso,
but the irrepresentable condition (IC) is required. It is still
unclear if SCIO can achieve the optimal minimax rate with-
out the irrepresentable condition.

Similar to SCIO, the GLasso estimator also assumes the ir-
representable condition to obtain O, (sMy+/(log d)/n) rate
of convergence under the spectral norm (Ravikumar et al.,
2011). Fan et al. (2014) prove that the SCAD-penalized
maximum likelihood estimator achieves the oracle property,
but with a slower convergence rate than our second-stage
enhancement.

CLIME (Cai et al., 2011) and TIGER (Liu & Wang, 2017)
consider a larger matrix class where the conditional number
(instead of the minimal and maximal eigenvalues) of the pre-
cision matrix is bounded. TIGER achieves the minimax opti-
mal rate for this larger matrix class, but the convergence rate
of CLIME under the spectral normis O, (sM2/(log d) /n),
which is slower.

Wang et al. (2016) estimate each column of €2 using a non-
convex penalty and also achieves a faster convergence rate
under the spectral norm. However, their method requires
heavy tuning, while our second-stage estimator only needs
light tuning with the high-dimensional Bayesian information
criteria (HBIC) as suggested in Wang et al. (2020).

4. Simulation studies

We consider MCP penalty in the second-stage enhancement
and denote our method as gRankMCP. In this section, we
compare the performances of gRankLasso and gRankMCP
with GLasso, CLIME, and TIGER in terms of precision
matrix estimation. All numerical experiments are imple-
mented in R (R Core Team, 2021). The CLIME estimator
is computed using the R package flare (Li et al., 2015);
the TIGER and GLasso estimators are computed using the
R package huge (Zhao et al., 2012).

4.1. General Comparison

We consider 3 types of graph: random, band, and cluster
graph as described in Liu & Wang (2017) to determine
the sparsity pattern in the final Gaussian graphical models.
Particularly,

1. Erd6s—Rényi random graph: Each pair of nodes is con-
nected by an edge with probability 0.05 independently.

2. Band graph (with bandwidth 3): Two nodes 1, j are
connected by an edge if |i — j| < 3.

3. Cluster graph: The d nodes are partitioned into [d/20]
disjoint groups. The subgraph of each group is a ran-
dom graph with edge probability 0.2.

From each generated graph, we further generate an adja-
cency matrix A by setting the non-zero off-diagonal ele-
ments to be 0.3 and the diagonal elements to be 0. Let
Amin(A) be the smallest eigenvalue of A. The precision
matrix is then generated by

where D € R?*? is a diagonal matrix with D;; = 1 for
j=1...,d/2and D;; = 1.5forj = d/2+1,...,d.
Finally, n i.i.d. observations are sampled from the multi-
variate Gaussian distribution Ny(0, 2~1). For each type of
graph, we set n = 100 and d € {25, 50, 100, 200, 400} and
repeat the simulation 50 times. For CLIME and GLasso,
the optimal tuning parameter values are chosen using a
validation set approach. Specifically, for each tuning param-
eter, CLIME and GLasso estimate the precision matrix Q
using the training data, and the optimal tuning parameter
is chosen so that it minimizes the negative log-likelihood
loss L(£2) = trace(23) — log det(£2) on the validation set,
where 3 is the sample covariance matrix. We use the reg-
ularization parameter A = 4/ (log d)/n for TIGER as sug-
gested in Liu & Wang (2017) instead of fine-tuning. While
gRankLasso is completely tuning-free, gRankMCP requires
some light tuning. We use the HBIC (Wang et al., 2020) to
select the best value of 7 in (5).
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Figure 1. Comparison of estimation performance (in terms of the spectral norm error HQ — QJ|2, averaged over 50 replications) of various

methods in the three graph models with d € {25, 50, 100, 200, 400}.

In Figure 1, we present the estimation error (averaged over
50 replications) under the spectral norm ||€2 — €2|| for the
three graph models. Evidently, gRankLasso and gRankMCP
both outperform other methods in all three types of graphs.
The performance advantage is especially pronounced in
the high-dimensional setting where d = 400. The perfor-
mance of CLIME and GLasso, the two methods that require
tuning, are sensitive to the underlying graph type. In partic-
ular, CLIME has a higher estimation error than GLasso and
TIGER for band graph, but achieves a lower estimation error
for the other graph types. Remarkably, gRankLasso outper-
forms TIGER when both methods do not use tuning. This
could be due to the difference in the completely tuning-free
property of gRankLasso and the asymptotically tuning-free
property of TIGER. With fine tuning, TIGER could poten-
tially achieve an improved estimation performance, at a cost
of more expensive computation. In Section 4.2, we further
investigate the performance difference between gRankLasso
and TIGER in various settings.

4.2. Sensitivity of tuning-free methods

In this section, we further illustrate the advantage of the
completely tuning-free property of gRankLasso. To this
end, we focus on the random graph model and study the
performance difference between gRanklLasso and TIGER.
We consider various settings of the diagonal matrix D in
(7). In particular, we set D;; = 1for j = 1,...,d/2 and
D;; =r1forj=d/2+1,...,dwithT € {1,1.5,2,2.5,3}.
Intuitively, the optimal level of regularization for estimat-
ing each column then falls into one of the two categories
(Dj; = 1 versus D;; = 7). Thus 7 gives a simplified

LA
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I
o .
S Ry
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) .
2 4 d
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L 50
K -~-. 100
'y 200
1.0
1.0 15 2.0 25 3.0
T
Figure 2. Frobenius error ratio ||QgrankLasso — Q||;1HQT1GER —

Q|| 7 (averaged over 50 replications) in the random graph model.

characterization of the difference in the optimal level of
regularization in estimating different columns of €2. As the
value of 7 increases, it is expected that a method like TIGER,
which enforces the regularization parameter \; to be the
same across all column problems, will have a deteriorating
performance.

For each generated precision matrix, we follow the same
paradigm to generate n = 100 observations of dimension
d € {50,100,200} from the multivariate Gaussian distri-
bution X ~ Ny(0,Q271). Figure 2 shows the Frobenius
errors ratio (averaged over 50 replications) ||QerankLasso —



A Completely Tuning-Free and Robust Approach to Sparse Precision Matrix Estimation

Q| 7' |QricEr — | - As expected, we observe that with
an increasing value of 7, the performance advantage of
gRankLasso over TIGER becomes more pronounced. This
demonstrates a setting where the completely tuning-free
property of gRankLasso is favored, and the asymptotically
tuning-free property might fall short. We also note that this
pattern holds for all three values of d, which covers the
entire spectrum of the n > d, n = d, and n < d settings.

4.3. Benefit of the second-stage enhancement

It is almost impossible to identify the difference in perfor-
mance between gRankLasso and gRankMCP in Figure 1.
To better understand the benefit of the second-stage enhance-
ment in practice, we consider a more challenging setting
with a denser true precision matrix: €;; = 0.6/°7JI, for
1 <i,j < d, which is also considered in Cai et al. (2011).
We then generate n = 100 observations with dimension
d € {25,50,100, 200,400} from N4(0,271).

_A
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P4
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I method
(D .
3.0 K gRankLasso
- -4 - gRankMCP
2.9 g
A
25 50 100 200 400

d

Figure 3. Comparisons between gRankLasso and gRankMCP on a
decay graph model in terms of the spectral norm error ||€2 — €2||2
(averaged over 50 replications).

Figure 3 shows the spectral norm error (averaged over 50
replications) [|€2 — £2||2 of gRankLasso and gRankMCP
for 5 values of d. Unsurprisingly, in a more challenging
scenario, the efficiency gain of gRankMCP becomes more
obvious. However, as mentioned above, this comes at a
cost of additional tuning. It is then up to the practitioners’
discretion to choose between the tuning-free gRankLasso
and its second-stage enhancement based on the trade-off of
budgets on statistical error and computational resources.

4.4. Heavy-tailed setting

Finally, as mentioned in Section 2, one potentially useful
property of our proposed methods is the robustness against

the violation of the underlying joint normality assumption.
In this section, we evaluate performance of our methods
in heavy-tailed setting in comparison with other methods.
We consider the same setting of the random graph model
as in Section 4.1. Instead of the Gaussian distribution,
we generate observations from a multivariate ¢-distribution
t,(0,Q271) of dimension d € {25,50, 100, 200,400} with
degrees of freedom v € {3,5,10}.

Figure 4 shows the Frobenius norm error (averaged over
the 50 replications) |2 — || . Across different settings,
gRankLasso and gRankMCP still achieve the most favor-
able performance among all competing methods. In the
most extreme case when v = 3, while all methods suffer,
gRankLasso and gRankMCP clearly outperform competi-
tors in the challenging high-dimensional case (d = 400).
When v = 10, we see a similar performance to the Gaussian
setting for all methods, which again shows the efficiency
advantage of using the rank loss in (3).

5. Data example: Human gene network

We apply our proposed methods to reconstruct the inter-
action network from human gene expression data in the
BDgraph R package (Mohammadi & Wit, 2019), which
was previously studied by Bhadra & Mallick (2013); Mo-
hammadi & Wit (2015); Liu & Wang (2017). This dataset
consists of n = 60 individuals of Northern and Western Eu-
ropean ancestry from Utah, whose genotypes are available
online at the Sanger Institute website'. We use d = 100
variables in the dataset that are the 100 most variable probes
corresponding to different Illumina TargetID transcripts,
and were selected from the previous study of Bhadra &
Mallick (2013) and the subsequent study of Mohammadi &
Wit (2015).

The goal of this analysis is to learn the significant associa-
tions among the 100 chosen traits. As shown in Mohammadi
& Wit (2019), all chosen traits are continuous but not Gaus-
sian, so the assumption of joint normality is hardly satisfied.
For the sake of comparison, we first use the Bayesian ap-
proach from Mohammadi & Wit (2015) to estimate the pos-
terior probabilities of all possible edges, which leads to 124
significant edges (interaction with the estimated posterior
probability greater than 0.6), and use these recovered edges
as the baseline as if they were the truth. We then use the fol-
lowing methods to estimate the underlying graph: GLasso
(the optimal tuning parameter selected using a 5-fold cross-
validation), TIGER (with the regularization parameter set

as A = +/(log d)/n), gRankLasso, and gRankMCP (light
tune with the HBIC).

Table 2 shows the precision, which is the ratio between
True and Total, where True is the number of recovered

Ltp://ftp.sanger.ac.uk/pub/genevar
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Figure 4. Comparison of estimation performance (in terms of the Frobenius norm error ||Q — Q|| r, averaged over 50 replications) of
various methods in the three graph models when data are drawn from a multivariate ¢-distribution with degrees of freedom v € {3,5,10}.

(a) Significant edges (b) GLasso

(c) TIGER

(d) gRankLasso (e) gRankMCP

Figure 5. The sparsity pattern of estimated graphs from TIGER, gRankLasso, and gRankMCP on human gene network data. The plot 5(a)
shows 124 significant edges whose estimated posterior probabilities are greater than 0.6, and is considered to be the comparison baseline.

Table 2. Comparison of gRankLasso, gRankMCP, and TIGER on
human gene expression data in terms of the number of True recov-
ery, Total recovery, and Precision.

METHOD TRUE TOTAL PRECISION

GLASSO 77 301 0.255

TIGER 66 179 0.368
GRANKLASSO 62 136 0.456
GRANKMCP 56 108 0.518

edges that are significant (in the sense of recovery by Mo-
hammadi & Wit (2015)), and Total is the total number of
recovered edges from each method. The sparsity patterns
of the recovered graphs are shown in Figure 5. While the
graph estimated by gRankLasso and gRankMCP are sparser,
which is a favorable feature in terms of interpretability, they
both achieve higher precision than TIGER and GLasso.

6. Discussion

We present gRankLasso, a completely tuning-free method
for estimating Gaussian graphical models, which does not
require tuning in finite samples. Its minimax optimal rates
of convergence under the matrix ¢; norm and the spectral
norm are established. Our proposed method is accompanied
by a second-stage enhancement that improves statistical
efficiency due to the reduction of estimation bias. Under
mild conditions, the second-stage estimator achieves faster
convergence rates and enjoys the oracle property. Both
proposed estimators can be computed very efficiently by
linear programming. Favorable finite sample performance
of our methods are illustrated through extensive numerical
simulations and a real data application.

As we mentioned above, it is theoretically interesting to
investigate whether gRankLasso can achieve the minimax
optimal rate under the Frobenius norm and the element-
wise max-norm over the matrix class M(s, My). Another



A Completely Tuning-Free and Robust Approach to Sparse Precision Matrix Estimation

potential improvement is showing graph recovery results
of gRankLasso under weaker assumptions (Kelner et al.,
2020).

Recently, inference in Gaussian graphical models has drawn
more attention (Fan et al., 2019; Li & Maathuis, 2021).
One could formulate the debiased version (Javanmard &
Montanari, 2018; Fan et al., 2020) of gRankLasso, and es-
tablish certain inferential results using the framework of
Jankovd & van de Geer (2018). Additionally, estimation in
high-dimensional Network Granger causal models (Basu
et al., 2015) is another possible application of our methods.
Their observed robustness to the heavy-tailed contamina-
tion makes them attractive candidates in estimating vector
autoregressive models, especially in the presence of heavy-
tailed and/or heteroscedastic noise. It will be interesting
to evaluate performances of our proposed methods in these
potential extensions.
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A. Proofs

A.1. Preliminaries

We follow the framework in Yuan (2010) and Liu & Wang (2017) to prove convergence results. First, we provide some

preliminaries. For a constant ¢ > 1, define ¢ = gﬂ and consider the cone set

T = {y e R : |y

1 < dllysll, S C{1,2,...,d}, [IS]lo < s}
Let S; be the support of the j-th column of €2, recall the s-sparse matrix class
M(s,Mz) = {2 =0T c R : Q= 0,6 < Apin(2) < Apax () <€,

| < <
151 < 0 10 < Mo,

We assume that the following conditions are satisfied:
(C1) Q € M(s, My),
(C2) slogd = o(n).

For a non-convex penalty function, we assume that some general conditions are satisfied:

1. py(t) is increasing and concave for ¢ € [0, +00), with a continuous derivative pj,(t) on (0, +0o0).
2. py(t) has a singularity at the origin, i.e. p; (0+) > 0.

3. There exist constants a; > 0 and as > 1 such that p% (t) > ainforall 0 < t < asn; and p%(t) = 0 forallt > aon.
Note that we use capital letter C' to denotes an absolute constant, which can be different in different equations.

A.2. Technical lemmas

Lemma A.1. Let Y ~ x3. We have

P(Y —d| > dt) < expcg’dt?),w €[0,1/2),
P(Y < (1—1t)d) < exp(;ldtQ) Yt €[0,1/2).

Lemma A.2. Let €) € R™ such that €9) ~ N (0, O’?In). Then

€93

2
naj

-1

< 3.5/ 08¢
n

Lemmas A.1 and A.2 are taken from Johnstone (2001); Laurent & Massart (2000); Liu & Wang (2017).
Lemma A.3. /; Restricted Eigenvalue condition: Let 3 = X7X /n. Suppose slog(d) = o(n), then there exist constants

c1, o such that
oY
inf

NI -
~erd yllz T 5€1/2

holds with probability at least 1 — ¢1 exp(—can).

1<j<d

holds with probability at least 1 — 1/d.

Proof. Forany S C {1,2,...,n} with |S| < s, we have, for any v € T'?,

IVl < (1 +0)llvslh < (1 + ) Vsllvsllz < (1 +0)Vs|vll2,
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and

2
T > Apin (S 2> Ain(X 2>Amnzgﬂﬂ@<

Consider a random matrix X € R™*?_in which each row is drawn i.i.d. from a N (0, ). From Raskutti et al. (2010), there
exists two positive constants ¢y, co such that

~ 1 log d
P (\/727 > Z\/'yE'y — 91@?2([1 V25 T||7||1,V'y € Rd> >1—cpexp(—can)

By definition, we have

> > min B > Apin(2).
Amax(%) 2 max 3j; > min ;5 > Amin(3)

It follows that,

[ = 1 slogd
P < Xy > 1V Amin(Z)[7]l2 = 9(1 + &) vV Anax () s lvll2, Vv € Rd) > 1 — ciexp(—can).

n

Thus

VIEY 1 log d
P in% e > I Amin () —9(1 + 8) v/ Amax(X) °08 Ny € RY| > 1 — ¢y exp(—can).
YE 2 n

Since we assume s log d = o(n), for n large enough, we have
1 _ slogd 1 1/2 _. [slogd
1 Amin(E) —9(1 + )/ Amax (%) — > 16172 —9¢/%(1+¢) "

S 1
- 5§1/2

Lemma A.4. Prediction error bound of first-stage estimator: Let ﬁ(j ) be the Rank Lasso estimator of B(j ). Then

max [|X. _;(8Y) — BW)[, < C\/slogd,

1<j<d

holds with probability at least 1 — O(1/d).

Proof. We have

Y2y X 1
A Xl

= inf ,
verd |lyllz yert V/nfylla T 5612

then,

Xy —j X 1
i g el Xl L
uaerio Valllle ~ aere Villls ~ 5E72

Thus the £;-RE condition holds for all Rank Lasso subproblem from each column. From Lemma 2 of Wang et al. (2020),
using a simulated \; from Algorithm 1, we have 3) — 30) € T, From Lemma 9 of (Wainwright, 2009), we have

P[||X"X/nlz < Amax(E)(1+6(n,d, t))] > 1 — 2exp(—nt?/2),

[2logd
where 6(n,d,t) = 2(\/d/n +t) + (y/d/n + t)%. By setting t = o8 , we have d(n,d, t) <8, and
n

P [|X"X/nllz < 9Amax(Z)] > 1 —2/d.
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From Theorem 1 of Wang et al. (2020) we have

. . [slogd
P |39 — 89|, < 5EY2C, S‘f] >1—a—1/d.

X, (B89 = B T /211 a(j i
: < ) , 7 _ 3W)
1??%% \/ﬁ — 11%1‘?%(d ||X*,7JX*7*]/n||2 ||I6 /6 ||2

< IXTX /2 30) _ g0
< IXTX/nl;/* max 189 - B89,

< 3AL2 (2)5¢1/20 /2282 log d
n
slogd
B

with C' = 15£C. We get the desired result by choosing o = 0.

Thus

Lemma A.5. Prediction error bound for oracle estimator: Let 3) be the oracle estimator of B9). Then

max [[X.,—;(8Y) = B2 < OV,

1<j<d

holds with probability at least 1 — O(1/d).

Proof. From Lemma 3 of Wang et al. (2020), we have

189 — B9y = Op(/s/n).
Then similar to Lemma A.4

X589 = B2

< T I l1Y2130) — gU)
jmax, 7 < max [ X5 Xe - /nllaT )18 = B2

< XTX /nlX2139) — g

< max | X5X /a8 = Bl

< 3Ar1n/a2x(z)00\/? < 351/200\/§ = C'\/g7
n n n
with C' = 3¢1/2¢,.

A.3. Main lemmas

Lemma A.6. Analyzing the diagonal elements of the gRankLasso estimator

max [Q;; - 5] < 9

logd
1<j<d n

Proof. We have

N _ [1Xoj — X893
()" — ()| = J - J 2 o2
_[IKems89 B + 0N
_ — 2
e - ONE ‘(ﬁ(j)—ﬁ(j))TX*T._le(”
IO o] Xy (8Y B g
n n n
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From Lemmas A.1, A.2, A.4, we have

le]13

n
X 5(1) g(]) )2 < C/slogd.

From standard Gaussian tail bounds in Wainwright (2019), we also have for all § > 0

P [P0 < oo, (VDT )

[2logd
By setting 6 = o8 , we have
n

[” o€’ ||Oo < Co, (2[@)1 >1-2/d.

2 §3.50j2- (logd)/n,

>1- 2exp(—n52/2).

It follows that

'([;(ng( NTXT_ a)’ N XT el
<289 — Y|, H oo

2(1+ &)v/3]89) — B9 100, (M 1°g>

< 4v2(1 +a)caj\/§\/51‘;gd <\/10§d)

=4v2(1 + E)C’Ujsbgd.
Therefore,
(Q5) 7" - (ij)’l‘ < 3-505W+ CQSljbgd +AVR(1+ E)Cajsloid.
Note that s % = 0(1), so there exists a constant C' such that, for large enough n
’(ij)_l - (ij)_l’ < Co? lo%l.

The rest of the proof follow Liu & Wang (2017). Since 2;; = 1/07, we have

1l <c logd.

This implies that

Then, for large enough n

1 -1
Lo fload _ <1+C 1ogd> and (1_0 logd> 10 1ogd,
n n n n
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we have .
1 Q. 1
1oyt S S (o fled )
n Q jj n
Thus
A logd log d

max €5 — Q5] < € max 054/ 225 < ClQlyy /=2

[

Lemma A.7. Analyzing the off-diagonal elements in /;-norm error of the gRankLasso estimator
logd

1

n

max [0 = 2yl < Ol + 1921)

Q,;=-9;,89,

Proof. Recall that
0—2 (4) IR

Q;;89|

fﬂﬂwﬁ I
192,95 I

Then
”Q—J] - Q—JJ”l = ||(7_2,8(])
0,80 4 2,80 - 0,50 -
j)

<[0,]189) - 89 + |6
Q Qj;
9

189 - O], +

= ‘ij
< |€05[189) - B9 + |52 — 1/12-5511
33
From lemmas A.4, A.6, we have
A logd
Q5 < (1 +0y 22 ) Q5 < 2|2,
s , A 4 logd
189 = B9y < (1+2)V5[B9) = BV < C(1+3)sy/ ==,
Yi oo logd'
ij n
Thus
- logd logd
1255 — Q—jjlls < Cll€ 281/ —= + Cl| 2|11/ ——.
O
Lemma A.8. Analyzing the diagonal elements of second-stage estimator
- logd
L0 <
lréljagd ‘QJJ Qja‘ < C[|€2|2 "

B(BY = B9) > 1—a— hy,

Proof. Let 3Y) be the second-stage estimator of 37), 3U) be the oracle estimator of 3). From Theorem 2 of Wang et al
>1—a—h,.

(2020), we have for « from algorithm 1

where h,, — 0 as n — oo. It follows that
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With a = 0, we then obtain the strong oracle property by union bound.
Follow similar arguments from A.6, we have

€913

- 30) _ gUNTXT )
- ~ X, _;(BY) — 812 (B BUNTXT
(€)= ()7 < et 2 4o - |

n J

From Lemmas A.1, A.2, A.5, A.6, we have

€93

< 3.503/(logd)/n,
X, (B9 = B2 < CV,

(BU) — BUNTXT €l) 1 1
‘ i ‘ <2v2(1 +c)Cajs\f ogd )
n n

2
g

n
Therefore,
0.\~ - [logd S _ s logd
1 1 2 2
logd

Since s{/ —— = o(1), there exists a constant C' such that, for large enough n

(@) - ()| < o2 /120

The rest of the proof follow Lemma A.6. We have

logd logd

< C max 21/ —2% < O[Q2y/ 22
1<j<d n n

Lemma A.9. Analyzing the off-diagonal elements in /;-norm error of second-stage estimator

max | — Q.
1§jgd,‘ JJ 3J

. s logd
[oax, 19255 — Q] < 01||Q||2ﬁ + o[y ==
Proof. Follow similar arguments of Lemma A.7, we have
() 0 30) () €y
1955 = Qosall <[5 [189 = B9+ |52 ~ 1195501
JJ
From Lemmas A.5, A.8, we have
~ logd
Q5 < <1+0 £ )ﬂﬁ < 2922,
~ . . ~ . . S
18Y) = BD|y < (1 + )58 = BV < C(1+0)—,
vn
@ 1| < oyf18e
i B n
Thus
logd

~ S
12—, —Q—jjll1 < 01||9||2ﬁ + C2|2|x .
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A.4. Main theorems

Theorem 3.1

Proof. The proof is identical to Liu & Wang (2017). From lemmas A.6 and A.7, we have

12— 2l = max || — eyl

1<5<d

< max, | = Q5] + max 1@, - 95,
< oy B ¢ cigaos + 1) 252
CIRs + [9]1)y) 2

log d

_c<sn||1 8 )
n

C’(Md logd>
n

IN

Theorem 3.3

Proof. From lemmas A.8 and A.9, we have
1€2 = Qfl = max [[€.; — Qo jlls

< max ’ﬂjj _QJJ‘ + rnax ”Q*JJ ﬂ*j»j”l

1<5<d 1<5<
lo logd
< ol <5 + G2 + Call by <5
s log d
< Cil@lh = + Gl =
logd

S
< ClMdﬁ + CQMd




