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Abstract
Differentially private algorithms for common met-
ric aggregation tasks, such as clustering or aver-
aging, often have limited practicality due to their
complexity or to the large number of data points
that is required for accurate results. We propose a
simple and practical tool, FriendlyCore, that takes
a set of points D from an unrestricted (pseudo)
metric space as input. When D has effective di-
ameter r, FriendlyCore returns a “stable” subset
C ⊆ D that includes all points, except possibly a
few outliers, and is guaranteed to have diameter r.
FriendlyCore can be used to preprocess the input
before privately aggregating it, potentially sim-
plifying the aggregation or boosting its accuracy.
Surprisingly, FriendlyCore is light-weight with
no dependence on the dimension. We empirically
demonstrate its advantages in boosting the accu-
racy of mean estimation and clustering tasks such
as k-means and k-GMM, outperforming tailored
methods.

1. Introduction
Metric aggregation tasks are at the heart of data analysis.
Common tasks include averaging, k-clustering, and learn-
ing a mixture of distributions. When the data points are
sensitive information, corresponding for example to records
or activities of particular users, we would like the aggrega-
tion to be private. The most widely accepted solution to
individual privacy is differential privacy (DP) (Dwork et al.,
2006b) that limits the effect that each data point can have
on the outcome of the computation.

Differentially private algorithms, however, tend to be less
accurate and practical than their non-private counterparts.
This degradation in accuracy can be attributed, to a large
extent, to the fact that the requirement of differential pri-
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vacy is a worst-case kind of a requirement. To illustrate
this point, consider the task of privately learning mixture of
Gaussians. In this task, the learner gets as input a sample
D ⊆ Rd, and, assuming that D was correctly sampled from
some appropriate underlying distribution, then the learner
needs to output a good hypothesis. That is, the learner is
only required to perform well on typical inputs. In contrast,
the definition of differential privacy is worst-case in the
sense that the privacy requirement must hold for any two
neighboring datasets, no matter how they were constructed,
even if they are not sampled from any distribution. This
means that in the privacy analysis one has to account for any
potential input point, including “unlikely points” that have
significant impact on the aggregation. The traditional way
for coping with this issue is to bound the worst-case effect
that a single data point can have on the aggregation (this
quantity is often called the sensitivity of the aggregation),
and then to add noise proportional to this worst-case bound.
That is, even if all of the given data points are “friendly” in
the sense that each of them has only a very small effect on
the aggregation, then still, the traditional way for ensuring
DP often requires adding much larger noise in order to ac-
count for a neighboring dataset that contains one additional
“unfriendly” point whose effect on the aggregation is large.

In this paper we present a general framework for prepro-
cessing the data (before privately aggregating it), with the
goal of producing a guarantee that the data is “friendly”
(or well-behaved). Given that the data is guaranteed to be
“friendly”, the private aggregation step can then be executed
without accounting for “unfriendly” points that might have
a large effect on the aggregation. Hence, our guarantee
potentially allows for much less noise to be added in the
aggregation step, as it is no longer forced to operate in the
original “worst-case” setting.

1.1. Our Framework

Let us first make the notion of “friendliness” more precise.

Definition 1.1 (f -friendly and f -complete datasets). Let D
be a dataset over a domain X , and let f : X 2 → {0, 1} be
a reflexive predicate. We say thatD is f -friendly if for every
x, y ∈ D, there exists z ∈ X (not necessarily in D) such
that f(x, z) = f(y, z) = 1. As a special case, we call D
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f -complete, if f(x, y) = 1 for all x, y ∈ D.1

Example 1.2 (Points in a metric space). Let D be points in
a metric space and fr(x, y) := 1{d(x,y)≤r}. Then if D is
fr-friendly, it is f2r-complete (by the triangle inequality).

We define a relaxation of differential privacy, where the
privacy requirement must only hold for neighboring datasets
which are both friendly. Formally,

Definition 1.3 (f -friendly DP algorithm). An algorithm
A is called f -friendly (ε, δ)-DP, if for every neighboring
databasesD,D′ such thatD∪D′ is f -friendly, it holds that
A(D) and A(D′) are (ε, δ)-indistinguishable.

Note that nothing is guaranteed for neighboring datasets that
are not f -friendly. Intuitively, this allows us to focus the pri-
vacy requirement only on well-behaved inputs, potentially
requiring significantly less noise to be added.

We present a preprocessing tool, called FriendlyCore, that
takes as input a dataset D and a predicate f , and outputs
a subset C ⊆ D. If D is f -complete, then C = D (i.e.,
no elements are removed from the core). In addition, for
any neighboring databases D and D′ = D ∪ {z}, we show
that FriendlyCore satisfies the following two key properties
with respect to the outputs C = FriendlyCore(D) and C′ =
FriendlyCore(D′):

1. Friendliness: C ∪ C′ is guaranteed to be f -friendly.

2. Stability: C is distributed “almost” as C′ \ {z}.

At the high level, FriendlyCore on input D acts as follows:
For every element x ∈ D, it counts c =

∑
y∈D f(x, y) (i.e.,

the number of x’s “friends”), and puts x inside the core with
probability q(c), where q is a low-sensitivity monotonic
function with q(n/2) = 0, q(n) = 1 and smoothness in
the range [n/2, n], i.e. q(c) ≈ q(c+ 1). The utility follows
since if D is f -complete then all the counts are n. The
friendliness is guaranteed since for every x, y ∈ C ∪ C′, the
set of x’s friends and set of y’s friends are both larger than
n/2 and therefore must intersect. The stability follows by
the smoothness of q. See Section 4 for more details.

Using this preprocessing tool, we prove the following theo-
rem that converts a friendly DP algorithm into a standard
(end-to-end) DP one using FriendlyCore.

Theorem 1.4 (Paradigm for DP, informal). If A
is f -friendly (ε, δ)-DP, then A(FriendlyCore(·)) is ≈
(2ε, 2e3εδ)-DP.

In this work we also present a version of FriendlyCore for
the δ-approximate ρ-zero-Concentrated Differential Privacy

1In an f -friendly dataset, every two elements have a common
friend whereas in an f -complete dataset, all pairs are friends.

model of (Bun & Steinke, 2016) (in short, (ρ, δ)-zCDP).
This version has similar utility guarantee (i.e., when D is
f -complete, then C = D). In addition, this version gets ad-
ditional privacy parameters ρ, δ, and satisfies the following
privacy guarantee.

Theorem 1.5 (Paradigm for zCDP, informal). If A is f -
friendly (ρ, δ)-zCDP, then A(FriendlyCoreρ′,δ′(·)) is (ρ +
ρ′, δ + δ′)-zCDP.

1.2. Example Applications

1.2.1. PRIVATE AVERAGING

Computing the average (center of mass) of points in Rd
is perhaps the most fundamental metric aggregation task.
The traditional way for computing averages with DP is to
first bound the diameter Λ of the input space, say using the
ball B(0,Λ/2) with radius Λ/2 around the origin, clip all
points to be inside this ball, and then add Gaussian noise per-
dimension that scales with Λ. Now consider a case where
the input dataset D contains n points from some small set
with diameter r � Λ, that is located somewhere inside our
input domain B(0,Λ/2). Suppose even that we know the
diameter r of that small set, but we do not know where it is
located inside B(0,Λ/2). Ideally, we would like to average
this dataset while adding noise proportional to the effec-
tive diameter r instead of to the worst-case bound on the
diameter Λ. This is easily achieved using our framework.
Indeed, such a dataset is distr-complete for the predicate
distr(x,y) := 1{‖x−y‖2≤r}, that is, two points are friends
if their distance is at most r. Therefore, using our frame-
work, it suffices to design an distr-friendly DP algorithm
for averaging. Now, the bottom line is that when design-
ing a distr-friendly DP algorithm for this task, we do not
need to add noise proportionally to Λ, and a noise propor-
tionally to r suffices. The reason is that we only need to
account for neighboring datasets that are distr-friendly, and
the difference between the averages of any two such neigh-
boring datasets (i.e., the sensitivity) is proportional to r. See
Figure 1 (Left) for an illustration.

We note that existing tailored methods for this averaging
problem, for example (Nissim et al., 2016) and (Karwa &
Vadhan, 2018) (applied coordinated wise after a random
rotation), also provide sample complexity that is asymp-
totically optimal in that it matches that of distr-friendly
DP averaging. These methods, however, have large con-
stant factors in the sample complexity. The advantage of
FriendlyCore is in its simplicity and dimension-independent
sample complexity that allows for small overhead over what
is necessary for friendly DP averaging.

In Section 6.1 we report empirical results of the averag-
ing application. We observe that the zCDP version of our
FriendlyCore framework provides significant practical bene-
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fits, outperforming the practice-oriented CoinPress (Biswas
et al., 2020) for high d or Λ. This application is described
in Section 5.1.

1.2.2. PRIVATE CLUSTERING OF WELL-SEPARATED
INSTANCES

Consider the problem of k-clustering of a set of points that
is easily clusterable. For example, when the clusters are
well separated or sampled from k well separated Gaussians.
If data is not this nice, we should still be private, but we
do not need the clusters. A classic approach (Nissim et al.,
2007) is to split the data randomly into pieces, run some
non-private off-the-shelf clustering algorithm on each piece,
obtaining a set of k centers (which we call a k-tuple) from
each piece, and privately aggregating the result. If the clus-
ters are well separated, then the centers that we compute for
different pieces should be similar.2 Recently, Cohen et al.
(2021) formulated the private k-tuple clustering problem
as the aggregation step. That is, for an input set of such
k-tuples (which are similar to each other), the task is to
privately compute a new k-tuple that is similar to them. The
k-tuple clustering problem is an easier private clustering
task where all clusters are of the same size and utility is
desired only when the clusters are separated. The appli-
cation of FriendlyCore provides a simple solution: A tuple
X = (x1, . . . ,xk) is a “friend” of a tuple Y = (y1, ...,yk),
if for every xi there is a unique yj that is substantially closer
to xi than to any other x`, ` 6= i. Formally, given a parame-
ter γ ≤ 1, we define the predicate matchγ(X,Y ) to be 1, if
there exists a permutation π over [k] such that for every i it
holds that

∥∥∥xi − yπ(i)

∥∥∥ < γ ·minj 6=i

∥∥∥xi − yπ(j)

∥∥∥. Now
given a database D of k-tuples as input, we can compute
C = FriendlyCore(D) with respect to the predicate matchγ
for guaranteeing the friendliness of the core C. In particular,
if there are a few tuples that are not similar to the others
(i.e., “outliers”), then they will be removed by FriendlyCore
(see Figure 1 (Right) for an illustration). It follows that
for small enough constant γ (as shown in Appendix D.2,
γ = 1/7 suffices), the tuples are guaranteed to be separated
enough for making the clustering problem almost trivial:
We can use any tuple Z = (z1, . . . ,zk) in C to partition the
tuple points to k parts (the partition is guaranteed to be the
same no matter what tuple Z we choose). We can then take
a private average of each part (with an appropriate noise)
to get a tuple of DP centers. In this application, the use
of FriendlyCore both simplifies the solution and lowers the
sample complexity of private k-tuple clustering. This trans-
lates to using fewer parts in the clustering application and
allowing for private clustering of much smaller datasets. We

2Starting from the work of (Ostrovsky et al., 2012), such sepa-
ration conditions have been the subject of many interesting papers.
See, e.g., (Shechner, 2021) for a survey of such separation condi-
tions in the context of differential privacy.

Figure 1: Left: Private averaging example. When we apply
FriendlyCore with distr, the output is guaranteed to be distr-
friendly (and dist2r complete). When r is the diameter of the
blue points then C includes all blue points and no red points.
Right: k-tuple clustering. The predicate matchγ(X,Y )
holds for γ = 1/7 for any pair of the red, blue, and green
4-tuples but does not hold for pairs that include the pink
tuple.

remark that the private averaging of each part can be done
again by applying FriendlyCore on each part (as described
in Section 1.2.1). It even turns out that the flexibility of
FriendlyCore allows to do all k averaging using a single call
to FriendlyCore using a special specification of a predicate
for ordered tuples (see details in Appendix D.2.3).

In Section 6.2 we report empirical results of the clustering
application, implemented in the zCDP model. We observe
that in several different clustering tasks, it outperforms a re-
cent practice-oriented implementation of Chang & Kamath
(2021) that is based on local-sensitivity hashing (LSH). The
clustering algorithm is described in Section 5.2.

1.2.3. PRIVATE LEARNING A COVARIANCE MATRIX

Recently, three independent and concurrent works of Ka-
math et al. (2021); Ashtiani & Liaw (2021); Kothari et al.
(2021) gave a polynomial-time algorithm for privately learn-
ing the parameters of unrestricted Gaussians (all the three
works were published after the first version of our work that
did not include the covariance matrix application). The
core of Ashtiani & Liaw (2021)’s construction consists
of a framework in the DP model for privately learning
average-based aggregation tasks, that has the same flavor of
FriendlyCore. Their framework is then applied on private
averaging and private learning an unrestricted covariance
matrix.

For emphasizing the flexibility of FriendlyCore, in Ap-
pendix F we show how to apply FriendlyCore (based on
the tools of (Ashtiani & Liaw, 2021)) for learning an unre-
stricted covariance matrix.

1.3. Related work

Our framework has similar goals to the smooth-sensitivity
framework (Nissim et al., 2007) and to the propose-test-
release framework (Dwork & Lei, 2009). Like our frame-
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work, these two frameworks aim to avoid worst-case restric-
tions and to perform well on well-behaved inputs. More
formally, for a function f mapping datasets to the reals, and
a datasetD, define the local sensitivity of f onD as follows:
LSf (D) = maxD′∼D ‖f(D) − f(D′)‖, where D′ ∼ D
denotes that D′ and D are neighboring datasets. That is,
unlike the standard definition of (global) sensitivity which
is the maximum difference in the value of f over every pair
of neighboring datasets, with local sensitivity we consider
only neighboring datasets w.r.t. the given input dataset. As
a result, there are many cases where the local sensitivity
can be significantly lower than the global sensitivity. One
such classical example is the median, where on a dataset for
which the median is very stable it might be that the local
sensitivity is zero even though the global sensitivity can be
arbitrarily large. Both the smooth-sensitivity framework and
the propose-test-release framework aim to privately release
the value of a function while only adding noise proportion-
ally to its local sensitivity rather than its global sensitivity
(when possible).

Our framework is very different in that it does not aim for
local sensitivity, and is not limited by it. Specifically, in
the application of private averaging, the local sensitivity is
still very large even when the dataset is friendly. This is
because even if all of the input points reside in a tiny ball,
to bound the local sensitivity we still need to account for a
neighboring dataset in which one point moves “to the end of
the world” and hence causes a large change to the average
of the points.

1.4. Paper Organization

Sections 2 to 6 in the main body are short versions of Ap-
pendices A to E (respectively). In Appendix F we present
the covariance matrix application. Appendix G is about
the running time of FriendlyCore. Other missing proofs (in
particular, utility guarantees) appear in Appendix H.

2. Preliminaries
2.1. Notation

Throughout this work, a database D is an (ordered) vec-
tor over a domain X . Given D = (x1, . . . , xn) ∈ Xn,
for I ⊆ [n] let DI := (xi)i∈I , let D−I := D[n]\I ,
and for i ∈ [n] let Di := xi and D−i := D−{i} (i.e.,
(x1, . . . , xi−1, xi+1, . . . , xn)). For D = (x1, . . . , xn) and
D′ = (x′1, . . . , x

′
m) letD∪D′ = (x1, . . . , xn, x

′
1, . . . , x

′
m).

For x = (x1, . . . , xd) ∈ Rd, we let ‖x‖ :=
√∑d

i=1 x
2
i

(i.e., the `2 norm of x). For D ∈ (Rd)∗ we denote
Avg(D) := 1

|D| ·
∑

x∈D x. For r ≥ 0 and x,y ∈ Rd we
denote distr(x,y) := 1{‖x−y‖≤r} (i.e., 1 if ‖x− y‖ ≤ r
and 0 otherwise).

Throughout this paper, we define neighboring databases
with respect to the insertion/deletion model, where one
database is obtain by adding or removing an element from
the other database. Formally,
Definition 2.1 (Neighboring databases). Let D and D′ be
two databases over a domain X . We say that D and D′
are neighboring, if either there exists j ∈ [|D|] such that
D−j = D′, or there exists j ∈ [|D′|] such that D = D′−j .

2.2. Zero-Concentrated Differential Privacy (zCDP)

Definition 2.2 (Rényi Divergence ((Rényi, 1961))). Let X
and X ′ be random variables over X . For α ∈ (1,∞), the
Rényi divergence of order α between X and X ′ is defined

byDα(X||X ′) = 1
α−1 · ln

(
Ex←X

[(
P (x)
P ′(x)

)α−1
])

, where

P (·) and P ′(·) are the probability mass/density functions of
X and X ′, respectively.
Definition 2.3 (zCDP Indistinguishability). We say that
two random variable X,X ′ over a domain X are ρ-
indistinguishable (denote by X ≈ρ X ′), if for every
α ∈ (1,∞) it holds that Dα(X||X ′), Dα(X ′||X) ≤ ρα.
We say that X,X ′ are (ρ, δ)-indistinguishable (denote
by X ≈ρ,δ X ′), if there exist events E,E′ ⊆ X with
Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1− δ such that X|E ≈ρ X|E′ .
Definition 2.4 ((ρ, δ)-zCDP (Bun & Steinke, 2016)). An
algorithm A is δ-approximate ρ-zCDP (in short, (ρ, δ)-
zCDP), if for any neighboring databasesD,D′ it holds that
A(D) ≈ρ,δ A(D′).3 If the above holds for δ = 0, we say
that A is ρ-zCDP.
Fact 2.5 (Composition (Bun & Steinke, 2016)). If
A : X ∗ → Y is (ρ, δ)-zCDP and A′ : X ∗ × Y → Z is
(ρ′, δ′)-zCDP (as a function of its first argument), then the
algorithm A′′(D) := A′(D,A(D)) is (ρ+ρ′, δ+δ′)-zCDP.
Fact 2.6 (Gaussian Mechanism (Dwork et al., 2006a;
Bun & Steinke, 2016)). Let x,x′ ∈ Rd be vectors with
‖x− x′‖ ≤ λ. Then for ρ > 0, σ = λ√

2ρ
and Z ∼

N (0, σ2 · Id×d) it holds that x + Z ≈ρ x′ + Z.

3. Friendly zCDP
In this section we define a “friendly” relaxation of zCDP,
and give an example of such an algorithm. We refer to
Appendix B for the extended version of this section that
includes full constructions, statements and proofs.
Definition 3.1 (Friendly zCDP). An algorithm A is called
f -friendly (ρ, δ)-zCDP, if for every neighboring databases
D,D′ such thatD∪D′ is f -friendly, it holds that A(D) ≈ρ,δ
A(D′).

3We remark that our two parameters (ρ, δ)-zCDP has a differ-
ent meaning than the two parameters definition (ξ, ρ)-zCDP of
(Bun & Steinke, 2016). Throughout this work, we only consider
the case ξ = 0 and therefore omit it from notation.
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The following is a concrete example of such algorithm.

Algorithm 3.2 (FriendlyAvg, informal).
Input: A database D ∈ (Rd)n, privacy parameters ρ, δ >
0, and r ≥ 0. Operation:

1. Compute an 0.1ρ-zCDP estimation n̂ of n such that
n̂ ≤ n with confidence 1− δ (if n̂ ≤ 0, abort).

2. Output Avg(D)+N (0, σ2Id×d) for σ = 2r
n̂ ·

1√
1.8ρ

.

We claim that FriendlyAvg is distr-friendly zCDP. In-
deed, this holds since the `2-sensitivity of the function
Avg is at most 2r/n ≤ 2r/n̂ for neighboring databases
with distr-friendly union. In order to see it, fix distr-
friendly neighboring databases D = (x1, . . . ,xn) and
D′ = D−j , and note that by friendliness, for every
i ∈ [n] \ {j} there exists a point yi ∈ Rd such
that ‖xi − yi‖ ≤ r and ‖xj − yi‖ ≤ r, yielding that

‖Avg(D)−Avg(D′)‖ =
∥∥∥ (n−1)·xj−

∑
i∈[n]\{j} xi

n(n−1)

∥∥∥ ≤∑
i∈[n]\{j}‖xi−xj‖

n(n−1) ≤
∑
i∈[n]\{j}(‖xi−yi‖+‖xj−yi‖)

n(n−1) ≤ 2r
n .

4. From Friendly to Standard zCDP
In this section we describe a paradigm for transforming any
f -friendly zCDP algorithm A, for some f : X 2 → {0, 1},
into a standard (end-to-end) zCDP one. We refer to Ap-
pendix C for the extended version of this section that in-
cludes also a paradigm for the DP model along with full
constructions, statements, proofs, and comparison between
the models.

The main component is algorithm FriendlyCore (described
below) that outputs a core C ⊆ D:

Algorithm 4.1 (FriendlyCore).
Input: A database D = (x1, . . . , xn) ∈ X ∗, a predicate
f : X 2 7→ {0, 1}, and ρ, δ > 0.
Operation:

i. Let ρ1 = 0.1ρ and ρ2 = 0.9ρ.

ii. Compute n̂ = n+
√

ln(2/δ)
ρ1

+N (0, 1
2ρ1

).

iii. For i ∈ [n]:

(a) Let zi =
∑n
j=1 f(xi, xj) − n/2, and let ẑi =

zi +N (0, n̂
8ρ2

).

(b) If ẑi <
√

n̂·ln(2n̂/δ)
4ρ2

+ 1
2 , set vi = 0. Otherwise,

set vi = 1.

iv. Output C = D{i∈[n] : vi=1}.

The intuition for FriendlyCore is the following: First, since
we work in the insertion/deletion model, we first need
to create a private estimation n̂ of n. With confidence
1 − δ/2, it holds that n̂ ≥ n. In that case, we obtain
with confidence 1 − δ/2 that all elements xi’s that have
no more than n/2 friends (and therefore with zi ≤ 0)
are going to be out of the core C. This yields that ex-
cept with probability δ, the core only contains elements
with more than n/2 friends. Therefore, for neighboring
databases D = (x1, . . . , xn) and D′ = (x1, . . . , xn−1), we
obtain with confidence 1 − δ that the database C ∪ C′, for
C = FriendlyCore(D) and C′ = FriendlyCore(D′), is f -
friendly. Furthermore, note that for every i ∈ [n − 1] it
holds that |zi − z′i| = |1/2− f(xi, xn)| = 1/2, where z′i
refers to the value of zi in the execution FriendlyCore(D′).
It follows by the properties of the Gaussian mechanism
and composition that the values of (ẑ1, . . . , ẑn−1) are all
together ρ2-indistinguishable, yielding (by post-processing)
that C \ {xn} ≈ρ2 C′.

These friendliness and privacy properties of FriendlyCore
are formally stated in the following lemma.

Lemma 4.2. Fix neighboring databases D = (x1, . . . , xn)
and D′ = (x1, . . . , xn−1), and let V = (V1, . . . , Vn) and
V ′ = (V ′1 , . . . , V

′
n−1) be the (random variables of the) val-

ues of (v1, . . . ,vn) in independent random executions of
FriendlyCore(D, f, ρ, δ) and FriendlyCore(D′, f, ρ, δ) (re-
spectively). Then there exist events E ⊆ {0, 1}n and
E′ ⊆ {0, 1}n−1 with Pr[V ∈ E],Pr[V ′ ∈ E′] ≥ 1 − δ,
such that the following holds:

1. Friendliness: For every v ∈ E and v′ ∈ E′, the
database C ∪ C′, for C = D{i∈[n] : vi=1} and C′ =
D′{i∈[n−1] : v′i=1}, is f -friendly, and

2. Privacy: (V−j)|E ≈ρ V ′|E′ .

The following lemma states that whenever n is sufficiently
large, then FriendlyCore also satisfies the following utility
guarantee.

Lemma 4.3. Let f : X 2 → {0, 1} and ρ, δ > 0. For
every 0 ≤ α < 1/2, n ≥ −4·ln((1/2−α)ρδ)

(1/2−α)2ρ , and D ∈
Xn, with probability 1 − δ over a random execution of
FriendlyCore(D, f, ρ, δ), the output core C contains all ele-
ments x ∈ D with

∑
y∈D f(x, y) ≥ (1− α)n.

4.1. Paradigm for zCDP

We now state our general paradigm for obtaining standard
(end-to-end) zCDP.

Theorem 4.4 (Paradigm for zCDP). For every ρ, δ > 0 and
f -friendly (ρ′, δ′)-zCDP algorithm A, algorithm B(D) :=
A(FriendlyCore(D, f, ρ, δ)) is (ρ+ ρ′, δ + δ′)-zCDP. Fur-
thermore, for every 0 ≤ α < 1/2, n ≥ −4·ln((1/2−α)ρδ)

(1/2−α)2ρ
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and D ∈ Xn, with probability 1 − δ over the execution
FriendlyCore(D, f, ρ, δ), the output includes all elements
x ∈ D with

∑
y∈D f(x, y) ≥ (1− α)n.

4.2. Computation efficiency

FriendlyCore computes f(x, y) for all pairs, that is, doing
O(n2) applications of the predicate. However, using stan-
dard concentration bounds, it is possible to use a random
sample of O(log(n/δ)) elements y for estimating with high
accuracy the number of friends of each x. This provides
very similar privacy guarantees, but is computationally more
efficient for large n. See Appendix G for more details.

5. Applications
In this section we briefly present two applications of
FriendlyCore: Averaging (Section 5.1) and Clustering (Sec-
tion 5.2). We refer to Appendix D for a full descriptions
of our algorithms, proofs of their privacy guarantees, and
refer to Appendices H.2 and H.3 for missing utility state-
ments and proofs. In Appendix F we also present a third
application of learning a covariance matrix in the DP model.

5.1. Averaging

In this section we use FriendlyCore to compute a private
average of points D = (x1, . . . ,xn) ∈ (Rd)∗. In Sec-
tion 5.1.1 we present a zCDP algorithm that given an (util-
ity) advise of the effective diameter r of the points, estimates
Avg(D) up to an additive `2 error of O

(
r
n ·
√

d
ρ

)
. In Sec-

tion 5.1.2 we sketch the case where the effective diameter
r is unknown, but only a segment that contains r is given.
See Appendix D.1.3 for comparison with previous results.

5.1.1. KNOWN DIAMETER

Algorithm 5.1 describes the algorithm for the known diame-
ter case, and Theorem 5.2 states its privacy guarantee.

Algorithm 5.1 (FC Avg).
Input: A database D = (x1, . . . ,xn) ∈ (Rd)∗, privacy
parameters ρ, δ > 0, and a diameter r ≥ 0. Operation:

1. Compute C = FriendlyCore(D, distr, 0.1ρ, δ/2).

2. Output FriendlyAvg(C, 0.9ρ, δ/2, r).

Theorem 5.2. Algorithm FC Avg(·, ρ, δ, r) is (ρ, δ)-zCDP.

5.1.2. UNKNOWN DIAMETER

Here we assume that the effective diameter r is unknown,
but we get as input a (utility) advise of lower and upper
bounds rmin, rmax (respectively) on it. Informally, our al-

gorithm FC Avg UnknownDiam searches for the effective
diameter r using a private binary search over {rmin, 2 ·
rmin, 4 ·rmin, . . . , rmax} along with a private algorithm that
determines (with high confidence) if a given diameter is
good or not. After the search, the algorithm applies FC Avg
on the chosen diameter. This process results with an additive

`2 error of O
(
r
n

√
(d+log log(rmax/rmin))

ρ

)
.

5.2. Clustering

In this section we use FriendlyCore for constructing our pri-
vate clustering algorithm FC Clustering. Recently, (Cohen
et al., 2021) identified a very simple clustering problem,
called unordered k-tuple clustering, and reduced standard
clustering tasks like k-means and k-GMM (under common
separation assumptions) to this simple problem via the sam-
ple and aggregate framework of (Nissim et al., 2007). The
idea is to split the database into random parts, and execute a
non-private clustering algorithm on each part for obtaining
an unordered k-tuples from each execution. Then the goal
is to privately aggregate all the k-tuples for obtaining a new
k-tuple that is close to them. See Figure 2 for a graphical
illustration.

(Cohen et al., 2021) formalized the k-tuple clustering prob-
lem, described simple algorithms that privately solve this
problem, and then provided proven utility guarantees for
k-means and k-GMM using the above reduction. How-
ever, their algorithms do not perform well in practice (i.e.,
requires either too many tuples or an extremely large separa-
tion). In this section we show how to solve the unordered k-
tuple clustering problem using FriendlyCore in a much more
efficient way, yielding the first algorithm of this type that is
also practical in many interesting cases (see Appendix E.2).
In Algorithm 5.3 we sketch the steps of the algorithm, and
refer to Figure 3 for a graphical illustration of the steps on
synthetic data in dimension 2. A formal description of the
algorithm appears in Appendix D.2.
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Figure 2: Top left: Database of points. Top right: Executing a non-private clustering algorithm over random parts of the
data. Each execution returns an unordered k-tuple (e.g., the red points are the first tuple, the green points are the second
tuple, etc.). Bottom left: The original points are ignored, and the focus is on a new database, where each element there is an
unordered k-tuple (e.g., the tuple of red points is the first element in the new database). Bottom right: When the tuples are
close to each other (as in the picture), the goal is to output a new k-tuple that is close to them (e.g., the yellow points). The
challenge is to do it while preserving differential privacy (with respect to the new database of tuples).

Algorithm 5.3 (FC Clustering, informal).
Input: A database D ∈ (Rd)∗, parameters ρ, δ > 0, a
bound Λ > 0 on the `2 norm of the points, and a parame-
ter t ∈ N (number of tuples).
Oracle: Non private clustering algorithm A.
Operation:

1. Shuffle the order of the points in D. Let D =
(x1, . . . ,xn) be the database after the shuffle.

2. For i ∈ [t]: Compute the k-tuple Xi = A(Di) where
Di = (x(i−1)·m+1, . . . ,xi·m) for m = bn/tc.

3. Let T = (X1, . . . , Xt).

4. Compute C = FriendlyCore(T ,match1/7, ρ/3, δ/3).

5. Pick a tuple X = (x1, . . . ,xk) ∈ T and split the
set of all points of all the tuples in T into k parts
Q1, . . . ,Qk according to it (i.e., each point y is cho-
sen to be in Qi for i = argminj∈[k]‖xi − y‖).

6. For i ∈ [k]: Compute (ρ/3, δ/3)-zCDP averages
Y = (y1, . . . ,yk) for Q1, . . . ,Qk (respectively).

7. Perform a private Lloyd step over the entire database
D with the centers Y (using privacy budget ρ/3, δ/3
and radius Λ), and output the resulting centers.

Remark 5.4. Computing the averages in Step 6 can be
done by applying FC Avg UnknownDiam on each of the
Qi’s (i.e., additional k calls to FriendlyCore). But actually,
we do that using a single call to FriendlyCore which applied
with a special type of predicate over ordered tuples (see
Appendix D.2.3 for more details).
Theorem 5.5 (Privacy of FC Clustering). Algorithm
FC ClusteringA(·, ρ, δ,Λ, t) is (ρ, δ)-zCDP (for any A).

6. Empirical Results
In this section we present empirical results of our
FriendlyCore based averaging and clustering algorithms. In
all experiments we used privacy parameter ρ = 1, δ = 10−8,
and all of them were tested on a MacBook Pro Laptop with
4-core Intel i7 CPU with 2.8GHz, and with 16GB RAM. We
refer to Appendix E for the full details of our experiments.

6.1. Averaging

We tested mean estimation of samples from a Gaussian
with unknown mean and known variance. We compared
a Python implementation of our private averaging algo-
rithm FC Avg with the algorithm CoinPress of (Biswas
et al., 2020). The implementations of CoinPress, and the
experimental test bed, were taken from the publicly avail-
able code of (Biswas et al., 2020) provided at https://
github.com/twistedcubic/coin-press. Fol-
lowing (Biswas et al., 2020), we generate a dataset of n
samples from a d-dimensional Gaussian N (0, Id×d). We
ran FC Avg with r =

√
2(
√
d+

√
ln(100n)).4

Algorithm CoinPress requires a bound R on the `2 norm
of the unknown mean. Both algorithms perform a similar
final private averaging step that has dependence on

√
d.

But they differ in the ”preparation:” CoinPress has inherent
dependence on d and R. FC Avg preparation, on the other
hand, has no dependence on d or R.

Following (Biswas et al., 2020) we perform 50 repetitions
of each experiment and use the trimmed average of val-
ues between the 0.1 and 0.9 quantiles. We show the `2
error of our estimate on the Y -axis. Figure 4(1) reports

4This choice is for guaranteeing that almost all pairs of samples
have `2 distance at most r from each other (computed according
to the known variance)

https://github.com/twistedcubic/coin-press
https://github.com/twistedcubic/coin-press
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Figure 3: Top figures from left to right: (a) Database of size n = 105. (b) Points of 300 3-tuples that have been generated
by (non-private) k-means++ on random parts of the database (Step 2). (c) Points of all the 202 3-tuples that were chosen to
be in the core (Step 4). Bottom figures from left to right: (d) Picking the first tuple (black points) and splitting the points
according to it (Step 5). (e) Privately estimating the averages of each part (red points, Step 6). (f) The private centers places
on the entire data. (g) The centers after a private Lloyd step (yellow points, Step 7).

the effect of varying the bound R, with fixed d = 1000
and n = 800. We tested CoinPress with 4, 20 and 40 it-
erations. We observe that FC Avg, that does not depend
on R, outperforms CoinPress for R > 107. Figure 4(2)
reports the effect of varying the dimension d, with fixed
n = 800 and R = 10

√
d. We tested CoinPress with 2, 4

and 8 iterations. We observed that the performance of all
algorithms deteriorates with increasing d, which is expected
due to all algorithms using private averaging, but CoinPress
deteriorates much faster in the large-d regime.

Finally we note that CoinPress slightly performs better
than FC Avg in the small-d small-R regime (shown in Fig-
ure 7(3), Appendix E.1). The reason is that FriendlyAvg
(Algorithm 3.2), which is the last step of FC Avg, uses noise
of magnitude ≈ 2r

n
√

2ρ
which is far by a factor of 2 from the

ideal magnitude that we could hope for.

6.2. Clustering

We tested the performance of our private clustering
algorithm FC Clustering with 200 tuples on a number
of k-Means and k-GMM tasks. We compared a Python
implementation of FC Clustering with a recent algorithm of
Chang & Kamath (2021) that is based on recursive locality-
sensitive hashing (LSH). We denote their algorithm by
LSH Clustering. The implementations of LSH Clustering,
and the experimental test bed of Figure 4(3), were
taken from the publicly available code of (Chang &
Kamath, 2021) provided at https://github.com/
google/differential-privacy/tree/main/
learning/clustering. LSH Clustering guarantees

privacy in the DP model. Therefore, in order to compare
it with our (ρ = 1, δ)-zCDP guarantee, we chose to
apply it with a (ε = 2, δ)-DP guarantee, so that non of
the guarantees implies the other. Furthermore, unlike
FC Clustering which may fail to produce centers in some
cases (e.g., when the core of tuples is empty or close
to be empty), LSH Clustering always produces centers.
Therefore, in order to handle failures of FC Clustering, we
used only ρ = 0.99 privacy budget, and on failures we
executed LSH Clustering for guaranteeing ρ = 0.01 zCDP.

We performed 30 repetitions of each experiment and present
the medians (points) along with the 0.1 and 0.9 quantiles.

In Figure 4(3) we present a comparison in dimension d = 2
with k = 8 synthetic clusters, sampled equality from 8
separated Gaussians. We plotted the normalized k-means
loss that is computed by 1 − X/Y , where X is the cost
of k-means++ on the entire data, and Y is the cost of the
tested private algorithm. We observe that for small values
of n, FC Clustering fails often, which yield an inaccurate
results. Yet, increasing n also increases the success proba-
bility of FC Clustering which yields very accurate results,
while LSH Clustering stay behind. We refer to Figure 8
(Right) in Appendix E.2 for a graphical illustration of the
centers in one of the iterations.

In Figure 4(4) we used the publicly available dataset of
(Fonollosa & Huerta, 2015) that contains the acquired time
series from 16 chemical gas sensors exposed to gas mixtures
at varying concentration levels. The dataset contains ≈ 8M
rows, where each row contains 16 sensors’ measurements

https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
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Figure 4: From Left to Right: (1) Averaging in d = 1000 and n = 800, varying R. (2) Averaging in n = 800, R = 10
√
d,

varying d. (3) k-means in d = 2 and k = 8, for varying n. (4) k-means over Gas Sensors’ measurements, varying k.

at a given point in time, so we translate each such row
into a 16-dimensional point. We compared the clustering
algorithms for varying k. We observed that FC Clustering
succeed well on various k’s, except of k = 5 in which it
fails due to instability of k-means++ on this database.5

In Appendix E.2, Figure 9 (Left), we present a comparison
for separating n = 2.5 ·105 samples from a uniform mixture
of k = 5 Gaussians with separation ≈

√
d/2 between the

centers, showing that using a (non-private) PCA-based clus-
tering that easily separate between such Gaussians in high
dimension, we gain a perfect labeling accuracy in contrast
to LSH Clustering.

In summary, we observed from the experiments that
when FC Clustering succeed, it outputs very accurate re-
sults. However, FC Clustering may fail due to instabil-
ity of the non-private algorithm on random parts of the
database. Hence, it seems that in cases where we have a
clear separation or many points (less separation requires
more data points), we might gain by combining between
FC Clustering and LSH Clustering. In this work we chose
to spend 0.99 of the privacy budget on FC Clustering, but
other combinations might perform better on different cases.

7. Conclusion
We presented a general tool FriendlyCore for preprocessing
metric data before privately aggregating it. The processed
data is guaranteed to have some properties that can simplify
or boost the accuracy of aggregation. Our tool is flexible,
and in this work we illustrate it by presenting three different
applications (averaging, clustering, and learning an unre-
stricted covariance matrix). We show the wide applicability
of our framework by applying it to private mean estima-
tion and clustering, and comparing it to private algorithms

5There are two different solutions for k = 5 that have similar
low cost but do not match, yielding that when splitting the data
into random parts, k-means++ choose one of them in one set of
parts and the other one in the other parts, and therefore fails.

which are specifically tailored for those tasks. For private
averaging, we presented a simple algorithm with dimension-
independent preprocessing, that is also independent of the
`2 norm of the points.6 For private clustering, we presented
the first practical algorithm that is based on the sample
and aggregate framework of (Nissim et al., 2007), which
has proven utility guarantees for easy instances (see Ap-
pendix H.3), and achieves very accurate results in practice
when the data is either well separated or very large.
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A. Preliminaries (Extended)
A.1. Notation

Throughout this work, a database D is an (ordered) vec-
tor over a domain X . Given D = (x1, . . . , xn) ∈ Xn,
for I ⊆ [n] let DI := (xi)i∈I , let D−I := D[n]\I ,
and for i ∈ [n] let Di := xi and D−i := D−{i} (i.e.,
(x1, . . . , xi−1, xi+1, . . . , xn)). For D = (x1, . . . , xn) and
D′ = (x′1, . . . , x

′
m) letD∪D′ = (x1, . . . , xn, x

′
1, . . . , x

′
m).

For n ∈ N we denote by 0n the n-size all-zeros vector.

For p ∈ [0, 1] let Bern(p) be the Bernoulli distribution that
outputs 1 w.p. p and 0 otherwise. For p = (p1, . . . , pn) ∈
[0, 1]n, we let Bern(p) be the distribution that outputs
(V1, . . . , Vn), where Vi ← Bern(pi), and the Vi’s are in-
dependent.

For x = (x1, . . . , xd) ∈ Rd, we let ‖x‖ :=
√∑d

i=1 x
2
i

(i.e., the `2 norm of x) and let ‖x‖1 :=
∑n
i=1|xi| (the `1

norm of x). For c ∈ Rd and r ≥ 0, we denote B(c, r) :=
{x ∈ Rd : ‖x− c‖ ≤ r}. For a database D ∈ (Rd)∗
we denote by Avg(D) := 1

|D| ·
∑

x∈D x the average of
all points in D. For r ≥ 0 and x,y ∈ Rd we denote
distr(x,y) := 1{‖x−y‖≤r} (i.e., 1 if ‖x− y‖ ≤ r and 0
otherwise).

The support of a discrete random variable X over X , de-
noted Supp(X), is defined as {x ∈ X : P (x) > 0}, where
P (·) is the probability mass/density function of X’s distri-
bution.

Throughout this paper, we define neighboring databases
with respect to the insertion/deletion model, where one
database is obtain by adding or removing an element from
the other database. Formally,

Definition A.1 (Neighboring databases). Let D and D′ be
two databases over a domain X . We say that D and D′
are neighboring, if either there exists j ∈ [|D|] such that
D−j = D′, or there exists j ∈ [|D′|] such that D = D′−j .

A.2. Zero-Concentrated Differential Privacy (zCDP)

Definition A.2 (Rényi Divergence ((Rényi, 1961))). Let X
and X ′ be random variables over X . For α ∈ (1,∞), the
Rényi divergence of order α between X and X ′ is defined
by

Dα(X||X ′) =
1

α− 1
· ln

(
Ex←X

[(
P (x)

P ′(x)

)α−1
])

,

where P (·) and P ′(·) are the probability mass/density func-
tions of X and X ′, respectively.

Definition A.3 (zCDP Indistinguishability). We say that
two random variable X,X ′ over a domain X are ρ-
indistinguishable (denote by X ≈ρ X ′), iff for every
α ∈ (1,∞) it holds that

Dα(X||X ′), Dα(X ′||X) ≤ ρα.

We say that X,X ′ are (ρ, δ)-indistinguishable (denote by
X ≈ρ,δ X ′), iff there exist events E,E′ ⊆ X with
Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1− δ such that X|E ≈ρ X|E′ .
Definition A.4 ((ρ, δ)-zCDP (Bun & Steinke, 2016)). An
algorithm A is δ-approximate ρ-zCDP (in short, (ρ, δ)-
zCDP), if for any neighboring databasesD,D′ it holds that
A(D) ≈ρ,δ A(D′).7 If the above holds for δ = 0, we say
that A is ρ-zCDP.

A.3. (ε, δ)-Differential Privacy (DP)

Definition A.5 ((ε, δ)-DP-indistinguishable). Two random
variable X,X ′ over a domain X are called (ε, δ)-DP-
indistinguishable (in short, X ≈DP

ε,δ X
′), iff for any event

T ⊆ X , it holds that Pr[X ∈ T ] ≤ eε · Pr[X ′ ∈ T ] + δ. If
δ = 0, we write X ≈DP

ε X ′.

Definition A.6 ((ε, δ)-DP (Dwork et al., 2006b)). Algo-
rithm A is (ε, δ)-DP, if for any two neighboring databases
D,D′ it holds that A(D) ≈DP

ε,δ A(D′). If δ = 0 (i.e., pure
privacy), we say that A is ε-DP.

A.4. Properties of DP and zCDP

Fact A.7 (From DP to zCDP and vice versa ((Bun & Steinke,
2016))). Any (ε, δ)-DP mechanism is ( 1

2ε
2, δ)-zCDP. Any

(ρ, δ)-zCDP mechanism is (ρ+ 2
√
ρ ln(1/δ′), δ + δ′)-DP

for every δ′ > 0.

Fact A.8 (Group Privacy ((Bun & Steinke, 2016))). Let D
and D′ be a pair of databases that differ by k points (i.e., D
is obtained by k operations of addition or deletion of points
on D′). If A is ρ-zCDP, then A(D) ≈k2ρ A(D′). If A is
(ε, δ)-DP, then A(D) ≈DP

kε, ekεkδ A(D′).
7We remark that our two parameters (ρ, δ)-zCDP has a differ-

ent meaning than the two parameters definition (ξ, ρ)-zCDP of
(Bun & Steinke, 2016). Throughout this work, we only consider
the case ξ = 0 and therefore omit it from notation.



FriendlyCore: Practical Differentially Private Aggregation

Fact A.9 (Post-processing). Let F be a (randomized) func-
tion. If A is (ρ, δ)-zCDP, then F ◦ A is (ρ, δ)-zCDP. If A
is (ε, δ)-DP, then F ◦ A is (ε, δ)-DP.

A.4.1. THE LAPLACE MECHANISM

Definition A.10 (Laplace distribution). For σ ≥ 0, let
Lap(σ) be the Laplace distribution over R with probability

density function p(z) = 1
2σ exp

(
− |z|σ

)
.

Theorem A.11 (The Laplace Mechanism (Dwork et al.,
2006c)). Let x, x′ ∈ R with |x− x′| ≤ λ. Then for every
ε > 0 it holds that x+ Lap(λ/ε) ≈DP

ε x′ + Lap(λ/ε).

A.4.2. THE GAUSSIAN MECHANISM

Definition A.12 (Gaussian distributions). For µ ∈ R
and σ ≥ 0, let N (µ, σ2) be the Gaussian distribu-
tion over R with probability density function p(z) =

1√
2π

exp
(
− (z−µ)2

2σ2

)
. For higher dimension d ∈ N, let

N (0, σ2 · Id×d) be the spherical multivariate Gaussian
distribution with variance σ2 in each axis. That is, if
Z ∼ N (0, σ2 · Id×d) then Z = (Z1, . . . , Zd) where
Z1, . . . , Zd are i.i.d. according to N(0, σ2).

Fact A.13 (Concentration of One-Dimensional Gaussian).
IfX is distributed according toN (0, σ2), then for all β > 0
it holds that

Pr
[
X ≥ σ

√
2 ln(1/β)

]
≤ β.

Theorem A.14 (The Gaussian Mechanism (Dwork et al.,
2006a; Bun & Steinke, 2016)). Let x,x′ ∈ Rd be vectors
with ‖x− x′‖2 ≤ λ. For ρ > 0, σ = λ√

2ρ
and Z ∼

N (0, σ2 ·Id×d) it holds that x+Z ≈ρ x′+Z. For ε, δ > 0,

σ =
λ
√

2 ln(1.5/δ)

ε and Z ∼ N (0, σ2 · Id×d) it holds that
x + Z ≈DP

ε,δ x
′ + Z.

We remark that zCDP is tailored for this mechanism, i.e. it
achieves pure zCDP with relatively small noise (compared
to the DP case).

A.4.3. COMPOSITION

Fact A.15 (Composition of DP and zCDP mechanisms
(Dwork et al., 2010; Bun & Steinke, 2016)). If A : X ∗ → Y
is (ρ, δ)-zCDP and A′ : X ∗ × Y → Z is (ρ′, δ′)-zCDP
(as a function of its first argument), then the algorithm
A′′(D) := A′(D,A(D)) is (ρ + ρ′, δ + δ′)-zCDP. If A is
(ε, δ)-DP and A′ is (ε′, δ′)-DP then A′′ is (ε + ε′, δ + δ′)-
DP.

We remark that Fact A.15 is optimal for the zCDP model,
but not optimal for the DP model.

A.4.4. OTHER FACTS

Fact A.16. Let X,X ′ be random variables over a domain
X , and let E,E ⊆ X be events such that X|E ≈ρ,δ X ′|E′
and Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1 − δ′. Then X ≈ρ, δ+δ′
X ′|E′ .

Proof. By definition there exists F ⊆ E and F ′ ⊆ E′ with
Pr[X ∈ F |X ∈ E],Pr[X ∈ F ′|X ∈ E′] ≥ 1−δ such that
X|F ≈ρ X ′|F ′ . The proof now follows since Pr[X ∈ F ] =
Pr[X ∈ E] · Pr[X ∈ F |X ∈ E] ≥ (1 − δ′) · (1 − δ) ≥
1− (δ+ δ′), and similarly Pr[X ′ ∈ F ′] ≥ 1− (δ+ δ′). �

The following fact is proven in Appendix H.1.

Fact A.17. Let X,X ′ be ρ-indistinguishable random
variables over X , and let E ⊆ X be an event with
Pr[X ∈ E],Pr[X ′ ∈ E] ≥ q. Then X|E ≈ρ/q X ′|E .

B. Friendly Differential Privacy (Extended)
In this section we define a “friendly” relaxation of zCDP
and DP, and give an example of such an algorithm. We start
by defining an f -friendly database for a predicate f .

Definition B.1 (f -friendly). Let D be a database over a
domain X , and let f : X 2 → {0, 1} be a predicate. We say
thatD is f -friendly if for every x, y ∈ D, there exists z ∈ X
(not necessarily in D) such that f(x, z) = f(y, z) = 1.

We next define the relaxation of zCDP and DP, where the
privacy requirement must only hold for neighboring datasets
that their union is f -friendly. Formally,

Definition B.2 (Friendly zCDP and DP). An algorithm A
is called f -friendly (ρ, δ)-zCDP, if for every neighboring
databases D,D′ such that D ∪ D′ is f -friendly, it holds
that A(D) ≈ρ,δ A(D′). If for every such D,D′ it holds that
A(D) ≈DP

ε,δ A(D′), we say that A is f -friendly (ε, δ)-DP.

Note that nothing is guaranteed when D ∪ D′ is not f -
friendly. Intuitively, this allows us to focus the privacy
requirement only on well-behaved inputs, potentially requir-
ing significantly less noise to be added.

We next describe a concrete example of a friendly zCDP al-
gorithm for estimating the average of points in Rd, where the
friendliness is with respect to the predicate distr(x,y) :=
1{‖x−y‖≤r} for a given parameter r ≥ 0.

Algorithm B.3 (FriendlyAvg).

Input: A database D ∈ (Rd)∗, privacy parameters ρ, δ > 0,
and r ≥ 0.

Operation:

1. Let n = |D|, ρ1 = 0.1(1− δ)ρ and ρ2 = 0.9ρ.



FriendlyCore: Practical Differentially Private Aggregation

2. Compute n̂ = n−
√

ln(1/δ)
ρ1
− 1 +N (0, 1

2ρ1
).

3. If n = 0 or n̂ ≤ 0, output ⊥ and abort.

4. Otherwise, output Avg(D) + N (0, σ2 · Id×d) for
σ = 2r

n̂ ·
1√
2ρ2

.

We remark that Step 4 of FriendlyAvg is the standard
zCDP Gaussian Mechanism (Theorem A.14) that guaran-
tees ρ2-indistinguishably for two databases D and D′ with
‖Avg(D)−Avg(D′)‖ ≤ 2r/n̂. Steps 1 to 3 are for mak-
ing the value of n̂ indistinguishable between executions
over neighboring databases (recall that we handle the inser-
tion/deletion model).

We also remark that FriendlyAvg can be easily modified for
the DP model: Given ε > 0 (instead of ρ), split it into ε1, ε2,
compute n̂ = n − ln(1/δ)

ε1
+ Lap(1/ε1) (i.e., add laplace

noise instead of Gaussian noise), and at the last step, use the

Gaussian mechanism for DP with σ′ = 2r
n̂ ·
√

2 ln(2.5/δ)

ε2
.

We next prove the properties of FriendlyAvg (in the zCDP
model).

Claim B.4 (Privacy of FriendlyAvg). Algorithm
FriendlyAvg(·, ρ, δ, r) is distr-friendly (ρ, δ)-zCDP.

Proof. Let D = (x1, . . . ,xn) and D′ = D−j be two fr-
friendly neighboring databases, and let n′ = n−1. Consider
two independent random executions of FriendlyAvg(D)
and FriendlyAvg(D′) (both with the same input parame-
ters ρ, δ, r). Let N̂ and O be the (r.v.’s of the) values of n̂
and the output in the execution FriendlyAvg(D), let N̂ ′ and
O′ be these r.v.’s w.r.t. the execution FriendlyAvg(D′), and
let ρ1, ρ2 be as in Step 1.

If n′ = 0 then Pr[O′ =⊥] = 1 and n = 1, and by a
concentration bound of the normal distribution (Fact A.13)
it holds that Pr[O =⊥] ≥ 1 − δ. Therefore, we conclude
that O ≈0,δ O

′ in this case.

It is left to handle the case n′ ≥ 1. By Fact A.13
(concentration of one-dimensional Gaussian) it holds that
Pr
[
N̂ ≤ n

]
,Pr
[
N̂ ′ ≤ n

]
≥ 1 − δ. It is left to prove that

O|N̂≤n ≈ρ O′|N̂ ′≤n.

Since n − n′ = 1, then by the properties of the Gaus-
sian Mechanism (Theorem A.14) it holds that N̂ ≈ρ1 N̂ ′.
By Fact A.17 we deduce that N̂ |N̂≤n ≈ρ1/(1−δ) N̂

′|N̂ ′≤n.
Hence by composition (Fact A.15) it is left to prove that for
every fixing of n̂ ≤ n it holds that O|N̂=n̂ ≈ρ2 O

′|N̂ ′=n̂.
For n̂ ≤ 0 it is clear (both outputs are ⊥). Therefore, we
show it for n̂ ∈ (0, n].

By the distr-friendly assumption, for every i ∈
[n] \ {j} there exists a point yi ∈ Rd such that
‖xi − yi‖ ≤ r and ‖xj − yi‖ ≤ r. Now, observe

that ‖Avg(D)−Avg(D′)‖ =
∥∥∥ (n−1)·xj−

∑
i∈[n]\{j} xi

n(n−1)

∥∥∥ ≤∑
i∈[n]\{j}‖xi−xj‖

n(n−1) ≤
∑
i∈[n]\{j}(‖xi−yi‖+‖xj−yi‖)

n(n−1) ≤ 2r
n .

Namely, the `2-sensitivity of the function Avg is at most
2r/n ≤ 2r/n̂ for neighboring and distr-friendly databases.
The proof now follows by the guarantee of the Gaussian
Mechanism (Theorem A.14). �

C. From Friendly to Standard Differential
Privacy (Extended)

In this section we describe a paradigm for transforming any
f -friendly zCDP (or DP) algorithm A, for some f : X 2 →
{0, 1}, into a standard zCDP (or DP) one. The main compo-
nent is an algorithm F (called a “filter”) that decides which
elements to take into the core. Namely, given a database
D = (x1, . . . , xn), F(D) returns a vector v ∈ {0, 1}n such
that the sub-database C = (xi)vi=1 (the “core”) satisfies
properties that are described below. We only focus on prod-
uct-filters:
Definition C.1 (product-filter). We say that F : X ∗ →
{0, 1}∗ is a product-filter if for every n and every D ∈ Xn,
there exists p = (p1, . . . , pn) ∈ [0, 1]n such that V = F(D)
is distributed according to Bern(p).

In this work we present two product-filters: BasicFilter
(Appendix C.1) and zCDPFilter (Appendix C.2). The filters
are slightly different, but follow the same paradigm: For
every i ∈ [n], compute

∑n
j=1 f(xi, xj) (i.e., the number

of xi’s friends). If this number is no more than n/2, then
set pi = 0 (or almost zero). If this number is high (i.e.,
close to n), then set pi = 1 (or almost one). Between n/2
and n, use smooth low-sensitivity pi’s (i.e., probabilities
that do not change by much if the number of friends is
changed by one). As a result, we obtain in particular that
all the elements in the core are guaranteed to have more
than n/2 friends. It follows that if we look at executions
on neighboring databases, then the resulting cores C and C′
satisfy that C ∪ C′ is f -friendly because for every xi, xj ∈
C ∪ C′, the set of xi’s friends must intersect the set of xj’s
friends.

The utility property (i.e., taking elements with many friends),
is captured by the following definition.
Definition C.2 ((f, α, β, n)-complete filter). We say that a
filter F : X ∗ → {0, 1}∗ is (f, n, α, β)-complete, if given a
databaseD = (x1, . . . , xn) ∈ Xn, F(D) outputs w.p. 1−β
a vector v = (v1, . . . , vn) ∈ {0, 1}n s.t. vi = 1 for every
i ∈ [n] with

∑n
j=1 f(xi, xj) ≥ (1 − α)n. We omit the n

if the above holds for every n ∈ N, and omit the β if the
above also holds for β = 0.

Namely, with probability 1−β, such a filter gives us a “core”
C which contains all elements xi ∈ D that are friends of at
least 1 − α fraction of the elements in D. For α = 0 we
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obtain a filter that preserves a “complete” database D: if
for every xi, xj ∈ D it holds that f(xi, xj) = 1 (i.e., all the
elements are friends of each other), then w.p. 1− β it holds
that C = D (i.e., no element is removed from the core).

C.1. Basic Filter

In the following we describe BasicFilter and prove its prop-
erties.

Algorithm C.3 (BasicFilter).
Input: A database D = (x1, . . . , xn) ∈ X ∗, a predicate
f : X 2 7→ {0, 1}, and 0 ≤ α < 1/2.
Operation:

i. For i ∈ [n]:

(a) Let zi =
∑n
j=1 f(xi, xj)− n/2.

(b) Sample vi ← Bern(pi) for pi =
0 zi ≤ 0

1 zi ≥ (1/2− α)n
zi

(1/2−α)n o.w.
.

ii. Output v = (v1, . . . , vn).

Note that for every i, if xi has at most n/2 friends, then
pi = 0, and if xi has at least (1− α)n friends, then pi = 1.
We next state and prove the properties of BasicFilter.

Lemma C.4. For any predicate f : X 2 → {0, 1} and
0 ≤ α < 1/2, F = BasicFilter(·, f, α) is an (f, α)-
complete product-filter. Furthermore, for every n ∈ N
and every neighboring databases D ∈ Xn and D′ = D−j ,
the following holds w.r.t. the random variables V = F(D)
and V ′ = F(D′):

1. Friendliness: For every v ∈ Supp(V ) and v′ ∈
Supp(V ′), the database C∪C′, for C = D{i∈[n] : vi=1}
and C′ = D′{i∈[n−1] : v′i=1}, is f -friendly, and

2. Stability: Let p = (p1, . . . , pn) and p′ =
(p′1, . . . , p

′
n−1) for pi = Pr[Vi = 1] and p′i =

Pr[V ′i = 1]. Then
∥∥p−j − p′

∥∥
1
≤ 1/(1− 2α).

Namely, apart of being a complete filter, BasicFilter pre-
serves small `1 norm of the probabilities of the vectors up
to the index j of the additional element. In addition, for any
neighboring databases D and D′, it guarantees that C ∪ C′,
for the resulting cores C and C′, is f -friendly.

Proof of Lemma C.4. It is clear by construction that F =
BasicFilter(·, f, α) is a product-filter. Also, the (f, α)-
complete property immediately holds by construction since
for every database D = (x1, . . . , xn), each element xi with∑n
j=1 f(xi, xj) ≥ (1 − α)n has zi ≥ (1/2 − α)n and

therefore pi = 1 (i.e., vi = 1 w.p. 1). We next prove the
friendliness and stability properties.

Fix neighboring databases D = (x1, . . . , xn) and D′ =
D−j , let V = F(D) and V ′ = F(D′), let zi, pi be the values
in the execution F(D) and let z′i, p

′
i be these values in the

execution F(D′). For proving the friendliness property, we
fix i ∈ [n] with pi > 0 and k ∈ [n − 1] with p′k > 0,
and show that there exists y with f(xi, y) = f(xk, y) = 1.
Since pi > 0 it holds that

∑
`∈[n] f(xi, x`) ≥ bn/2c+1 and

therefore
∑
`∈[n]\{j} f(xi, x`) ≥ bn/2c. In addition, since

p′k > 0 it holds that
∑
`∈[n]\{j} f(xk, x`) ≥ b(n− 1)/2c+

1. Since bn/2c + (b(n− 1)/2c + 1) = n > n − 1, there
must exists ` ∈ [n] \ {j} with f(xi, x`) = f(xk, x`) = 1,
as required.

For proving the stability property, note that for every
i ∈ [n] \ {j} it holds that zin −

z′i
n−1 =

∑
`∈[n] f(xi,x`)

n −∑
`∈[n]\{j} f(xi,x`)

n−1 =
f(xi,xj)

n −
∑
`∈[n]\{j} f(xi,x`)

n(n−1) . Since
the above belongs to [−1/n, 1/n], we deduce that
|pi − p′i| ≤ 1

(1−2α)n and conclude that
∥∥p−j − p′

∥∥
1
≤

n−1
(1−2α)n <

1
1−2α . �

C.2. zCDP Filter

We next describe our filter zCDPFilter that is tailored for
the zCDP model and is better in practice.

Algorithm C.5 (zCDPFilter).
Input: A database D = (x1, . . . , xn) ∈ X ∗, a predicate
f : X 2 7→ {0, 1}, and ρ, δ > 0.
Operation:

i. Let ρ1 = 0.1ρ and ρ2 = 0.9ρ.

ii. Compute n̂ = n+
√

ln(2/δ)
ρ1

+N (0, 1
2ρ1

).

iii. For i ∈ [n]:

(a) Let zi =
∑n
j=1 f(xi, xj) − n/2, and let ẑi =

zi +N (0, n̂
8ρ2

).

(b) If ẑi <
√

n̂·ln(2n̂/δ)
4ρ2

+ 1
2 , set vi = 0. Otherwise,

set vi = 1.

iv. Output v = (v1, . . . , vn).

Note that zCDPFilter differs from BasicFilter in the way it
uses the {zi}’s. BasicFilter use them directly to compute
low-sensitivity probabilities {pi}’s such that each vi is sam-
pled from Bern(pi). zCDPFilter, on the other hand, does
not compute the {pi}’s explicitly. Rather, it creates noisy
versions {ẑi} of the {zi}’s that preserve indistinguishability
between neighboring executions, and therefore guarantees
that the {vi}’s are also indistinguishable by post-processing.
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This and all other properties of zCDPFilter are stated in the
following theorem.

Lemma C.6. Let f : X 2 → {0, 1} and ρ, δ > 0. F =
zCDPFilter(·, f, ρ, δ) is a product-filter that is (f, α, β, n)-
complete for every 0 ≤ α < 1/2, β > 0, and n ≥
−4·ln((1/2−α)ρ·min{β,δ})

(1/2−α)2ρ . Furthermore, for every n ∈ N
and every neighboring databases D = (x1, . . . , xn) and
D′ = D−j , there exist events E ⊆ {0, 1}n and E′ ⊆
{0, 1}n−1 with Pr[F(D) ∈ E],Pr[F(D′) ∈ E′] ≥ 1 − δ,
such that the following holds w.r.t. the random variables
V = F(D) and V ′ = F(D′):

1. Friendliness: For every v ∈ E and v′ ∈ E′, the
database C ∪ C′, for C = D{i∈[n] : vi=1} and C′ =
D′{i∈[n−1] : v′i=1}, is f -friendly, and

2. Privacy: (V−j)|E ≈ρ V ′|E′ .

The proof of Lemma C.6 appears at Appendix H.4 and
sketched below.

Proof Sketch. Fix two neighboring databases D =
(x1, . . . , xn) and D′ = (x1, . . . , xn−1), and consider
two independent executions of F(D) and F(D′) for F =
zCDPFilter(·, f, ρ, δ). For simplicity, we assume that both
executions use the same value n̂ at Step ii. For utility, we

use the fact n̂ ≤ n +
√

ln(2/δ)
ρ1

+
√

ln(2/β)
ρ1

with confi-
dence 1 − β/2. By the lower bound on n, it follows that

(1/2 − α)n ≥
√

n̂·ln(2n̂/δ)
4ρ2

+
√

n̂·ln(2n̂/β)
4ρ2

+ 1
2 , yielding

that all elements with (1−α)n friends are added to the core
with confidence 1− β/2.

For proving friendliness and privacy, we defineE ⊆ {0, 1}n
to be the subset of all vectors v ∈ {0, 1}n that does not
include “bad” coordinates i ∈ [n]. Namely, vi = 0 for
i ∈ [n] with

∑n−1
j=1 f(xi, xj) ≤ (n − 1)/2. Event E′ ⊆

{0, 1}n−1 is defined by {v−n : v ∈ E} (i.e., the vectors in
E without the n’th coordinate).

Note that n̂ ≥ n with confidence 1 − δ/2. In that case it
follows that in both executions F(D) and F(D′), all the bad
elements are removed with confidence 1 − δ/2, yielding
that outputs are in E and E′ (respectively).

The friendliness property now follows since for every v ∈ E
and v′ ∈ E′ and for every i, j ∈ [n − 1] such that vi = 1
and v′j = 1, there exists ` ∈ [n− 1] such that f(xi, x`) =
f(xj , x`) = 1.

For proving the privacy guarantee, note that for every i ∈
[n − 1] it holds that |zi − z′i| = |1/2− f(xi, xn)| = 1/2,
yielding that Ẑi ≈ρ/n Ẑ ′i. Therefore, by composition and
post-processing, we deduce that V−n ≈ρ V ′. Now note that
when conditioning V on the event E, the “bad” coordinates

become 0, and the distribution of the other coordinates re-
main the same (this is because the Vi’s are independent, and
E only fixes the bad i’s to zero). Similarly, the same holds
when conditioning V ′ on the event E′, and therefore we
conclude that (V−n)|E ≈ρ V ′|E′ . �

Note that unlike BasicFilter, zCDPFilter has restrictions on
n and β in the utility guarantee (i.e., β cannot be 0, and there
is also a lower bound on n). Also, the friendliness and pri-
vacy properties only hold together with high probability, and
not with probability 1 as in BasicFilter. Still, zCDPFilter is
preferable in the zCDP model since its privacy guarantee is
stronger than the stability guarantee (i.e., bound on the `1
norm) of BasicFilter. Another advantage of zCDPFilter is
that it does not need to get the utility parameter α as input.
Rather, it guarantees utility for any value α that preserves
the lower bound on n.

C.3. Paradigm for zCDP

We next define FriendlyCore and state the general paradigm
for obtaining (standard) end-to-end zCDP.

Definition C.7. Define FriendlyCore(D, f, ρ, δ) :=
D{i : vi=1} for v = zCDPFilter(D, f, ρ, δ).

Theorem C.8 (Paradigm for zCDP). For every ρ, δ >
0 and f -friendly (ρ′, δ′)-zCDP algorithm A, algorithm
B(D) := A(FriendlyCore(D, f, ρ, δ)) is (ρ + ρ′, δ + δ′)-
zCDP. Furthermore, for every 0 ≤ α < 1/2, β > 0,
n ≥ −4·ln((1/2−α)ρmin{β,δ})

(1/2−α)2ρ and D ∈ Xn, with probabil-
ity 1 − β over the execution FriendlyCore(D, f, ρ, δ), the
output includes all elements x ∈ D with

∑
y∈D f(x, y) ≥

(1− α)n.

For proving the privacy guarantee, we use the following
lemma (proven in Appendix H.5) that bounds the zCDP-
indistinguishability loss between two executions of a zCDP
mechanism over random databases R, R′ that are “almost
indistinguishable” from being neighboring.

Lemma C.9. Let D = (x1, . . . , xn) and D′ = D−j be
neighboring databases, let V, V ′ be random variables over
{0, 1}n and {0, 1}n−1 (respectively) such that V−j ≈ρ,δ V ′,
and define the random variables R = D{i∈[n] : Vi=1} and
R′ = D′{i∈[n−1] : V ′i =1}. Let A be an algorithm such that for
any neighboring C ∈ Supp(R) and C′ ∈ Supp(R′) satisfy
A(C) ≈ρ′,δ′ A(C′). Then A(R) ≈ρ+ρ′, δ+δ′ A(R′).

Note that the requirement from algorithm A in Lemma C.9 is
weaker than being (fully) (ρ′, δ′)-zCDP since it only guaran-
tees indistinguishability for pairs of neighboring databases
(C, C′) ∈ Supp(R)× Supp(R′), and not necessarily for all
neighboring pairs in X ∗ × X ∗. This weaker requirement
takes a crucial part in proving the privacy guarantee in The-
orem C.8, since we apply the lemma with the algorithm A
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which is only f -friendly zCDP, and use the fact that we are
certified that every C and C in the support satisfy that C ∪ C′
is f -friendly. The proof of Lemma C.9 basically follows
by composition, but is slightly subtle. See the proof at Ap-
pendix H.5. We now prove Theorem C.8 using Lemma C.9.

Proof of Theorem C.8. The utility guarantee immediately
follows since zCDPFilter(·, f, ρ, δ, β) is an (f, n, α, β)-
complete database for such values of n (Lemma C.6). In the
following we prove the privacy guarantee of B.

Let D = (x1, . . . , xn) and D′ = D−j be two neigh-
boring databases. Consider two independent executions
B(D) and B(D′). Let V be the (r.v. of the) value of
v in the execution B(D) (the output of zCDPFilter that
is computed internally in FriendlyCore), and let V ′ this
r.v. w.r.t. the execution B(D′). By Lemma C.6, there
exist events E ⊆ {0, 1}n and E′ ⊆ {0, 1}n−1 with
Pr[V ∈ E],Pr[V ′ ∈ E′] ≥ 1−δ that satisfy Item 1 (friend-
liness) and Item 2 (privacy). The friendliness property im-
plies that for every v ∈ E and v′ ∈ E′, the database C ∪ C′,
for C = D{i∈[n] : vi=1} and C′ = D′{i∈[n−1] : v′i=1}, is f -
friendly. Therefore, in case C and C′ are neighboring, we
deduce that A(C) ≈ρ′,δ′ A(C′) since A is f -friendly (ρ′, δ′)-
zCDP. The privacy guarantee of zCDPFilter implies that
V−j |E ≈ρ V ′|′E . Hence, by Lemma C.9 we deduce that
A(R)|V ∈E ≈ρ+ρ′, δ′ A(R′)|V ′∈E′ for the random variables
R = D{i∈[n] : Vi=1} and R′ = D′{i∈[n−1] : V ′i =1}. We now
conclude by Fact A.16 that A(R) ≈ρ+ρ′, δ+δ′ A(R′), as
required since A(R) ≡ B(D) and A(R′) ≡ B(D′). �

C.4. Paradigm for DP

We next define FriendlyCoreDP and state the general
paradigm for obtaining (standard) end-to-end DP.

Definition C.10. Define FriendlyCoreDP(D, f, α) :=
D{i : vi=1} for v = BasicFilter(D, f, α).

Theorem C.11 (Paradigm for DP). For every 0 ≤ α <
1/2 and every f -friendly (ε, δ)-DP algorithm A, algo-
rithm B(D) := A(FriendlyCoreDP(D, f, α)) is (γ(eε −
1), γδeε+γ(eε−1))-DP for γ = 1

(1−2α) + 1. Furthermore,
the output of FriendlyCoreDP(D, f, ρ, δ) includes all ele-
ments x ∈ D with

∑
y∈D f(x, y) ≥ (1− α)n.

We remark that for small values of ε and α = 0, Theo-
rem C.11 yields that if A is f -friendly (ε, δ)-DP, then B
is ≈ (2ε, 2e3εδ)-DP, and in general for ε = O(1) and
1/2− α = Ω(1) we obtain (O(ε), O(δ))-DP. Namely, the
paradigm is optimal (up to constant factors) for transform-
ing an f -friendly (ε, δ)-DP, for ε = O(1), into a standard
DP one.

For proving the privacy guarantee of FriendlyCoreDP, we
use the following lemma (proven in Appendix H.6) that

bounds the DP-indistinguishability loss between two execu-
tions over “`1-close” random databases.

Lemma C.12. Let D ∈ Xn and let p,p′ ∈ [0, 1]n with
‖p− p′‖1 ≤ γ. Let V and V ′ be two random variables,
distributed according to Bern(p) and Bern(p′), respec-
tively, and define the random variables R = D{i : Vi=1}
and R′ = D{i : V ′i =1}. Let A be an algorithm that for every
neighboring databases C ∈ Supp(R) and C′ ∈ Supp(R′)
satisfy A(C) ≈DP

ε,δ A(C′). Then A(R) ≈DP
γ(eε−1), γδeε+γ(eε−1)

A(R′).

We now prove Theorem C.11 using Lemma C.12.

Proof of Theorem C.11. The utility guarantee immedi-
ately holds since BasicFilter(·, f, α) is (f, α)-complete
(Lemma C.4). We next focus on proving the privacy guaran-
tee.

Fix two neighboring databases D ∈ Xn and D′ = D−j .
Consider two independent executions of B(D) and B(D′).
Let V be the (r.v. of the) value of v in the execution B(D)
(the output of BasicFilter that is computed internally in
FriendlyCoreDP), and let V ′ this r.v. w.r.t. the execution
B(D′). By the stability property (Lemma C.4), there exist
p,p′ ∈ [0, 1]n such that V ← Bern(p) and V ′ ← Bern(p′)
and it holds that

∥∥p−j − p′
∥∥

1
≤ 1/(1 − 2α). In order

to apply Lemma C.12, we need to extend V ′ to be an n-
size vector. Let Ṽ ′ be the n-size vector that is obtained
by adding 0 to the j’th location in V ′ (i.e., Ṽ ′j = 0 and
Ṽ ′−j = V ′−j), and let p̃′ ∈ {0, 1}n be the vector such that
Ṽ ′ ← Bern(p̃′) (obtained by adding 0 to the j’th location
in p′). So it holds that

∥∥p− p̃′
∥∥

1
≤ 1 + 1/(1 − 2α). Let

R = D{i : Vi=1} and R′ = D{i : Ṽ ′i =1}. By the friendliness
property (Lemma C.4), for every C ∈ Supp(R) and C′ ∈
Supp(R′) it holds that C∪C′ is f -friendly. We now conclude
the proof by Lemma C.12 since A is f -friendly (ε, δ)-DP
and it holds that A(R) ≡ B(D) and A(R′) ≡ B(D′). �

C.5. Comparison Between the Paradigms

Up to constant factors, the paradigm for DP is optimal,
since we transform an f -friendly (ε, δ)-DP algorithm into a
≈ (2ε, 2e3εδ)-DP one. However, in the zCDP model, when
n is sufficiently large, we can use most of the privacy budget
(say, 0.9 of it) for the friendly algorithm A, and use the rest
for FriendlyCore (i.e., we do not have to lose significant
constant factors). The zCDP model has also advantage of
tight composition, and whenever the friendly algorithm A
relies on the Gaussian Mechanism (i.e., for averaging and
clustering problems), which is tailored for zCDP, we gain
in accuracy compared to the DP model.
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C.6. Computation efficiency

Our filters BasicFilter and zCDPFilter computes f(x, y) for
all pairs, that is, doing O(n2) applications of the predicate.
However, using standard concentration bounds, it is possible
to use a random sample of O(log(n/δ)) elements y for
estimating with high accuracy the number of friends of each
x. This provides very similar privacy guarantees, but is
computationally more efficient for large n. See Appendix G
for more details.

D. Applications (Extended)
In this section we present two applications of FriendlyCore:
Averaging (Appendix D.1) and Clustering (Appendix D.2).
These applications are described in the zCDP model, but can
easily be adopted to the DP model as well. In Appendix F
we present a third application of Covariance Matrix Estima-
tion in the DP model, which relies on the tools that have
been recently developed by (Ashtiani & Liaw, 2021). In
this section we only describe the algorithms and prove their
privacy guarantees, where we refer to Appendix H for the
missing statements and proofs of the utility guarantees.

D.1. Averaging

In this section we use FriendlyCore to compute a private
average of points D = (x1, . . . ,xn) ∈ (Rd)∗. In Ap-
pendix D.1.1 we present a zCDP algorithm that given an
(utility) advise of the effective diameter r of the points, es-
timates Avg(D) up to an additive `2 error of O

(
r
n ·
√

d
ρ

)
.

In Appendix D.1.2 we present the case where the effective
diameter r is unknown, but only a segment [rmin, rmax] that
contains r is given. Throughout this section, we remind the
reader that we denote distr(x,y) := 1{‖x−y‖≤r}.

D.1.1. KNOWN DIAMETER

In the following we describe the algorithm for the known
diameter case.

Algorithm D.1 (FC Avg).
Input: A database D = (x1, . . . ,xn) ∈ (Rd)∗, privacy
parameters ρ, δ > 0 and a diameter r ≥ 0.
Operation:

1. Let ρ1 = 0.1ρ and ρ2 = 0.9ρ.

2. Compute C = FriendlyCore(D, distr, ρ1, δ/2).

3. Output FriendlyAvg(C, ρ2, δ/2, r) (Algorithm B.3).

Claim D.2 (Privacy of FC Avg). Algorithm
FC Avg(·, ρ, δ, r) is (ρ, δ)-zCDP

Proof. Claim B.4 implies that FriendlyAvg(·, ρ2, δ/2, r) is
distr-friendly (ρ2, δ/2)-zCDP. Therefore, we conclude by
the privacy guarantee of the FriendlyCore paradigm (The-
orem C.8) that FC Avg(·, ρ, δ, β, r) is (ρ = ρ1 + ρ2, δ)-
zCDP. �

D.1.2. UNKNOWN DIAMETER

In the following we describe the algorithm
FC Avg UnknownDiam for the unknown diameter
case, where we are only given a lower and upper bound
rmin, rmax (respectively) on the effective diameter r.
This is done by first searching for the diameter r using
a private binary search FindDiam, and then apply our
known diameter algorithm FC Avg, which results with an

additive `2 error of O
(
r
n

√
(d+log log(rmax/rmin))

ρ

)
(proven

in Appendix H). The following algorithm is the basic
component of our binary search which checks (privately)
whether a parameter r is a good diameter.

Algorithm D.3 (CheckDiam).
Input: A database D = (x1, . . . ,xn) ∈ (Rd)∗, a privacy
parameter ρ > 0, a confidence parameter β > 0, and a
diameter r ≥ 0.
Operation:

i. For i ∈ [n]: Compute si =
|{j ∈ [n] : ‖xi − xj‖ ≤ r}|.

ii. Let a = (
∑n
i=1 si)/n and let â = a+N (0, 2/ρ).

iii. Output

{
1 â ≥ n−

√
4 ln(1/β)

ρ

0 o.w.
.

Claim D.4 (Privacy of CheckDiam). Algorithm
CheckDiam(·, ρ, β, r) is ρ-zCDP.

Proof. Fix two neighboring databases D = (x1, . . . ,xn)
and D′ = D−j , where we assume w.l.o.g. that j = n. i.e.,
D′ = (x1, . . . , xn−1). Let a, {si}ni=1 and a′, {s′i}

n−1
i=1 be

the values from Step ii in the executions CheckDiam(D)
and CheckDiam(D′), respectively, and note that for every
i ∈ [n − 1] is holds that s′i ≤ si ≤ s′i + 1. Therefore, it
holds that

a ≥
∑n−1
i=1 s

′
i

n
= a′ −

∑n−1
i=1 s

′
i

n(n− 1)
≥ a′ − 1,

and

a ≤
∑n−1
i=1 (s′i + 1) + sn

n
≤ a′ + n− 1

n
+
sn
n
≤ a′ + 2.

The privacy guarantee now follows by the Gaussian mecha-
nism (Theorem A.14) and post-processing (Fact A.9). �
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We next describe our private binary search for the diameter
r.

Algorithm D.5 (FindDiam).
Input: A database D = (x1, . . . ,xn) ∈ (Rd)n, a pri-
vacy parameter ρ > 0, a confidence parameter β > 0,
lower and upper bounds rmin, rmax ≥ 0 on the diameter
(respectively), and a base b > 1.
Operation:

i. Let t = logb(rmax/rmin).

ii. Perform a binary search over x ∈ {b0, b1, . . . , bt},
each step of the search is done by calling to
CheckDiam(D, ρ

log2(t) ,
β

log2(t) , r = x · rmin).

iii. Output r = x · rmin where x is the outcome of the
above binary search.

Claim D.6 (Privacy of FindDiam). Algorithm
FindDiam(·, ρ, β, rmin, rmax, b) is ρ-zCDP.

Proof. Immediately holds by the privacy guarantee of
CheckDiam (Claim D.4) and basic composition of log2(`)
iterations of the binary search. �

We now ready to fully describe our algorithm for estimat-
ing the average of points where the effective diameter is
unknown.

Algorithm D.7 (FC Avg UnknownDiam).
Input: A database D = (x1, . . . ,xn) ∈ (Rd)n, privacy
parameters ρ, δ > 0, a confidence parameter β > 0, and
lower and upper bounds rmin, rmax > 0 on the diameter
(respectively).
Operation:

1. Let ρ1 = 0.1ρ and ρ2 = 0.9ρ.

2. Compute r = FindDiam(D, ρ1, β/2, rmin, rmax, b =
1.5).

3. Output FC Avg(D, ρ2, δ, β/2, r).

Claim D.8 (Privacy of FC Avg UnknownDiam). Al-
gorithm FC Avg UnknownDiam(·, ρ, δ, β, rmin, rmax) is
(ρ, δ)-zCDP

Proof. Immediately follows by composition (Fact A.15) of
the ρ1-zCDP mechanism FindDiam (Claim D.6) and the
(ρ2, δ)-zCDP mechanism FC Avg (Claim D.2). �

D.1.3. COMPARISON WITH PREVIOUS RESULTS

There are many previous results about private averaging in
various settings that, like our averaging algorithms, attempt

to add additive noise that is proportional to the effective
diameter of the points (e.g., see (Nissim et al., 2016; Karwa
& Vadhan, 2018; Kamath et al., 2019a; 2020; Biswas et al.,
2020; Huang et al., 2021; Levy et al., 2021)). All these
results (including ours) have a preprocessing step in which
“outliers” are clipped or trimmed, and then it becomes “pri-
vacy safe” to add a small noise. Our FriendlyCore-based
preprocessing step has two main advantages compared to
the other methods: (1) It is dimension-independent, and (2)
It is independent of the `2-norm of the points. These two ad-
vantages are illustrated in the experiments of Appendix E.1.
As far as we know, all previous results do not satisfy (1),
and most of them do not satisfy (2) either (the histogram-
based construction of (Karwa & Vadhan, 2018) is the only
result which is also independent of the `2-norm of the points,
but is very dependent in the dimension). In addition, we
remark that the additive error of our algorithms match the
Õ
(
r
n ·
√

d
ρ

)
optimal upper bound of (Huang et al., 2021).

Actually, we even provide an asymptotical improvement
compared to (Huang et al., 2021), because their approach
requires an assumed bound Λ on the `2 norm of all the
data points, even when the effective diameter r is known (a
logarithmic dependency on Λ is hidden inside the Õ). In
contrast, our approach does not need such a bound in the
known r case (Claim H.4), and in the unknown r case we
only require rough bounds rmin, rmax on it (Claim H.8).

D.2. Clustering

In this section we use FriendlyCore for constructing our pri-
vate clustering algorithm FC Clustering. Recently, (Cohen
et al., 2021) identified a very simple clustering problem,
called unordered k-tuple clustering, and reduced standard
clustering tasks like k-means and k-GMM (under common
separation assumptions) to this simple problem via the sam-
ple and aggregate framework of (Nissim et al., 2007). The
idea is to split the database into random parts, and execute a
non-private clustering algorithm on each part for obtaining
an unordered k-tuples from each execution. Then the goal
is to privately aggregate all the k-tuples for obtaining a new
k-tuple that is close to them. See Figure 5 for a graphical
illustration.

(Cohen et al., 2021) formalized the k-tuple clustering prob-
lem, described simple algorithms that privately solve this
problem, and then provided proven utility guarantees for
k-means and k-GMM using the above reduction. How-
ever, their algorithms do not perform well in practice (i.e.,
requires either too many tuples or an extremely large separa-
tion). In this section we show how to solve the unordered k-
tuple clustering problem using FriendlyCore in a much more
efficient way, yielding the first algorithm of this type that is
also practical in many interesting cases (see Appendix E.2).
In this section we only describe our algorithms and prove
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Figure 5: Top left: Database of points. Top right: Executing a non-private clustering algorithm over random parts of the
data. Each execution returns an unordered k-tuple (e.g., the red points are the first tuple, the green points are the second
tuple, etc.). Bottom left: The original points are ignored, and the focus is on a new database, where each element there is an
unordered k-tuple (e.g., the tuple of red points is the first element in the new database). Bottom right: When the tuples are
close to each other (as in the picture), the goal is to output a new k-tuple that is close to them (e.g., the yellow points). The
challenge is to do it while preserving differential privacy (with respect to the new database of tuples).

their privacy guarantees. We refer to Appendix H.3 for
proven utility guarantees that use the tools and formaliza-
tion of (Cohen et al., 2021).

In Appendix D.2.1 we define a predicate matchγ for un-
ordered k-tuples (where γ is a matching quality parame-
ter), and prove properties of this predicate, where the main
property is Claim D.15 which states that a matchγ-friendly
database is match2γ/(1−γ)-complete. In Appendix D.2.2
we present a reduction FriendlyReorder from unordered to
ordered tuples, that is privacy safe for databases that are
match1/7-friendly. In Appendix D.2.3 we present the or-
dered tuples problem, and solve it again using a special
specification of FriendlyCore. In Appendix D.2.4 we com-
bine the reduction from unordered to ordered tuples, along
with the algorithm for ordered one, and present our end-to-
end zCDP algorithm FC kTupleClustering for unordered
k-tuple clustering. Finally, in Appendix D.2.5 we are going
back to the original clustering problems that we are inter-
ested in (e.g., k-means and k-GMM) and present our main
clustering algorithm FC Clustering that combines between
our algorithm FC kTupleClustering for unordered k-tuple
clustering to the reduction of (Cohen et al., 2021) from stan-
dard clustering problems into the unordered tuples problem.

While FC Clustering consists of several components, the
algorithm itself is not very complicated. For making the
presentation more accessible, in Algorithm D.9 we give an
informal description of FC Clustering, and in Figure 3 we
present a graphical illustration of the steps on synthetic data.

Algorithm D.9 (FC Clustering, informal).
Input: A database D ∈ (Rd)∗, parameters ρ, δ > 0, a
bound Λ > 0 on the `2 norm of the points, and a parame-
ter t ∈ N (number of tuples).
Oracle: Non private clustering algorithm A.
Operation:

1. Shuffle the order of the points in D. Let D =
(x1, . . . ,xn) be the database after the shuffle.

2. For i ∈ [t]: Compute the k-tuple Xi = A(Di) where
Di = (x(i−1)·m+1, . . . ,xi·m) for m = bn/tc.

3. Let T = (X1, . . . , Xt) (a database of unordered
tuples).

4. Compute C = FriendlyCore(T ,match1/7, ρ/3, δ/3)
(match1/7 is defined in Definition D.16).

5. Pick a tuple X = (x1, . . . ,xk) ∈ T and split the
set of all points of all the tuples in T into k parts
Q1, . . . ,Qk according to it (i.e., each point y is cho-
sen to be in Qi for i = argminj∈[k]‖xi − y‖).

6. For i ∈ [k]: Compute (ρ/3, δ/3)-zCDP averages
Y = (y1, . . . ,yk) for Q1, . . . ,Qk (respectively).

7. Perform a private Lloyd step over the entire database
D with the centers Y (using privacy budget ρ/3, δ/3
and radius Λ), and output the resulting centers.

Theorem D.10 (Privacy of FC Clustering). Algorithm
FC ClusteringA(·, ρ, δ,Λ, t) is (ρ, δ)-zCDP (for any A).

The proof of Theorem D.10, along with the formal construc-
tion, appears at Appendix D.2.5.

Remark D.11. Steps 4 to 6 of Algorithm 5.3 are actually an
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informal description of our algorithm FC kTupleClustering,
which is formally described in Appendix D.2.4. Step 5,
which also can be seen as “ordering” the unordered tuples,
is an informal description of our algorithm FriendlyReorder
which is described in Appendix D.2.2. Note that com-
puting the averages in Step 6 can be done by applying
FC Avg UnknownDiam on each of theQi’s (i.e., additional
k calls to FriendlyCore). But actually, we do that by a new
algorithm FC AvgOrdTup that only uses a single call to
FriendlyCore which is applied with a special type of pred-
icate over ordered tuples. Algorithm FC AvgOrdTup is
described in Appendix D.2.3.

D.2.1. UNORDERED k-TUPLE CLUSTERING

In this section we are given a databaseD ∈ ((Rd)k)∗, where
each element X = (x1, . . . ,xk) ∈ D is a k-tuple of points
in Rd. In case all tuples are close to each other (up to
reordering), the goal is to privately determine a new k-tuple
that is close to them.

We start by defining a predicate over such tuples that cap-
tures the “closeness” property.

Definition D.12 (Predicate matchγ). For γ ∈ [0, 1], a
permutation π : [k] → [k] and X = (x1, . . . ,xk), Y =
(y1, . . . ,yk) ∈ (Rd)k, let matchπγ (X,Y ) = 1 iff for every
i ∈ [k] it holds that∥∥∥xi − yπ(i)

∥∥∥ < γ·min
j 6=i
{min{

∥∥∥xi − yπ(j)

∥∥∥,∥∥∥xj − yπ(i)

∥∥∥}}.
We let matchγ(X,Y ) = 1 iff there exists a permutation π
such that matchπγ (X,Y ) = 1 (otherwise, matchγ(X,Y ) =
0).

Namely, for small constant γ, matchγ(X,Y ) = 1 means
that there is a clear one-to-one matching between the points
in X = (x1, . . . ,xk) and the points in Y = (y1, . . . ,yk)
(see Figure 6 for an illustration).

In the following we prove key properties of this predicate.
We start by stating an approximate triangle inequality with
respect to this predicate for the case of the identity permuta-
tion.

Claim D.13. Let X,Y, Z ∈ (Rd)k such that
matchidγ (X,Z) = matchidγ (Y,Z) = 1, where id is
the identify permutation. Then matchid2γ/(1−γ)(X,Y ) = 1.

Proof. Fix i ∈ [k] and j ∈ [k] \ {i}, and note that

1. matchidγ (X,Z) = 1 implies
‖xi − zi‖ < γ ·min{‖xi − zj‖, ‖xj − zi‖}.

2. matchidγ (Y,Z) = 1 implies
‖yi − zi‖ < γ ·min{‖yi − zj‖,

∥∥yj − zi
∥∥}.

We prove the claim by showing that ‖xi − yi‖ <
2γ

1−γ
∥∥xi − yj

∥∥ (and by symmetry between X and Y we
also deduce that ‖xi − yi‖ <

2γ
1−γ ‖xj − yi‖). Using trian-

gle inequality multiple times, it holds that

‖xi − yi‖ ≤ ‖xi − zi‖+ ‖yi − zi‖
< γ(‖xi − zj‖+

∥∥yj − zi
∥∥)

≤ γ(2
∥∥xi − yj

∥∥+ ‖xi − zi‖+
∥∥yj − zj

∥∥). (1)

We next bound ‖xi − zi‖ +
∥∥yj − zj

∥∥ as a function of∥∥xi − yj
∥∥. Observe that

‖xi − zi‖ < γ‖xi − zj‖ ≤ γ(
∥∥xi − yj

∥∥+
∥∥yj − zj

∥∥)

and∥∥yj − zj
∥∥ < γ

∥∥yj − zi
∥∥ ≤ γ(

∥∥xi − yj
∥∥+ ‖xi − zi‖).

By summing the above two inequalities we deduce that

‖xi − zi‖+
∥∥yj − zj

∥∥ < 2γ

1− γ
∥∥xi − yj

∥∥. (2)

We now conclude by Equations (1) and (2) that

‖xi − yi‖ <
(

2γ +
2γ2

1− γ

)∥∥xi − yj
∥∥ =

2γ

1− γ
∥∥xi − yj

∥∥.
�

We next extend Claim D.13 for arbitrary permutations.

Claim D.14. Let X,Y, Z ∈ (Rd)k such that
matchπ1

γ (X,Z) = matchπ2
γ (Y,Z) = 1. Then

match
π2◦π−1

1

2γ/(1−γ)(X,Y ) = 1.

Proof. Let X ′ = (xπ−1
1 (i))

k
i=1 and Y ′ = (yπ−1

2 (i))
k
i=1.

Then it holds that matchidγ (X ′, Z) = matchidγ (Y ′, Z) = 1,
where id is the identity permutation. By Claim D.13 we
deduce that matchid2γ/(1−γ)(X

′, Y ′) = 1, yielding that

match
π2◦π−1

1

2γ/(1−γ)(X,Y ) = 1. �

The following claim states how much we loss by moving
from a friendly database into a complete one (in which there
is a match between every pair of tuples).

Claim D.15. If D ∈ ((Rd)k)∗ is matchγ-friendly, then it is
match2γ/(1−γ)-complete.

Proof. Immediately follows by Claim D.14 since the
matchγ-friendly assumption implies that for every X,Y ∈
D there exists Z ∈ (Rd)k such that matchγ(X,Z) =
matchγ(Y, Z) = 1.

�
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Figure 6: A graphical illustration of tuples X = (x1,x2,x3) and Y = (y1,y2,y3) with match1/7(X,Y ) = 1.

D.2.2. FROM UNORDERED TO ORDERED TUPLES

The main component of our clustering algorithm is to re-
order the unordered tuples in a way that is not influenced
by adding or removing a single tuple. Note that without
privacy, such a reordering can be easily done by picking an
arbitrary tuple X , and reorder every tuple Y according to it,
as describe in the following definition.

Definition D.16. For X = (x1, . . . ,xk), Y =
(y1, . . . ,yk) ∈ (Rd)k with match1(X,Y ) = 1, define
ordX(Y ) := (yπ(1), . . . ,yπ(k)), where π : [k] → [k] is
the (unique) permutation such that matchπ1 (X,Y ) = 1 (i.e.,
∀i ∈ [k] : π(i) = argminj∈[k]{

∥∥xi − yj
∥∥}).

The following claim implies that picking one of the tuples
and ordering the others according to it, is actually safe when
the database is friendly. In other words, the claim states that
for a match1/7-friendly database, every two tuples must
induce the same reordering of the other tuples (up to a
permutation).

Claim D.17. For any match1/7-friendly S ∈ ((Rd)k)∗ and
any X,Y ∈ S, there exists a permutation π : [k] → [k]
(depends only on X,Y ) such that for all Z ∈ S, the tuples
Z̃ = ordX(Z) and Z̃ ′ = ordY (Z) satisfy for all i ∈ [k]

that Z̃π(i) = Z̃ ′i.

Proof. Fix X,Y, Z ∈ S. By Claim D.15 it holds
that D is match1/3-complete. In particular, there ex-
ists permutations π1, π2, π3 such that matchπ1

1/3(X,Z) =

matchπ2

1/3(Y,Z) = matchπ3

1/3(X,Y ) = 1. First, this
implies that ordX(Z) = (Zπ1(i))

k
i=1 and ordY (Z) =

(Zπ2(i))
k
i=1. Second, by applying Claim D.14 on the fact

that matchπ1

1/3(X,Z) = matchπ2

1/3(Y,Z) = 1, we obtain

that match
π2◦π−1

1
1 (X,Y ) = 1. Since it also holds that

matchπ3

1/3(X,Y ) = 1, we conclude that π3 = π2 ◦ π−1
1 ,

and the claim follows by setting π = π3 (which only de-
pends on X,Y ). �

We now use Claim D.17 in order to construct an match1/7-
friendly zCDP algorithm for unordered tuples that applies
a zCDP algorithm for ordered tuples (i.e., it reduces the
unordered tuples problem to the ordered ones).

Algorithm D.18 (FriendlyReorder).
Input: A database D = (X1, . . . , Xn) ∈ ((Rd)k)∗.
Operation:

1. If D is empty, output A(D). Otherwise:

2. Sample a uniformly random permutation π : [k] →
[k].

3. For i ∈ [n] let (yi1, . . . ,y
i
k) = ordX1(Xi) and let

Ỹ i = (yiπ(1), . . . ,y
i
π(k)).

4. Output D̃ = (Ỹ 1, . . . , Ỹ n).

Claim D.19 (Privacy of FriendlyReorder). If A (algo-
rithm for ordered tuples) is (ρ, δ)-zCDP then B(D) :=
A(FriendlyReorder(D)) is match1/7-friendly (ρ, δ)-zCDP.

Proof. Fix neighboring databases D = (X1, . . . , Xn) ∈
((Rd)k)∗ and D′ = D−j such that D ∪ D′ is
match1/7-friendly. For a permutation π : [k] → [k] let
FriendlyReorderπ be algorithm FriendlyReorder where the
permutation chosen in Step 2 is set to π (and not chosen uni-
formly at random). We prove the claim by showing that for
every permutation π there exists a permutation π′ such that
A(FriendlyReorderπ(D)) ≈ρ,δ A(FriendlyReorderπ′(D′)).

If j 6= 1 (i.e., the first tuple in D and D′ is X1),
then for every permutation π, the resulting database D̃
in FriendlyReorderπ(D) and the corresponding database
D̃′ in FriendlyReorderπ(D′) are neighboring (in particular,
D̃′ = D̃−j), and we deduce that the outputs (after applying
A) are (ρ, δ)-indistinguishable since A is (ρ, δ)-zCDP.

Otherwise, D′ = (X2, . . . , Xn). Since D is match1/7-
friendly, Claim D.17 implies that there exists a per-
mutation σ : [k] → [k] such that for all i ∈ [n] \
{1}, the tuple (yi1, . . . ,y

i
k) = ordX1(Xi) satisfy

(yiσ(1), . . . ,y
i
σ(k)) = ordX2(Xi). In the following, fix

a permutation π : [k] → [k], and define π′ = π ◦
σ−1. Then it holds that the resulting database D̃ in
FriendlyReorderπ(D) and the corresponding database D̃′ in
FriendlyReorderπ′(D′) are neighboring (in particular, D̃′ =

D̃−1), and conclude that A(FriendlyReorderπ(D)) ≈(ρ,δ)

A(FriendlyReorderπ′(D′)). �
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D.2.3. ORDERED k-TUPLE CLUSTERING

In this section we are given a database D =
(X1, . . . , Xn) ∈ ((Rd)k)∗ where each Xi = (xi1, . . . ,x

i
k)

is a k-tuple, and the goal is to estimate the averages
in each coordinates of the tuples. That is, to estimate
(Avg(D1), . . . ,Avg(Dk)) where Dj = (xij)

n
i=1. We

present an algorithm that given an (utility) advice of values
r1, . . . , rk ≥ 0 such that for all j ∈ [k] and x,y ∈ Dj it
holds that ‖x− y‖ ≤ rj , it estimate each Avg(Dj) up to

an additive error of Õ
(
rj
n ·
√

d
ρ

)
. The diameters advice are

computed in a private preprocessing step.

Note that this problem can be trivially solved by applying
our average algorithm (Appendix D.1) on each set Dj . This
however, requires k invocations of FriendlyCore (one per
average), which requires n = Ω(k log(1/min{β, δ})/ρ)
(i.e., n is linearly dependent in k). In this section we show
how to solve it using a single invocation of FriendlyCore
with the following extension of the predicate distr for pairs
over Rd to distr1,...,rk for pairs over (Rd)k .

Definition D.20 (Predicate distr1,...,rk ). For r1, . . . , rk and
X = (x1, . . . ,xk), Y = (y1, . . . ,yk) ∈ (Rd)k, we let
distr1,...,rk(X,Y ) =

∏k
i=1 distr(xi,yi).

Algorithm D.21 (FriendlyOrdTupAvg).
Input: A database D = (Xi = (xi1, . . . ,x

i
k))ni=1 of or-

dered tuples, privacy parameters ρ, δ > 0, and diameters
r1, . . . , rk ≥ 0.
Operation:

1. Let ρ1 = 0.1(1− δ)ρ and ρ2 = 0.9ρ.

2. Compute n̂ = n−
√

ln(1/δ)
ρ1
− 1 +N (0, 1

2ρ1
), where

n = |D|.

3. If n = 0 or n̂ ≤ 0, output ⊥ and abort.

4. Otherwise, for j ∈ [k]:

• Let Dj = (xij)
n
i=1.

• Compute âj = Avg(Dj) + N (0, σ2 · Id×d),
for σ =

2rj
n ·

√
k

2ρ2
.

5. Output (â1, . . . , ân).

Claim D.22 (Privacy of FriendlyOrdTupAvg). Algo-
rithm FriendlyOrdTupAvg(·, ρ, δ, r1, . . . , rk) is distr1,...,rk -
friendly (ρ, δ)-zCDP.

Proof. Let D = (X1, . . . , Xn) and D′ = D−j be
two distr1,...,rk -friendly neighboring databases, and let
n′ = n − 1. Consider two independent random execu-
tions of FriendlyAvg(D) and FriendlyAvg(D′) (both with

the same input parameters ρ, δ, r1, . . . , rk). Let N̂ and
Â = (Â1, . . . , Âk) be the (r.v.’s of the) values of n̂ and
(â1, . . . , âk) in the execution FriendlyAvg(D), let N̂ ′ and
Â′ be these r.v.’s w.r.t. the execution FriendlyAvg(D′),
and let ρ1, ρ2 be as in Step 1. As done in the proof of
Claim B.4, it is enough to prove that Â|N̂=n̂ ≈ρ2 Â′|N̂ ′=n̂
for every n̂ ≤ n. In particular, it is enough to prove that
for every j ∈ [k] it holds that Âj |N̂=n̂ ≈ρ2/k Â′j |N̂ ′=n̂.
Since D ∪ D′ is distr1,...,rk -friendly, for every j it holds
that Dj ∪ (Dj)′ is distrj -friendly. Hence, using the same
arguments as in the proof of Claim B.4, it holds that∥∥Avg(Dj)−Avg((Dj)′)

∥∥ ≤ 2rj/n ≤ 2rj/n̂. Hence, by
the properties of the Gaussian mechanism (Theorem A.14)
we conclude that Âj |N̂=n̂ ≈ρ2/k Â′j |N̂ ′=n̂, as required.

�

We now present our main zCDP algorithm for averag-
ing ordered k-tuples, that is based on finding a friendly
core of such tuples, and applying the friendly algorithm
FriendlyOrdTupAvg.

Algorithm D.23 (FC AvgOrdTup).
Input: A database D = (Xi = (xi1, . . . ,x

i
k))ni=1 ∈

((Rd)k)∗, privacy parameters ρ, δ > 0, a confidence pa-
rameter β > 0 and lower and upper bounds rmin, rmax >
0 on the diameters (respectively).
Operation:

1. Let ρ1 = ρ2 = 0.05ρ, ρ3 = 0.9ρ and b = 1.5.

2. For j ∈ [k]:

• Let Dj = (xij)
n
i=1.

• Compute rj =
FindDiam(Dj , ρ1/k, β/(2k), rmin, rmax, b)
(Algorithm D.5).

3. Compute
C = FriendlyCore(D, distr1,...,rk , ρ2, δ/2, β/2).

4. Output FriendlyOrdTupAvg(C, ρ3, δ/2, r1, . . . , rk)
(Algorithm D.21).

Claim D.24 (Privacy of FC AvgOrdTup). Algorithm
FC AvgOrdTup(·, ρ, δ, β, rmin, rmax) is (ρ, δ)-zCDP.

Proof. By Claim D.6, each execution of
FindDiam(·, ρ1/k, β/(2k), rmin, rmax, b = 1.5)
is ρ1/k-zCDP, and therefore the computa-
tion of r1, . . . , rk is (ρ1, δ/2)-zCDP. Since
FriendlyOrdTupAvg(·, ρ3, δ/2, r1, . . . , rk) is distr1,...,rk -
friendly ρ3-zCDP (Claim D.22), we deduce by the privacy
guarantee of the FriendlyCore paradigm (Theorem C.8)
that Steps 3+4 are (ρ2 + ρ3, δ)-zCDP. We now con-
clude by composition that the entire computation is
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(ρ = ρ1 + ρ2 + ρ3, δ)-zCDP. �

D.2.4. UNORDERED k-TUPLE CLUSTERING: PUTTING
ALL TOGETHER

Now that we have the reduction FriendlyReorder from un-
ordered to ordered k-tuples (for friendly databases), and
given our algorithm FC AvgOrdTup for ordered k-tuple
clustering, we describe the fully end-to-end zCDP algo-
rithm for unordered k tuple clustering.

Algorithm D.25 (FC kTupleClustering).
Input: A database D = (Xi = (xi1, . . . ,x

i
k))ni=1 ∈

((Rd)k)∗, privacy parameters ρ, δ > 0, a confidence pa-
rameter β > 0 and lower and upper bounds rmin, rmax >
0 on the diameters (respectively).
Operation:

• Compute
C = FriendlyCore(D,match1/7, ρ/2, δ/2, β/2).

• Compute C̃ = FriendlyReorder(C) (Algorithm D.18).

• Output FC AvgOrdTup(C̃, ρ/2, δ/2, β/2, rmin, rmax)
(Algorithm D.23).

Claim D.26 (Privacy of FC kTupleClustering). Algorithm
FC kTupleClustering(·, ρ, δ, β, rmax, rmin) is (ρ, δ)-zCDP.

Proof. Since A = FC AvgOrdTup(·, ρ/2, δ/2, β, rmax, rmin)
is (ρ/2, δ/2)-zCDP (Claim D.24), we deduce by
Claim D.19 that A(FriendlyReorder(·)) is match1/7-
friendly (ρ/2, δ/2)-zCDP. Hence, we conclude by
Theorem C.8 that the output is (ρ, δ)-zCDP. �

D.2.5. FRIENDLYCORE CLUSTERING

Given algorithm FC kTupleClustering, we now can plug it
into the reduction of (Cohen et al., 2021) from standard
clustering problems into the k tuple clustering, for obtain-
ing our final clustering method FC Clustering (described
below). In this section we only prove its privacy guarantee,
where we refer to Appendix H.3 for the utility guarantees
of FC kTupleClustering and of FC Clustering for k-means
and k-GMM under common separation assumptions (which
follow by the tools of (Cohen et al., 2021)).

Algorithm D.27 (NoisyLloydStep).
Input: A database D ∈ (Rd)∗, a k-tuple Y =
(y1, . . . ,yk) ∈ (Rd)k, privacy parameters ρ, δ > 0, and
a bound Λ on the `2 norm of the points.
Operation:

1. Remove all x ∈ D with ‖x‖ > Λ .

2. For i ∈ [k]:

(a) Let Di = (x ∈ D : i =
argminj∈[k]

∥∥x− yj
∥∥).

(b) Compute âi = FriendlyAvg(Di, ρ, δ, r = 2Λ)
(Algorithm B.3).

3. Output (â1, . . . , âk).

Algorithm D.28 (FC Clustering).
Input: A database D ∈ (Rd)∗, privacy parameters ρ, δ >
0, a confidence parameter β > 0, a lower bound rmin > 0
on the diameters of the clusters, a bound Λ > 0 on the
`2 norm of the points, and a parameter t ∈ N (number of
tuples).
Oracle: Non private clustering algorithm A.
Operation:

1. Shuffle the order of the points in D. Let D =
(x1, . . . ,xn) be the database after the shuffle.

2. Let m = bn/tc.

3. For i ∈ [t]: Compute the k-tuple Xi = A(Di) for
Di = (x(i−1)·m+1, . . . ,xi·m).

4. Let T = (X1, . . . , Xt).

5. Compute
Y = FC kTupleClustering(T , ρ/2, δ/2, β, rmin, 2Λ).

6. Output NoisyLloydStep(D, Y, ρ/2, δ/2,Λ).

Claim D.29 (Privacy of FC Clustering). Algorithm
FC ClusteringA(·, ρ, δ, β, rmin,Λ, t) is (ρ, δ)-zCDP (for
any A).

Proof. First, note that for every Y ∈ (Rd)k, algorithm
NoisyLloydStep(·, Y, ρ, δ, β, rmin, rmax) is ρ-zCDP. This
is because FC Avg UnknownDiam(·, ρ, δ, β, rmin, rmax) is
(ρ, δ)-zCDP and for every neighboring databases D and
D′, there is only a single i such that the databases Di
and D′i from Step 2a of NoisyLloydStep(D, . . .) and
NoisyLloydStep(D′, . . .) (respectively) are neighboring,
and the others equal to each other.

Back to FC Clustering, we obtain the required privacy by
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composition of FC kTupleClustering and NoisyLloydStep.
�

E. Empirical Results (Extended)
In this section we present empirical results of our
FriendlyCore based averaging and clustering algorithms. In
all experiments we used privacy parameter ρ = 1, δ = 10−8,
and all of them were tested in a MacBook Pro Laptop with
4-core Intel i7 CPU with 2.8GHz, and with 16GB RAM.

E.1. Averaging

We tested mean estimation of samples from a Gaussian
with unknown mean and known variance. We compared
a Python implementation of our private averaging algo-
rithm FC Avg with the algorithm CoinPress of (Biswas
et al., 2020). The implementations of CoinPress, and the
experimental test bed, were taken from the publicly avail-
able code of (Biswas et al., 2020) provided at https://
github.com/twistedcubic/coin-press. Fol-
lowing (Biswas et al., 2020), we generate a dataset of n
samples from a d-dimensional Gaussian N (0, Id×d). We
ran FC Avg with r =

√
2(
√
d +

√
ln(100n)) for guaran-

teeing that almost all pairs of samples have `2 distance at
most r from each other (computed according to the known
variance).

Algorithm CoinPress requires a bound R on the `2 norm
of the unknown mean. Both algorithms perform a similar
final private averaging step that has dependence on

√
d.

But they differ in the ”preparation:” CoinPress has inherent
dependence on d and R. FC Avg preparation, on the other
hand, has no dependence on d or R.

Following (Biswas et al., 2020) we perform 50 repetitions
of each experiment and use the trimmed average of val-
ues between the 0.1 and 0.9 quantiles. We show the `2
error of our estimate on the Y -axis. Figure 7(1) reports
the effect of varying the bound R, with fixed d = 1000
and n = 800. We tested CoinPress with 4, 20 and 40 it-
erations. We observe that FC Avg, that does not depend
on R, outperforms CoinPress for R > 107. Figure 7(2)
reports the effect of varying the dimension d, with fixed
n = 800 and R = 10

√
d. We tested CoinPress with 2, 4

and 8 iterations. We observed that the performance of all
algorithms deteriorates with increasing d, which is expected
due to all algorithms using private averaging, but CoinPress
deteriorates much faster in the large-d regime.

Finally we note that CoinPress slightly performs better than
FC Avg in the small-d small-R regime (see Figure 7(3)
that includes also a comparison to the algorithm of (Karwa
& Vadhan, 2018)). The reason is that FriendlyAvg (Algo-
rithm B.3), which is the last step of FC Avg, uses noise of
magnitude ≈ 2r

n
√

2ρ
which is far by a factor of 2 from the

ideal magnitude that we could hope for.

E.2. Clustering

We tested the performance of our private clustering
algorithm FC Clustering with t = 200 tuples on a
number of k-Means and k-GMM tasks. We compared
a Python implementation of FC Clustering with a recent
algorithm of Chang & Kamath (2021) that is based on
recursive locality-sensitive hashing (LSH). We denote their
algorithm by LSH Clustering. The implementations of
LSH Clustering, and the experimental test bed of Figure 8,
were taken from the publicly available code of (Chang &
Kamath, 2021) provided at https://github.com/
google/differential-privacy/tree/main/
learning/clustering. LSH Clustering guarantees
privacy in the DP model. Therefore, in order to compare
it with our (ρ = 1, δ)-zCDP guarantee, we chose to
apply it with a (ε = 2, δ)-DP guarantee, so that non of
the guarantees implies the other. Furthermore, unlike
FC Clustering which may fail to produce centers in some
cases (e.g., when the core of tuples is empty or close
to be empty), LSH Clustering always produces centers.
Therefore, in order to handle failures of FC Clustering, we
used only ρ = 0.99 privacy budget, and on failures we
executed LSH Clustering with ε =

√
0.02 (which implies

ρ = 0.01 zCDP) as backup.

We performed 30 repetitions of each experiment and present
the medians (points) along with the 0.1 and 0.9 quantiles.

In Figure 8 (Left) we present a comparison in dimen-
sion d = 2 with k = 8 clusters. In each repetition, we
sampled eight random centers {ci}8i=1 from the unit ball,
and the database was obtained by collecting n/8 samples
from each Gaussian N (ci, 0.0221I2×2), where the sam-
ples were clipped to `2 norm of 1. For FC Clustering
we used an oracle access to k-means++ provided by the
KMeans algorithm of the Python library sklearn, and used
rmin = 0.001 and radius Λ = 1. We set the radius pa-
rameter of LSH Clustering to 1. We plotted the normalized
k-means loss that is computed by 1 − X/Y , where X is
the cost of k-means++ on the entire data, and Y is the
cost of the tested private algorithm. From this experiment
we observed that for small values of n, FC Clustering fails
often, which yield an inaccurate results. Yet, increasing
n also increases the success probability of FC Clustering
which yields very accurate results, while LSH Clustering
stay behind. See Figure 8 (Right) for a graphical illustration
of the centers in one of the iterations for n = 2e5.

In Figure 9 (Left) we present a comparison for separating
n = 2.5 · 105 samples from a uniform mixture of k = 5
Gaussians N (ci, Id×d) for varying d. In each repetition,
each of the ci’s was chosen uniformly from {1, 2}d, yielding
that the distance between each pair of centers is ≈

√
d/2.

https://github.com/twistedcubic/coin-press
https://github.com/twistedcubic/coin-press
https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
https://github.com/google/differential-privacy/tree/main/learning/clustering
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Figure 7: From Left to Right: (1) Averaging in d = 1000 and n = 800, varying R. (2) Averaging in n = 800, R = 10
√
d,

varying d. (3) Averaging in d = 50 and R = 10
√
d, varying n.

We analyze the labeling accuracy, which is computed by
finding the best permutation that fits between the true la-
beling and the induced clustering, and plotted the labeling
failure of the best fit. Here, we used rmin = 0.1, and radius
Λ = 10

√
d for FC Clustering and LSH Clustering. For the

non-private oracle access of FC Clustering, we used a PCA-
based clustering that easily separate between such Gaussians
in high dimension.8 From this experiment we observed that
FC Clustering takes advantage of the PCA method and suc-
ceed well when d is large, while LSH Clustering is almost
oblivious to the increasing d here.

At that point, we showed that FC Clustering succeed well
on well-separated databases, since the results of the non-
private algorithm (each is executed on a random piece of
data) are very similar to each other in such cases. We next
show that such stability can also be achieved on large enough
real-world datasets, even when there is no clear separation
into k clusters.

In Figure 9 (Right) we used the publicly available dataset of
(Fonollosa & Huerta, 2015) that contains the acquired time
series from 16 chemical gas sensors exposed to gas mix-
tures at varying concentration levels. The dataset contains
≈ 8M rows, where each row contains 16 sensors’ measure-
ments at a given point in time, so we translate each such
row into a 16-dimensional point. We compared the cluster-
ing algorithms for varying k, where we used rmin = 0.1,
and radius Λ = 105 for FC Clustering and LSH Clustering.
We observed that FC Clustering, with k-means++ as the
non-private oracle, succeed well on various k’s, except of
k = 5 in which it fails due to instability of the non-private
algorithm.9

8The algorithm project the points into the k principal compo-
nents, cluster the points in that low dimension, and then translate
the clustering back to the original points and perform a Lloyd step.

9There are two different solutions for k = 5 that have similar
low cost but do not match, yielding that when splitting the data
into random pieces, the non-private KMeans choose one of them in
one set of part and the other one in the other pieces, and therefore
fails.

In summary, we observed from the experiments that when
FC Clustering succeed, it outputs very accurate results.
However, FC Clustering may fail due to instability of the
non-private algorithm on random pieces of the database.
Hence, it seems that in cases where we have a clear separa-
tion or many points, we might gain by combining between
FC Clustering and LSH Clustering. In this work we chose
to spend 0.99 of the privacy budget on FC Clustering, but
other combinations might perform better on different cases.



FriendlyCore: Practical Differentially Private Aggregation

Figure 8: Left: k-means results in d = 2 and k = 8, for varying n. Right: A graphical illustration of the centers in one of the
iterations for n = 2e5. Green points are the centers of FC Clustering and the red points are the centers of LSH Clustering.

Figure 9: Left: Labeling Failure of samples from a uniform mixture of k = 5 Gaussians, varying d. Right: k-means results
on Gas Sensors’ measurements over time, varying k.
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F. Learning a Covariance Matrix
In this section, we are given a database that consists of
independent samples from a Gaussian N (0,Σ) where the
covariance matrix Σ � 0 is unknown, no bounds on ‖Σ‖
(the operator norm) are given, and the goal is to privately
estimate Σ. Without privacy, it can just be estimated by the
empirical covariance of the samples: 1

n

∑n
i=1 xi · xTi . Re-

cently, three independent and concurrent works of Kamath
et al. (2021); Ashtiani & Liaw (2021); Kothari et al. (2021)
gave a polynomial-time algorithm for this problem (all the
three works were published after the first version of our
work that did not include the covariance matrix application).
The core of Ashtiani & Liaw (2021)’s construction con-
sists of a framework in the DP model for privately learning
average-based aggregation tasks, that has the same flavor
of FriendlyCore. Their tool does not output a subset C ⊆ D
as FriendlyCore. Rather, it outputs a weighted average of
the elements, where the weights are chosen in a way that
makes the task of privately estimating it to be simpler than
its unrestricted counterpart (in particular, their framework
guarantees that “outliers” receive weight 0, and by that it
is certified that the weighted average has only low sensi-
tivity).10 For learning a covariance matrix, they implicitly
use a special “friendliness” predicate between covariance
matrices, and apply their tool on the empirical covariance
matrices, each is computed (non-privately) from a different
part of the data points.

We next show how to apply FriendlyCore along with the
tools of Ashtiani & Liaw (2021) in order to privately learn
an unrestricted covariance matrix. Similarly to (Ashtiani &
Liaw, 2021), we only handle the case that Σ � 0 (i.e., where
Σ has full rank).11 In addition, following the main step of
(Ashtiani & Liaw, 2021), we only show the reduction to
the restricted covariance case that is well studied (e.g., see
(Biswas et al., 2020; Kamath et al., 2019a)).

We start by defining a predicate and stating key properties
from (Ashtiani & Liaw, 2021).

Definition F.1 (Predicate matrixDistγ (Ash-
tiani & Liaw, 2021)). For d × d matri-
ces Σ1,Σ2 � 0, let matrixDist(Σ1,Σ2) :=

max
(∥∥∥Σ

−1/2
2 Σ1Σ

−1/2
2 − Id

∥∥∥,∥∥∥Σ
−1/2
1 Σ2Σ

−1/2
1 − Id

∥∥∥)
if Σ1,Σ2 � 0, and ∞ otherwise. For γ ≥ 0 let

10The framework of Ashtiani & Liaw (2021) has similar ideas
to FriendlyCore. However, it is wrapped by a more complicated
abstraction, and it is not clear how to apply it for tasks like k-tuple
clustering, in which a weighted average is not meaningful. We
therefore believe that FriendlyCore, apart of being practical, is
also simpler, more intuitive and more general.

11The general case can be done by first privately computing the
exact subspace using propose-test-release or a private histogram
(see (Singhal & Steinke, 2021; Ashtiani & Liaw, 2021)), and then
working on the resulting subspace with a full rank matrix.

matrixDistγ(Σ1,Σ2) := 1{matrixDist(Σ1,Σ2)≤γ}.

The intuition behind the distance measure matrixDist is
that it does not scale with the norms of the matrices, i.e.,
matrixDist(Σ1,Σ2) = matrixDist(λΣ1, λΣ2) for any λ >
0. Therefore, it is useful in our case where we do not have
any bounds on the norm of the covariance matrix.

In addition, matrixDist satisfies an approximate triangle
inequality (stated bellow).

Lemma F.2 (Approximate triangle inequality (Lemma 7.2
in (Ashtiani & Liaw, 2021))). If matrixDist(Σ1,Σ2) ≤ 1
and matrixDist(Σ2,Σ3) ≤ 1 then matrixDist(Σ1,Σ3) ≤
3
2 · (matrixDist(Σ1,Σ2) + matrixDist(Σ2,Σ3)).

Note that Lemma F.2 implies that if D is matrixDistγ-
friendly (for γ ≤ 1), then it is matrixDist3γ-complete.

The idea now is to apply FriendlyCoreDP with this predi-
cate (using a small constant γ, say 0.1) in order to privately
estimate the covariance matrix. At the high-level, this is
done by the following process: (1) Split the samples into
equal-size parts and compute the empirical covariance ma-
trix of each part. (2) On the resulting database of matrices
T = (Σ1, . . . ,Σt), apply FriendlyCoreDP for obtaining a
core C ⊆ T that is certified to be matrixDist0.1-friendly.
Then, execute an matrixDist0.1-friendly DP algorithm over
the core C.

It is left to design an matrixDist0.1-friendly DP al-
gorithm. The first step is to use the following
fact which states that if T ∪ T ′ is matrixDist0.1-
friendly (and therefore, matrixDist0.3-complete), then
matrixDist(Avg(T ),Avg(T ′)) ≤ O(1/|T |).

Lemma F.3 (Implicit in (Ashtiani & Liaw, 2021)). There ex-
ists a constant c1 > 0 such that the following holds: Let γ >
0 and let Σ1, . . . ,Σn � 0 such that matrixDist(Σi,Σj) ≤
0.3 for every i, j ∈ [n]. Assuming that n ≥ c1/γ, then it
holds that matrixDist( 1

n

∑n
i=1 Σi,

1
n−1

∑n
i=2 Σi) ≤ γ.

Next, we define a mechanism Bη such that for any two ma-

trices Σ1,Σ2 with matrixDist(Σ1,Σ2) ≤ Õ

(
εη√

d ln(2/δ)

)
,

it holds that Bη(Σ1) ≈DP
ε,δ Bη(Σ2).

Lemma F.4 (Lemma 9.1 in (Ashtiani & Liaw, 2021)).
For a matrix Σ � 0 and η > 0, define Bη(Σ) :=
Σ1/2(I + ηG)(I + ηG)TΣ1/2, where G is a d × d
matrix with independent N (0, 1) entries. Then for
every η > 0, ε, δ ∈ (0, 1], and every matrices
Σ1,Σ2 � 0 such that matrixDist(Σ1,Σ2) ≤ γ for γ =

min{
√

ε
2d(d+1/η2) ,

ε

8d
√

ln(1/δ)
, ε

8 ln(2/δ) ,
εη

12
√
d ln(2/δ)

}, it

holds that Bη(Σ1) ≈DP
ε,δ Bη(Σ2).

We now describe our friendly DP algorithm for estimating
the mean of covariance matrices.
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Algorithm F.5 (FriendlyCovariance).
Input: A database D = (Σ1, . . . ,Σn) ∈ (Rd×d)∗ and
parameters ε, δ, η > 0.
Operation:

1. Let n = |D|, let ε1 = 0.1ε and ε2 = 0.9ε, let
γ = γ(η, ε2, δe

−ε1) be the value from Lemma F.4,
and let c1 be the constant from Lemma F.3.

2. Compute n̂ = n− ln(1/δ)
ε1

+ Lap(1/ε1).

3. If n = 0 or n̂ ≤ c1/γ, output ⊥ and abort.

4. Output Bη
(

1
n

∑n
i=1 Σi

)
, where Bη is the algorithm

from Lemma F.4.

Claim F.6 (Privacy of FriendlyCovariance). Algorithm
FriendlyCovariance(·, ε, δ, γ) is matrixDist0.1-friendly
(ε, δ)-DP.

For proving Claim F.6 we use the following simple fact.

Fact F.7. Let X,X ′ be two random variables over X .
Assume there exist events E,E′ ⊆ X such that: (1)
Pr[X ∈ E] ∈ e±ε1 · Pr[X ′ ∈ E′], and (2) X|E ≈DP

ε2,δ

X ′|E′ , and (3) X|¬E ≈DP
ε2,δ

X ′|¬E′ . Then X ≈DP
ε1+ε2, δeε1

X ′.

Proof. Fix an event T ⊆ X and compute

Pr[X ∈ T ]

= Pr[X ∈ T | E] · Pr[X ∈ E] + Pr[X ∈ T | ¬E] · Pr[X /∈ E]

≤ (eε2 · Pr[X ′ ∈ T | E′] + δ) · eε1 · Pr[X ′ ∈ E′]
+ (eε2 · Pr[X ′ ∈ T | ¬E′] + δ) · eε1 · Pr[X ′ /∈ E′]
= eε1+ε2 · Pr[X ′ ∈ T ] + δeε1 .

�

We now prove Claim F.6 using Fact F.7.

Proof. Let D = (Σ1, . . . ,Σn) and D′ = D−j be two
matrixDist0.1-friendly neighboring databases, and let n′ =
n − 1. Consider two independent random executions of
FriendlyCovariance(D) and FriendlyCovariance(D′) (both
with the same input parameters ε, δ, η). Let N̂ and O be
the (r.v.’s of the) values of n̂ and the output in the execu-
tion FriendlyAvg(D), let N̂ ′ and O′ be these r.v.’s w.r.t. the
execution FriendlyCovariance(D′), and let ε1, ε2 be as in
Step 1. If n ≤ c1/γ then Pr[O =⊥],Pr[O′ =⊥] ≥ 1 − δ
and we conclude that O ≈DP

0,δ O
′ in this case.

It is left to handle the case n ≥ c1/γ. Let E be the
event {O 6=⊥} and E′ be the event {O′ 6=⊥}. By con-
struction it is clear that Pr[E] ∈ e±ε1Pr[E′] and that
O|¬E ≡ O|¬E′ (under the conditioning on ¬E and ¬E′, it

holds that O = O′ =⊥). By Fact F.7, it suffices to prove
that O|E ≈DP

ε2, δe−ε1
O′|E′ for showing that O ≈DP

ε,δ O
′.

Since D ∪ D′ is matrixDist0.1-friendly, we deduce by
approximate triangle inequality (Lemma F.2) that it is
matrixDist0.3-complete. Let Σ = 1

n

∑
i∈[n] Σi and

Σ′ = 1
n−1

∑
i∈[n]\{j} Σi. By Lemma F.3 it holds that

matrixDist(Σ,Σ′) ≤ γ. Since O|E = Bη(Σ) and O′|E′ =
Bη(Σ′), we conclude by Lemma F.4 that O|E ≈DP

ε2, δe−ε1

O′|E′ , as required.

�

We now formally describe the end-to-end DP algorithm for
covariance estimation:

Algorithm F.8 (FC Covariance).
Input: A database D = (x1, . . . ,xn) ∈ (Rd)∗, privacy
parameters ε, δ ∈ (0, 1], and parameters t ∈ N and η >
0.
Operation:

1. Let m = bn/tc.

2. For i ∈ [t]: Compute Σi = 1
m ·
∑i·m
j=(i−1)·m+1 xj ·

xTj .

3. Let T = (Σ1, . . . ,Σt).

4. Compute C = FriendlyCoreDP(T ,matrixDist0.1, α =
0).

5. Output FriendlyCovariance(C, ε, δ, η).

Theorem F.9 (Privacy of FC Covariance).
FC Covariance(·, ε, δ, t) is (2(eε − 1), 2δeε+2(eε−1))-
DP.

Proof. Immediately follows by the privacy guar-
antee of FriendlyCoreDP (Theorem C.11) because
FriendlyCovariance is matrixDist0.1-friendly (ε, δ)-DP
(Claim F.6). �

F.1. Utility of FC Covariance

The following key lemma (Lemma F.10) implies that it is
enough to take n = Ω̃(t · (d+ ln(1/β))) samples in order
to guarantee with confidence 1 − β/3 that the database
T is matrixDist0.1-complete, yielding that FriendlyCoreDP
takes all matrices into the core.

Lemma F.10 (Lemma 9.3 in (Ashtiani & Liaw, 2021)).
There exists a constant c2 > 0 such that the following holds:
Let m ≥ c2(d+ln(6/β)), let X1, . . . , Xm be i.i.d. samples
from N (0,Σ) for Σ � 0, and let Σ̂ = 1

m ·
∑m
i=1XiX

T
i .

Then matrixDist(Σ, Σ̂) ≤ 1/30 with probability 1− β/3.
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In addition, (Ashtiani & Liaw, 2021) proved that choosing

η = Θ

(
1√

d+
√

ln(1/β)

)
suffices for making algorithm Bη

accurate, as stated below.

Lemma F.11 (Lemma 9.2 in (Ashtiani & Liaw, 2021)).
There exists a constant c3 > 0 such that the following
holds: Let η = 1

c3(
√
d+
√

ln(6/β))
and let Bη be the algo-

rithm from Lemma F.4. Then for any Σ � 0 it holds that
matrixDist(Bη(Σ),Σ) ≤ 1/30 with probability 1− β/3.

Now note that by Step 3 of FriendlyCovariance, it is re-
quired to create at least t = Ω

(
1
γ + ln(1/(βδ))

ε

)
matrices in

order to fail with probability at most β/3.

Putting all together, we obtain the following utility guaran-
tee.

Theorem F.12 (Utility of FC Covariance). Let c1, c2 and
c3 be the constants from Lemmas F.3, F.10 and F.11
(respectively), Let m = c2(d + ln(6/β)), let η =

1

c3(
√
d+
√

ln(6/β))
, and let t = c1/γ + ln(1/δ) + ln(3/β)

where γ = γ(η, 0.9ε, δe−0.1ε) = Õ

(
ε

d
√

ln(1/β) ln(1/δ)

)
is the value from Lemma F.4. Consider a random execu-
tion of FC Covariance(D = (X1, . . . , Xn), ε, δ, t, η) where
n = m · t and X1, . . . , Xn are i.i.d. samples from N (0,Σ)

for Σ � 0. Then with probability 1−β, the output Σ̂ satisfy
matrixDist(Σ̂,Σ) ≤ 0.1.

Note that the overall sample complexity that Theorem F.12
requires is n = Ω̃

(
d2 ln(1/β)3/2 ln(1/δ)1/2

ε

)
which matches

the sample complexity of (Ashtiani & Liaw, 2021) (Theo-
rem 9.4).

Proof. Let C and T = (Σ1, . . . ,Σt) be the (r.v.’s of the)
values of C and T in the execution. Let E1 be the event
that ∀i ∈ [t] : matrixDist(Σi,Σ) ≤ 1/30, and let E2 be
the event that FriendlyCovariance outputs a matrix Σ̂ (and
not ⊥). By Lemma F.10 we obtain that Pr[E1] ≥ 1− β/3,
and in the following we assume it occurs. Note that by
approximate triangle inequality (Lemma F.2) we obtain that
T is matrixDist0.1-complete, and therefore C = T by the
utility of FriendlyCoreDP (Theorem C.11). By definition of
t (the size of C in this case) and concentration bound of the
Laplace distribution, it holds that Pr[E2 | E1] ≥ 1− β/3,
and in the following we assume it occurs. Let E3 be the
event that the output Σ̂ satisfy matrixDist(Σ̂,Avg(T )) ≤
1/30. By Lemma F.11 it holds that Pr[E3 | E1 ∧ E2] ≥
1− β/3, and in the following we assume it occurs. By the
convexity of matrixDist (Lemma 7.2 in (Ashtiani & Liaw,
2021)), we deduce that matrixDist(Avg(T ),Σ) ≤ 1/30.
Hence by applying again approximate triangle inequality
(Lemma F.2) we conclude that matrixDist(Σ̂,Σ) ≤ 0.1

wheneverE1∧E2∧E3 occurs, and the proof of the theorem
follows since this event happens with probability 1−β. �

We note that by Theorem F.12, with probability 1 − β,
FC Covariance outputs a matrix Σ̂ such that 0.9Id �
Σ̂−1/2ΣΣ̂1/2 � 1.1Id. In addition, note that if X ∼
N (0,Σ), then Σ̂−1/2X ∼ N (0, Σ̂−1/2ΣΣ̂1/2). Therefore,
we reduced the problem to the restricted covariance case.

G. Computational Efficiency of FriendlyCore
Recall that FriendlyCore computes f(x, y) for all pairs, that
is, doing O(n2) applications of the predicate. However,
using standard concentration bounds, it is possible to use a
random sample of O(log(n/δ)) elements y for estimating
with high accuracy the number of friends of each x.

In more detail, given a database D = (x1, . . . , xn), the goal
is to efficiently estimate wi :=

∑n
i=j f(xi, xj) for each

i ∈ [n]. For that, we can sample a random m-size subset
S = (y1, . . . , ym) of D (without replacement). Then, we
use the estimations w̃i = n

m ·
∑m
j=1 f(xi, yj). For making

the privacy analysis go through, we need to replace each
zi = wi − n/2 with a value z̃i such that for all i ∈ [n],
if zi ≤ 0 then z̃i ≤ 0 (except with probability δ). Note
that if zi ≤ 0 (i.e., wi ≤ n/2), then

∑m
j=1 f(xi, yj) (where

the yj’s are the random variables) is distributed according
to the Hypergeometric distributionHG(n,wi,m) which is
defined by the number of ones in an m-size random subset
of an n-size binary vector with wi ones. We now use the
following tail inequality for Hypergeometric distribution:

Fact G.1 ((Scala, 2009), Equation 10). Let S be distributed
according toHG(n,w,m). Then

∀ξ ≥ 0 : Pr[S ≥ (w/n+ ξ) ·m] ≤ e−2ξ2m

By Fact G.1, if wi ≤ n/2 then Pr[w̃i ≥ (1/2 + ξ)n] ≤
e−2ξ2m. By taking m of the form m = 1

2ξ2 · ln(n/δ) we
obtain that with probability 1− δ, for every i ∈ [n] it holds
that zi ≤ 0 =⇒ w̃i ≤ (1/2 + ξ)n. Therefore, the only
change we should do is to replace the value zi = wi − n/2
(computed in BasicFilter and zCDPFilter) with the value
z̃i := w̃i − (1/2 + ξ)n. This results with a privacy guar-
antee that is equivalent to Theorems C.8 and C.11 up to
an additional δ in the privacy approximation error. Regard-
ing utility guarantees, in Theorem C.8 (zCDP model), this
change means that using the same lower bound on n implies
now a utility guarantee for elements with (1 − α + ξ)n
friends (rather than (1 − α)n).12 The parameter ξ deter-
mines the trade-of between utility and efficiency: Smaller ξ

12In the DP model we slightly need to change the probabilities
pi’s in BasicFilter such that z̃i ≥ (1/2− α+ ξ)n =⇒ pi = 1
rather than zi ≥ (1/2− α)n =⇒ pi = 1.
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requires more computations, but results with a better utility
guarantee.

H. Missing Proofs
H.1. Proving Fact A.17

Fact A.17 is an immediate corollary of the following fact.

Fact H.1. Let α ∈ (1,∞), let P and Q be probability
distributions over X with Dα(P ||Q) <∞, and let E ⊆ X
be an event. Then it holds that

Dα(P |E ||Q|E) ≤ 1

P [E]
·Dα(P ||Q).

Proof. For simplicity we only present the proof for the case
that P and Q are discrete, but it can easily be extended to
the continuous case as well. Compute

Dα(P ||Q)

=
1

α− 1
ln

(∑
x∈E

P (x)α

Q(x)α−1
+
∑
x/∈E

P (x)α

Q(x)α−1

)

≥ 1

α− 1
P [E] · ln

(
1

P [E]
·
∑
x∈E

P (x)α

Q(x)α−1

)

+
1

α− 1
P [¬E] · ln

(
1

P [¬E]
·
∑
x/∈E

P (x)α

Q(x)α−1

)

= P [E] ·Dα(P |E ||Q|E) + P [E] · ln
(
P [E]

Q[E]

)
+ P [¬E] ·Dα(P |¬E ||Q|¬E) + P [¬E] · ln

(
P [¬E]

Q[¬E]

)
= P [E] ·Dα(P |E ||Q|E) + P [¬E] ·Dα(P |¬E ||Q|¬E)

+DKL(Bern(P [E])||Bern(Q[E]))

≥ P [E] ·Dα(P |E ||Q|E),

where the first inequality holds by Jensen’s inequality, and
DKL denotes the KL-divergence. �

H.2. Utility of Averaging Algorithms

Throughout this section, we use the following definition.

Definition H.2 ((f, α, `)-complete). A databaseD is called
(f, α, `)-complete iff there exist at least n − ` elements
x ∈ D such that |{y ∈ D : f(x, y) = 1}| ≥ (1 − α)n. If
α = ` = 0 (meaning that f(x, y) = 1 for all x, y ∈ D), we
say that D is f -complete.

H.2.1. UTILITY OF FriendlyAvg

Claim H.3 (Utility of FriendlyAvg). The following
holds for any ρ, β, δ > 0: Let D ∈ (Rd)n for

n = Ω

(√
ln(1/(βδ))

ρ

)
. Then with probability 1 − β,

FriendlyAvg(D, ρ, δ, r) (Algorithm B.3) outputs â ∈ Rd

with ‖â−Avg(D)‖ ≤ O
(
r
n ·
√

d ln(1/β)
ρ

)
.

Proof. Consider a random execution of
FriendlyAvg(D, ρ, δ, r), let N̂ be the value of n̂ in
the execution, and let Â be its output. Assuming

that n ≥ 2 ·
√

ln(1/δ)+
√

ln(2/β)
√
ρ1

+ 2, it holds that

N̂ ≥ n/2 with probability 1 − β/2 (holds by Fact A.13).
Given that N̂ ≥ n/2, we obtain by Fact A.13 that∥∥∥Â−Avg(D)

∥∥∥ ≤ 2r
n/2 ·

√
d ln(2/β)

ρ2
with probability

1− β/2, as required. �

H.2.2. UTILITY OF FC Avg KnownDiam

Claim H.4. Let D ∈ (Rd)n be distr-complete, for
n ≥ 16·ln(4/(ρ·max{β,δ}))

ρ . Then w.p. 1 − β,
FC Avg KnownDiam(D, ρ, δ, β, r) estimates Avg(D) up

to an additive error of O
(
r
n ·
√

d ln(1/β)
ρ

)
.

Proof. By applying the utility guarantee of FriendlyCore
with α = 0 (Theorem C.8) it holds that with probability 1−
β/2, the core C that FriendlyCore forwards to FriendlyAvg
is all D. The proof then follows by the utility guarantee of
FriendlyAvg (Claim H.3). �

Claim H.4 can be extended to cases where the database D
is only close to be distr-complete, i.e., cases in which we
are only given r′ that is smaller than the effective diameter
r of the database, but still most of the points are close by `2
distance of r′.

Lemma H.5. Let D ∈ (Rd)n be an distr-complete
database for distr(x,y) := 1{‖x−y‖≤r}, and let r′ ≤ r
be such that D is (distr′ , α, β)-complete for 0 ≤ α < 1/2

and ` < n/2. If n ≥ −4·ln(1/2·(1/2−α)ρmax{β,δ})
(1/2−α)2ρ , then w.p.

1− β over FC Avg KnownDiam(D, ρ, δ, β, r′), the output

â satisfy ‖â−Avg(D)‖ ≤ `r
n +O

(
r′

n ·
√

d ln(1/β)
ρ

)
.

Proof. By applying the utility guarantee of FriendlyCore
(Theorem C.8) it holds that with probability 1−β/2, the core
C ⊆ D that FC Paradigm forwards to FriendlyAvg in the
execution FC Avg KnownDiam(D, ρ, δ, β, r′) contains all
points x ∈ D with |{y ∈ D : ‖x− y‖ ≤ r′}| ≥ (1− α)n,
which in particular yields that |C| ≥ n− `. Along with the
utility guarantee of FriendlyAvg (Claim H.3), we obtain that

the output â satisfy ‖â−Avg(C)‖ ≤ O
(
r′

n ·
√

d ln(1/β)
ρ

)
.

We conclude the proof since ‖Avg(D)−Avg(C)‖ ≤
(n−|C|)·r

n ≤ `r
n , where the first inequality since D is distr-

complete. �
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H.2.3. UTILITY OF FC Avg UnknownDiam

Claim H.6 (Utility of CheckDiam (Algorithm D.3)). IfD is
distr-complete, then CheckDiam(D, ρ, β, r) outputs 1 w.p.

1 − β. If D is not (distr, α, ` := 2
α

√
4 ln(1/β)

ρ )-complete
for some α > 0, then CheckDiam(D, ρ, β, r) outputs 0 w.p.
1− β.

Proof. Let D = (x1, . . . ,xn) ∈ (Rd)∗ and let Â be the
value of â in a random execution of CheckDiam(D, ρ, β, r).
If D is distr-complete, then a = n, and therefore we

deduce by Fact A.13 that Pr

[
Â ≥ n−

√
4 ln(1/β)

ρ

]
=

Pr

[
N (0, 2/ρ) ≥ −

√
4 ln(1/β)

ρ

]
≥ 1 − β. If D is not

(distr, α, `)-complete, then there are more than ` points
xi ∈ D with si < (1−α)n. Therefore a = (

∑n
i=1 si)/n <

(n−`)n+`·(1−α)n
n = n− α` = n− 2

√
4 ln(1/β)

ρ . Hence, we

conclude by Fact A.13 that Pr

[
Â ≥ n−

√
4 ln(1/β)

ρ

]
=

Pr

[
N (0, 2/ρ) ≥

√
4 ln(1/β)

ρ

]
≤ β. �

Claim H.7 (Utility of FindDiam (Algorithm D.5)). Let
D ∈ (Rd)∗ be an distrmax-complete database. Then for
every α, β > 0, with probability 1− β over a random exe-
cution of FindDiam(D, ρ, β, rmax, rmin, b), the output r of
the execution satisfies that D is (distr, α, `)-complete for

` = O

(
1
α ·
√

log(1/β) log log(rmax/rmin)
ρ

)
.

Proof. The binary search performs at most log2(t) calls to
CheckDiam, each returns a “correct” result with probabil-
ity 1− β/ log2(t) (follows by Claim H.6), where “correct”
means that if the output for r is 1 thenD is (distr, α, `(r) :=
2
α

√
4 ln(1/β) log2 logb(rmin/rmax)

ρ )-complete, and if the out-
put for r is 0 then D is not distr-complete. Overall, all calls
are “correct” with probability 1− β, yielding that the result-
ing r of the binary search satisfy that D is (distr, α, `(r))-
complete, as required. �

Claim H.8 (Utility of FC Avg UnknownDiam
(Algorithm D.7)). Let D ∈ (Rd)n be an distr-
complete database for r ∈ [rmin, rmax] and

n = Ω

(
log(1/min{β,δ})

ρ +
√

log(1/β) log log(rmax/rmin)
ρ

)
.

Then with probability 1 − β over the execu-
tion FC Avg UnknownDiam(D, ρ, δ, β, rmin, rmax),
the output â satisfy ‖â−Avg(D)‖ ≤

O

(
r
n

√
log(1/β)(d+log log(rmax/rmin))

ρ

)
.

Proof. Let D as in the theorem statement. By the util-
ity guarantee of FindDiam (Claim H.6) it holds that with
probability 1 − β/2, the resulting r′ (the value of r
that is computed in Step 2 of FC Avg UnknownDiam)
satisfy that D is (distr′ , 0.1, `)-complete for ` =

O

(√
log(1/β) log log(rmax/rmin)

ρ

)
. Given that, we apply

the extended utility guarantee of FC Avg KnownDiam
(Lemma H.5) which yields that with probability 1 − β/2,

the additive error is at most `r
n + O

(
r′

n

√
d log(1/β)

ρ

)
=

O

(
r
n

√
log(1/β)(d+log log(rmax/rmin))

ρ

)
, as required. �

H.2.4. UTILITY OF FC AvgOrdTup

Claim H.9 (Utility of FC AvgOrdTup (Algo-
rithm D.23)). Let D = (Xi = (xi1, . . . ,x

i
k)) ∈

((Rd)k)n be an distr1,...,rk -complete database
for r1, . . . , rk ∈ [rmin, rmax] where n =

Ω

(
log(1/min{β,δ})

ρ +
√

k log(k/β) log log(rmax/rmin)
ρ

)
, and

for j ∈ [k] let Dj = (xij)
n
i=1. Then w.p. 1− β over the exe-

cution FC AvgOrdTup(D, ρ, δ, β, rmin, rmax), the output

(â1, . . . , âk) satisfy for all j ∈ [k]:
∥∥∥âj −Avg(Dj)

∥∥∥ ≤
O

(
r
n

√
k log(k/β)(d+log log(rmax/rmin))

ρ

)
.

The proof holds similarly to Claim H.8 up to the factor k
that we loose in the privacy parameter and the confidence
parameter, except for the first term in the lower bound on n
that does not need to be multiply by k since we only apply
FriendlyCore twice and not k times.

H.3. Utility of Clustering Algorithms

In this section we state the utility of our main clustering
algorithm FC Clustering for k-means and k-GMM under
common separation assumption, using the reductions of
(Cohen et al., 2021) to k-tuple clustering.

H.3.1. DEFINITIONS FROM (COHEN ET AL., 2021)

We recall from (Cohen et al., 2021) the property of a col-
lection of unordered k-tuples (x1, . . . ,xk) ∈ (Rd)k, which
we call partitioned by ∆-far balls.

Definition H.10 (∆-far balls). A set of k balls B = {Bi =
B(ci, ri)}ki=1 over Rd is called ∆-far balls, if for every
i ∈ [k] it holds that ‖ci − cj‖ ≥ ∆ ·max{ri, rj} (i.e., the
balls are relatively far from each other).

Definition H.11 (partitioned by ∆-far balls). A k-tupleX ∈
(Rd)k is partitioned by a given set of k ∆-far balls B =
{B1, . . . , Bk}, if for every i ∈ [k] it holds that |X ∩Bi| =
1. A database k-tuples D ∈ ((Rd)k)∗ is partitioned by
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B, if each X ∈ D is partitioned by B. We say that D is
partitioned by ∆-far balls if such a set B of k ∆-far balls
exists.

For a database of k-tuples D ∈ ((Rd)k)∗, we let Points(D)
be the collection of all the points in all the k-tuples in D.

Definition H.12 (The points in a collection of k-tuples). For
D = ((x1,j)

k
j=1, . . . , (xn,j)

k
j=1) ∈ ((Rd)k)n, we define

Points(D) = (xi,j)i∈[n],j∈[k] ∈ (Rd)kn.

We now formally define the partition of a database D ∈
((Rd)k)∗ which is partitioned by ∆-far balls for ∆ > 3.

Definition H.13 (Partition(D)). Given a database D ∈
((Rd)k)∗ which is partitioned by ∆-far balls for ∆ >
3, we define the partition of D, which we denote by
Partition(D) = {P1, . . . ,Pk}, by fixing an (arbitrary)
k-tuple X = (x1, . . . ,xk) ∈ D and setting Pi = (x ∈
Points(D) : i = argminj∈[k]‖x− xj‖).

Definition H.14 (good-averages solutions). Let D ∈
((Rd)k)n, let {P1, . . . ,Pk} = Partition(D), let ai =
Avg(Pi), and let α, rmin ≥ 0. We say that a k-tuple
Y = {y1, . . . ,yk} ∈ (Rd)k is an (α, rmin)-good-averages
solution for clustering D, if there exist radii r1, . . . , rk ≥ 0
such that B = {Bi = B(ai, ri)}ki=1 are ∆-far balls (for
∆ > 3) that partitions D, and for every i ∈ [k] it holds that:

‖yi − ai‖ ≤ α ·max{ri, rmin}

For applications, (Cohen et al., 2021) focused on a specific
type of algorithms for the k-tuple clustering problems, that
outputs a good-averages solution.

Definition H.15 (averages-estimator for k-tuple cluster-
ing). Let A be an algorithm that gets as input a database
of unordered tuples in ((Rd)k)∗. We say that A is an
(n, α, rmin, β,Λ,∆)-averages-estimator for k-tuple cluster-
ing, if for every D ∈ (B(0,Λ)k)∗ ⊆ ((Rd)k)n that is
partitioned by ∆-far balls, A(D) outputs w.p. 1 − β an
(α, rmin)-good-averages solution Y ∈ (Rd)k for clustering
D.

H.3.2. UTILITY OF FC kTupleClustering

We next prove that FC kTupleClustering (Algorithm D.25)
is a good averages-estimator for k-tuple clustering.

Claim H.16 (Utility of FC kTupleClustering). Algo-
rithm FC kTupleClustering(·, ρ, δ, β, rmin, rmax) is an
(n, α = 1, rmin, β,Λ = rmax/2,∆ = 10)-averages-
estimator for k-tuple clustering, for

n = Ω

(
log(1/min{β,δ})

ρ +
√

k log(k/β)(d+log log(rmax/rmin))
ρ

)
.

Proof. IfD is partitioned by 10-far balls, then in particular it
is match1/7-complete (the predicate from Definition D.16).

Therefore, at the first step of FC kTupleClustering, the core
of tuples contains all of D. The proof now immediately
follow by the utility guarantee of algorithm FC AvgOrdTup
(Claim H.9). �

H.3.3. UTILITY OF FC Clustering FOR k-MEANS

In the k-means problem, we are given a databaseD ∈ (Rd)∗
and a parameter k ∈ N, the goal is to compute k centers
C = (c1, . . . , ck) ∈ (Rd)k that minimize COSTD(C) :=∑

x∈Dmini∈[k]‖x− ci‖ as possible, i.e. close as possible
to OPTk(D) := minC∈(Rd)k COSTD(C).

We state our utility guarantee for databases that are separated
according to Ostrovsky et al. (2012).

Definition H.17 ((φ, ξ)-separated (Ostrovsky et al., 2012;
Cohen et al., 2021)). A database D ∈ (Rd)∗ is (φ, ξ)-
separated for k-means if OPTk(D)+ξ ≤ φ2 ·OPTk−1(D).

As shown by (Ostrovsky et al., 2012), for such database
with sufficiently small φ, any set of centers C that well
approximate the k-means cost, must be close in distance
to the optimal centers (i.e., there must be a match between
the centers). Therefore, by using a good approximation k-
means algorithm as an oracle for FC Clustering, we obtain
a guarantee that FC kTupleClustering succeed to compute a
tuple Y that is close to all other non-private algorithm. This
property has been used by (Cohen et al., 2021; Shechner
et al., 2020) for constructing private clustering for such
databases. Here we state the properties of our construction,
which follows from Theorem 5.11 in (Cohen et al., 2021)
(reduction to k-tuple clustering).

Claim H.18 (Utility of FC Clustering for k-Means). Let A
be a (non-private) ω-approximation algorithm for k-means
(i.e., that always returns centers with cost ≤ ωOPTk), and
let

t = Ω

(
log(1/min{β,δ})

ρ +
√

k log(k/β)(d+log log(rmax/rmin))
ρ

)
(the number of tuples that are required by Claim H.16).
Then for any D ∈ B(0,Λ)n that is (φ, ξ)-
separated for k-means for φ ≤ 1√

17(1+ω)
and

ξ = Ω̃(Λ2kdt + Λ
√
kdtω ·OPTk(D)), algorithm

FC Clustering(D, ρ, δ, β, rmin = γ/n,Λ, t) out-
puts with probability 1 − β centers C ∈ (Rd)k
such that COSTD(C) ≤ (1 + 64γ)OPTk(D) +

O
(
Λ2k(d+ log(k/β))/ρ

)
, for γ = 2 · ωφ

2+φ
1−φ .

We remark that additive errors in the cost is independent of
n, and the additive term ξ in the separation is only logarith-
mic in n (hidden inside the Ω̃).

H.3.4. UTILITY OF FC Clustering FOR k-GMM

In this section we state the utility guarantee for learning
a mixture of well separated and bounded k Gaussians.
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The setting is that we are given n samples from a mix-
ture {(µ1,Σ1, w1), . . . , (µk,Σk, wk)}, i.e., for each sam-
ple, one of the Gaussians is chosen w.p. propositional to
its weight (the i’th Gaussian is chosen w.p. wi/

∑k
j=1 wj),

and then the sample is taken from N (µi,Σi) for the cho-
sen i. The goal here is to output a set of k centers
C = (c1, . . . , ck) ∈ (Rd)k which is a perfect classifier:
Up to reordering of the ci’s, for every sample x that was
drawn from the i’th Gaussian in the mixture, it holds that
i = argminj∈[k]‖x− ci‖.

As done in previous works (Cohen et al., 2021; Kamath et al.,
2019b), we assume that we are given a lower bound wmin

on the weights, and a lower and upper bounds σmin, σmax

on the norm of each covariance matrix Σi. Unlike those
works, we do not need to assume a boundR on the `2 norms
of each µi.

We use the PCA-based algorithm of (Achlioptas &
McSherry, 2005) as the non-private oracle access for
FC Clustering given s = Ω(k(d + log(k/β))/wmin) sam-
ples from a mixture that has assumed separation

‖µi − µj‖ ≥ (3)

Ω
(√

k log(nk) + 1/
√
wi + 1/

√
wj

)
·max{‖Σi‖, ‖Σj‖},

for every distinct i, j ∈ [k], outputs a perfect classifier with
confidence 1− β (note that the separation is independent of
d). We now state the utility guarantee of FC Clustering that
follows (implicitly) by the proof of Theorem 6.12 in (Cohen
et al., 2021) (reduction to k-tuple clustering).
Claim H.19 (Utility of FC Clustering for k-GMM).
Let D be a set of n = s · t samples from a
mixture {(µ1,Σ1, w1), . . . , (µk,Σk, wk)} for t =

Ω

(
log(1/min{β,δ})

ρ +
√

k log(k/β)(d+log log(rmax/rmin))
ρ

)
(the number of tuples that are required by Claim H.16)
and s = Ω(k(d + log(kt/β))/wmin) (the numer of
samples required by (Achlioptas & McSherry, 2005)
for confidence 1 − β/t). Assume that the mixture
is separated according to Equation (3), and for
each i: wi ≥ wmin and σmin ≤ ‖Σi‖ ≤ σmax.
Then with probability 1 − 2β, the output of
FC ClusteringA(D, ρ, δ, β, rmin = 0.1σmin,∆ = 10σmax),
for A being (Achlioptas & McSherry, 2005)’s algorithm,
outputs a perfect classifier.

H.4. Proving Lemma C.6

In this section we prove the properties of zCDPFilter (Al-
gorithm C.5), restated below.
Lemma H.20 (Restatement of Lemma C.6). Let f : X 2 →
{0, 1} and ρ, δ > 0. F = zCDPFilter(·, f, ρ, δ) is a
product-filter that is (f, α, β, n)-complete for every 0 ≤
α < 1/2, β > 0, and n ≥ −4·ln((1/2−α)ρ·min{β,δ})

(1/2−α)2ρ .

Furthermore, for every n ∈ N and every neighboring
databases D = (x1, . . . , xn) and D′ = D−j , there
exist events E ⊆ {0, 1}n and E′ ⊆ {0, 1}n−1 with
Pr[F(D) ∈ E],Pr[F(D′) ∈ E′] ≥ 1 − δ, such that the fol-
lowing holds w.r.t. the random variables V = F(D) and
V ′ = F(D′):

1. Friendliness: For every v ∈ E and v′ ∈ E′, the
database C ∪ C′, for C = D{i∈[n] : vi=1} and C′ =
D′{i∈[n−1] : v′i=1}, is f -friendly, and

2. Privacy: (V−j)|E ≈ρ V ′|E′ .

Proof. Fix two neighboring databases D = (x1, . . . , xn)
and D′ = D−k. For simplicity and without loss of gen-
erality, we assume that k = n, i.e., D′ = (x1, . . . , xn−1).
Consider two independent executions F(D) and F(D′) for
F = zCDPFilter(·, f, ρ, δ) (Algorithm C.5). Let ρ1, ρ2 be
as in Step i, let z = (z1, . . . , zn) be the values of these vari-
ables in the execution F(D), and let {z′i}

n−1
i=1 be these values

in the execution F(D′). In addition, let N̂ , {Ẑi, Vi}ni=1 be
the (r.v.’s of) the values of n̂, {ẑi, vi}ni=1 in the execution
F(D), and let N̂ ′, {Ẑ ′i, V ′i }

n−1
i=1 be these r.v.’s w.r.t. F(D′).

We first prove that F is (f, n, α, β)-complete (Defini-
tion C.2) for every n that satisfy

(1/2− α)n ≥

(√
ñ · ln(2ñ/δ)

4ρ2
+

√
ñ · ln(2n/β)

4ρ2
+

1

2

)
,

(4)

for ñ = n+
√

ln(2/δ)
ρ1

+
√

ln(2/β)
ρ1

(In particular, this holds

for n ≥ −4·ln((1/2−α)ρ·max{β,δ})
(1/2−α)2ρ ). Fix n that satisfy Equa-

tion (4). First, note that by a concentration bound of Gaus-
sians (Fact A.13) it holds that

Pr
[
N̂ > ñ

]
≤ β/2 (5)

Second, note that for every i with
∑n
j=1 f(xi, xj) = 1 ≥

(1− α)n it holds that zi ≥ (1/2− α)n. We deduce that for
every such i

Pr
[
Vi = 0 | N̂ ≤ ñ

]
(6)

= Pr

Ẑi <
√
N̂ · ln(2N̂/δ)

4ρ2
+

1

2
| N̂ ≤ ñ


≤ Pr

[
N

(
0,

N̂

8ρ2

)
< −

√
ñ · ln(2n/β)

4ρ2
| N̂ ≤ ñ

]
≤ β/2n,
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where the penultimate inequality holds by Equation (4).
Hence, by the union bound, we deduce that w.p. 1− β, for
all these i’s it holds that Vi = 1, as required.

We next define the events E and E′ for the friendliness and
privacy properties.

First, note that by Fact A.13 it holds that

Pr
[
N̂ < n

]
≤ δ/2 (7)

In the following, let I = {i ∈ [n] :
∑n−1
j=1 f(xi, xj) ≤

(n − 1)/2} and let E ⊆ {0, 1}n be the event {v ∈
{0, 1}n : vI = 0|I|}. In addition, let I ′ = I \ {n} and
let E′ ⊆ {0, 1}n−1 be the event {v′ ∈ {0, 1}n−1 : v′I′ =

0|I
′|}. Note that for every i ∈ I it holds that zi ≤ −1/2

and z′i ≤ 1/2, and therefore Pr
[
V i = 1 | N̂ ≥ n

]
=

Pr

[
Ẑi >

√
N̂ ·ln(2N̂/δ)

4ρ2
+ 1

2 | N̂ ≥ n
]
≤ δ

2n , where the

last inequality holds by Fact A.13. Therefore, by the union
bound we deduce that

Pr[V /∈ E] ≤ δ/2 + Pr
[
V /∈ E | N̂ ≥ n

]
≤ δ.

A similar calculation also yields that Pr
[
V ′ /∈ E′

]
≤ δ. It

remains to prove friendliness and privacy w.r.t. the events
E and E′.

To prove friendliness, fix v ∈ E and v′ ∈ E′. By def-
inition of E, for every i ∈ [n] s.t. vi = 1 it holds that∑n−1
j=1 f(xi, xj) > (n− 1)/2, and for every i′ ∈ [n− 1] s.t.

v′i′ = 1 it holds that
∑n−1
j=1 f(xi′ , xj) > (n − 1)/2. This

yields that there exists at least one j ∈ [n − 1] such that
f(xi, xj) = f(xi′ , xj) = 1. We therefore conclude that
D{i : vi=1} ∪ D′{i : v′i=1} is f -friendly.

We now prove privacy. Note that for every i ∈ [n−1] it holds
that |zi − z′i| = |1/2− f(xi, xn)| = 1/2. By the proper-
ties of the Gaussian Mechanism for zCDP (Theorem A.14)
we obtain that Ẑi ≈ρ/n Ẑ ′i. By composition of zCDP
mechanisms (Fact A.15) we obtain that (Ẑ1, . . . , Ẑn−1) ≈ρ
(Ẑ ′1, . . . , Ẑ

′
n−1). Hence, by post-processing, it holds that

V −n ≈ρ V ′. Now note that when conditioning V on
the event E, the coordinates in I become 0, and the dis-
tribution of the coordinates outside I remain the same, i.e.
V −I |E ≡ V −I (this is because the V i’s are independent,
and E is only an event on the coordinates in I). Similarly,
the same holds when conditioning V ′ on the eventE′. Since
I ′ = I \ {n}, we conclude that (V −n)|E ≈ρ (V ′)|E′ . �

H.5. Proving Lemma C.9

In this section we prove Lemma C.9, restated below.
Lemma H.21 (Restatement of Lemma C.9). Let D =
(x1, . . . , xn) and D′ = D−j be neighboring databases, let

V, V ′ be random variables over {0, 1}n and {0, 1}n−1 (re-
spectively) such that V−j ≈ρ,δ V ′, and define the random
variables R = D{i∈[n] : Vi=1} and R′ = D′{i∈[n−1] : V ′i =1}.
Let A be an algorithm such that for any neighboring C ∈
Supp(R) and C′ ∈ Supp(R′) satisfy A(C) ≈ρ′,δ′ A(C′).
Then A(R) ≈ρ+ρ′, δ+δ′ A(R′).

We use the following fact about Rényi divergence.
Fact H.22 (Quasi-Convexity). [Lemma 2.2 in (Bun &
Steinke, 2016)] Let P0, P1 and Q0, Q1 be two distributions,
and let P = tP0 + (1 − t)P1 and Q = tQ0 + (1 − t)Q1

for t ∈ [0, 1]. Then for any α > 1:

Dα(P ||Q) ≤ max{Dα(P0||Q0), Dα(P1||Q1)}

The following fact is an immediate corollary of Fact H.22.
Fact H.23. Let X = tX0 + (1 − t)X1 for t ∈ [0, 1]. If
X0 ≈ρ,δ Y and X1 ≈ρ,δ Y , then X ≈ρ,δ Y .

The composition proof for zCDP mechanisms immediately
follows by the composition property of Rényi divergence
(see (Bun & Steinke, 2016)), and can straightforwardly be
extended to the following fact.
Fact H.24. Let Y ≈ρ,δ Y ′, and let F and F′ be two (ran-
domized) functions such that ∀y ∈ Supp(Y ) ∪ Supp(Y ′) :
F(y) ≈ρ′,δ′ F′(y). Then F(Y ) ≈ρ+ρ′, δ+δ′ F′(Y ′).

We now use Facts H.23 and H.24 to prove Lemma C.9
which handles specific cases where the input databases that
we consider are random variables which are only “close” to
being neighboring.

proof of Lemma C.9. Let D = (x1, . . . ,xn) and D′ =
D−j = (x′1, . . . ,x

′
n−1). The proof holds by Fact H.24 for

the following choices of Y, Y ′, F, F ′: Let Y := V−j and
Y ′ := V ′. For y ∈ Supp(Y )∪Supp(Y ′) ⊆ {0, 1}n−1, de-
fine F ′(y) := A(C′) for C′ = (x′i)i∈[n−1] : yi=1, and define
F (y) as the output of the following process: (1) Sample
vj ← Vj |V−j=y and let v−j := y, (2) Output A(C) for
C = (xi)i∈[n] : vi=1. By definition, A(R) ≡ F (Y ) and
A(R′) ≡ F ′(Y ′). Since Y ≈ρ,δ Y ′, it is left to prove that
F (y) ≈ρ′,δ′ F ′(y) for every y ∈ Supp(Y ) ∪ Supp(Y ′).
Fix such y, let C′ = (x′i){i∈[n−1] : yi=1} and let C be
the database that is obtained by adding xj to the j’th lo-
cation in C′ (i.e., Cj = xj and C−j = C′). Note that
F ′(y) ≡ A(C′), and F (y) depends on the value of the
sample vj : If vj = 0 then it outputs A(C′) (same output as
F ′(y)), and if vj = 1 then it outputs A(C) which is (ρ′, δ′)-
indistinguishable from A(C′) since C, C′ are neighboring
databases in Supp(R),Supp(R′) (respectively). In partic-
ular, F (y) is a convex combination of random variables
that are (ρ′, δ′)-indistinguishable from F ′(y). Hence, we
deduce by Fact H.23 that F (y) ≈ρ′,δ′ F ′(y), as required.

�
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H.6. Proof of Lemma C.12

Claim H.25 (Restatement of Lemma C.12). Let D ∈ Xn
and let p,p′ ∈ [0, 1]n with ‖p− p′‖1 ≤ γ. Let V
and V ′ be two random variables, distributed according
to Bern(p) and Bern(p′), respectively, and define the ran-
dom variables R = D{i : Vi=1} and R′ = D{i : V ′i =1}. Let
A be an algorithm that for every neighboring databases
C ∈ Supp(R) and C′ ∈ Supp(R′) satisfy A(C) ≈DP

ε,δ A(C′).
Then A(R) ≈DP

γ(eε−1), γδeε+γ(eε−1) A(R′).

Proof. We assume w.l.o.g. that V and V ′ are jointly dis-
tributed in the following probability space: For each i ∈ [n],
we draw Ti ← U [0, 1], and set Vi = 1{Ti≤pi} and
V ′i = 1{Ti≤p′i}. Note that with this choice,

Pr[Vi 6= V ′i ] = ∆i := |pi − p′i|. (8)

In the following, for i ∈ [n] define

τi :=
min{pi, p′i}
1− |pi − p′i|

,

where we let τi = 0 in case |pi − p′i| = 1. Consider a
partition of the support of this joint probability space as a
product over i of two parts for each i: Let Ei,0 be the event
{Ti ≤ τi} and let Ei,1 be the event {Ti ≥ τi}.

This partition has the following structure. First note that
min{pi, p′i} ≤ τi ≤ max{pi, p′i}. The first inequality is
immediate. The second inequality follows since τi(1 −
∆i) = min{pi, p′i} implies that τi = min{pi, p′i}+τi∆i ≤
min{pi, p′i} + ∆i = max{pi, p′i}. Therefore, under Ei,z
(for each z ∈ {0, 1}), at least one of Vi or V ′i is fixed.

We use the following claim.

Claim H.26. For every i ∈ [n] and z ∈ {0, 1} it holds that

Pr[Vi 6= V ′i | Ei,z] = ∆i,

Proof. By Equation (8), it suffices to establish the claim for
Ei,0 (Ti ≤ τi). Assume without loss of generality that pi ≤
p′i. Since Ti ≤ τi ≤ p′i, we have V ′i = 1. For outcomes
Ti ≤ pi we have Vi = V ′i . For outcomes Ti ∈ (pi, τi) we
have Vi 6= V ′i . The conditional probability is

τi − pi
τi

=

(
pi

1−∆i
− pi

)
1−∆i

pi
= ∆i .

�

As a corollary, due to the joint space being a product space,
we have that this also holds in each part Fz =

⋂
iEi,zi , for

z = (z1, . . . , zn) ∈ {0, 1}n of the joint space. That is,

∀z ∈ {0, 1}n,∀i ∈ [n] : Pr[Vi 6= V ′i | Fz] = ∆i. (9)

We now get to the group privacy analysis. For possi-
ble outputs S of Algorithm A, we relate the probabili-
ties that A(R) ∈ S and that of A(R′) ∈ S (recall that
R = D{i : Vi=1} and R′ = D{i : V ′i =1}).

Note that for the random variables R and R′ we have

Pr[A(R) ∈ S] =
∑

z∈{0,1}n
Pr[Fz] · Pr[A(R) ∈ T | Fz]

(10)

Pr[A(R′) ∈ S] =
∑

z∈{0,1}n
Pr[Fz] · Pr[A(R′) ∈ T | Fz] .

(11)

In the following, recall that by definition of ∆i it holds
that

∑n
i=1 ∆i = ‖p− p′‖ ≤ γ. The following Claim will

complete the proof.

Claim H.27. For z ∈ {0, 1}n,

Pr[A(R′) ∈ T | Fz]

≤ eγ(eε−1)Pr[A(R) ∈ T | Fz] + γeε+γ(eε−1)δ.

Proof. Let V ∗ be the center vector of part Fz , that is, for
each i, if Vi is fixed on the support of Ei,zi to a value
b ∈ {0, 1} then V ∗i = b and otherwise, if V ′i is fixed to
b ∈ {0, 1} let V ∗i = b. Define the random variable R∗ =
D{i : V ∗i =1}, let I ⊆ [n] be the positions i where Vi is fixed
on the support of Ei,zi , let I ′ = [n] \ I .

We now relate the two probabilities Pr[A(R) ∈ T | Fz] and
Pr[A(R∗) ∈ T | Fz]. Note that for every i ∈ I we have
Vi = V ∗i . It is only possible to have Vi 6= V ∗i for i ∈ I ′.
Let Hk be the event in Fz that V is different than V ∗ in k
coordinates. This event is a sum of |I ′| Bernoulli random
variables with probabilities {∆i}i∈I′ . Let ∆I′ =

∑
i∈I′ ∆i

and let ∆I =
∑
i∈I ∆i. Compute

Pr[A(R) ∈ S | Fz] (12)

=

n∑
k=0

Pr[Hk | Fz] · Pr[A(R) ∈ S | Hk ∩ Fz]

≤
n∑
k=0

Pr[Hk | Fz] · ekεPr[A(R∗) ∈ S | Fz]

+

n∑
k=0

Pr[Hk | Fz] · kekεδ

= Pr[A(R∗) ∈ S | Fz]

n∑
k=0

Pr[Hk | Fz] · ekε

+ δ

n∑
k=0

Pr[Hk | Fz] · kekε

≤ Pr[A(R∗) ∈ S | Fz]e∆I′ (e
ε−1) + ∆I′δe

ε+∆I′ (e
ε−1)
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The first inequality holds by group privacy and by the fact
that R∗ is fixed under Fz . The last inequality holds by
Claim H.28 and Claim H.29.

Similarly, let H ′k be the event in Fz that V ′ is different than
V ∗ in k coordinates. The probability of H ′k is according to
a sum of |I| Bernoulli random variables with probabilities
{∆i}i∈I .

Pr[A(R′) ∈ T | Fz]

=

n∑
k=0

Pr[H ′k | Fz] · Pr[A(R′) ∈ S | Hk ∩ Fz]

≥
n∑
k=0

Pr[H ′k | Fz] · e−kε
(
Pr[A(R∗) ∈ S | Fz]− kekεδ

)
= Pr[A(R∗) ∈ S | Fz]

n∑
k=0

Pr[H ′k | Fz] · e−kε

− δ
n∑
k=0

Pr[H ′k | Fz]k

= Pr[A(R∗) ∈ S | Fz]

n∑
k=0

Pr[H ′k | Fz] · e−kε − δ∆I

≥ Pr[A(R∗) ∈ S | Fz]e−∆I(eε−1) − δ∆I

The first inequality holds by group privacy. The last inequal-
ity holds by an adaptation of Claim H.28. Rearranging, we
obtain

Pr[A(R∗) ∈ S | Fz] (13)

≤ Pr[A(R′) ∈ S | Fz]e∆I(eε−1) + δ∆Ie
∆I(eε−1)

The claim follows by combining (12) and (13), noting that
γ =

∑n
i=1 ∆i = ∆I + ∆I′ . �

The proof follows using (10) and (11) by substitution the
claim for each Fz . �

Claim H.28. Let X = X1 + . . . + Xn, where the Xi’s
are independent, and each Xi is distributed according to
Bern(pi), and let α =

∑n
i=1 pi. Then for every ε > 0 it

holds that E
[
eεX

]
≤ e(eε−1)α.

Proof. The proof holds by the following calculation

log(E
[
eεX

]
) = log(

n∏
i=1

(1− pi + pie
ε))

=

n∑
i=1

log(1− pi + pie
ε)

≤ n · log

(
1−

∑n
i=1 pi
n

+

∑n
i=1 pi
n

eε
)

≤ n · log

(
e(eε−1)

∑n
i=1 pi
n

)
= (eε − 1)α.

The first inequality holds by Jensen’s inequality since the
function x 7→ log(1 − x + xeε) is concave. The second
inequality holds since 1 − x + xeε = 1 + (eε − 1)x ≤
e(eε−1)x for every x. �

Claim H.29. Let X = X1 + . . . + Xn, where the Xi’s
are independent, and each Xi is distributed according to
Bern(pi), and let α =

∑n
i=1 pi. Then for all ε > 0 it holds

that
E
[
X · eεX

]
≤ α · eε+(eε−1)α.

Proof. Compute

E
[
X · eεX

]
=

n∑
i=1

E
[
Xi · eεX

]
=

n∑
i=1

E
[
Xi · eεXi

]
· E
[
eε(X−Xi)

]
≤

n∑
i=1

pie
ε · e(eε−1)α = α · eε+(eε−1)α,

where the inequality holds by Claim H.28. �


