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Abstract

Scene graphs are powerful abstractions that cap-
ture relationships between objects in images by
modeling objects as nodes and relationships as
edges. Generation of realistic novel scene graphs
has applications like scene synthesis and data aug-
mentation for supervised learning. Existing graph
generative models are predominantly targeted to-
ward molecular graphs, leveraging the limited vo-
cabulary of atoms and bonds and also the well-
defined semantics of chemical compounds. In
contrast, scene graphs have much larger object
and relation vocabularies, and their semantics are
latent. To address this challenge, we propose
VARSCENE, a variational autoencoder for scene
graphs, which is optimized for the maximum
mean discrepancy (MMD) between the ground
truth scene graph distribution and distribution of
the generated scene graphs. VARSCENE views
a scene graph as a collection of star graphs and
encodes it into a latent representation of the under-
lying stars. The decoder generates scene graphs
by learning to sample the component stars and
edges between them. Our experiments show that
our method is able to mimic the underlying scene
graph generative process more accurately than
several state-of-the-art baselines.

1. Introduction
Scene graphs (Johnson et al., 2015; 2018; Chang et al.,
2021) have emerged as a popular data structure to represent
images. The nodes in these graphs represent objects and
their attributes, and edges capture relationships between
them. They are a succinct and human-consumable summary
of the content within the image. Their popularity is par-
tially derived from the availability of rich datasets (Lu et al.,
2016; Krishna et al., 2016) that contain ground-truth scene
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graphs associated with images. Extracting scene graphs
from images continues to be a very active field of research
(Tang et al., 2020b; Yang et al., 2018; Gu et al., 2019). The
success of scene graphs can be seen in the range of visual
understanding tasks that utilize them: retrieval (Schroeder &
Tripathi, 2020; Wang et al., 2020; Maheshwari et al., 2021),
editing (Dhamo et al., 2020), question answering (Teney
et al., 2017) and captioning (Milewski et al., 2020).

While there has been progress in the field of image gener-
ation, the end goal of achieving rich, diverse and complex
scenes is far from satisfactory (Casanova et al., 2020; Li
et al., 2019). In the current paper, we propose the novel task
of scene graph generation as a stepping stone to scene syn-
thesis. Here, our goal is to learn to synthesize scene graphs
based on a set of training examples of scene graphs. Our
work is relevant to the theme of generating new and complex
scenes, where scene graphs are often used as a means for
conditioning image synthesis (Johnson et al., 2018). We
decouple the generation of scene semantics (sets of objects
and how they relate to each other) from its visual manifes-
tation, and focus specifically on the first part in the current
paper. Where required, we will use existing methods to
convert our synthesized scene graphs to images (Johnson
et al., 2018; Tseng et al., 2020).

Driven by the success at text and image synthesis, there
is much recent interest in deep generative models for
graphs, e.g., GraphVAE (Simonovsky & Komodakis, 2018),
GraphRNN (You et al., 2018), NeVAE (Samanta et al.,
2019), MolGAN (De Cao & Kipf, 2018), GRAN (Liao
et al., 2019), etc. However, most of them are tailored to
molecule discovery and cannot be effectively used to gen-
erate scene graphs, as we demonstrate in our experiments.
Very recently, Garg et al. (2021) proposed an unconditional
scene graph generator, which, however, is not optimized to
capture the underlying data distribution.

1.1. Present Work
We propose VARSCENE, a novel variational autoencoder,
specifically designed for scene graph generation. (We use
graph ‘generation’ and ‘synthesis’ interchangeably.) In con-
trast to prior VAE-based graph generative models which
maximize Evidence Lower Bound (ELBO) for model train-
ing, VARSCENE is optimized to generate graphs having
minimum distribution discrepancy with the ground truth
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(training) graph distribution, while using its generative ca-
pacity to introduce plausible variations. We thus obtain
a model from which we can sample graphs representing
realistic scenes. Moreover, due to the encoder-decoder ar-
chitecture, our approach facilitates conditional scene graph
generation, which would otherwise not be possible.

Generating scene graphs with meaningful semantics is a
challenging task. Designing simplistic masking functions,
as for molecular graphs, does not work in this context, since
the notion of underlying semantics is far more complex than
in molecules. Responding to this challenge, VARSCENE
views a scene graph as a collection of stars, where a star is
comprised of a ‘hub’ node with its incident edges (‘spokes’).
Our encoder embeds the graph into a collection of latent
representation vectors based on its component stars. At
the other end, unlike most existing generative models (You
et al., 2018; Samanta et al., 2019; De Cao & Kipf, 2018),
our decoder does not expand the graph by generating a node
or an edge at a time, but instead by sampling stars. Specif-
ically, it first samples stars from a trainable distribution in
a sequential manner, and then connects these stars to gen-
erate semantically meaningful scene graphs. Such a model
allows us to generate novel scene graphs while retaining
the semantic correlations between the different components
of a scene. In contrast to generative models for molecular
graphs, which work with few node and edge labels, VAR-
SCENE is able to generate (and be trained on) scene graphs
consisting of a large number of node and edge labels.

In theory, the variational autoencoder described above
should be able to learn the underlying data distribution,
given sufficient training data. However, due to the use of an
approximate posterior and lower bound of the true objective,
it may not show optimal performance in practice. In re-
sponse, we further re-train the decoder to directly minimize
the maximum mean discrepancy (MMD) between the distri-
butions of generated and ground truth scene graphs. Such
a construction allows our method to effectively trade-off
between the underlying MMD and the fidelity to the prior
decoder model previously obtained using ELBO maximiza-
tion.

We evaluate VARSCENE on three real world datasets. Our
experiments show that VARSCENE is able to mimic the
underlying distribution of scene graphs more accurately
than several baselines1.

2. Related Work
Our work is related to graph generative models and scene
graph extraction from images.

1Our code is accessible at https://cse.iitb.ac.in/
˜abir/codes/varscene.zip

2.1. Graph Generative Models

Driven by the success of text and image generative mod-
els, there is much recent interest in deep generative mod-
els for graphs, primarily designed for molecule discov-
ery, e.g., GraphVAE (Simonovsky & Komodakis, 2018),
GraphRNN (You et al., 2018), NeVAE (Samanta et al.,
2019), MolGAN (De Cao & Kipf, 2018), GRAN (Liao et al.,
2019), etc. However, the edge labels in molecular graphs
are restricted by the types of bonds present in chemical
compounds, which does not exceed 10. On the other hand,
the node labels correspond to the unique elements, which
is typically <15 in the ZINC (Sterling & Irwin, 2015) and
QM9 (Blum & Reymond, 2009; Rupp et al., 2012) datasets.
In contrast, the distinct number of node and edge labels
in scene graph datasets are significantly higher than those
in molecular graphs. E.g., Visual Genome (Krishna et al.,
2016) has 75, 729 unique node labels and 40, 480 unique
edge labels. Even the smaller Visual Relationship Detection
dataset (Lu et al., 2016) has 100 unique node labels and 70
unique edge labels. Apart from the smaller number of node
and edge labels, molecules and protein compounds follow
well-defined graph semantics, e.g., valency rules of atoms,
non-existence of strained bridges and rings, and occurrence
of specific motifs in molecules. These place constraints on
the set of plausible graphs, which can be exploited by gen-
erative models for molecular graphs. Codifying knowledge
about the visual world to aid the training process may not
be straightforward in the context of scene graphs.

2.2. Scene Graph Extraction from Images

A graph where the nodes represent objects with edges be-
ing relationships between them encapsulates the semantic
content of an image in a succinct manner. We refer to the
task of constructing such a graph from the visual modal-
ity as scene graph extraction (although it is sometimes
called ‘generation’, which can be confusing). Literature
associated with this (essentially inference) task is vast (Xu
et al., 2017; Yang et al., 2018; Li et al., 2018a; Tang et al.,
2020b), with alternatives characterized by the modeling ap-
proaches — e.g., do they use conditional random fields or
recurrent/convolutional network variations, are the models
trained in an adversarial manner, and so on. Most of these
models’ inputs are derived from the current image alone
— these would be visual features computed from regions
of interest that help detect the object type or identify the
relationship between previously identified objects (Li et al.,
2017; Dai et al., 2017; Zhang et al., 2017; Klawonn & Heim,
2018). More recently, inference methods aided by external
knowledge have been developed. This knowledge can take
the form of word embeddings (Lu et al., 2016) and knowl-
edge graphs (Zareian et al., 2020). The task considered in
the current paper is that of scene graph synthesis, where we
do not have access to the image modality. In the absence
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of this visual information, toward synthesizing realistic and
plausible scene graphs, we mirror the existing practice of
utilizing information from the linguistic domain in the form
of word embeddings of the objects and relationship names.

2.3. Image Generation from Scene Graphs

While there has been progress in the field of image gener-
ation, the end goal of achieving rich, diverse and complex
scenes of high quality still needs work (Caesar et al., 2018).
In the current paper, we propose that an existing collection
of scene graphs can be utilized to train a generative model
of such graphs. Sampling from such a model provides us
with the semantic content for a novel scene. The sampled
graph can then be used as input into a conditional image
generation model (Johnson et al., 2018; Ashual & Wolf,
2019; Tseng et al., 2020). Conditional image generation
models that operate on other input modalities also exist.
For example, textual phrases (Xu et al., 2018; Tan et al.,
2019), semantic segmentation masks (Tang et al., 2020a),
and object positions and layouts (Sun & Wu).

3. Preliminaries
3.1. Notation and Definitions
Scene Graphs, Objects, Relations. Given a collection of
directed scene graphs {G = (V,E)} along with the set of
objects T and the set of relations R, we denote tu as the
object represented by the node u ∈ V and re as the rela-
tion represented by the edge e ∈ E. For example, if the
node pair (u, v) in the scene graph contains the semantic
content: “car → moving on → road”, then we use
tu = car, tv = road and re = moving on. We denote
tu and re as the feature vectors for node u and edge e re-
spectively. Such feature vectors may be obtained by various
means, depending on the application. Here we use BERT
embeddings of the names of the object tu and the relation
re. Finally, we define nbr(u) as the neighbors of node u.

Star and Neighbor-Stars. Given a graph G and a node u,
the star s rooted at u is represented by a pair consisting of
the node feature vector tu and the multiset of features of
edges incident on u. I.e., the representation of s is s :=
〈tu,

{
r(u,v) | v ∈ nbr(u)

}
〉. We denote u as root(s). Here,

the star consists of only one node, i.e., the central node,
characterized by the underlying object and the associated
open-ended edges characterized by the relations. Thus, the
identity of u, or the identity or type of its neighbors are not
included in the representation of s. Only the object type of u
and the types of incident edges matter. Therefore, it is quite
possible that two stars having different root node IDs have
identical representation, i.e., s = s′ but root(s) 6= root(s′).
Given a dataset of graphs D, we denote the set of stars in
its “star vocabulary” as S(D) = {s | s ⊂ G,G ∈ D}.

Given a star s in graph G, we define its neighbor-starsN (s)
as those stars whose roots are connected to the root of s via
an edge. We also define γ(s, s′) as the relation type re of
the edge e that connects root(s) and root(s′). Formally,

N (s) =
{

(s′, γ(s, s′)) | (root(s), root(s′)) ∈ E(G)

for some G ∈ D
}
.

Thus, N (s) contains pairs of stars s and relation re, where
s and s′ are connected via the edge e. When clear from
context, we will drop the edge type and write “s ∈ N (s)”
instead of “s, γ ∈ N (s)”.

Maximum Mean Discrepancy (MMD). We will use
MMD to compute the discrepancy between the distribution
of the generated graphs and the corresponding true graph
distribution (Goyal et al., 2020; You et al., 2018). We define
MMD between distributions P and Q as:

MMD2(P,Q) = EG1,G2∼P k(G1, G2)

+ EG′
1,G

′
2∼Q k(G′1, G

′
2)− 2EG∼P,G∼Q k(G,G′) (1)

Here, k(G,G′) is the kernel induced by a suitable RKHS.
We have samples D and D′ drawn from p1 and p2 respec-
tively. Thus, an unbiased estimator of MMD, denoted as
M̂MD(D,D′), is given by[

1(|D|
2

)
∑

G1,G2∈D
k(G1, G2) +

1(|D′|
2

)
∑

G′
1,G

′
2∈D′

k(G′1, G
′
2)

− 2

|D||D′|
∑

G∈D,G′∈D′

k(G,G′)

]1/2

(2)

In practice, we use the RBF kernel on suitably chosen repre-
sentation vectors ν(G) and ν(G′) of the graphs, i.e.,

k(G,G′) = exp(−||ν(G)− ν(G′)||22/2). (3)

3.2. Overview of Graph Variational Autoencoder
Graph VAEs are trainable generative models involving an
observable graph G and its latent representations2 Z, to-
gether with three distributions: (i) a prior distribution p0(Z)
over the latent code Z, (ii) the encoder q(Z |G) which em-
beds the observed graphs G into (a distribution over) the
latent code z, and (iii) the decoder p(G |Z) which samples
observable graphs G based on the latent representation Z.
Computation of the log-likelihood of observables under a
VAE model requires marginalization over the distribution
of Z, which is usually intractable. Therefore, the evidence
lower bound (ELBO) on the log-likelihood is typically max-
imized:∑

G∈D

[
EZ∼q(.|G)

[
log p(G|Z)

]
+KL

(
q(Z|G)||p0(Z)

)]
(4)

The encoder q(Z |G) is intended to approximate the true
posterior of Z. Therefore, the quality of the encoder, and
thus, the tightness of the lower bound, depends on the ex-

2Z is usually a set of latent codes associated with embedding
vectors of nodes, edges or substructures.
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pressivity of q. Typically, it is modeled using a universal
distribution approximator, parameterized on G.

4. VARSCENE Model
In this section, we develop VARSCENE in full detail, for-
mulating the underlying MMD optimization problem and
presenting its different components and design decisions.

4.1. Overview
Our goal is to design a variational autoencoder that is able to
synthesize realistic scene graphs in both unconditional set-
tings (given a corpus of real scene graphs), and conditional
settings (given a corpus and also a specific scene graph as
a starting point). While we want the synthetic graphs to
exhibit stochastic variation beyond training graphs, we want
the distribution of various graph properties to remain close
to those measured on the training sample. The cornerstone
of our approach is to build the decoder that minimizes the
MMD between these two distributions, rather than only
maximizing the ELBO (4).

Given a hypothesis class P , we wish to learn a generative
distribution pMMD(G) ∈ P which minimizes MMD between
the distribution of real scene graphs and the distribution of
the generated graphs. However, training such a generative
model without any inductive bias is unlikely to succeed.
To tackle this problem, we first train a base variational au-
toencoder (p0, q, p) on the training scene graphs. While the
trained decoder p is not optimized for minimum MMD, it
provides an approximate generative model to start with. We
next use this trained decoder p to guide the training of our
MMD optimized generative model pMMD. To this end, we
design an optimization problem around pMMD which keeps
it close to the pre-trained decoder p, while also minimizing
MMD with respect to the training data. Finally, we develop
a gradient based algorithm to search for pMMD.

4.2. Design of MMD-Optimized Decoder pMMD

Learning pMMD Given the True Generator ptrue. If we
are given the true generator ptrue, then, in principle, we can
directly estimate a generative distribution pMMD ∈ P over
scene graphs, which minimizes MMD between pMMD and
the true distribution:

minimize
pMMD∈P

MMD(ptrue, p
MMD). (5)

The above setup faces two bottlenecks: (i) It does not have
access to the true distribution ptrue. It can only use the ob-
served scene graphs present in the training dataset. (ii) Spec-
ifying P without any prior knowledge about the generative
process is difficult in practice.

Learning pMMD Given Observed Graphs. Responding to
the above challenges, we approximate (5) through several
intermediate steps. First, we use the observed scene graphs

to estimate M̂MD, as we cannot access the true graph dis-
tribution ptrue. Specifically, given D, a set of observed scene
graphs, we replace the objective in the optimization (5) with
its sample estimate defined in Eq. (2) as follows:

minimize
pMMD∈P

ED′∼
iid
pMMD(·) M̂MD(D,D′) (6)

However, absence of any prior knowledge of the underlying
generative process P makes it difficult to search for pMMD.
Now, suppose that we have a trained VAE model (p0, qφ̂, pθ̂)

modeled by neural networks with estimated parameters φ̂
and θ̂, where the encoder qφ̂(· |G) embeds the graph into
a latent representation Z, the decoder pθ̂(· |Z) generates a
graph G conditioned on Z and p0 is a prior distribution on
Z. We can use this trained model to guide the training of
pMMD, where we use the same neural network pθ̂ to param-
eterize pMMD ≈ pMMD

θ with a new parameter vector θ. To
this end, given a trained VAE model (p0, qφ̂, pθ̂) we learn
pθ which minimizes the required MMD, while penalizing
its KL divergence with respect to the trained decoder pθ̂,
i.e., we solve:

minimize
θ∈Θ

EZ
[

E
D(Z)∼

iid
pMMD
θ (· |Z)

M̂MD
(
D,D(Z)

)

+ ρKL
(
pMMD
θ (· |Z)

∥∥∥pθ̂(· |Z)
)]
, (7)

where D(Z) is a set of generated graphs by pMMD
θ condi-

tioned on the latent representations Z. Here, pθ̂ and pMMD
θ

share the same parameterized class of generative models
P(Θ). In the outer expectation, Z can be drawn from the
prior distribution p0 for unconditional graph generation or
from the trained encoder qφ for conditional graph genera-
tion. Moreover, ρ > 0 is a tunable coefficient for the KL
regularizer which allows us to trade off between minimizing
MMD and the fidelity of pMMD to the original decoder p.
Such a KL divergence based regularization allows pMMD

θ to
generate plausible scene graphs with meaningful semantics.

Apart from VAEs, such regularization using KL divergence
with respect to a prior distribution has also been used in re-
inforcement learning (Todorov, 2009), social welfare based
control (Tabibian et al., 2020), property oriented molecule
generation (Samanta et al., 2019), etc. However, our key
goal here is MMD optimization for scene graph generation,
where we must steer the property of the entire set of gen-
erated graphs, whereas the above tasks are concerned with
property of one instance, e.g., generating molecule with
a desired property, re-ranking tweets for misinformation
mitigation, etc.

Computation of M̂MD(D, {G}). As suggested by Eq. (2)
and (3) , computation of M̂MD(D, {G}) requires us to fea-
turize G into ν(G). Graph kernels (Vishwanathan et al.,
2010) provide some guidance to our choice of ν, but judg-
ing whether a synthetic graph is “close to natural” requires
the comparison of a diverse bouquet of graph properties,
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covering complex interactions between topology, node and
edge labels. Because our unit of graph generation is a star,
we will focus, for the most part, on a definition of ν(G) in
terms of the number of different stars present in the graph.
(For evaluation, though, we will include other important
properties.) We gather the universe of stars S(D) present in
the dataset D, defined as

νs(G) = # occurrences of s in G (8)

and then compute ν(G) =
[
νs(G) : s ∈ S(D)

]
, which is

then used to compute the required MMD using Eq. (3).

Gradient Computation for Solving (7). We solve opti-
mization (7) using a gradient descent algorithm on the finite
sample estimate of the underlying objective, i.e.,

Cθ({G}) = EZ
[

M̂MD(D,D(Z))+
ρ

|D(Z)|
∑

G∈D(Z)

log
pMMD
θ (G |Z)

pθ̂(G |Z)

]
. (9)

Computing the gradient of such a quantity may seem diffi-
cult, since the samples {G} are drawn from the distribution
itself which is being trained. To circumvent this problem,
we use the log-derivative trick (Williams, 1992) to estimate
the gradient ∇θCθ({G}) as follows:

∇θ
[ ∑

G∈D(Z)

M̂MD(D,D(Z)) log pMMD
θ (G |Z)

+
ρ

|D(Z)|
∑

G∈D(Z)

(1

2
log2 p

MMD
θ (G |Z)

pθ̂(G |Z)

+ log pMMD
θ (G |Z)

)]
, (10)

The term within the above gradient can be viewed as a
pseudo loss function which can be easily coded in any ML
library to solve the optimization in Eq. (7).

4.3. Neural Architecture of VARSCENE

In this section, we present the neural architecture of the
various components of VARSCENE, beginning with a brief
outline.

Outline. VARSCENE consists of a base variational au-
toencoder (p0, qθ, pθ) and the final generative distribu-
tion pMMD

θ . The encoder qθ(·) views a graph as a
set of stars {s0, s1, . . . }, where we call the star s0 to
be the pivot star. Then, we consider various stars
{si |DISTANCE(root(s0), root(si)) = ∆} lying at a given
number of hops ∆ from the pivot star s0, and obtain an
aggregated representation vector z∆ over these stars. Thus,
our encoder qφ encodes the stars into the corresponding
latent representations Z = {z0, . . . ,z∆max}, where ∆max

is the maximum distance of any star from the pivot s0. The
corresponding decoder pθ̂(·) generates stars in a sequen-
tial manner by sampling from a softmax distribution con-
ditioned on the latent representations Z. Given a set of
training graphs along with their object and relation types,

i.e., D = {G} along with the object types {T} and the re-
lation types {R}, VARSCENE first learns the encoder qφ(·)
and decoder pθ(·) by maximizing ELBO (evidence lower
bound) of the likelihood function. More specifically, VAR-
SCENE consists of four components:

1. Prior: p0(Z) with ∆max ∼ Poisson(λ)
2. Encoder: qφ(Z |G,T = {tu} , R = {re})
3. Base decoder: pθ({si} , {γij} |Z)
4. MMD-optimized decoder: pMMD

θ ({si} , {γij} |Z)

where, Z = {z0, ...,z∆max
} is the set of star representations

at different distances and γij = γ(si, sj). Figure 1 gives an
overview of our encoder decoder architecture.

Encoder qφ. Given a graph G = (V,E) along with the
object types T = {tu} associated with the nodes and the
relation types R = {re}, the encoder qφ aims to character-
ize the scene graphs as a collection of star graphs {si} and
represent the graph as a collection of embeddings of these
stars, i.e., Z = {z∆ | 0 ≤ ∆ ≤ ∆max}. Such an approach
is likely to preserve the spatial semantics of the visual con-
tent in a scene graph more effectively than existing graph
generative models (Samanta et al., 2019; De Cao & Kipf,
2018; Li et al., 2018b) which represent a graph as a collec-
tion of node embeddings. In VARSCENE, we compute the
graph representation Z in two steps. First, we compute the
node and edge embeddings using a graph neural network
(GNN) and then combine these to compute star embeddings.

Node and Edge Embeddings. Given a graph G and the
object types T = {tu} and R = {re}, we compute the
representations of the nodes xu and edges xe using a GNN
proposed by Gilmer et al. (2017). More specifically, we start
with the initial node representation xu(0) which transforms
the feature vector tu of the object type associated with node
u using a neural network F 0

φ .

xu(0) = F 0
φ(tu) (11)

Then, given a depth limit K, we aggregate structural in-
formation from k = 1, ...,K hops from each node into an
embedding vector in a recursive manner. Formally:
x(u,v)(k−1) = F edge

φ

(
xu(k−1),xv(k−1), r(u,v)

)
(12)

xu(k−1) = F agg
φ

( {
x(u,v)(k−1) | v∈nbr(u)

} )
(13)

xu(k) = F node
φ

(
xu(k − 1), xu(k − 1)

)
. (14)

Here, F edge
φ and F node

φ are modeled as universal approxima-
tor neural networks; and, F agg

φ is a symmetric aggregator.

Star Embedding. Given S as the set of stars in G, we repre-
sent each star s ∈ S with depth-K embeddings:
hs = FSφ (xroot(s),

{
x(root(s),v) | v ∈ nbr(root(s))

}
) (15)

Next, we generate the latent representations ζs from a nor-
mal distribution, which parameterizes the mean and the
variance using neural networks µφ and σφ, i.e.,

ζs ∼ NORMAL(µφ(hs), σ
2
φ(hs)). (16)
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Decompose
<latexit sha1_base64="7W/LiCKYxpnLygcHQhJvAIp3S1M=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE0WPRi8cK9gPaUDbbSbt0swm7E7XE/hQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSATX6LrfVmFldW19o7hZ2tre2d2zy/tNHaeKQYPFIlbtgGoQXEIDOQpoJwpoFAhoBaPrqd+6B6V5LO9wnIAf0YHkIWcUjdSzy12ER9Qsw9jRSJWe9OyKW3VncJaJl5MKyVHv2V/dfszSCCQyQbXueG6CfkYVciZgUuqmGhLKRnQAHUMljUD72ez0iXNslL4TxsqURGem/p7IaKT1OApMZ0RxqBe9qfif10kxvPQzLpMUQbL5ojAVjvlzmoPT5woYirEhlClubnXYkCrK0KRVMiF4iy8vk+Zp1TuvurdnldpVHkeRHJIjckI8ckFq5IbUSYMw8kCeySt5s56sF+vd+pi3Fqx85oD8gfX5A/07lHg=</latexit>

to stars

<latexit sha1_base64="v1ZSyZuCDqE+UzHobh6e6CANV5s=">AAACD3icbVDJSgNBEO2JW4zbqEcvjUHxIGFGFD0GBfEYwSyQxNDTqSRNeha6a8QwzB948Ve8eFDEq1dv/o2d5RATHxS8fq+KrnpeJIVGx/mxMguLS8sr2dXc2vrG5pa9vVPRYaw4lHkoQ1XzmAYpAiijQAm1SAHzPQlVr3819KsPoLQIgzscRND0WTcQHcEZGqllH163kkbUEym9T5z0mE49GwiPmEC7C2nasvNOwRmBzhN3QvJkglLL/m60Qx77ECCXTOu660TYTJhCwSWkuUasIWK8z7pQNzRgPuhmMronpQdGadNOqEwFSEfq9ETCfK0Hvmc6fYY9PesNxf+8eoydi2YigihGCPj4o04sKYZ0GA5tCwUc5cAQxpUwu1LeY4pxNBHmTAju7MnzpHJScM8Kzu1pvng5iSNL9sg+OSIuOSdFckNKpEw4eSIv5I28W8/Wq/VhfY5bM9ZkZpf8gfX1CxKCnLU=</latexit>

F 0
� , F edge

�
<latexit sha1_base64="8XeXz7DI+AfCxhi+8Db5sYWIMGc=">AAACGHicbVDLSgNBEJz1GeMr6tHLYBA8SNwVRY9BQTxGMA9IYpiddJIhs7PLTK8Ylv0ML/6KFw+KeM3Nv3HyOGhiQUNR1U13lx9JYdB1v52FxaXlldXMWnZ9Y3NrO7ezWzFhrDmUeShDXfOZASkUlFGghFqkgQW+hKrfvx751UfQRoTqHgcRNAPWVaIjOEMrtXInN62kEfVESh+SBsITJqzbTdNjOqersA1p2srl3YI7Bp0n3pTkyRSlVm7YaIc8DkAhl8yYuudG2EyYRsElpNlGbCBivM+6ULdUsQBMMxk/ltJDq7RpJ9S2FNKx+nsiYYExg8C3nQHDnpn1RuJ/Xj3GzmUzESqKERSfLOrEkmJIRynRttDAUQ4sYVwLeyvlPaYZR5tl1obgzb48TyqnBe+84N6d5YtX0zgyZJ8ckCPikQtSJLekRMqEk2fySt7Jh/PivDmfztekdcGZzuyRP3CGP1SdoTg=</latexit>

F agg
� , F node

�

<latexit sha1_base64="RwYa2gX7mfVEy8EnjGrtVaCGt0g=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WNREI8V7QektWy2m3bpJht2J0IJ/RlePCji1V/jzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFpeWV1rbhe2tjc2t4p7+41jUo14w2mpNLtgBouRcwbKFDydqI5jQLJW8Hoauq3Hrk2QsX3OE54N6KDWISCUbSSf/1wR3pZJxmKSa9ccavuDOQv8XJSgRz1Xvmz01csjXiMTFJjfM9NsJtRjYJJPil1UsMTykZ0wH1LYxpx081mJ0/IkVX6JFTaVoxkpv6cyGhkzDgKbGdEcWgWvan4n+enGF50MxEnKfKYzReFqSSoyPR/0heaM5RjSyjTwt5K2JBqytCmVLIheIsv/yXNk6p3VnVvTyu1yzyOIhzAIRyDB+dQgxuoQwMYKHiCF3h10Hl23pz3eWvByWf24Recj2/WHpD3</latexit>

FS
�

<latexit sha1_base64="MerypL6xDWWKrSanr+QrZKDAHZ8=">AAAB7nicdVDLSgMxFL3js9ZX1aWbYBFcDTPia1l047KCfUA7lEyaaUOTTEgyQhn6EW5cKOLW73Hn35hpK/g8EHI4517uvSdWnBkbBO/ewuLS8spqaa28vrG5tV3Z2W2aNNOENkjKU92OsaGcSdqwzHLaVppiEXPaikdXhd+6o9qwVN7asaKRwAPJEkawdVKrq0ScDye9SjXwz4IC6DcJ/ekfVGGOeq/y1u2nJBNUWsKxMZ0wUDbKsbaMcDopdzNDFSYjPKAdRyUW1ET5dN0JOnRKHyWpdk9aNFW/duRYGDMWsasU2A7NT68Q//I6mU0uopxJlVkqyWxQknFkU1TcjvpMU2L52BFMNHO7IjLEGhPrEiq7ED4vRf+T5rEfnvrBzUm1djmPowT7cABHEMI51OAa6tAAAiO4h0d48pT34D17L7PSBW/eswff4L1+ALaij9E=</latexit>

hhh

<latexit sha1_base64="wtAvRS7mLcQtQron0tg+aBgGspw=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXw0zptM6u6MZlBfuAdiiZNNOGJpmQZIQy9CPcuFDErd/jzr8xfQgqeuDC4Zx7ufeeWDKqjed9OGvrG5tb24Wd4u7e/sFh6ei4rdNMYdLCKUtVN0aaMCpIy1DDSFcqgnjMSCeeXM/9zj1RmqbizkwliTgaCZpQjIyVOn3J43w8G5TKnlurhL5Xg55br4dBNbAkDEM/8KHveguUwQrNQem9P0xxxokwmCGte74nTZQjZShmZFbsZ5pIhCdoRHqWCsSJjvLFuTN4bpUhTFJlSxi4UL9P5IhrPeWx7eTIjPVvby7+5fUyk1xGORUyM0Tg5aIkY9CkcP47HFJFsGFTSxBW1N4K8RgphI1NqGhD+PoU/k/aFdcPXO+2Wm5creIogFNwBi6AD+qgAW5AE7QABhPwAJ7AsyOdR+fFeV22rjmrmRPwA87bJyXLkB4=</latexit>

hhh

<latexit sha1_base64="8qbN66j++zzz5MkknwrmimHRAJY=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXQ6Z0apdFNy4r2Ae0Q8mkaRuaZEKSEcrQj3DjQhG3fo87/8ZMW0FFD1w4nHMv994TK86MRejDW1vf2NzaLuwUd/f2Dw5LR8dtk6Sa0BZJeKK7MTaUM0lblllOu0pTLGJOO/H0Ovc791Qblsg7O1M0Engs2YgRbJ3U6SsRZ5P5oFRGfi2sOkDkB/UqqlVyEoT1WggDHy1QBis0B6X3/jAhqaDSEo6N6QVI2SjD2jLC6bzYTw1VmEzxmPYclVhQE2WLc+fw3ClDOEq0K2nhQv0+kWFhzEzErlNgOzG/vVz8y+uldlSPMiZVaqkky0WjlEObwPx3OGSaEstnjmCimbsVkgnWmFiXUNGF8PUp/J+0K34Q+ui2Wm5creIogFNwBi5AAC5BA9yAJmgBAqbgATyBZ095j96L97psXfNWMyfgB7y3TwePkAk=</latexit>

hhh
<latexit sha1_base64="BUBvAIcEyCyGNY7fXBpS2F7DVSE=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXQ6a1r13RjcsK9gHtUDJppg1NMkOSEcrQj3DjQhG3fo87/8ZMW0FFD1w4nHMv994TxJxpg9CHs7a+sbm1ndvJ7+7tHxwWjo47OkoUoW0S8Uj1AqwpZ5K2DTOc9mJFsQg47QbT68zv3lOlWSTvzCymvsBjyUJGsLFSdxCLIJ3Mh4UiclG10igjiNwK8mqNhiUIVevlEvQsyVAEK7SGhffBKCKJoNIQjrXueyg2foqVYYTTeX6QaBpjMsVj2rdUYkG1ny7OncNzq4xgGClb0sCF+n0ixULrmQhsp8Bmon97mfiX109MWPdTJuPEUEmWi8KEQxPB7Hc4YooSw2eWYKKYvRWSCVaYGJtQ3obw9Sn8n3RKrldx0e1lsXm1iiMHTsEZuAAeqIEmuAEt0AYETMEDeALPTuw8Oi/O67J1zVnNnIAfcN4+AQYfkAg=</latexit>

hhh

<latexit sha1_base64="ZY4taxCujEWWJfIahzm2FWNcvas=">AAAB8nicdVDLSsNAFJ34rPVVdelmsAiuQtK0NN0V3bisYB+QljKZTtuhk0mYuRFq6Ge4caGIW7/GnX/j9CGo6IELh3Pu5d57wkRwDY7zYa2tb2xubed28rt7+weHhaPjlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wcjX323dMaR7LW5gmrBeRkeRDTgkYKegmUZh17xmQWb9QdOxqza14FezYruuVfG9OvLJf87FrOwsU0QqNfuG9O4hpGjEJVBCtA9dJoJcRBZwKNst3U80SQidkxAJDJYmY7mWLk2f43CgDPIyVKQl4oX6fyEik9TQKTWdEYKx/e3PxLy9IYej3Mi6TFJiky0XDVGCI8fx/POCKURBTQwhV3NyK6ZgoQsGklDchfH2K/yetku1WbOemXKxfruLIoVN0hi6Qi6qojq5RAzURRTF6QE/o2QLr0XqxXpeta9Zq5gT9gPX2CTYskeA=</latexit>

⇣⇣⇣

<latexit sha1_base64="4m2JiDFGDJmCE78e8ock0yfXHPQ=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4GnqMWbwFvXiMYBaYGUJPp5M06VnorhHikM/w4kERr36NN//GziKo6IOCx3tVVNULEik0EPJh5VZW19Y38puFre2d3b3i/kFbx6livMViGatuQDWXIuItECB5N1GchoHknWB8NfM7d1xpEUe3MEm4H9JhJAaCUTCS6yVhkHn3HOi0VywRu+KUCbnAxK6RatmpGlInTrXuYMcmc5TQEs1e8d3rxywNeQRMUq1dhyTgZ1SBYJJPC16qeULZmA65a2hEQ679bH7yFJ8YpY8HsTIVAZ6r3ycyGmo9CQPTGVIY6d/eTPzLc1MY1P1MREkKPGKLRYNUYojx7H/cF4ozkBNDKFPC3IrZiCrKwKRUMCF8fYr/J+0z26nY5Oa81LhcxpFHR+gYnSIH1VADXaMmaiGGYvSAntCzBdaj9WK9Llpz1nLmEP2A9fYJHweR0A==</latexit>

⇣⇣⇣
<latexit sha1_base64="aYZjeqirPTuwoargiTZY/ZOk1F8=">AAACHXicdVDLSsNAFJ3UV62vqEs3g0VwISGR1seu6MZlBfuAJJTJdNoOnUnCzESoIT/ixl9x40IRF27Ev3GatqBWD1w4nHPvzL0niBmVyrY/jcLC4tLySnG1tLa+sbllbu80ZZQITBo4YpFoB0gSRkPSUFQx0o4FQTxgpBUML8d+65YISaPwRo1i4nPUD2mPYqS01DErXsyDNPXyl1zRD/zUtqq2c37iHM2RzLsjCmVZxyzPJDhPHMvOUQZT1Dvmu9eNcMJJqDBDUrqOHSs/RUJRzEhW8hJJYoSHqE9cTUPEifTTfKcMHmilC3uR0BUqmKvfJ1LEpRzxQHdypAbytzcW//LcRPXO/JSGcaJIiCcf9RIGVQTHUcEuFQQrNtIEYUH1rhAPkEBY6UBLOoTZpfB/0jy2nKplX1fKtYtpHEWwB/bBIXDAKaiBK1AHDYDBPXgEz+DFeDCejFfjbdJaMKYzu+AHjI8vhDSfDg==</latexit>

⇣⇣⇣
<latexit sha1_base64="6L2mLeRTMXfLG3v9JAydOYYZXzY=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4Cj2J2W5BLx4jmAVmQujpdJImPQvdNUIc8hlePCji1a/x5t/Yk0RQ0QcFj/eqqKrnRVJoIOTDyqytb2xuZbdzO7t7+wf5w6OODmPFeJuFMlQ9j2ouRcDbIEDyXqQ49T3Ju970KvW7d1xpEQa3MIt436fjQIwEo2Akx418L3HvOdD5IF8gRVKtNMoEk2KF2LVGwxBCqvVyCduGpCigFVqD/Ls7DFns8wCYpFo7Nomgn1AFgkk+z7mx5hFlUzrmjqEB9bnuJ4uT5/jMKEM8CpWpAPBC/T6RUF/rme+ZTp/CRP/2UvEvz4lhVO8nIohi4AFbLhrFEkOI0//xUCjOQM4MoUwJcytmE6ooA5NSzoTw9Sn+n3RKRbtSJDcXheblKo4sOkGn6BzZqIaa6Bq1UBsxFKIH9ISeLbAerRfrddmasVYzx+gHrLdPKtSR2A==</latexit>

⇣⇣⇣

<latexit sha1_base64="Cqv4Q+5X39mQIBtbHAJ6b8ycpL8="></latexit>

⇣⇣⇣• ⇠ Normal
�
µ�(hhh•), �

2
�(hhh•)

�

<latexit sha1_base64="21LpLn4SqXLAVoE9Y1cWidJwmK4=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0YtQ1IPHCvYD21A220m7dLMJuxOhhP4LLx4U8eq/8ea/cdvmoNUHA4/3ZpiZFyRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONYcGj2Ws2wEzIIWCBgqU0E40sCiQ0ApG11O/9QjaiFjd4zgBP2IDJULBGVrpoXsDEhm9pF6vXHGr7gz0L/FyUiE56r3yZ7cf8zQChVwyYzqem6CfMY2CS5iUuqmBhPERG0DHUsUiMH42u3hCj6zSp2GsbSmkM/XnRMYiY8ZRYDsjhkOz6E3F/7xOiuGFnwmVpAiKzxeFqaQY0+n7tC80cJRjSxjXwt5K+ZBpxtGGVLIheIsv/yXNk6p3VnXvTiu1qzyOIjkgh+SYeOSc1MgtqZMG4USRJ/JCXh3jPDtvzvu8teDkM/vkF5yPbweKj9Y=</latexit>

�
=

1

<latexit sha1_base64="rm2x8KTAgcMaAYSpI7AGtyBZlTE=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKewGRS9CUA8eI5gHJkuYnXSSIbOzy8ysEJb8hRcPinj1b7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqN59QaR7JBzOO0Q/pQPI+Z9RY6bFzi8JQckUq3WLJLbszkGXiZaQEGWrd4lenF7EkRGmYoFq3PTc2fkqV4UzgpNBJNMaUjegA25ZKGqL209nFE3JilR7pR8qWNGSm/p5Iaaj1OAxsZ0jNUC96U/E/r52Y/qWfchknBiWbL+ongpiITN8nPa6QGTG2hDLF7a2EDamizNiQCjYEb/HlZdKolL3zsnt/VqpeZ3Hk4QiO4RQ8uIAq3EEN6sBAwjO8wpujnRfn3fmYt+acbOYQ/sD5/AEJDo/X</latexit>

� = 2
<latexit sha1_base64="ZCcgb3RaX6FSjoOig/kERcgjpLw=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KokoeiwK4rGC/YA2ls120y7dZMPuRKihP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63s7S8srq2Xtgobm5t7+yW9vYbRqWa8TpTUulWQA2XIuZ1FCh5K9GcRoHkzWB4PfGbj1wboeJ7HCXcj2g/FqFgFK3UvulmnWQgxuThqVsquxV3CrJIvJyUIUetW/rq9BRLIx4jk9SYtucm6GdUo2CSj4ud1PCEsiHt87alMY248bPpyWNybJUeCZW2FSOZqr8nMhoZM4oC2xlRHJh5byL+57VTDC/9TMRJijxms0VhKgkqMvmf9ITmDOXIEsq0sLcSNqCaMrQpFW0I3vzLi6RxWvHOK+7dWbl6lcdRgEM4ghPw4AKqcAs1qAMDBc/wCm8OOi/Ou/Mxa11y8pkD+APn8wcT/ZEe</latexit>

F z
�

<latexit sha1_base64="L3wRDO1/dBccMt1KsFv2mH5WTpw=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSiKLHohePFewHtCFstpt26WYTdifFEnLxr3jxoIhXf4Y3/43bNgdtfTDweG+GmXlBIrgGx/m2Siura+sb5c3K1vbO7p69f9DScaooa9JYxKoTEM0El6wJHATrJIqRKBCsHYxup357zJTmsXyAScK8iAwkDzklYCTfPuoBe4SswccxYA1E4Rxr38G+XXVqzgx4mbgFqaICDd/+6vVjmkZMAhVE667rJOBlRAGnguWVXqpZQuiIDFjXUEkipr1s9kCOT43Sx2GsTEnAM/X3REYirSdRYDojAkO96E3F/7xuCuG1l3GZpMAknS8KU4EhxtM0cJ8rRkFMDCFUcXMrpkOiCAWTWcWE4C6+vExa5zX3subcX1TrN0UcZXSMTtAZctEVqqM71EBNRFGOntErerOerBfr3fqYt5asYuYQ/YH1+QP6E5X8</latexit>

Pivot star s0

<latexit sha1_base64="lsjIsGFnbIyId4KquGkcHfULrRc=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSyCq5KIosuiG5cV7AOaECbTSTt0ZhLmIZY0C3/FjQtF3Pob7vwbp4+Fth64cDjnXu69J84YVdrzvp2l5ZXVtfXSRnlza3tn193bb6rUSEwaOGWpbMdIEUYFaWiqGWlnkiAeM9KKBzdjv/VApKKpuNfDjIQc9QRNKEbaSpF7GORBxuP8sYgMHEETUAGbQRG5Fa/qTQAXiT8jFTBDPXK/gm6KDSdCY4aU6vhepsMcSU0xI0U5MIpkCA9Qj3QsFYgTFeaT+wt4YpUuTFJpS2g4UX9P5IgrNeSx7eRI99W8Nxb/8zpGJ1dhTkVmNBF4uigxDOoUjsOAXSoJ1mxoCcKS2lsh7iOJsLaRlW0I/vzLi6R5VvUvqt7deaV2PYujBI7AMTgFPrgENXAL6qABMBiBZ/AK3pwn58V5dz6mrUvObOYA/IHz+QPOm5X0</latexit>{xxxu|u 2 V }

<latexit sha1_base64="UCvt55ybES/q1V8pH6xPNfyEOkA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix60GML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHssHM07Qj+hA8pAzaqxUv+uVym7FnYEsEy8nZchR65W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NDp2QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasJrP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbIo2BG/x5WXSPK94lxW3flGu3uRxFOAYTuAMPLiCKtxDDRrAAOEZXuHNeXRenHfnY9664uQzR/AHzucPnUeMzw==</latexit>

G

<latexit sha1_base64="0MxGK8MyHIglH5eKOdfRC1WIZQc=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiS2Je2u6MZlRfuANpTJdNIOnUzCzEQooZ/gxoUibv0id/6N04egogcuHM65l3vvCRLOlHacDyu3tr6xuZXfLuzs7u0fFA+P2ipOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJJldzv3NPpWKxuNPThPoRHgkWMoK1kW7VwB0US45d9SqeW0aO7XlupewZUq/XHa+GXNtZoAQrNAfF9/4wJmlEhSYcK9VznUT7GZaaEU5nhX6qaILJBI9oz1CBI6r8bHHqDJ0ZZYjCWJoSGi3U7xMZjpSaRoHpjLAeq9/eXPzL66U6rPkZE0mqqSDLRWHKkY7R/G80ZJISzaeGYCKZuRWRMZaYaJNOwYTw9Sn6n7QvbLdqOzeVUuNyFUceTuAUzsEFDxpwDU1oAYERPMATPFvcerRerNdla85azRzDD1hvn5LNjgE=</latexit>s1

<latexit sha1_base64="+0uiV7znvqPR5BzvgApI7uc6HHw=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZkN0TW3oBePEc0DkiXMTmaTIbMPZmaFEPIJXjwo4tUv8ubfOJusoKIFDUVVN91dfiK40hh/WIWV1bX1jeJmaWt7Z3evvH/QVnEqKWvRWMSy6xPFBI9YS3MtWDeRjIS+YB1/cpX5nXsmFY+jOz1NmBeSUcQDTok20q0aVAflCrbP67hWxwjbeIGMuK5Tc5GTKxXI0RyU3/vDmKYhizQVRKmegxPtzYjUnAo2L/VTxRJCJ2TEeoZGJGTKmy1OnaMTowxREEtTkUYL9fvEjIRKTUPfdIZEj9VvLxP/8nqpDi68GY+SVLOILhcFqUA6RtnfaMglo1pMDSFUcnMromMiCdUmnZIJ4etT9D9pV23nzMY3tUrjMo+jCEdwDKfggAsNuIYmtIDCCB7gCZ4tYT1aL9brsrVg5TOH8APW2ydVJI3W</latexit>s2
<latexit sha1_base64="xxfJ0JXA1ja/s45SewxpZQdqSRk=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0VwFSYxkrorunFZ0T6gDWUynbRDJ5MwMxFK6Ce4caGIW7/InX/jNK2gogcuHM65l3vvCVPOlEbowyqtrK6tb5Q3K1vbO7t71f2DtkoySWiLJDyR3RArypmgLc00p91UUhyHnHbCydXc79xTqVgi7vQ0pUGMR4JFjGBtpFs1OBtUa8h2Lzwf1SGyPd9z/YIgp45c6NioQA0s0RxU3/vDhGQxFZpwrFTPQakOciw1I5zOKv1M0RSTCR7RnqECx1QFeXHqDJ4YZQijRJoSGhbq94kcx0pN49B0xliP1W9vLv7l9TId1YOciTTTVJDFoijjUCdw/jccMkmJ5lNDMJHM3ArJGEtMtEmnYkL4+hT+T9qu7Zzb6MarNS6XcZTBETgGp8ABPmiAa9AELUDACDyAJ/BscevRerFeF60lazlzCH7AevsEeFmN7g==</latexit>s3

<latexit sha1_base64="JOYastNwbPLZ1CcVyoymWV/xQgU=">AAAB6nicdVDLSgMxFL1TX7W+qi7dBIvgasiIr2XRjcuK9gHtUDJppg3NZIYkI5Shn+DGhSJu/SJ3/o2ZaQWfB0IO59zLvfcEieDaYPzulBYWl5ZXyquVtfWNza3q9k5Lx6mirEljEatOQDQTXLKm4UawTqIYiQLB2sH4Mvfbd0xpHstbM0mYH5Gh5CGnxFjpRvdxv1rD7inOgX4Tzy1+XIM5Gv3qW28Q0zRi0lBBtO56ODF+RpThVLBppZdqlhA6JkPWtVSSiGk/K1adogOrDFAYK/ukQYX6tSMjkdaTKLCVETEj/dPLxb+8bmrCcz/jMkkNk3Q2KEwFMjHK70YDrhg1YmIJoYrbXREdEUWoselUbAifl6L/SevI9U5cfH1cq1/M4yjDHuzDIXhwBnW4ggY0gcIQ7uERnhzhPDjPzsustOTMe3bhG5zXDx4ajbA=</latexit>s0
<latexit sha1_base64="mITviQRceZUylr1As8j9EcbpceA=">AAAB+nicbVBNSwMxEM36WevXVo9egkXwVHZF0WPRi8cK9gPapWTTbBuaTZZktlrW/hQvHhTx6i/x5r8xbfegrQ8GHu/NMDMvTAQ34Hnfzsrq2vrGZmGruL2zu7fvlg4aRqWasjpVQulWSAwTXLI6cBCslWhG4lCwZji8mfrNEdOGK3kP44QFMelLHnFKwEpdt9QB9ghZjY8UYANET7pu2at4M+Bl4uekjHLUuu5Xp6doGjMJVBBj2r6XQJARDZwKNil2UsMSQoekz9qWShIzE2Sz0yf4xCo9HCltSwKeqb8nMhIbM45D2xkTGJhFbyr+57VTiK6CjMskBSbpfFGUCgwKT3PAPa4ZBTG2hFDN7a2YDogmFGxaRRuCv/jyMmmcVfyLind3Xq5e53EU0BE6RqfIR5eoim5RDdURRQ/oGb2iN+fJeXHenY9564qTzxyiP3A+fwDVRpRe</latexit>

Pivot star

<latexit sha1_base64="gTJTNvMyf7d6HIQ2SYvG0d0i4kc=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbvegrQ8GHu/NMDMvTAQ31vO+UWltfWNzq7xd2dnd2z+oHh61TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd3O/88S04bF6tNOEBZKMFI84JTaX+lwNqjWv7uXAq8QvSA0KNAfVr/4wpqlkylJBjOn5XmKDjGjLqWCzSj81LCF0Qkas56gikpkgy2+d4TOnDHEUa1fK4lz9PZERacxUhq5TEjs2y95c/M/rpTa6CTKuktQyRReLolRgG+P543jINaNWTB0hVHN3K6Zjogm1Lp6KC8FffnmVtC/q/lXde7isNW6LOMpwAqdwDj5cQwPuoQktoDCGZ3iFNyTRC3pHH4vWEipmjuEP0OcPJCOOTQ==</latexit>

t 2
<latexit sha1_base64="lIY252Ftw+/F0fPjh9u7guRAn4U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A5zWjWk=</latexit>{ <latexit sha1_base64="lIY252Ftw+/F0fPjh9u7guRAn4U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A5zWjWk=</latexit>{

<latexit sha1_base64="lIY252Ftw+/F0fPjh9u7guRAn4U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A5zWjWk=</latexit>{ <latexit sha1_base64="lIY252Ftw+/F0fPjh9u7guRAn4U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A5zWjWk=</latexit>{<latexit sha1_base64="izPLKdKtdsid0pFA+8YEju0P1NE=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWltfWNzq7xd2dnd2z+oHh61TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptLus/VoFrz6t4ceJX4BalBgeag+tUfxjSVTFkqiDE930tskBFtORVsVumnhiWETsiI9RxVRDITZPNbZ/jMKUMcxdqVsniu/p7IiDRmKkPXKYkdm2UvF//zeqmNboKMqyS1TNHFoigV2MY4fxwPuWbUiqkjhGrubsV0TDSh1sVTcSH4yy+vkvZF3b+qew+XtcZtEUcZTuAUzsGHa2jAPTShBRTG8Ayv8IYkekHv6GPRWkLFzDH8Afr8ASEVjks=</latexit>

r 2

(a) Neural architecture of VARSCENE encoder

<latexit sha1_base64="lIY252Ftw+/F0fPjh9u7guRAn4U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A5zWjWk=</latexit>{ <latexit sha1_base64="lIY252Ftw+/F0fPjh9u7guRAn4U=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A5zWjWk=</latexit>{<latexit sha1_base64="g35jEtZCOpCEixRhudVvjuuTe1A=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDiJeyKohchqAePEc0DkiXMTnqTIbOzy8ysEJZ8hBcPinj1e7z5N04eB00saCiquunuChLBtXHdb2dpeWV1bT23kd/c2t7ZLezt13WcKoY1FotYNQOqUXCJNcONwGaikEaBwEYwuBn7jSdUmsfy0QwT9CPakzzkjBorNR5KtyfkinQKRbfsTkAWiTcjRZih2il8tbsxSyOUhgmqdctzE+NnVBnOBI7y7VRjQtmA9rBlqaQRaj+bnDsix1bpkjBWtqQhE/X3REYjrYdRYDsjavp63huL/3mt1ISXfsZlkhqUbLooTAUxMRn/TrpcITNiaAllittbCetTRZmxCeVtCN78y4ukflr2zsvu/Vmxcj2LIweHcAQl8OACKnAHVagBgwE8wyu8OYnz4rw7H9PWJWc2cwB/4Hz+ADEkjik=</latexit>

S(D) =

<latexit sha1_base64="3lh5wypQXOaJEUjbz3QoSCWBkrs=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosegF48RTAwkS5idzCZD5rHM9Apx2c/w4kERr36NN//GSbIHTSxoKKq66e6KEsEt+P63V1pZXVvfKG9WtrZ3dveq+wdtq1NDWYtqoU0nIpYJrlgLOAjWSQwjMhLsIRrfTP2HR2Ys1+oeJgkLJRkqHnNKwEndXiKj7CnvZ37er9b8uj8DXiZBQWqoQLNf/eoNNE0lU0AFsbYb+AmEGTHAqWB5pZdalhA6JkPWdVQRyWyYzU7O8YlTBjjWxpUCPFN/T2REWjuRkeuUBEZ20ZuK/3ndFOKrMOMqSYEpOl8UpwKDxtP/8YAbRkFMHCHUcHcrpiNiCAWXUsWFECy+vEzaZ/Xgou7fndca10UcZXSEjtEpCtAlaqBb1EQtRJFGz+gVvXngvXjv3se8teQVM4foD7zPH6rOkYA=</latexit>zzz0
<latexit sha1_base64="sOXtrYDc/VAf8hL1kNUzLCaPHjE=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RTAwkS5idzCZD5rHMzApx2c/w4kERr36NN//GSbIHTSxoKKq66e6KEs6M9f1vr7Syura+Ud6sbG3v7O5V9w/aRqWa0BZRXOlOhA3lTNKWZZbTTqIpFhGnD9H4Zuo/PFJtmJL3dpLQUOChZDEj2Dqp20tElD3l/SzI+9WaX/dnQMskKEgNCjT71a/eQJFUUGkJx8Z0Az+xYYa1ZYTTvNJLDU0wGeMh7ToqsaAmzGYn5+jEKQMUK+1KWjRTf09kWBgzEZHrFNiOzKI3Ff/zuqmNr8KMySS1VJL5ojjlyCo0/R8NmKbE8okjmGjmbkVkhDUm1qVUcSEEiy8vk/ZZPbio+3fntcZ1EUcZjuAYTiGAS2jALTShBQQUPMMrvHnWe/HevY95a8krZg7hD7zPH6xTkYE=</latexit>zzz1

<latexit sha1_base64="gjxHp1PsvyJB/SSrHQWefRfUHFw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoseiF48V7AekoWy2m3bp7ibsToQa8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMXGqKWvTWMS6FxLDBFesDRwE6yWaERkK1g0ntzO/+8i04bF6gGnCAklGikecErCS309kmD3lg6yRD6o1t+7OgVeJV5AaKtAaVL/6w5imkimgghjje24CQUY0cCpYXumnhiWETsiI+ZYqIpkJsvnJOT6zyhBHsbalAM/V3xMZkcZMZWg7JYGxWfZm4n+en0J0HWRcJSkwRReLolRgiPHsfzzkmlEQU0sI1dzeiumYaELBplSxIXjLL6+STqPuXdbd+4ta86aIo4xO0Ck6Rx66Qk10h1qojSiK0TN6RW8OOC/Ou/OxaC05xcwx+gPn8wet2JGC</latexit>zzz2

<latexit sha1_base64="pzQirSA7NhnjwixCwzTgiaHQCUg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU6PbLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rbuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDu5eM4w==</latexit>

[
<latexit sha1_base64="pzQirSA7NhnjwixCwzTgiaHQCUg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU6PbLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rbuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDu5eM4w==</latexit>

[<latexit sha1_base64="jNv/X0egrF6P6/hWgw3eLlbglGY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxiv3ANpTNdtMu3WzC7kQoof/AiwdFvPqPvPlv3LY5aPXBwOO9GWbmBYkUBl33yyksLa+srhXXSxubW9s75d29polTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD31W49cGxGrexwn3I/oQIlQMIpWunu47JUrbtWdgfwlXk4qkKPeK392+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx26YQcWaVPwljbUkhm6s+JjEbGjKPAdkYUh2bRm4r/eZ0Uwws/EypJkSs2XxSmkmBMpm+TvtCcoRxbQpkW9lbChlRThjackg3BW3z5L2meVL2zqnt7Wqld5XEU4QAO4Rg8OIca3EAdGsAghCd4gVdn5Dw7b877vLXg5DP78AvOxzc71I0p</latexit>

Z =
<latexit sha1_base64="vCNCHOJZcraTCC9OujpJyi3cqlc=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuimJKLosunFZwT6wCWEymbRDJw9mboQSC/6KGxeKuPU73Pk3TtsstPXAhcM593LvPX4quALL+jZKS8srq2vl9crG5tb2jrm711ZJJilr0UQksusTxQSPWQs4CNZNJSORL1jHH15P/M4Dk4on8R2MUuZGpB/zkFMCWvLMg9TLHRgwIOOaQ4ME8CO+P/HMqlW3psCLxC5IFRVoeuaXEyQ0i1gMVBCleraVgpsTCZwKNq44mWIpoUPSZz1NYxIx5ebT88f4WCsBDhOpKwY8VX9P5CRSahT5ujMiMFDz3kT8z+tlEF66OY/TDFhMZ4vCTGBI8CQLHHDJKIiRJoRKrm/FdEAkoaATq+gQ7PmXF0n7tG6f163bs2rjqoijjA7REaohG12gBrpBTdRCFOXoGb2iN+PJeDHejY9Za8koZvbRHxifP3knlSc=</latexit>

p✓(·|Z)

<latexit sha1_base64="esgxRCPHfHcvJoJwLoqTcPslNXI=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnRmEByhL3NXrJkb/fYnRNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSqWw6PvfXmFldW19o7hZ2tre2d0r7x88Wp0ZxhtMS21aEbVcCsUbKFDyVmo4TSLJm9HwZuo3n7ixQqsHHKU8TGhfiVgwik6676Dulit+1Z+BLJMgJxXIUe+Wvzo9zbKEK2SSWtsO/BTDMTUomOSTUiezPKVsSPu87aiiCbfheHbqhJw4pUdibVwpJDP198SYJtaOksh1JhQHdtGbiv957Qzjq3AsVJohV2y+KM4kQU2mf5OeMJyhHDlCmRHuVsIG1FCGLp2SCyFYfHmZPJ5Vg4uqf3deqV3ncRThCI7hFAK4hBrcQh0awKAPz/AKb570Xrx372PeWvDymUP4A+/zB2A7jds=</latexit>!

<latexit sha1_base64="WpzTDFQWqDzig1rAI4rPNBqbzIg=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAh1U2ZE0WXRjSupYB/QjiWTZtrQTGZIMkoZ+h9uXCji1n9x59+YaWehrQcCh3Pu5Z4cPxZcG8f5RkvLK6tr64WN4ubW9s5uaW+/qaNEUdagkYhU2yeaCS5Zw3AjWDtWjIS+YC1/dJ35rUemNI/kvRnHzAvJQPKAU2Ks9NANiRlSItLbSUWf9Eplp+pMgReJm5My5Kj3Sl/dfkSTkElDBdG64zqx8VKiDKeCTYrdRLOY0BEZsI6lkoRMe+k09QQfW6WPg0jZJw2eqr83UhJqPQ59O5ml1PNeJv7ndRITXHopl3FimKSzQ0EisIlwVgHuc8WoEWNLCFXcZsV0SBShxhZVtCW4819eJM3Tqntede7OyrWrvI4CHMIRVMCFC6jBDdShARQUPMMrvKEn9ILe0cdsdAnlOwfwB+jzByu0kko=</latexit>

N (s)

<latexit sha1_base64="LMdTBTmEqlVEV0q5I7EXrxoFeZ0="></latexit>

p✓(·, �(s, ·) = |G�, zzz )

<latexit sha1_base64="LMdTBTmEqlVEV0q5I7EXrxoFeZ0="></latexit>

p✓(·, �(s, ·) = |G�, zzz )
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Pivot star

(b) Neural architecture of VARSCENE decoder

Figure 1. Encoder (Panel (a)): Node colors represent object types; edge colors represent relation labels. Stars are defined by hub node
type and relation labels but not neighbor node types. Given a graph G = (V,E) along with its object types {t} and relation types {r},
we first decompose it into the set of stars {s0, s1, s2, s3} where s0 is a pivot star. Next, we feed the graph into a graph neural network
(F 0
φ , F

edge
φ , F node

φ , F agg
φ ) to derive node embeddings xu. These node embeddings along with the stars are fed into a neural module FSφ

to compute star embeddings {hs}, which are used to generate the latent random codes {ζs}. Finally, they are aggregated based on
the distance from pivot star s0, providing embeddings {z∆}. Decoder (Panel (b)): The base decoder pθ and pMMD

θ follow same neural
architecture. Given latent codes Z = {z∆|∆ = 0, 1, . . .}, the decoder first samples the pivot star s0. Then it keeps adding stars at
increasing distance ∆ from s0. Given a snapshot G∆, the decoder pθ draws a new star s′ which is going to be connected with an existing
star s at distance ∆. In this case, s′ can be drawn either from the neighbor stars N (s) (first term in Eq. (19); the star s′ in this figure,
connected on the edge→→→) or an already existing star (second term in Eq. (19); the star s0 in this figure, connected on the edge→→→).

In theory, ζs encodes the information about the substruc-
tures up to K hops away from s and thus the collection of
the representations {ζs} should be able to accurately charac-
terize the graph. However, this may not be true in practice,
as it does not explicitly specify the relative positions of the
stars. To ameliorate this limitation, we first randomly draw
the pivot star s0 from set of all stars S and compute the dis-
tances {∆s} of all stars s ∈ S from s0. Next, we aggregate
{ζs |∆s = ∆} into a latent vector z∆ as follows:

z∆ = F zφ ({ζs |∆s = ∆}) for 0 ≤ ∆ ≤ ∆max (17)
where ∆max is the maximum possible distance from s0 to
any star s ∈ S. Finally, we represent the graph as Z =
{z0, ...,z∆max}.
Decoders pθ and pMMD

θ . The decoders pθ and pMMD
θ share

the same neural network structure. They take the latent rep-
resentations Z = {z0, ...,z∆max

} as input and generate a
new graphG. To do so, they incrementally draw new stars sj
from a database of stars S(D) and connect them with previ-
ously sampled stars si, i ≤ j− 1. The decoders first sample
a star s0 and set ∆ = 0. Then, at the step ∆ ≥ 1, they se-
lect the stars {si |DISTANCE(root(s0), root(si)) = ∆− 1}
having distance ∆ − 1 from s0 and connect one of them
with another star sj using one of the open edges e, i.e.,
γ(si, sj) = re. In this context, sj is either drawn from the
database of stars S(D) or chosen from one of the existing
stars in the graph.

To connect a new star sj at an open edge e of a star si
lying at a distance ∆ from s0, our decoders first featurize
all the potential stars s := 〈tu,

{
r(u,v) | v ∈ nbr(u)

}
〉 as

s = [tu,
∑
v r(u,v)]; then represent the pair [s, z∆] using a

logit; and finally, feeds the logit into a softmax distribution.
This softmax distribution is used to sample the new star s′.
Formally, given the snapshot of the scene graph G∆ at step
∆, we have:

pθ(G |Z) = pθ ({si} , {γ(si, sj)} |Z)

=

∆max∏

∆=1

∏

γ(si,sj):∆si
=∆

pθ(sj , γ(si, sj) |G∆, Z) (18)

where, ∆si = DISTANCE(root(s0), root(si)). Moreover,
we model pθ(sj , γ(si, sj) = r |G∆, Z) as,

MASK(si, sj , r)Jsj 6∈ G∆K exp(Mθ(sj , z∆))∑
s∈S(D)\G∆

MASK(si, s, r) exp(Mθ(s, z∆))

+
MASK(si, sj , r)Jsj ∈ G∆K

|{s : MASK(si, s, r) = 1, s ∈ G∆}|
. (19)

Here, Mθ is a neural network and the masking function
MASK aims to ensure that generated scene graphs are se-
mantically meaningful. Specifically, MASK(s, s′, r) = 1
encodes that s′ is connected to s via the relation r in at least
one scene graph in the dataset D, i.e., MASK(s, s′, r) =
J(s′, r) ∈ N (s)K. The first term computes the probability
when sj is not present in G∆ and is drawn from S(D). The
second term computes the probability when sj is already
present in G∆.

Prior Distribution p0. p0(z0, ..,z∆max
) is modeled

using a Normal distribution, i.e., p0(z0, ..,z∆max
) =

NORMAL(0, I∆max). Finally, we maximize ELBO(qφ, pθ)
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Dataset |D| Folds E[|V |] E[|E|] |T | |R|
Visual Genome 110000 81:9:9 3.23 2.31 16943 8411
Small-sized Visual Genome 124854 55:12:32 5.31 4.87 150 50
Visual Relationship Detection 7721 74:12:12 4.29 3.78 100 70

Table 1. Dataset statistics where Folds = |Dtr| : |Ddev| : |Dtest|.

defined in Eq. (4) with respect to φ and θ to obtain φ̂ and θ̂.

5. Experiments
In this section, we provide a comprehensive evaluation of
VARSCENE, addressing the following research questions:
RQ1: How does VARSCENE compare against state-of-the-
art graph generators in terms of its ability to capture the
true graph distribution? RQ2: Does the MMD-optimized
decoder pMMD

θ provide any performance gain as compared to
the the base decoder pθ? RQ3: How does the quality of the
images created from scene graphs generated by VARSCENE
compare against the quality of images created via state-of-
the-art graph generators? RQ4: What do the generated
scene graphs look like? Does the variational code space en-
sure smooth transitions between scene graphs? Appendix D
contains additional experiments.

5.1. Experimental setup
Datasets. We use three datasets: (i) Visual Genome
(VG) (Krishna et al., 2016), (ii) Small-sized Visual Genome
(SVG) (Xu et al., 2017) and (iii) Visual Relationship De-
tection (VRD) (Lu et al., 2016). Visual Genome has a total
of 16493 object categories and 8411 relationship categories.
VARSCENE can deal with the large object and relationship
vocabularies, but recent papers also report results on SVG,
a dataset derived from VG by reducing the number of ob-
ject and relationship categories to 150 and 50 respectively.
This reduction is achieved by combining related labels and
removing poor-quality labels (Xu et al., 2017; Garg et al.,
2021).

For the SVG dataset, we start with pre-processed graphs that
were provided with the code of (Garg et al., 2021), that we
obtained from the authors. For VG and VRD datasets, we
construct graphs directly from the json formatted scene
graphs. We took each graph from all three dataset, and split
them into weakly connected components, i.e., sub-graphs
where each node is reachable from every other node when
considering the edges to be undirected.

For the VG dataset, the total number of graphs after splitting
exceeded ∼800K. Due to the large number of graphs, we
sampled 90K train graphs at random, and a further 10K
validation graphs and 10K test graphs. For the SVG dataset,
train-test split was provided in (Garg et al., 2021), hence we
used the same set of test graphs and the validation set was
obtained by sampling graphs from the train set at random.
For the VRD dataset, train-test graphs were provided, but

the number of graphs was small. We therefore sampled
graphs from the train and test sets to create the validation
graphs. Table 1 summarizes details about these datasets.

State-of-the-art Competitors. We compare VARSCENE
against several competitive graph generative methods: two
generative models which were developed for molecule syn-
thesis, viz., (1) DeepGMG (Li et al., 2018b), (2) Mol-
GAN (De Cao & Kipf, 2018); two domain-agnostic graph
generative models, viz., (3) GraphRNN (You et al., 2018),
(4) GraphGen (Goyal et al., 2020), and one graph genera-
tive model specifically aimed at synthesizing scene graphs,
similar to our setup, i.e., (5) SceneGen (Garg et al., 2021).

Training, Validation and Testing. Given a dataset of scene
graphs D, we split them in training (Dtr), validation (Ddev)
and test (Dtest) folds, where the exact size of these folds
|D•| varies across datasets due to their varying sizes (see
Table 1). We first train the encoder qφ and the base decoder
pθ using the training set Dtr and then train the MMD opti-
mized decoder pMMD

θ using the validation set Ddev. Finally,
pMMD
θ is evaluated using Dtest.

Evaluation Metrics. We evaluate the quality of a genera-
tive model by measuring the similarity between the graphs
generated by the trained model and the graphs in the test
set. However, unlike normed-distance in Euclidean feature
space, a single similarity measure cannot capture the sim-
ilarity between two graphs in terms of all the properties.
Hence, we resort to several similarity metrics.

Star-Sim: The star distribution similarity is measured in
terms of the cosine similarity between the distributions
of the stars present in the test and generated graphs, i.e.,
cos
(
EG′∼pMMD

θ
ν(G′),EG∼Dtestν(G)

)
with ν(G) = [νs(G)]

where νs(G) is the number of occurrences of star s in G, as
defined in Eq. (8).
Edge-Sim: It is measured in terms of the co-
sine similarity between the distributions of
the edge bigrams of the form of the tuple
eb = 〈r(•,u), tu, r(u,•)〉 across the test and generated graphs,
i.e., cos

(
EG′∼pMMD

θ
ν(G′),EG∼Dtestν(G)

)
where ν(G) =

[νeb(G)], νeb(G) = # occurrences of edge bigram eb in G.
Node-Sim: It is measured in terms of the cosine similar-
ity between the distributions of the node bigrams of the
form of the tuple nb = 〈tu, r(u,v), tv〉 across the test and
generated graphs, i.e., cos

(
EG′∼pMMD

θ
ν(G′),EG∼Dtestν(G)

)

where ν(G) = [νnb(G)], νnb(G) being the number of occur-
rences of node bigram nb in G.
SP-K: Shortest path kernel (Vishwanathan et al., 2010).
WL-K: Weisfeiler-Lehman kernel (Vishwanathan et al.,
2010).
NSPD-K: Neighborhood pairwise distance graph ker-
nel (Costa & De Grave, 2010).

In all kernel-based metrics, we compute the similarity as
EG′∼pMMD

θ ,G∼Dtest K(G′, G). Note that most of these mea-
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Model Star-Sim
Edge-sim

Node-sim

SP-K WL-K
NSPD-K

Visual Genome (VG)
DeepGMG 0.69 0.46 0.15 0.01 0.09 0.01
MolGAN 0.00 0.00 0.00 0.00 0.04 0.01
GraphGen 0.66 0.37 0.11 0.00 0.03 0.01
GraphRNN 0.63 0.00 0.03 0.00 0.03 0.01
SceneGen 0.73 0.50 0.32 0.02 0.08 0.01
VARSCENEunc 0.59 0.45 0.40 0.22 0.11 0.01
VARSCENEcond 0.86 0.52 0.62 0.08 0.07 0.01

Small-sized Visual Genome (SVG)
DeepGMG 0.80 0.64 0.49 0.10 0.35 0.05
MolGAN 0.00 0.00 0.00 0.04 0.40 0.08
GraphGen 0.52 0.64 0.37 0.05 0.21 0.04
GraphRNN 0.25 0.07 0.09 0.38 0.59 0.07
SceneGen 0.86 0.88 0.93 0.68 0.54 0.06
VARSCENEunc 0.92 0.70 0.83 1.00 0.65 0.06
VARSCENEcond 0.91 0.69 0.81 0.96 0.64 0.06

Visual Relationship Detection (VRD)
DeepGMG 0.74 0.73 0.60 0.99 1.41 0.20
MolGAN 0.00 0.00 0.00 0.01 0.97 0.21
GraphGen 0.64 0.75 0.64 0.31 0.79 0.17
GraphRNN 0.54 0.29 0.71 0.21 0.76 0.18
SceneGen 0.81 0.94 0.95 0.60 1.12 0.21
VARSCENEunc 0.91 0.93 0.94 1.03 1.56 0.23
VARSCENEcond 0.91 0.93 0.93 1.45 1.92 0.22

Table 2. Performance of different graph generative models which
include two variants of our model, i.e., VARSCENEunc (uncondi-
tional generation, Z ∼ p0(·)), VARSCENEcond (conditional gener-
ation, Z ∼ qφ(· |G)), and the baselines, viz., DeepGMG (Li et al.,
2018b), MolGAN (De Cao & Kipf, 2018), GraphGen (Goyal et al.,
2020), GraphRNN (You et al., 2018), SceneGen (Garg et al., 2021),
measured in terms of cosine similarity between stars (Star-Sim),
edge bigrams (Edge-Sim), node bigram (Node-Sim), Shortest path
kernel (SP-K) (Vishwanathan et al., 2010), Weisfeiler Lehman Ker-
nel (WL-K) (Vishwanathan et al., 2010), Neighborhood Subgraph
Pairwise Distance Kernel (NSPD-K) (Costa & De Grave, 2010).
In all cases, the encoder qφ and the base decoder pθ were trained
using the training set Dtr and the MMD optimized decoder was
obtained using the validation set Ddev. In all cases, the weight of
the KL divergence term in Eq. (7) was set as ρ = 1000. Numbers
in bold (underline) indicate the (second) best performer.

sure the similarity in terms of structures as well as object
and relation types. In particular, SP-Kernel and WL-Kernel
take object types into account and ignore relationship types,
whereas NSPD-Kernel incorporates both object and rela-
tionship types.

5.2. Results
Comparison with Baseline Graph Generators. We first
address research question RQ1 by comparing VARSCENE
against baselines, in terms of the metrics defined above. We
present results for two variants of VARSCENE, viz., uncon-
ditional generative model VARSCENEunc where Z ∼ p0(·)
and conditional generative model VARSCENEcond where
Z ∼ qφ(· |G) with G ∈ Dtr, Table 2 summarizes the re-
sults. We make the following observations.

(1) VARSCENE outperforms all the competitors in terms
of Star-Sim, SP-Kernel and WL-Kernel with a significant

VG SVG VRD
Edge Node Edge Node Edge Node

VARSCENEcond 0.5268 0.6226 0.6964 0.8111 0.9372 0.9377
SceneGen, NULL∈R 0.0890 0.1121 0.2661 0.8207 0.4598 0.8873

Table 3. Performance measured in terms of Edge-Sim (‘Edge’)
and Node-Sim (‘Node’) for VARSCENEcond and the variant of
SceneGen where we introduce a new relation type NULL between
an isolated node and any other node. Numbers in bold indicate
the best performer. With this modification, SceneGen shows rather
poor performance compared to Table 2, where it is not penalized
for isolated nodes. Real graphs in our data sets do not have isolated
nodes.

boost. There is no consistent winner between VARSCENEunc

and VARSCENEcond. Since VARSCENEcond generates graphs
which are structurally similar to the existing training graphs,
one may expect that it is likely to mimic the underlying
distribution more closely than VARSCENEunc. However,
this need not always be the case, if there is a large empirical
distribution shift between finite training and test folds. VAR-
SCENEunc often captures such drift, as it does not look into
the training graphs during new graph generation.
(2) SceneGen outperforms the other baselines by a substan-
tial margin in a majority of the cases. Since it is specifically
aimed at scene graph generation, it is able to capture the
underlying scene graph distribution more effectively than
the baselines which are predominantly domain agnostic or
designed for molecule synthesis.
(3) Among the other baselines, DeepGMG shows good
performance in terms of WL-Kernel or NSPD-Kernel across
Visual Genome and Visual Relationship Detection datasets.
Although it was primarily applied for molecule generation,
its design choice is quite domain agnostic. The performance
of MolGAN is extremely poor due to its design choices that
are specifically aimed at molecule generation.
(4) While VARSCENE outperforms SceneGen in terms of
edge and node bigram similarity measures for the Visual
Genome dataset, SceneGen appears to be the best performer
for the two other datasets. However, this apparent superior
performance of SceneGen may be misleading — careful in-
vestigation revealed that SceneGen generates many isolated
nodes whose divergence from the test distribution cannot be
captured by bigram similarity.

To shed light on the observation noted in item (4), we next
introduce a dummy relation type NULL and assign this re-
lation between any isolated node and every other node in a
graph. Thus, the set of edge bigrams now include 〈r, t, r′〉
where r and r′ may also assume the NULL type in addition
to the existing legitimate relation types R. Similarly, the set
of node bigrams now include 〈t, r, t′〉 where r may assume
the NULL type. Table 3 summarizes the effect of this aug-
mented set of relation types, which shows that SceneGen
actually performs not as well as VARSCENEcond.

Effect of MMD-Optimized Decoder. Next, we address re-
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VG SVG VRD
Star Edge Star Edge Star Edge

pMMD
θ 0.8660 0.5268 0.9182 0.6964 0.9140 0.9372
pθ 0.5867 0.2588 0.7120 0.4195 0.8988 0.9339

Table 4. Performance measured in terms of Star-Sim (‘Star’) and
Edge-Sim (‘Edge’) for the scene graphs generated by the MMD
optimized decoder pMMD

θ and the base decoder pθ . Numbers in bold
indicate the best performer. We observe that pMMD

θ outperforms pθ .
In all cases, we used conditional graph generation.

Model FID (↓) IS (↑) Precision (↑) Recall (↑)
DeepGMG 9.8344 4.3566 0.9891 0.9800
MolGAN 240.3760 1.1707 0.0137 0.0986
GraphGen 13.2806 4.2802 0.9780 0.9607
GraphRNN 18.8156 4.6561 0.9432 0.9707
SceneGen 19.2634 4.0283 0.9230 0.9513
VARSCENEunc 6.8591 5.1505 0.9894 0.9872
VARSCENEcond 6.0195 5.0211 0.9894 0.9874

Table 5. Evaluation of various generative models by assessing the
quality of the the images obtained from the corresponding scene
graphs. Performance is measured in terms of Fréchet Inception
Distance (Heusel et al., 2017), Inception Score (Salimans et al.,
2016) and Precision & Recall (Sajjadi et al., 2018). Numbers in
bold (underline) show the best (second best) performer. ↓ means
smaller is better; ↑ means larger is better.

search question RQ2. Specifically, we compare the quality
of the scene graphs generated by our MMD optimized de-
coder pMMD

θ with the base decoder pθ. Table 4 summarizes
the results, which shows that our MMD-optimized decoder
is able to mimic the true distribution of stars, as well as edge
bi-grams, more accurately than the base decoder. Other
metrics are reported in Appendix D.

Image Quality. Thus far, we have assessed the quality of
the generated graphs, rather than the images that might be
generated from them. Here, we address research question
RQ3 by evaluating the quality of the images correspond-
ing to the synthesized scene graphs. Specifically, we use
sg2im3, a scene graph to image generation system (John-
son et al., 2018) that comes pre-trained on the Small-sized
Visual Genome dataset. Similar to Garg et al. (2021), we
evaluate the quality of the images using Fréchet Inception
Distance (Heusel et al., 2017), Inception Score (Salimans
et al., 2016), Precision and Recall (Sajjadi et al., 2018).
Both Inception Score (IS) and Fréchet Inception Distance
(FID) aim to provide proxies for qualitative human evalu-
ation. They assess the images from two perspectives: (a)
the quality of the images via the output of an image clas-
sification model like InceptionV3 and (b) diversity across
the set of the images. We formally define FID, IS, Precision
and Recall in Appendix C. Table 5 summarizes the results
for SVG, which shows that, (1) the images corresponding
to the scene graphs provided by the variants of VARSCENE
have substantially better quality than all other baselines;

3https://github.com/google/sg2im

G :

Figure 2. Four scene graphs and the corresponding images, gener-
ated usingG ∼ pMMD

θ (• |Z), whereZ ∼ qφ(• | G ). Here, G is
the graph used for conditioning, which is chosen from Small-sized
Visual Genome dataset. The images corresponding to the scene
graphs G′ are close to the image corresponding to G .

(2) DeepGMG outperforms the other baselines in majority
of the cases.

Visualization of Generated Scene Graphs. Finally, we
address research question RQ4, where we visualize the
graphs G′ generated by conditioning on an existing graph
G. Specifically, we draw G′ ∼ pMMD

θ (• |Z), where Z ∼
qφ(• |G). Figure 2 provides some samples, which show
that VARSCENE is able to generate graphs which provides
similar images to the image corresponding to scene graph
G used for conditioning.

6. Conclusion
We presented VARSCENE, a variational autoencoder tailored
to synthesize scene graphs from a seed set of ‘gold’ graphs.
VARSCENE uses a novel sampling vocabulary of stars an-
notated with node and edge types from large vocabularies
typical in image collections. It directly minimizes distribu-
tional discrepancies for features observed in the reference
set and in the generated graphs. These two strengths enable
VARSCENE to outperform recent graph generators on three
data sets. Our work opens up interesting avenues of future
work. Our generative mechanism based on star agglomer-
ation allows us to incorporate salient semantic structures
from training scenes alone. Knowledge graphs represent-
ing facts (such as WikiData) or common sense may provide
valuable additional “realism prior” or “world bias” for better
training with less supervision.

https://github.com/google/sg2im
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://usc-isi-i2.github.io/ISWC20/
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VARSCENE: A Deep Generative Model for Realistic Scene Graph Synthesis
(Supplementary Material)

A. Broader Impact
Generating realistic and complex scenes is a key task in image retrieval, image editing, question-answering, etc. In this
work, we show that it is possible to sample such scene graphs from a distribution estimated from a set of real scene graphs,
without explicitly inspecting training images. Any bias (e.g., gender, race) in the training scene graphs may propagate to the
synthetic images produced by our system. Our model has sufficient flexibility to attempt to reduce or mitigate such bias.
Specifically, one can replace the first term quantifying MMD in our objective function in Eq. (7) with a suitable alternative
which can mitigate the biases in the generated graphs.

B. Additional Details of VARSCENE

We provide more details about VARSCENE as follows.

t and r. Given an object type t and relation type r, we use BERT embedding (Devlin et al., 2018) to obtain the corresponding
representations t and r. Here, we used the code from https://huggingface.co/sentence-transformers/
paraphrase-MiniLM-L6-v2 and thus have dimension(t) = dimension(r) = 384.

Specifications of the Encoder. We summarize the components of the encoder as follows:

1. The GNN module of qφ contains four networks: F 0
φ, F edge

φ , F agg
φ and F node

φ , which follow similar architecture as
in (Gilmer et al., 2017). We summarize their architecture in details as follows:

• F 0
φ: It consists of a single layer neural network with linear activation function which outputs a 64 dimensional

node features.
• F edge

φ : It is a single layer neural network with linear activation function. It takes the pair of node features and
the corresponding relation type of the edge between them as input and then outputs and a 64 dimensional edge
embedding vector.

• F agg
φ : It is a sum-pool aggregator.

• F node
φ : It is a GRU which sequentially takes xu(k− 1) and xu(k− 1) as input and outputs a 64 dimensional node

embedding.
2. FSφ is kept the same as F node

φ . It is a GRU which is supplied only one element, the concatenation of xroot(s) and
sum(

{
x(root(s),v) | v ∈ nbr(root(s))

}
). It outputs a 64 dimensional vector.

3. µφ in Eq. (16) is a two layer neural network which consists of a 128 dimensional hidden layer, ReLU activations and
outputs a 64 dimensional mean vector.

4. σφ in Eq. (16) is a two layer neural network which consists of a 128 dimensional hidden layer, ReLU activations and
outputs a 64x64 matrix.

5. F zφ in Eq. (17) is a sum aggregator.

Specification of the Decoder. Here, Mθ in Eq. (19) is a two layer neural network which consists of a 32 dimensional
hidden layer, ReLU activations and outputs a 16 dimensional mean vector.

C. Details About Experiments
C.1. Implementation Details of Baselines
DeepGMG. We used the version released with the official PyTorch implementation of Goyal et al. (2020)4.

MolGAN. We used an open-source PyTorch implementation (De Cao & Kipf, 2018)5.

GraphRNN. We used the label adapted version released with the official PyTorch implementation of Goyal et al. (2020)6.

GraphGen. We used the official PyTorch implementation (Goyal et al., 2020)7.

SceneGen. We obtained the code from the authors (Garg et al., 2021).

4
https://github.com/idea-iitd/graphgen

5
https://github.com/yongqyu/MolGAN-pytorch

6
https://github.com/idea-iitd/graphgen

7
https://github.com/idea-iitd/graphgen

https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
https://github.com/idea-iitd/graphgen
https://github.com/yongqyu/MolGAN-pytorch
https://github.com/idea-iitd/graphgen
https://github.com/idea-iitd/graphgen
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We summarize the total number of parameters in our model and the baselines in Table 6, which shows that our model uses
minimum number of parameters and still outperforms all the baselines. Moreover, note that, our number of parameters is
independent of the dataset size, whereas the complexity of baseline models widely varies across most of the datasets.

Parameter Count
VG SVG VRD

DeepGMG 9,096,436 653,771 641,836
MolGAN 623,102,433 18,895,885 11,670,574
GraphRNN 19,561,966 529,421 510,150
GraphGen 25,056,650 2,865,855 2,781,760
SceneGen 277,012 222,781 228,019
VARSCENE 221,249 221,249 221,249

Table 6. Number of parameters in each trainable model.

C.2. Hyperparameters
VARSCENE. For the base decoder (pθ), we trained the model for 1000 epochs. For the optimized decoder (pMMD

θ ), we again
trained for 1000 epochs. The batch size |B| = 1024. For training pθ, the learning rate was kept as 10−4. For pMMD

θ , the
learning rate was kept as 10−3. Moreover, we used the Adam optimizer with a 10−5 weight decay factor.

SceneGen. We trained their model for 300 epochs. The batch size was |B| = 64. A step learning rate scheduler was used for
both nodes and edges, with initial learning rate 10−3, final learning rate 10−4 and decay factor 0.95. The Adam optimizer
was used for updates. These hyper-parameters were the default values.

DeepGMG, GraphRNN, GraphGen. We trained the model for 10000 epochs. Batch size |B| = 2048. Initial learning rate
was 0.003 and decayed by a factor of 0.3 after epochs 100, 200, 400 and 800. The Adam optimizer was used for parameter
updates. These hyper-parameters were the default values.

MolGAN. For VRD and SVG datasets, we trained the model for 12500 epochs. For the VG dataset, we trained the model
for 800 epochs (since the model took a lot of time for training). Batch size |B| = 16. Learning rate was kept as 10−4. The
Adam optimizer was used for parameter updates with β1 = 0.5, β2 = 0.999. These hyper-parameters were the default
values.

C.3. Infrastructure details

We performed all experiments on an Intel Xeon server with 1 TB RAM running Ubuntu 18.04.5 LTS. Our code ran on any
of a TITAN RTX GPU with 24 GB RAM and two TITAN X (Pascal) GPUs with 12 GB RAM each.

C.4. Evaluation metrics for Image Synthesis

Let Ir be a set of real images, and Ig be a set of images that were output by an image generation model. Metrics that
compute the quality of the generated set typically use a feature representation xr and xg respectively for elements of these
sets. Typically, the activation values of the penultimate layer of a pre-trained image classification model, most often the
Inception v3, is used for this purpose. Let Xg be the feature representation matrix for the set of generated images, and the
corresponding matrix for real images is given by Xr. The metrics below utilize these feature representations in different
ways, each of which assumes that Ig and Ir are of the same size.

Fréchet Inception Distance. (Heusel et al., 2017): The FID is a distance between two multivariate Gaussians each of
which is represented by a mean and covariance matrix: (mr,Cr) and (mg,Cg). The FID is given by ‖mr −mg‖22 +
trace(Cr + Cg − 2(Cr ×Cg)0.5). In the context of evaluating the output of models that generate images, the summary
statistics (m.,C.) are computed over the feature representation matrices X. as defined above.

Inception Score. (Salimans et al., 2016): The IS compares the marginal class label distribution over a collection of real
images to the conditional label distribution given a set of generated images. It is defined as exp(EI∼Ig [KL(p(y|I)||p(y))]).
I here represents an individual output of the image generation model. The vector y is taken to be the set of labels of an
image classification model, again typically taken to be the Inception v3 trained on ImageNet. The intuition is that a good
image generation output will have p(y|I) with low entropy indicating the presence of recognisable objects. But at a set level,
we would like a set of varied images, and this is captured by the KL term.

Precision & Recall. (Sajjadi et al., 2018): The precision is given P (Xr,Xg) = Ex∼Xg
f(x,Xr), and recall R(Xr,Xg) =

Ex∼Xrf(x,Xg). The binary function f(x,X) returns if the sample x lies within the volume of the set X. In the current
context, Recall represents the fraction of the real images that were generated. While Precision is the fraction of generated
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images that are similar to real images.

D. Additional Experiments
Effect of MMD-Optimized Method. Table 4 compared pMMD

θ against pθ using Star-Sim and Edge-Sim measurements.
Here, in Table 7, we present additional similarity and kernel measurements.

Visual Genome (VG)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
pMMD
θ 0.8660 0.5268 0.6226 0.0840 0.0779 0.0135
pθ 0.5867 0.2588 0.2212 0.1183 0.1105 0.0143

Visual Relationship Detection (VRD)
pMMD
θ 0.9140 0.9372 0.9377 1.4588 1.9218 0.2275
pθ 0.8988 0.9339 0.9306 0.9426 1.4560 0.2156

Small-sized Visual Genome (SVG)
pMMD
θ 0.9182 0.6964 0.8111 0.9621 0.6417 0.0633
pθ 0.7120 0.4195 0.5616 1.9098 0.6944 0.0586

Table 7. Performance for the scene graphs generated by the MMD optimized decoder pMMD
θ and the base decoder pθ . Numbers in bold

indicate the best performer. We observe that pMMD
θ outperforms pθ in a majority of cases. In all cases, we used conditional graph generation.

Effect of Optimizing Other Similarity Metrics. In Eq. (7), we focus on minimizing MMD between the generated and test
scene graphs in terms of the RBF kernel (3). Here, we replace this MMD metric with negative of the six similarity measures
used for evaluation, i.e., Star-Sim, Edge-Sim, Node-Sim, SP-Kernel, WL-Kernel and NSPD-Kernel. Tables 8–10 summarize
the results for different datasets, and show that the superiority of our method is consistent across them.

Visual Genome (VG)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
DeepGMG 0.6996 0.4668 0.1579 0.0137 0.0994 0.0144
MolGAN 0.0000 0.0000 0.0000 0.0002 0.0439 0.0131
GraphGen 0.6696 0.3760 0.1145 0.0037 0.0378 0.0126
GraphRNN 0.6352 0.0000 0.0332 0.0003 0.0339 0.0121
SceneGen 0.7378 0.5050 0.3275 0.0276 0.0804 0.0159
VARSCENEunc 0.5963 0.4576 0.4055 0.2293 0.1176 0.0147
VARSCENEcond 0.8660 0.5268 0.6226 0.0840 0.0779 0.0135
VARSCENEunc (Edge) 0.6999 0.3892 0.3640 0.0789 0.0806 0.0132
VARSCENEcond (Edge) 0.5930 0.1677 0.2789 0.1129 0.0899 0.0132
VARSCENEunc (Node) 0.7702 0.5497 0.4433 0.0558 0.0680 0.0129
VARSCENEcond (Node) 0.7393 0.3636 0.3726 0.0622 0.0674 0.0126
VARSCENEunc (WL) 0.7350 0.4709 0.4039 0.0865 0.0753 0.0133
VARSCENEcond (WL) 0.6819 0.4088 0.3422 0.0989 0.0784 0.0131
VARSCENEunc (SP) 0.6134 0.4246 0.3240 0.1334 0.0868 0.0135
VARSCENEcond (SP) 0.5883 0.3193 0.2960 0.1720 0.0985 0.0136
VARSCENEunc (NSPD) 0.6704 0.4831 0.3934 0.1399 0.0887 0.0134
VARSCENEcond (NSPD) 0.5932 0.3046 0.3766 0.3390 0.1121 0.0136
VARSCENEunc (Node, Edge) 0.7880 0.6319 0.5571 0.0672 0.0743 0.0133
VARSCENEcond (Node, Edge) 0.7592 0.3620 0.4573 0.0816 0.0745 0.0133
VARSCENEunc (Star, Node, Edge) 0.8013 0.5094 0.5711 0.1065 0.0887 0.0145
VARSCENEcond (Star, Node, Edge) 0.6813 0.2477 0.4131 0.1476 0.0957 0.0142
VARSCENEunc (SP, Node, Edge) 0.8066 0.5606 0.5476 0.0647 0.0746 0.0135
VARSCENEcond (SP, Node, Edge) 0.7344 0.3062 0.4343 0.0774 0.0749 0.0132

Table 8. Performance of different graph generative models (analogous to Table 2) for different optimization objectives in the second stage
of our learning for Visual Genome dataset. The metrics against VARSCENE , in parentheses, imply that in Eqn. (7) we replace M̂MD
with negative of these similarity metrics. Here VARSCENE (Metric) means that in Eq. 7 we replace M̂MD with −Metric. Moreover,
for last few rows, we maximize the sum of multiple similarities. For example, VARSCENE (Metric1,Metric2) indicates that in Eq. 7,
we replace M̂MD with −(Metric1 + Metric2). We write Star for Star-Sim, Edge for Edge-Sim, Node for Node-Sim, SP for SP-Kernel,
WL for WL-Kernel and NSPD for NSPD-Kernel. Recall that VARSCENE as-it-is stands for optimizing the discrepancy between the star
distributions of the generated and the test set.
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Small-sized Visual Genome (SVG)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
DeepGMG 0.8097 0.6401 0.4961 0.1092 0.3589 0.0538
MolGAN 0.0000 0.0000 0.0000 0.0496 0.4084 0.0879
GraphGen 0.5223 0.6461 0.3713 0.0545 0.2117 0.0432
GraphRNN 0.2590 0.0775 0.0920 0.3833 0.5991 0.0705
SceneGen 0.8644 0.8828 0.9311 0.6876 0.5480 0.0663
VARSCENEunc 0.9235 0.7049 0.8335 1.0046 0.6556 0.0685
VARSCENEcond 0.9182 0.6964 0.8111 0.9621 0.6417 0.0633
VARSCENEunc (Edge) 0.9400 0.7451 0.8620 0.7177 0.6100 0.0673
VARSCENEcond (Edge) 0.9302 0.7538 0.8362 0.7140 0.6078 0.0624
VARSCENEunc (Node) 0.9351 0.7452 0.8599 0.7193 0.6135 0.0677
VARSCENEcond (Node) 0.9210 0.7446 0.8287 0.6726 0.6058 0.0623
VARSCENEunc (WL) 0.9469 0.7268 0.8546 0.9840 0.6342 0.0679
VARSCENEcond (WL) 0.9300 0.7043 0.8223 0.9395 0.6005 0.0614
VARSCENEunc (SP) 0.9328 0.7246 0.8576 0.8961 0.6444 0.0691
VARSCENEcond (SP) 0.9286 0.7171 0.8280 0.8721 0.6170 0.0636
VARSCENEunc (NSPD) 0.9349 0.7231 0.8498 0.8096 0.6215 0.0669
VARSCENEcond (NSPD) 0.9334 0.7204 0.8289 0.8038 0.6266 0.0628
VARSCENEunc (Node, Edge) 0.9254 0.6918 0.8443 0.9661 0.6373 0.0679
VARSCENEcond (Node, Edge) 0.9160 0.7044 0.8128 0.7688 0.5996 0.0621
VARSCENEunc (Star, Node, Edge) 0.9308 0.7039 0.8346 0.9234 0.6397 0.0679
VARSCENEcond (Star, Node, Edge) 0.9204 0.7028 0.8127 0.8861 0.6196 0.0627
VARSCENEunc (SP, Node, Edge) 0.9394 0.7322 0.8577 0.8346 0.6329 0.0684
VARSCENEcond (SP, Node, Edge) 0.9332 0.7206 0.8366 0.8087 0.6116 0.0629

Table 9. Performance of different graph generative models (analogous to Table 8) for different optimization objectives in the second stage
of our learning for Small-sized Visual Genome dataset.

Visual Relationship Detection (VRD)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
DeepGMG 0.7459 0.7338 0.6035 0.9977 1.4125 0.2038
MolGAN 0.0000 0.0000 0.0001 0.0149 0.9721 0.2121
GraphGen 0.6478 0.7586 0.6431 0.3184 0.7964 0.1770
GraphRNN 0.5455 0.2941 0.7163 0.2125 0.7639 0.1888
SceneGen 0.8112 0.9486 0.9552 0.6069 1.1274 0.2130
VARSCENEunc 0.9194 0.9374 0.9403 1.0327 1.5619 0.2301
VARSCENEcond 0.9140 0.9372 0.9377 1.4588 1.9218 0.2275
VARSCENEunc (Edge) 0.9216 0.9290 0.9363 1.1150 1.6175 0.2349
VARSCENEcond (Edge) 0.9177 0.9219 0.9343 1.4194 1.9164 0.2290
VARSCENEunc (Node) 0.9063 0.9296 0.9240 1.0671 1.5865 0.2321
VARSCENEcond (Node) 0.9062 0.9387 0.9268 1.2975 1.7934 0.2238
VARSCENEunc (WL) 0.8989 0.9281 0.9217 1.1509 1.6318 0.2345
VARSCENEcond (WL) 0.8979 0.9249 0.9251 1.4902 1.9244 0.2294
VARSCENEunc (SP) 0.9122 0.9317 0.9328 1.1432 1.6431 0.2379
VARSCENEcond (SP) 0.9108 0.9290 0.9354 1.5389 1.9726 0.2334
VARSCENEunc (NSPD) 0.8893 0.9011 0.9044 1.0247 1.5454 0.2276
VARSCENEcond (NSPD) 0.8898 0.8858 0.9065 1.2732 1.7864 0.2204
VARSCENEunc (Node, Edge) 0.8941 0.9254 0.9190 1.1111 1.6225 0.2332
VARSCENEcond (Node, Edge) 0.9029 0.9298 0.9261 1.4332 1.8953 0.2256
VARSCENEunc (Star, Node, Edge) 0.9223 0.9324 0.9425 1.1342 1.6316 0.2357
VARSCENEcond (Star, Node, Edge) 0.9222 0.9267 0.9455 1.4657 1.9168 0.2292
VARSCENEunc (SP, Node, Edge) 0.9103 0.9248 0.9364 1.2269 1.6996 0.2398
VARSCENEcond (SP, Node, Edge) 0.9173 0.9264 0.9416 1.5882 2.0036 0.2339

Table 10. Performance of different graph generative models (analogous to Table 8) for different optimization objectives in the second
stage of our learning for Visual Relationship Detection dataset.
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Visual Genome (VG)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
VARSCENEunc 0.5963 0.4576 0.4055 0.2293 0.1176 0.0147
VARSCENEcond 0.8660 0.5268 0.6226 0.0840 0.0779 0.0135
VARSCENEunc (Star) 0.7779 0.5289 0.4732 0.0863 0.0794 0.0134
VARSCENEcond (Star) 0.6589 0.2630 0.3659 0.1204 0.0869 0.0133

Small-sized Visual Genome (SVG)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
VARSCENEunc 0.9235 0.7049 0.8335 1.0046 0.6556 0.0685
VARSCENEcond 0.9182 0.6964 0.8111 0.9621 0.6417 0.0633
VARSCENEunc (Star) 0.9339 0.7339 0.8505 0.7679 0.6104 0.0667
VARSCENEcond (Star) 0.9235 0.7307 0.8322 0.7654 0.6153 0.0622

Visual Relationship Detection (VRD)
Model Star-Sim Edge-Sim Node-Sim SP-Kernel WL-Kernel NSPD-Kernel
VARSCENEunc 0.9194 0.9374 0.9403 1.0327 1.5619 0.2301
VARSCENEcond 0.9140 0.9372 0.9377 1.4588 1.9218 0.2275
VARSCENEunc (Star) 0.9067 0.9294 0.9275 1.0799 1.5911 0.2306
VARSCENEcond (Star) 0.9074 0.9210 0.9301 1.4106 1.8871 0.2242

Table 11. Performance provided by two variants of VARSCENE, viz., VARSCENE(RBF) which is the default variant having k as the RBF
kernel as defined in Eq. (3) and VARSCENE(Star-Sim) which uses k(G,G′) = cos(ν(G), ν(G′)). Numbers in bold indicate the best
performer.

Effect of Using RBF kernel. Recall that we use RBF kernel in Eq. (3) in our experiments. Here, we compare such an
approach against using a simple cosine-similarity based kernel computation, that is, k(G,G′) = cos(ν(G), ν(G′)). Table 11
summarizes the results, which shows that using RBF kernel provides the performance boost for most similarity metrics.

Efficiency Analysis. Here, we analyze efficiency of different methods. Table 12 summarizes the results, which shows that
training the base VAE model of VARSCENE is fastest on Visual Genome which is the largest dataset. For smaller datasets,
i.e., Small-sized Visual Genome and Visual Relationship Detection, the training time is comparable with baselines. However,
we note that training the MMD optimized decoder is slower in all datasets. The reason for more time in MMD optimization
is that we need to sample a set of graphs (we sample 1000 graphs) at each iteration for computing M̂MD in the objective as
per Eqn. 9. For SVG and VRD datasets specifically, the graph generation process takes a higher amount of time. This is
because its decoders sample stars beyond a limit (we set this limit as 50). In such cases, we sample graphs repeatedly until
we get a valid graph or until we have repeated the procedure for a certain number of times (we set this limit as 20).

VG SVG VRD
DeepGMG 2.0642 3.6121 2.5645
MolGAN 0.1274 0.1128 0.1414
GraphRNN 1.1582 0.0530 0.0435
GraphGen 0.0635 0.0429 0.0319
SceneGen 0.1945 0.0650 0.0510
VARSCENE (pθ) 0.0334 0.0650 0.4188
VARSCENE (pMMD

θ ) 5.3866 22.1826 24.9556

Table 12. Time (in seconds) for one iteration for a fixed batch size |B| = 64.


