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Abstract

The learning to defer (L2D) framework has the
potential to make Al systems safer. For a given
input, the system can defer the decision to a hu-
man if the human is more likely than the model to
take the correct action. We study the calibration
of L2D systems, investigating if the probabilities
they output are sound. We find that Mozannar &
Sontag’s (2020) multiclass framework is not cali-
brated with respect to expert correctness. More-
over, it is not even guaranteed to produce valid
probabilities due to its parameterization being de-
generate for this purpose. We propose an L2D
system based on one-vs-all classifiers that is able
to produce calibrated probabilities of expert cor-
rectness. Furthermore, our loss function is also
a consistent surrogate for multiclass L2D, like
Mozannar & Sontag’s (2020). Our experiments
verify that not only is our system calibrated, but
this benefit comes at no cost to accuracy. Our
model’s accuracy is always comparable (and often
superior) to Mozannar & Sontag’s (2020) model’s
in tasks ranging from hate speech detection to
galaxy classification to diagnosis of skin lesions.

1. Introduction

Machine learning is being deployed in ever more conse-
quential and high-stakes tasks such as healthcare (Zoabi
et al., 2021; Kadampur & Al Riyaee, 2020), criminal justice
(Zhong et al., 2018; Chalkidis et al., 2019), and autonomous
driving (Grigorescu et al., 2020). Thus, the trust and safety
of these systems is paramount (Hendrycks & Dietterich,
2019; Nguyen et al., 2015). One near-term solution is to
ensure a human is involved in the decision making process.
For example, learning with a rejection option (Chow, 1957)
allows the model to abstain from making a decision, instead
passing the burden to a human. The decision to abstain or
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not is usually derived from the model’s confidence. For a
self-driving car, a winding stretch of road could make the
system unconfident in its abilities. The system would then
refuse to drive and forces the human to take control. When
the system becomes confident again (e.g. on a straight road),
it can then take back control from the human.

Learning to defer (L2D) (Madras et al., 2018) is another
framework that supports machine-human collaboration. In
L2D, the human’s confidence is modeled as well as the
machine’s. This allows the system to compare the human’s
and model’s expected performances. Thus, L2D systems
defer when the human is more likely than the model to
take the correct action. Returning to the example of a self-
driving car, an L2D system would pass control to the human
only when it expects the human to drive better than itself.
In addition to safety, such behavior allows for an efficient
division of labor between the human and machine. By
knowing what the human knows, the model is free to adapt
itself to complement the human. The model can concentrate
on performing easy tasks well if it knows a human can be
relied upon for harder tasks.

Most previous work has attempted to improve the overall
accuracy of L2D systems. However, if these systems are to
be used in safety-critical scenarios, then other factors such
as trust, transparency, and fairness are important as well
(Madras et al., 2018). Tschandl et al. (2020) found that Al
systems can mislead physicians into incorrect diagnoses,
even when the doctor is initially confident. To help prevent
such scenarios, we want our systems to be well calibrated.
The output probabilities should reflect the true uncertainties
of the model and human. In other words, the L2D system
should be a good forecaster. If the system says the expert
has a 70% chance of being correct, then the expert should
indeed be correct in about 70 out of 100 cases.

In this paper, we study the calibration of L2D systems. We
focus on Mozannar & Sontag’s (2020) formulation since it
is the only consistent surrogate loss for multiclass L2D. We
find that the Mozannar & Sontag (2020) loss results in mod-
els that are not well-calibrated with respect to expert correct-
ness. The problem is intrinsic: the softmax parameterization
allows the estimator to be greater than one. We propose
an alternative loss based on one-vs-all classifiers that does
not have this issue. We use the method of error correcting
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output codes (Ramaswamy et al., 2018) to show the multi-
class L2D problem reduces to multiple binary classification
problems. In turn, our one-vs-all surrogate is a consistent
loss function, thus making it a superior alternative to Mozan-
nar & Sontag’s (2020) loss. In experiments ranging from
hate speech detection to galaxy classification to diagnosis of
skin lesions, our model always performs comparably, if not
better than, the Mozannar & Sontag (2020) formulation in
addition to other L2D frameworks (e.g. Okati et al. (2021))
and common baselines (e.g. confidence thresholds).

2. Background: Multiclass Learning To Defer

Mozannar & Sontag (2020) proposed the only known con-
sistent (surrogate) loss function for multiclass learning to
defer (L2D). Hence, for much of this paper, we focus on
their formulation. We discuss other related work in Section
5. We provide a technical overview of L2D in this section
before moving on to our innovations in subsequent sections.

Data We first define the data for multiclass L2D. Let X
denote the feature space, and let ) denote the output space,
which we will always assume to be a categorical encoding
of multiple (K) classes. We assume that we have samples
from the true generative process: x,, € X denotes a feature
vector, and y,, € Y denotes the associated class defined
by Y (1 of K). The L2D problem also assumes that we
have access to (human) expert demonstrations. Denote the
expert’s prediction space as M, which is usually taken to be
equal to the label space: M = )). The expert may also have
access to additional information unavailable to the model.
The expert demonstrations are denoted m,, € M for the
associated features x,,. The combined N-element training
sample is D = {x,,, Y, Mn }1_ ;.

Models Turning to the models, Mozannar & Sontag’s
(2020) L2D framework is built from the classifier-rejector
approach (Cortes et al., 2016a;b). The goal is to learn two
functions: the classifier, h : X — ), and the rejector,
r: X — {0,1}. When r(x) = 0, the classifier makes the
decision in the typical way. When r(x) = 1, the classifier
abstains and defers the decision to a human (or other backup
system). The rejector can be interpreted as a meta-classifier,
determining which inputs are appropriate to pass to h(x).

Learning The learning problem requires fitting both the
rejector and classifier. When the classifier makes the pre-
diction, then the system incurs a loss £(h(x),y). When the
human makes the prediction (i.e. 7(x) = 1), then the system
incurs a 1oss Lexp(m, y). Using the rejector to combine these
losses, we have the overall classifier-rejector loss:

L(h,r) =

Exeym [(1 — () £(h(x),¥) + (%) lexp(m,y)]

where the rejector is acting as an indicator function that
controls which loss to use. While this formulation is valid
for general losses, the canonical 0 — 1 loss is of special
interest for classification tasks:

L(),l(h,’f’) =
Exym[(1 = 7(x)) I[a(x) #y] + r(x) [[m # y]]

where I denotes an indicator function that checks if the
prediction and label are equal or not.

2

Softmax Surrogate The key innovation of Mozannar &
Sontag (2020) is the proposal of a consistent surrogate loss
for Lo_1. They accomplish this by first unifying the clas-
sifier and rejector via an augmented label space that in-
cludes the rejection option. Formally, this label space is
defined as Y+ = Y U { L} where L denotes the rejection
option. Secondly, Mozannar & Sontag (2020) use a re-
duction to cost sensitive learning that ultimately resembles
the cross-entropy loss for a softmax parameterization. Let
gr © X — Rfor k € [1, K] where k denotes the class
index, and let g; : X — R denote the rejection (_L) option.
These K + 1 functions are then combined in the following
softmax-parameterized surrogate loss:

VIR, gL, Y, m) =

1 exp{gy (@)}
o (zyw exp{gy«m)})

TR exp{gL(x)}
I[ y| log (Zy'ey* exp{gy/(m)}> .

The intuition is that the first term maximizes the function
gr. associated with the true label. The second term then
maximizes the rejection function g | but only if the expert’s
prediction is correct. At test time, the classifier is obtained
by taking the maximum over k € [1,K]: § = h(z) =
arg maxye(1 i) g (). The rejection function is similarly
formulated as r(x) = [[g, () > maxy gi(x)]. In practice,
Mozannar & Sontag (2020) introduce a hyperparameter
a € R that re-weights the classifier loss when the expert is
correct. Using a < 1 encourages a higher degree of division
of labor between classifier and expert. Yet for all o # 1, the
surrogate is no longer consistent.

bsm(g1, -

3)

The function ¢gy is the first convex (in g) consistent sur-
rogate loss proposed for L2D (Mozannar & Sontag, 2020).
The minimizers g7, ..., g%, g} of ¢sm also uniquely min-
imize Lo_1(h,r), the 0 — 1 loss from Equation 2. The
resulting optimal classifier and rejector satisfy:

h*(x) = argmax P(y = y|x),
yey
“)
ri(@) =1 |P(m = ylz) > maxP(y = y|z) |,
yey
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where P(y|x) is the probability of the label under the data
generating process, and P(m = y|x) is the probability that
the expert is correct. Recall that, by assumption, the expert
likely will have additional knowledge not available to the
classifier. This assumption is what allows the expert to
possibly outperform the Bayes optimal classifier.

3. Problem with Softmax Parameterization

The minimizers of the surrogate proposed by Mozannar
& Sontag (2020) should correspond to the Bayes optimal
classifier and rejector. In this section, we investigate if the
resulting model can correctly estimate the underlying prob-
ability that the expert is correct. We find that, unfortunately,
the resulting models are not well calibrated. The problem
lies in the softmax parameterization: it yields a degener-
ate estimate of P(m = y|x). Specifically, the estimator is
unbounded, taking on values larger than one. We do not
study the calibration of the classifier since post-hoc methods
(e.g. temperature scaling (Guo et al., 2017)) can be applied
to the classifier sub-components of both our method and
Mozannar & Sontag’s (2020).

Probabilistic Rejector We first introduce the probabilistic
rejection function. One may be tempted to work directly
with the deferral function from Equation 3:

explgL(z)}
yevs explgy ()}

pi(w) = 5 o)

However, inspecting Mozannar & Sontag’s (2020) Theorem
1, we see that p*} () = P(m = y|x)/(1 + P(m = y|x)) at
the Bayes optimum. Rearranging this equation gives the
appropriate estimator for P(m = y|x):

~ pi(z)
pm(m) - 1 _pj_(w).

The full derivation is in Appendix C.1. A crucial observa-
tion is that p,(x) € (0, 00), meaning that the function is
unbounded from above. This will be of consequence when
considering if it is calibrated.

(6)

Calibration We next define the relevant notion of calibra-
tion. For the function p,,(x) from Equation 6, we call py,
calibrated if, for any confidence level ¢ € (0, 1), the actual
proportion of times the expert is correct is equal to c:

Pm=y|pn(x)=c) =c @)

This statement should hold for all possible instances x with
confidence c. Since expert correctness is a binary classifi-
cation problem, distribution calibration, confidence calibra-
tion, and classwise calibration all coincide (Vaicenavicius
et al., 2019).

Calibration of Expert Correctness We next examine
if Equation 6 is a valid estimator of the probability that
the expert’s prediction is correct. Unfortunately, py, () is
unbounded; we formalize this fact in the statement below.

Proposition 3.1. If 3 x € X for which p) (x) > 1/2, then
pm(x) > 1. Hence py(x) cannot estimate P(m = y|x).

This proposition is obvious from the fact that py, () is the
odds of py (x) € (0,1). Proposition 3.1 does not imply
a problem with the consistency of Mozannar & Sontag’s
(2020) surrogate loss. Rather, it means that the softmax
parameterization admits many solutions that do not corre-
spond to valid estimators for P(y = m|x). In other words,
the Bayes solutions seem to be ‘fragile’ in the sense that
they require p, () < 1/2 while its true range is (0, 1).

To make matters concrete, consider the case in which the
expert is always correct, P(m = y|x) = 1, while the class
distribution is maximally entropic, P(y|z) = 1/K. From
Equation 6, a perfect expert implies that p, (x) = 1/2. In
turn, py(x) = 1/(2K). For K = 2, the softmax in Equation
3 would produce the vector [1/4, 1/4, 1/2]. While the
resulting model would indeed correctly defer to the expert
(since g; > gi), the output is not what we might expect
for a case in which the classifier is useless and the expert is
an oracle. Intuition suggests that we should see an output
like [e/2, €/2, 1 — €] where € is a small positive constant,
as this seems to more accurately reflect the expert’s clear
superiority. In practice, perhaps optimization is finding
well-performing but non-optimal solutions like this one.

Experimental Confirmation We now establish that
pi(x) > 1/2 does occur in practice. We use a CIFAR-
10 simulation that is similar to Mozannar & Sontag’s (2020)
CIFAR-10 experiment. The expert is assumed to have non-
uniform expertise: 75% chance of being correct on the first
five classes, and 20% (i.e. random) chance on the last five
classes. Subfigure 1a shows a histogram of the values of
pm () as observed on the CIFAR-10 test set. The blue bars
represent the values less than or equal to one. The red bars
show the pathological cases greater than one. 39.4% of the
test samples (3940 instances) resulted in py(z) > 1.

We also consider modifying pp, () so that all values greater
than one are rounded down to one. In this case, since now
pm(x) is forcibly restricted to (0, 1], we can perform stan-
dard evaluations of calibration, such as plotting a reliability
diagram and computing expected calibration error (ECE).
In this case, the relevant ECE is defined as

ECE(pm) = Ex|P(m =y | pm(x) = ¢) — ¢|.

Subfigure 1b shows the reliability diagram and reports the
ECE for confidence calibration when py, () is restricted.
Unsurprisingly, we still observe that the model’s estimate of
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Figure 1. Calibration of Softmax Parameterization on CIFAR-10: Subfigure (a) reports the observed values of pm(x) on the CIFAR-10
simulation study. We find that 39.4% of test samples have pm(x) > 1 (denoted in red). Subfigure (b) reports a reliability diagram and the
expected calibration error (ECE) when pn (x) is restricted to (0, 1]. The shade of the bin color represents the proportion of samples in the
bin (darker shade, more samples). Subfigure (c) shows the distribution of risk estimates. Note the clear bias towards zero error.

the expert’s correctness is uncalibrated, exhibiting overcon-
fidence. The ECE is 7.58%. For comparison, our one-vs-all
method has an ECE of 3.01%, as we will describe later.
Subfigure Ic plots the distribution of risks: 1 — py(x). Due
to the probabilities being clamped to one, we see a false
mode at zero error. In turn, the system is not transparent
about the actual risk that decision makers would encounter.

Proxy via Deferral Function Returning to Equation 5,
it is possible that the deferral function p, (x) is a useful
estimator of P(m = y|x), despite that theory suggests oth-
erwise. Here the range is no longer a problem because
pi(x) € (0,1). Moreover, as discussed in the example
above, intuition suggests that p, (x) should correlate with
the expert’s degree of superiority to the classifier. In the
experiments (Section 6.1), we investigate if the proxy p is
a useful estimator of P(m = y|x). We ultimately find that
it is not, as it results in ECEs above 30%.

Applicability of Post-Hoc Techniques There are a range
of post-hoc techniques designed to fix mis-calibration in
classifiers, e.g. temperature scaling (Guo et al., 2017),
Dirichlet calibration (Kull et al., 2019), top-label calibra-
tion (Gupta & Ramdas, 2022). These techniques employ
a calibration map (Vaicenavicius et al., 2019): a usually
simple transformation that is applied to the confidence es-
timates to re-calibrate them. Such a map is fitted on a
held-out validation set using some goodness-of-fit measure,
e.g. log-likelihood. Due to the softmax’s range problem and
interdependence of its g functions, we do not know of a
general procedure for defining and fitting a calibration map
for the L2D setting.

4. Consistent and Calibrated L2D with a
One-vs-All Surrogate Loss

Given the difficulties in calibrating the softmax parame-
terization, we now consider an alternative. We propose a
one-vs-all parameterization (a.k.a. one-vs-rest). We show
that the accompanying loss function is calibrated as well as
a consistent surrogate for the 0 — 1 loss. Thus, our novel loss
enjoys the same benefits as Mozannar & Sontag’s (2020)
formulation without its drawbacks.

4.1. One-vs-All-Based Surrogate Loss

We propose the following one-vs-all-based surrogate for the
same L2D problem described in Section 2. Again assume
we have K + 1 functions g1 (x), ..., gk (X), g1 (x) such
that g : X — R. And again, we observe training data of
the form D = {x,, yn, mn})_;. Our one-vs-all (OvA)
surrogate loss takes the following point-wise form:

VIR, L&, Y, m) =

Z $l—gy ()] +

y' eV, y' #y

dl=gL(@)] +1[m =y (dlgL(x)] — d[—gL(®)])

where ¢ : {£1} x R — R, is a binary surrogate
loss. For instance, when ¢ is the logistic loss, we have
o[f(x)] = log(1 + exp{—f(x)}). Our formulation is the
OVA analog of Mozannar & Sontag’s (2020) softmax-based
loss. The g-functions are entirely the same; the difference
is in how they are combined. Moreover, the classifier and
rejector are computed exactly the same as in the softmax
case: h(z) = argmaxyepy k) 9k (), 7(x) = llgi(z) >
maxy, g, (x)]. In the experiments, we found no need for a re-

Povalgr,- -

Plgy(x)] + (8)
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Figure 2. Calibration and Accuracy of OvA Parameterization on CIFAR-10: Subfigure (a) reports a reliability diagram and the expected

OvA

calibration error (ECE) for p,"* () (Eq. 9). Darker bin shade means more samples in the bin. Subfigure (b) shows the distribution of risk
estimates. Subfigure (c) reports the accuracy as a function of an expert with increasing expertise (left) and of varying coverage (right).

weighting parameter that is analogous to a in Mozannar &
Sontag’s (2020) loss. One can be introduced similarly by re-
weighting the first two terms in Equation 8 when the expert
is correct. Rifkin & Klautau (2004) found OvVA classifiers
to work just as well as other approaches for multiclass clas-
sification, but in terms of general performance, OvA might
falter in cases of data scarcity or severe class imbalance.

‘We next turn to the probabilistic formulation of the rejector
and classifier. Starting with the former, the OvA formulation
directly estimates the probability that the expert is correct:

P(m =ylz) ~ p2*(x) = (1+exp{—g.(x)}))" . (9)

pO¥ has the appropriate range of (0, 1). Moving on to the
classifier, the foremost downside of the OvA formulation is
that we can no longer compute normalized probabilities for
all classes. Rather, we can estimate only the probability of
the most likely class:

max P(y = k|lz) ~ max pQ*(x)

ke[l,K] ke(l,K]
: _, (0
= ké?f‘,’é]( + exp{—gr(x)}) .

Hence, we can evaluate the confidence calibration of the
OVA classifier but not its distribution calibration. This is
a worthwhile trade off for having an appropriate estimator
for P(m = y|x) since distribution calibration is nearly im-
possible to achieve anyway (Zhao et al., 2021). Multiclass-
to-binary reduction has been shown to be an effective cali-
bration strategy for traditional classifiers (Gupta & Ramdas,
2022).

4.2. Theoretical Analysis

We now justify the OvA loss by showing that, like Mozannar
& Sontag’s (2020) loss, ours is a consistent surrogate for

the 0 — 1 L2D loss (Equation 2). On one hand, this result is
not surprising since our loss is the natural OvA-analog of
the softmax-based loss. However, we cannot construct our
consistency proof in the same direct manner as Mozannar
& Sontag (2020). When we differentiate with respect to
a particular g(), the other g’s drop from the OVA loss
(but not from the softmax loss). We proceed instead by the
method of error correcting output codes (ECOC) (Dietterich
& Bakiri, 1995; Langford et al., 2005; Allwein et al., 2001;
Ramaswamy et al., 2014), a general technique for reducing
multiclass problems to multiple binary problems. We sketch
the approach here and provide the details in Appendix C.2.

ECOC requires that we construct a coding matrix, which
for our case is M € {—1, +1}X*(K+1) with K being the
number of classes in the multiclass problem. Each column
then corresponds to a binary problem. The entries of the
matrix are determined as follows. The K x K sub-matrix
M.k ,1:x has +1 along its diagonal and —1 on the off-
diagonal. The entries in the K + 1-th column are given by
the function my, x41(m) = (—1 + 2I[y = m]). Now that
we have constructed the coding matrix, we use Equation 1
from Ramaswamy et al. (2018) to derive the closed form
expression of the surrogate loss in Appendix B (Equation
8). We then arrive at our final result:

Theorem 4.1. For a strictly proper binary composite loss
& with a well-defined continuous inverse link function y~?,
Vo (Equation 8) is a calibrated surrogate for the 0 — 1
learning to defer loss (Equation 2).

The complete proof is in Appendix C.2. We also provide
background information on calibration and consistency in
Appendix A, which includes a discussion of proper binary
composite losses. Lastly, assuming minimizability (Stein-
wart, 2007)—i.e. that our hypothesis class is sufficiently
large (all measurable functions)—the calibration result from
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Theorem 4.1 implies consistency.

Corollary 4.2. Assume that g € F, where F is the hy-
pothesis class of all measurable functions. Minimizability
(Steinwart, 2007) is then satisfied for b o,a, and it follows
that Po,a is a consistent surrogate for the 0 — 1 learning to
defer loss (Equation 2).

Thus, Poya is also a consistent loss function for L2D. This
means that the minimizer of the proposed loss function
VPoya over all measurable functions agrees with the Bayes
optimal classifier and rejector (Equation 4).

5. Related Work

Learning with a reject option (a.k.a. rejection learning) is
a long-studied problem, dating back to (at least) Chow
(1957)’s work on an optimal learning rule for a fixed re-
jection rate. This initial work then stimulated a range
of follow-up approaches, which can be categorized into
two types: confidence-based (Bartlett & Wegkamp, 2008;
Yuan & Wegkamp, 2010; Jiang et al., 2018; Grandvalet
et al., 2009; Ramaswamy et al., 2018; Ni et al., 2019) and
classifier-rejector (Cortes et al., 2016a;b). The classifier-
rejector approach has been well-studied for binary classifi-
cation and resulted in theoretical guarantees (Cortes et al.,
2016a;b). Ni et al. (2019) was the first to seriously study
the multi-class formulation and found that the existing the-
ory was hard to extend to this more general case. Most
recently, Charoenphakdee et al. (2021) proposed a surrogate
loss for rejection learning for general classification, taking
inspiration from cost-sensitive learning.

For safety-critical applications, rejection learning is a
promising paradigm. However, its learning procedure com-
pletely ignores the downstream experts who will eventu-
ally make decisions for the rejected samples. Madras et al.
(2018) introduced an adaptive rejection framework termed
learning to defer (L2D). L2D aims to directly model the
interaction between the (usually human) decision makers
and the autonomous system. Madras et al. (2018) propose a
mixture of experts model for this end. Raghu et al. (2019)
approaches the same problem by learning a classifier and
comparing the expert’s certainty and the classifier’s cer-
tainty, deferring if the latter is lower. Wilder et al. (2020)
use the same mixture of experts framework as Madras et al.
(2018) and apply the same confidence-based deferral policy
as Raghu et al. (2019).

In the work closest to ours, Mozannar & Sontag (2020) study
the L2D classification problem with generality, finding the
algorithms proposed by Madras et al. (2018) are inconsis-
tent. They also study the limitation of confidence-based
approaches (Raghu et al., 2019). Moreover, they propose
the first consistent loss for multiclass L2D, establishing the
importance of having a consistent surrogate. Our work,

on the other hand, is the first to study the calibration of
confidence estimates within L2D systems.

6. Experiments

We perform two types of experiments. In the first, we verify
that our OVA loss results in a better calibrated model for
P(m = y|x) than Mozannar & Sontag’s (2020) loss. We
verify this in a CIFAR-10 simulation in Section 6.1. We
then show that the softmax loss’s mis-calibration has conse-
quences for safety-critical decision making. We train models
for each loss on HAM10000, a data set for the diagnosis of
skin lesions (Tschandl et al., 2018), showing in Section 6.2
that our OVA model assesses risk more accurately than its
softmax counterpart.

In the second type of experiment shown in Section 6.3,
we assess the overall accuracy on hate speech detection,
galaxy classification, and skin lesion diagnosis. We com-
pare our OvA-based method to Mozannar & Sontag’s (2020)
as well as other state-of-the-art methods, such as differen-
tiable triage (Okati et al., 2021). We find that our OvA
models are at least competitive with, if not superior to, the
best-performing competitor in all experiments. Thus, our
OvA method enjoys the benefits of calibration without any
sacrifice to predictive performance.

In all our implementations of Mozannar & Sontag’s (2020)
loss, we set the re-weighting parameter as a = 1. Although
Mozannar & Sontag (2020) observe better performance
when tuning o, o = 1 is the only value for which their sur-
rogate is provably consistent. The same is true for our loss
and so our OVA surrogate does not include re-weighting
either. Comparing these losses in their ‘purest’ forms is
appropriate since our primary experimental concern is vali-
dating calibration. For all OvA results, we use the logistic
loss as the surrogate loss for binary classification. Results
are averaged over re-runs with six different random seeds.
Our software implementations are publicly available.'

6.1. Comparison to the Softmax Loss on CIFAR-10

Data, Model, and Training We use the standard train-
test splits of CIFAR-10 (Krizhevsky, 2009). We further
partition the training split by 90% — 10% to form training
and validation sets, respectively. We simulate the expert
demonstrations from the training labels, as is described in
detail below. We use the same neural network and training
settings for both the OvA and softmax methods. Following
Mozannar & Sontag (2020), we use a wide residual net-
works (Zagoruyko & Komodakis, 2016) to parameterize the
g(x) functions. We train a 28-layer network using stochas-
tic gradient descent (SGD) with momentum and a cosine
annealing schedule for the learning rate. We employ early

'https://github.com/rajevv/OvA-L2D
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Figure 3. Risk for Softmax vs OvA models on HAM10000: Subfigure (a) reports the distribution of risks for the softmax method: 1 — pm ().
Subfigure (b) reports the distribution of risks for the OvA method: 1 — p2"* (). We observe markedly more overlap for the latter. The
Wasserstein distance between the empirical and true error distributions is 8.02 £ 1.37 for OvA and 26.72 £ 1.77 for softmax.

stopping, terminating training if the validation loss does not
improve for 20 epochs. Additional experimental details can
be found in Appendix F.

OvA Method’s Calibration We now test our OvA
method’s calibration in the same experimental setting used
to test the softmax method in Section 3. To reiterate, the
expert has a 75% chance of being correct on the first five
classes and random chance on the last five. Figure 2a reports
areliability diagram and the ECE. Comparing to the softmax
results in Figure 1b, our OvA loss produces a model that has
an over fifty percent reduction in ECE: 7.58% for softmax,
3.01% for OvA. Figure 2b reports the empirical distribution
of error estimates: 1 — p2* (). Unlike the corresponding
softmax results in Figure 1c, the OvA method produces
sharper modes nearer to the true error values. Moreover,
OvVA does not have a false mode at zero.

Comparing Calibration Across Estimators We next test
OvVA’s calibration against not only the softmax but also the
proxy function p; from Equation 5. We consider two types
of experts: a useful one and a random one. The useful one
is an oracle (i.e. always correct) for the first seven classes
and predicts randomly for the last three classes. The random
expert predicts uniformly over all classes. Moreover, we
consider when the data is useful, i.e. the original CIFAR-10
training split, and when it is random, i.e. training labels are
uniformly random.

ECE results for the OvA (Eq. 9), softmax (Eq. 6), and proxy
(Eq. 5) methods are reported in Table 1. OVA has the best
ECE in all but one case—the one in which both expert

Expected Calibration Error (%) on CIFAR-10

OvA Softmax  Proxy
Both Random 0.53 0.97 0.04
Random Expert 0.68 3.72 2.83
Random Data 2.05 2.07 39.06
Both Useful 1.68 3.32 37.15

Table 1. ECE (%) on CIFAR-10 Simulation. We compare calibra-
tion across the three parameterizations considered: OvA (Eq. 9),
softmax (Eq. 6), and proxy (Eq. 5).

and data are random. Yet the p; proxy is clearly not a
viable estimator since it has an egregious ECE of 37.15%
when both data and expert are useful. Furthermore, its ECE
is an even worse 39.06% when the expert is useful and
data is random. In general, the softmax’s true estimator
Pm 1s competent but still consistently worse than the OvA
estimator. We compare the ECE values for the classifier for
OVA and softmax in Table 2 in Appendix D.1.

System Accuracy and Coverage For the final
CIFAR-10 experiment, we compare the OVA sys-
tem’s accuracy to the softmax’s. The expert in this case has
a 70% chance of being correct if the image belongs to the
classes [1, k] and random chance if it belongs to classes
[k, 10]. We then vary k from k = 2 to k = 8. The left plot
in Figure 2c shows accuracy vs k. Our OvA model (blue)
has a modest but consistent advantage over the softmax
model (red).

The right plot in Figure 2c reports the accuracy vs coverage,
where coverage is the proportion of samples that the system
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Figure 4. Accuracy on HateSpeech, Galaxy-Zoo, and HAM10000: The subfigures report the classification error of OvA method, softmax
method, and baselines for three data sets. OVA (green) is competitive in all cases and is superior for HateSpeech and Galaxy-Zoo.

has not deferred. Classifier accuracy is the accuracy on
the non-deferred samples. An L2D system ideally should
have high coverage and high accuracy. Again, the results
show the OVA method’s (blue) advantage at most coverage
levels. Note the OvA’s significant superiority at low cov-
erage (0.2 — 0.3). Here the rejector must carefully choose
which instances to pass to the classifier. We conjecture that
OvVA’s success is likely due to OvA’s superior calibration in
estimating when to defer.

6.2. Risk Assessment on HAM10000

Data, Model, and Expert We again study risk assessment
but this time for a high-stakes medical task. HAM10000
(Tschandl et al., 2018) is a data set of 10,015 dermatoscopic
images containing seven categories of human skin lesions.
We partition the data into 60% training, 20% validation,
and 20% test splits. Each image includes metadata such
as age, gender, and diagnosis type of the lesion. For our
simulated expert model, we train an 8-layer MLPMixer (Tol-
stikhin et al., 2021). To simulate the expert having extra
information, we input the image metadata into to the final
feedforward layer. This model has a classification accuracy
of 74% (see Table 3). For the classifier, we fine-tune a
34-layer residual network (ResNet34) (He et al., 2016), fol-
lowing Tschandl et al. (2020). We use data augmentations
such as random cropping, reflection, and horizontal flipping.

Results Figure 3 visualizes the expert’s predicted error
and the expert’s true error on the HAM10000 test set. Sub-
figure (a) shows results for the softmax method and (b) for
our OvA method. We restrict p, () € (0, 1] for the softmax
surrogate. The gap between the predicted and true error is
substantially reduced for OvA. We confirm this quantita-
tively by computing the Wasserstein distance between the

true and predicted error. The distance is 8.02 £ 1.37 for
OvA and 26.72 + 1.77 for softmax. OvA provides clearly
superior estimates of the expert’s error.

6.3. Overall Accuracy

Data Lastly, we examine the OvA method’s classification
error on three real-world tasks: HAM10000 (Tschandl et al.,
2018) for diagnosing skin lesions, Galaxy-Zoo (Bamford
et al., 2009) for scientific discovery, and HateSpeech
(Davidson et al., 2017) for detecting offensive language.
Following Okati et al. (2021), we use a random sample
of 10,000 images for Galaxy-Zoo. We use 60% train,
20% validation, and 20% test splits for HAM10000 and
HateSpeech.

Baselines We compare the OvA- and softmax-based sur-
rogates to three baselines. The first is differentiable triage
(Okati et al., 2021), a policy-learning method. The other
two baselines are confidence-based methods that do not en-
joy theoretical guarantees. The two are the score baseline
(Raghu et al., 2019) and the confidence baseline (Bansal
etal., 2021). We give more details about the baselines and
their implementation in Appendix E.

Models and Experts We closely follow the setup of Okati
et al. (2021) for these experiments. Our base model is a
50-layer residual network (ResNet50) for Galaxy—-Zoo.
For HateSpeech, we first embed the tweet’s text into a
100-dimensional feature vector using fasttext (Joulin et al.,
2016). Our base model for HateSpeech is the text classi-
fication CNN developed by Kim (2014). For the surrogate
loss methods, we sample the expert demonstrations from
the expert model’s predictive distribution. For training the
surrogate models, we early stop if the validation loss does
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not improve for 20 epochs. We train the models using Adam
(Kingma & Ba, 2015), a cosine-annealed learning rate, and
a warm-up period of 5 epochs. For other baselines, we use
the same experimental setup as Okati et al. (2021).

Results Figure 4 reports the classification accuracy for
each data set and each baseline as a function of the budget.
The budget is the upper limit on the proportion of samples
the system can defer to the expert. The OvVA surrogate is
competitive among all baselines for the range of budgets
considered. This shows that the OvA does not sacrifice
accuracy for improved calibration. Rather, our model enjoys
the benefits of both predictive performance and uncertainty
quantification. OvA’s performance is also quite stable across
random seeds.

7. Conclusions

In human-AI collaboration, it is vital that the system be
reliable and trusted by the human. Having a well-calibrated
system—one that is a good forecaster—can help engender
this trust. Our work investigates confidence calibration for
the softmax surrogate loss, which previously was the only
consistent surrogate for multiclass L2D. We find that the
softmax parameterization suffers from degenerate estimates
of expert correctness. We solve this issue by deriving an
alternative loss function that is also consistent. We exper-
imentally show that our one-vs-all loss results in models
better calibrated than those trained with the softmax-based
surrogate. In future work, we plan to investigate calibration
in non-surrogate-based L2D systems, such as differentiable
triage (Okati et al., 2021).
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A. A Primer on Calibration and Consistency for Classification
A.1. A General Classification Problem and Surrogate Losses

Given X C R™ as the input space, and )) = [n] as the output label space, we have an unknown distribution D over X’ x ).
The output prediction label space is Y= [k], and in general classification problem & and n can be different. The goal of the
classification problem then is to learn a mapping h : X — Y. We assess the performance of the prediction function h via a
loss function ¢ : ) X )7 — R, and we aim to find i with small ¢ -risk which is defined as follows:

Ro[h] = Egynn [ (y, h ()] (11)

We define the Bayes (-risk R%* as the minimal ¢-risk one can hope to achieve for the distribution D, i.e R%* =
inf, v,y RY5[h]. In practical settings , the classification learning problem assumes access to the training sample {z;, y; } ¥,
drawn independently and identically distributed from D, and the learning algorithm seeks to learn A by minimizing an
empirical version of £ -risk R4 [h]. For h € H, R [h] is defined as

| X
= NZN%W(:@)) (12)
i=1

An important notion of success for such a learning algorithm is the convergence of R% [hs] — R%*, i.e. when the learning
algorithm receives increasingly large sample S ~ DY, the (-risk of the function hg returned by the learning algorithm
converges in probability to the Bayes ¢-risk, written formally as

Ve > 0 Pg.py (R%[hs] > RY" + e) —0as N — 00 (13)

However, minimizing the ¢-risk (similarly, empirical ¢-risk) is computationally difficult for some classes of loss functions.
For instance, for the misclassification loss £y_1 : (y, %) — I(y # §), computationally minimizing ¢ — risk is NP-hard. Thus,
a surrogate loss () over a surrogate prediction space C C R* is generally employed as a replacement for the target loss

o).

For a surrogate prediction space C C R*, a surrogate loss ¢ : ) x C — R, the goal is to learn a function f : X — C over
some suitable class of functions F, and a suitable decoding function g : C — )). We then have the usual notions of RY H1f]
and R% *. An important question in such a setting is whether the convergence R;g [fs] — Ri" implies the convergence

R5[go f] — R%*. A positive answer to this question is necessary for the success of the classification problem learned by
minimizing a surrogate loss ¢(-), and it is formally known as the consistency of the surrogate loss ¢(-) w.r.t. the target loss
£(-) as defined below:

Definition A.1. (F-Consistency). A surrogate loss function ¢ () is said to be F-consistent with respect to the loss function
¢(-) if for any sequence of functions f,, € F

Rplfal = RE" = Rplgo fu] = RE (14)
for all distributions D.

Define n, (x) = P(y = y|x = «) for each y € ). x and y are the realizations of the random variables x and y respectively
over X x ). Then, we can write R% [h] as

RZD [h] = Eenx

Sy @) £y, h <z>>] = B [11(2)" € (h (2)) (s)

where n(z) = [ (z),72(2), ..., m0(2)]", and £(h(x)) = [((y = 1,h(x)),L(y, (@) ,...,L(y =n,h(z))]". The
quantity n(z)?€(h(x)) is known as the inner ¢ — risk denoted as Cf](w)w[h]. More generally, Vo € X, Vn € [0,1]",
Cfm[h} :=nTL(h(x)) is known as the inner (-risk. We also define Bayes inner (-risk Cf,’; =inf; v,y Cfm[h]. We can
also define these quantities for the surrogate loss ¢(-). A property called Calibration of the inner -risk of the surrogate
loss ¥(-) w.r.t. inner (-risk is then the necessary condition for the consistency of the surrogate loss ¥ (-) w.r.t £(-), and is
usually a powerful tool for establishing and studying consistency for surrogate losses. It is formally defined as follows:



Calibrated Learning to Defer with One-vs-All Classifiers

Definition A.2 (Steinwart (2007)). (F-Calibration). A surrogate loss function ¢ (-) is said to be F-calibrated with respect to
the loss function ¢(+) if, for all e > 0, n € [0, 1]™, and & € X, there exists 6 > 0 such that for any function f € F

2 % ¢ L%
CoLlf] <Chi+0 = Chlgofl<Chh+e (16)

As stated before, F-calibration is a necessary condition for F-consistency. However, with the satisfaction of an additional
condition called minimizability(Steinwart, 2007), F-calibration also implies F-consistency. We note that when F = Fy,
i.e. when the hypothesis class consists of all measurable functions, minimizability condition is satisfied. Thus, in such a
case, it is enough to verify the calibration property of the surrogate loss to ensure the consistency of the surrogate loss w.r.t.
the target loss. Intuitively, a surrogate loss (-) is said to be calibrated with respect to the target loss ¢(-) if minimizing
¥(+) results in a classifier f with suitable decoding function g whose inner (-risk is close to the Bayes inner (-risk for
each ¢ € X. Moreover, with an additional condition of minimizability, calibration theoretically guarantees that for each
x € X, the optimal solution of the inner 1)-risk minimization problem agrees with the optimal solution function of the ¢-risk
minimization problem evaluated at . We state some important results for Binary Classification in the next section, and refer
the reader to Steinwart (2007) for more details.

A.2. Calibration of Binary Surrogate Losses

Following the notation in the previous section, we have ) = {—1,1}. Here n(x) = P(Y = 1|x = x). We define the
inner (-risk as Cf;,m[h] =nl(1,h(x)) + (1 —n)€(—1,h(x)). Similarly, we define inner 1)-risk for a surrogate loss
1+ Y x C — R, acting on a surrogate prediction space C C R. The calibration of binary surrogate losses (especially
margin-based losses) with respect to the misclassification loss £y_1 has been widely studied in the literature (Bartlett et al.,
2006). In this section, we state some of the results in this direction.

Definition A.3 (Bartlett et al. (2006)). For a surrogate prediction space C C R, we say a binary classification surrogate loss
1 : Y x C — Ry is classification-calibrated if, for any n # %, we have

inf  CY_[f] > inf CY_[f] a7
f@(n-3) " fla) "

The above definition states that minimizing a calibrated surrogate loss ¢ (+) can give us the Bayes optimal binary classifier. It
is well known that a convex #)(+) is classification calibrated iff ¢) is differentiable in second argument at 0, and ¢ (-,0) < 0
(Bartlett et al., 2006).

A.3. Binary Proper Losses and Proper Composite Surrogate Losses

In this section, we briefly review binary proper losses and proper composite surrogate losses. Recall the definition of C}ﬁ =L/
from Section A.2 for some loss ¢ : {—1,1} x C — R... To simplify the notation, we rewrite C\ ,[f] = C¥ (1, f (x)) =
C¥ (n,u) where u = f (). Next, we define proper composite losses.

Definition A.4 (Ramaswamy et al. (2014)). For C C R, a surrogate loss function ¢ : {—1,1} x C — R is called proper
composite loss if there exists a strictly increasing link function + : [0, 1] — C such that:

v (p) € argminC¥ (p,u),V p € [0,1]
uel

If the above minimizer is unique for all p € [0, 1], then we call the surrogate loss strictly proper composite loss.

An important property of strictly proper composite losses is that their minimization leads to Fisher consistent class probability
estimates (Buja et al., 2005). Logistic Loss (¢ (y, u) = log (1 + exp (—yu)) is a common example of a strictly composite
proper composite loss with the inverse link function v~1 = Trexp(—a) - Thus, if f : & — R is learnt by minimizing the
logistic loss, then p, = m acts as a class probability estimate. Furthermore, strictly proper composite losses are
classification calibrated (Reid & Williamson, 2010). Thus, based on the definition of calibration of the binary surrogate

losses(Section A.2), we can write the final predictor learnt by minimizing the logistic loss as:

1

hl) = sign(f (z)) = sign(p() — ) (1)
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A 4. Code Based Surrogates for Multiclass Classification

Code Based methods are a class of classification techniques where some code matrix is used to decompose the multiclass
classification problem into multiple binary classification problems. Mention could be made of error-correcting coding
mechanism (Dietterich & Bakiri, 1995; Langford et al., 2005; Allwein et al., 2001). We briefly describe the setup here, and
refer the reader to Ramaswamy et al. (2014) for full details. The goal of such a code based mechanism it to use a code
matrix M = {#£1,0}"** to decompose a n-class classification problem into k binary classification problems. Following
the notation from Section A.1, we use M to split the training sample S = {(z;,y;)}¥ ; into k-training samples S ; for each
j € [k] such that S; = {(z;, M,, ;);i € [1,N], M,, ; # 0}. Thus, each S; is a subset from the original .S with output
(binary)labels replaced provided by the M. For C C R, we use these Sj to learn a k-binary classifiers f; : X — C. Thus,
for each x € X, we get a prediction f(x) = [f1 (x), ..., fr (x)] € RX. We then a use a suitable decoding function to map
f () to the original prediction space ). If we use some suitable surrogate loss £ : {—1,1} x C — R, then intuitively, the
whole code matrix based mechanism can be viewed as learning a function f : X — C* by minimizing a surrogate multiclass
classification loss 1 : J) x C¥ — R given as

k
Y (y,u) =Y (T(My; = 1) £(1,u5) +T(My; = =1) £ (=1, uy)) (19)

J=1

Obviously, we care about the consistency of such a surrogate loss (+) for a successful classification algorithm. Ramaswamy
et al. (2014) analyze the conditions related to consistency and calibration of such a surrogate loss for general losses.

B. One-vs-All surrogate Loss for L2D

We derive the closed-form expression for surrogate loss Poya using the procedure described in Appendix A.4 for the code
matrix M defined Section 4. Following the notation from Appendix A.4, we have n = K and k = K + 1 for our L2D
problem. For the surrogate prediction space R, and g, : X - R,y € Yand g, : X — Rand g(x) = [g1(x), ..., 9. (x)],
we can use M to derive the closed form expression for the surrogate loss 1\ : Y x R™+! — R as follows:

1. Case1: VY (g;x,y,m) fory such that T [y # m] = 1
In this case, we can follow the definition of M to gather that m,; = 1 only if j = y. Thus, we can follow Eqn. 19, and
get

bgzym) =0l @) + Y |9, (@)

y/el/)U{L}
y £y

2. Case2: VY (g;x,y,m)forysuchthat [y =m] =1
In this case, we have m,, = 1 as well as m, | = 1 where L denotes the index (K +1). Thus,

b(giz,ym) =dlgy (@) +dlor @) + > ¢[-g, @)

y' eVy Ay

Finally, we can combine both the cases to get

gz, ym) = blgy @)+ o9 @]+ 3 [, @)] +1ln=y](blor (@) - & [-9. (@)

y' eV £y

where ¢ : {1} xR — R} is a binary classification surrogate loss, and ¢ [g,, (z)] = & (1, gy (x)). Similarly, ¢ [—g, (x)] =
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C. Proofs

C.1. Derivation of p, (x) and p, (z) for the Softmax Surrogate Loss

Let Yt =Y U {L}. From the proof of Theorem 1 of Mozannar & Sontag (2020), we have that for the (Bayes) optimal
919K, 91"

P(m = y|x) _ exp g% (z)
1+Pm=ylz) >, cy.expg, (x) (20)
=pl ()

where p* () is the function we define in Equation 5 evaluated at the Bayes optimal g’s. Rearranging, we then have:

P(m = y|x) 1
*(x) = = . 21
L) = T B = yle) ~ P i(m = yla) + 1 @D
Solving for P(m = y|x), we have:
P(m=yla) =
=Y = @y o1
L @) )
_ _pi(z
1= pi ()
Similarly, from the proof of Theorem 1 of Mozannar & Sontag (2020), we have for the Bayes Optimal g;, k € [K]:
Ply=ha) _ gl o)
THEm=yle) 3,y expgy (@)
1 exp g5 (x)
— pr(x) =Py = klz) = . . (24)
1- pl(w) Ey/GyJ- exp gy’ ([E)
C.2. Proof of Theorem 4.1
For K +1 surrogate prediction function g (x), ..., gk (X), g1 (X), and the binary classification surrogate ¢ : {1} xR —
R, the proposed one-vs-all (OvA) surrogate is has the following point-wise form:
Yovalgr, -1 9, 9132, y,m) =
Oloy(@)] + Ol—gr(@)] + D dl-gy,@)lm =y (blgL(@)] — b[-g. (@) )
Yy EV Y Ay
We consider the point-wise inner \-risk for some x = x written as follows:
]Ey|x:mEm|x:m,y1bOVA(gl7 <o 9K, 915, Y, m) (26)

We simplify the inner \-risk by expanding both the expectations below:

Ey\x:mEm\x:m,yl-')OvA(gla <o 9K, 9158, Y, m) =

Eynea [q»(gy(w)) T (—gu(@) + yZ;ﬁ (—g, (@) -

+ Y Pm=mlx =,y =y)I[m =y [dgL(z)) - b(—gL(x))]

mey
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Expanding the outer expectation, and 7, (x) = p(y = y|x = x)

Ey\x:wEm\x:w,yI\bOVA(glv <o 9K, 9158, Y, m) =

Son@ e @) X (@) ]+ oo @)

yeY y' eV Ay

+ Y ny(@) Y Pm=mx==zy=y)I[m=y][d (g () — (gL (@)
yey mey

- Y@ [ow@t X o(-a@)]+o0w@
yey y' eV Ay

+ Y ny(@) Y Pm=ylx=z,y=y)[d (9L (x)) — b (—gL (x))]
yey mey

= Y@ [o@@t X o(-g@)]+o0 @
yey v €V F#y

+ D ny(@) Y Pm=yx=azy=1y) (b () - d(—g. (2))]
yey mey

P(y = m|x = @)

= Y@@+ Y b (-9 @) |+ (-1 (@)

yey - v eV £y .

+ Ply=mx=2)[d (91 () — (-9 (x))]

= Y@ |+ Y b(-g, @) | +Py=mx=2)b (o (@)

yey - y' €V #y :
+ I-Ply=mx=2x))d(—g. (x))

Using the usual notation py () = p(y = m|x = x), we can further rewrite the above equation in the following form,

Ey|x:wEm|x:w,y1bOvA(glv -5 9K,915%, Y, m) =

Sy () & (gy () + (1 =1y ()  (—gy (@)] + P (2) D (91 (X)) + (1 —pa) d (—g1 () OB

yey

The above expression says that we have K + 1 binary classification problems where the inner ¢-risk for the i*" binary
classification problem is given as 7, () $ (g, (x)) + (1 — 1y (z)) & (—gy ()) when i € [K] and pm (z) d (91 (x)) +
(1 —pm(x))d(—gL (z)) wheni € {K +1}. This means that the point-wise minimizer of the inner \-risk can be analyzed
in terms of the point-wise minimizer of the inner ¢-risk for each of the K + 1 binary classification problems we have.
Denote the minimizer of point-wise inner Ppoya-risk as g*, then the above decomposition means g; corresponds to the
minimizer of the inner ¢-risk for the i*" binary classification problem.

We know that the Bayes solution for the binary classification problem is sign (n(z) — 3) where () denotes p(y = 1|x =
x). Now when the binary surrogate loss ¢ is a strictly proper composite loss for binary classification, by the property of
strictly proper composite losses, we have sign(gz (x)) would agree with the Bayes solution of the Binary classification (refer
Eqn. 18),i.e. g;(x) > 0if n, (x) > 1. And similarly g% (x) > 0if py (z) > . Furthermore, we have the existence of a
continuous and increasing inverse link function y~! for the binary surrogate ¢ with the property that y—* (g; (m)) would
converge to 7, (x). Similarly, y~! (g% (x)) would converge to py ().

Using the above, we can establish the Bayes optimal decision for this minimizer g* using following cases.
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Case 1: If we have g; (z) > 0 and g} (z) > 0 for some y € ). Note that we cannot have y # y' both belonging to [K]
such that g (x) > 0 and g:;, (z) > 0. Because this would imply 7, () > 3 and N, (x) > 3 which contradicts the rules of

probabilities. Thus, theorétically, only one such y € Y is possible such that g; (z) > 0. And if we take the prediction for
our L2D problem as arg max,¢c(x41) 9 (x), our prediction would correspond to the Bayes Optimal decision, i.e. if

gy(x) < gl (z) Vyel
= v (g (x) <y (g} (=) Vye)

= ny () <pm(x) Yyely

Thus, such if g7 (z) > g, (=) such that g7 (x) > 0,g;(x) > O, then the prediction following the decision rule
arg maxcx 1) gy, () would correspond with the Bayes optimal rule

r(z)=1 max () < pm ()

Case 2: In this case, if Ay € Y s.t. 9y (z) > 0, but g% (&) > 0, then the same argument as above implies the decision with
the Bayes optimal rule.

Case3: if Jy € Vs.t. gy (z) > 0, but g7 (z) < 0, then the same argument as above implies the decision with the Bayes
optimal rule. In this case, we will have r(x) = 0, and the classifier’s prediction would correspond with the regular Bayes
Optimal Classifier, i.e. arg max, ¢y, 7, ().

Case 4: In this case, if By €  s.t. g, (x) > 0, and also g7 (z) < 0. This situation invokes the common “None of the
above” classification rule for One-vs-All classifiers.

Thus, the cases above imply that the minimizer of the point-wise inner \p-risk gives the Bayes Optimal Classifier and
Rejection prediction for x = . Thus, the surrogate loss ¢ is calibrated for 0-1 L2D.

D. Additional Results

D.1. ECE values with respect to the classifier correctness

Expected Calibration Error (%) on CIFAR-10

OvA Softmax
Both Random 0.51 0.34
Random Expert 6.47 7.22
Random Data 1.94 2.36
Both Useful 6.92 7.92

Table 2. ECE for Classifier on CIFAR-10 Simulation. We compare calibration across the two parameterizations: OvA (Eq. 10) and softmax
(Eq. 24).

D.2. Effect of Calibration on System’s Accuracy

In this section, we verify calibration’s role in the overall system’s accuracy. For the trained one-vs-all model from Figure
2c, we apply a post-processing calibration technique called temperature scaling (Guo et al., 2017) to further calibrate the
rejector. In Figure 5, we see that this additional calibration step marginally improves the system’s accuracy. This result
shows that calibration does positively correlate with accuracy.
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Figure 5. Effect of post-processing calibration for One-Vs-All rejector. We can see that post-processing calibration of py () further
improves the system accuracy. This shows the effect of calibration for the overall system’s accuracy for L2D.

D.3. Class-wise performance of the simulated MLPMixer expert for HAM10000

Classes
metric bkl df mel nv vasc akiec becc | weighted avg
precision | 0.52 0.33 0.51 0.82 027 044 047 0.71
recall 037 0.06 021 095 048 039 045 0.74
fl-score | 0.43 0.10 030 088 034 041 046 0.71

Table 3. Performance of simulate MLPMixer Expert on HAM10000. We can see that the trained model has non-uniform performance
across different classes. The resulting model is still a valid simulation of real world expert who might be expert for some classes(class nv
for example).

E. Additional Information about the Methods

In this section, we provide additional implementation details for our comparison systems. We first note that the differentiable-
triage algorithm (Okati et al., 2021) considers the triage level(or budget) in the training of the algorithm. None of the other
baselines have this aspect. Thus, to fairly compare all the other methods with the differentiable-triage algorithm, we use the
same methodology employed by Okati et al. (2021) in their paper (We refer the reader to Appendix C of their paper for
more details). For each of the method, we also provide the details below:

1. Softmax Surrogate (Mozannar & Sontag, 2020): for a budget b and the samples size D, it sorts the samples in increasing
order of maxe[x] px(x) — p.(x), and then defers the min (|b|D|], n.) where n.. is the number of samples for which

p1(x) > maxgerx) pr().
2. One-Vs-All Surrogate: we use the same procedure as the softmax surrogate.

3. Score Baseline (Raghu et al., 2019): this method first trains a classifier model, and uses the classifier’s predictive
uncertainty to defer to the expert. Note that this classifier is trained in a regular way, i.e. it doesn’t employ any additional
procedure for deferral. During test time, it first sorts the dataset of size |D| in the increasing order of maxy¢x pr (),
and defers to the expert first [b|D|| for the budger b. The performance of this method depends on the reliability of
the uncertainty estimates the classifier provides. We, therefore, use a post-processing calibration technique called
Temperature Scaling (Guo et al., 2017) to calibrate the classifier using the validation dataset split.

4. Confidence Baseline (Bansal et al., 2021): this method first estimates p(y = m), the probability of the expert being
correct. However, this estimate is independent of the input sample , i.e. p(y = m|x) = p(y = m). Having obtained
this estimate, it trains the system sequentially where at each iteration, it uses only min (|bD |, n.) samples with the
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lowest value of p(y = m) — max¢[x] px () in the corresponding mini-batch for training. Here, n.. is the number of
samples where p(y = m) > maxc|k) Pk (). During test time for the budget b, it first sorts the dataset of size |D| in
the increasing order of maxy¢ () px (), and defer the first min (|b|D|], n.) samples to the expert, where n,. denotes
the same quantity as before except this time for the test set samples.

5. Differentiable Triage (Okati et al., 2021): this is a sequential learning algorithm that first estimates the predictive model
for a given budget b, and then having learned the model, it approximates the optimal triage policy for the learned model
and b. The optimal triage policy is to compare the model’s prediction loss and the expert’s prediction loss, and defer
to the expert if the latter is smaller than the former. Therefore, the training algorithm assumes access to the expert’s
predictive loss as opposed to just the expert’s predictions for the surrogate loss methods. Following the original authors,
we use the Negative Log-Likelihood loss as the expert’s loss. At test time, it use the learned approximation of the
optimal triage policy to defer to the expert.

F. Additional Experimental Details

Below we provide more details on our experimental set-up.

CIFAR-10 For the experiments on CIFAR-10, we use 28-layer Wide Residual Networks (Zagoruyko & Komodakis,
2016) without using any data augmentation techniques following Mozannar & Sontag (2020). We use SGD with a momentum
of 0.9, weight decay 5e — 4, and initial learning rate of 0.1. We further use cosine annealing learning rate schedule. We
monitor validation loss, and employ early stopping to terminate the training if the loss doesn’t improve for 20 epochs.
The datasets are standardized to have 0 mean and unit variance. We train the models with a batch size of 1024. These
experimental settings apply to both the Softmax Surrogate and the One-vs-All surrogate loss.

HAM10000 To simulate the expert, we train an 8-layer MLPMixer model (Tolstikhin et al., 2021). We make use of the
publicly available code > for MLPMixer model. We resize the HAM10000 images to 224 x 224 for our experiments. The
8-layer model has patch size of 16, expansion factor 2, and the dimensionality of the features to be 128. We train this model
with Adam optimization algorithm with a learning rate of 0.001, weight decay of 5e — 4. We further use cosine annealing
learning rate schedule with a warm-up period of 5 epochs. The model is trained with a batch size of 1024, again with
early stopping with a patience of 20 epochs. Since our goal was to simulate the real-world expert, we did not do extensive
hyperparameter search for the expert model. For our main model on HAM1 0000, we finetune ResNet34 model. The training
settings are same for the surrogate loss methods for CIFAR—-10 experiments.

For our other baselines, we use the code made available by the respective authors.

https://github.com/jaketae/mlp-mixer/



