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Abstract
Nearest prototype classifiers (NPCs) assign to
each input point the label of the nearest proto-
type with respect to a chosen distance metric. A
direct advantage of NPCs is that the decisions are
interpretable. Previous work could provide lower
bounds on the minimal adversarial perturbation
in the ℓp-threat model when using the same ℓp-
distance for the NPCs. In this paper we provide a
complete discussion on the complexity when us-
ing ℓp-distances for decision and ℓq-threat models
for certification for p, q ∈ {1, 2,∞}. In particu-
lar we provide scalable algorithms for the exact
computation of the minimal adversarial perturba-
tion when using ℓ2-distance and improved lower
bounds in other cases. Using efficient improved
lower bounds we train our Provably adversarially
robust NPC (PNPC), for MNIST which have bet-
ter ℓ2-robustness guarantees than neural networks.
Additionally, we show up to our knowledge the
first certification results w.r.t. to the LPIPS percep-
tual metric which has been argued to be a more
realistic threat model for image classification than
ℓp-balls. Our PNPC has on CIFAR10 higher cer-
tified robust accuracy than the empirical robust
accuracy reported in (Laidlaw et al., 2021). The
code is available in our repository.

1. Introduction
The vulnerability of neural networks against adversarial ma-
nipulations (Szegedy et al., 2014; Goodfellow et al., 2015)
is a major problem for their real world deployment in safety
critical systems such as autonomous driving and medical
applications. However, the problem is not restricted to neu-
ral networks as it has been shown that basically all machine
learning algorithms are vulnerable to adversarial perturba-
tions e.g. nearest neighbor methods (NN) (Wang et al.,
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2018), kernel SVMs (Xu et al., 2009; Biggio et al., 2013;
Russu et al., 2016; Hein & Andriushchenko, 2017), decision
trees (Papernot et al., 2016; Bertsimas et al., 2018; Chen
et al., 2019; Andriushchenko & Hein, 2019). In the area of
neural networks this lead to an arm’s race between novel
empirical defenses and attacks and even initially promising
defenses were broken later on (Athalye et al., 2018). This
still happens for papers published at top machine learning
conferences (Tramer et al., 2020; Croce & Hein, 2020a)
despite more reliable attacks for adversarial robustness eval-
uation (Croce & Hein, 2020b) and guidelines (Carlini et al.,
2019) being available.

Thus classifiers with provable adversarial robustness guaran-
tees are highly desirable. For neural networks computation
of the exact minimal perturbation turns out to be restricted
to very small networks (Tjeng & Tedrake, 2017). Instead
one derives either deterministic (Hein & Andriushchenko,
2017; Wong & Kolter, 2018; Gowal et al., 2018; Mirman
et al., 2018; Zhang et al., 2020; Lee et al., 2020; Huang
et al., 2021; Leino et al., 2021) or probabilistic guarantees
(Cohen et al., 2019; Jeong et al., 2021) on the robust ac-
curacy. We refer to (Li et al., 2020) for a recent overview.
While provable adversarial robustness has been studied ex-
tensively for neural networks, the literature for standard clas-
sifiers is scarce, e.g. decision trees (Bertsimas et al., 2018),
boosted decision stumps and trees (Chen et al., 2019; An-
driushchenko & Hein, 2019), and nearest neighbour (Wang
et al., 2018; 2019) and nearest prototype classifiers (NPC)
(Saralajew et al., 2020). NPC are also known as Learning
Vector Quantization (LVQ), see (Kohonen, 1995), and are
directly interpretable, can be used for all data where a dis-
tance function is available and have the advantage compared
to a nearest neighbour classifier that the prototypes can be
learned and thus they are more efficient and achieve typi-
cally better generalization performance. Moreover, NPC
have a maximum margin nature (Crammer et al., 2003) and
(Saralajew et al., 2020) showed recently how to derive lower
bounds on the minimal adversarial perturbation which in
turn yield lower bounds on the robust accuracy. (Wang et al.,
2019) have shown how to compute the minimal adversar-
ial perturbation for nearest neighbor classifiers using the
ℓ2-distance which applies to NPC as well.

Contributions: we show that the results of (Saralajew et al.,
2020) can be improved in various ways leading to our PNPC

https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers


Provably Adversarially Robust Nearest Prototype Classifiers

which perform better both in clean and robust accuracy.

A) We generalize the lower bounds on the minimal adver-
sarial perturbation (Saralajew et al., 2020) provided for dis-
tances induced by semi-norms to general semi-metrics, thus
improving significantly over standard ℓp-based certification.
The original proof of (Saralajew et al., 2020) used the ab-

solute homogenity of semi-norms; thus, it do not generalize
to semi-metrics.

B) For NPC using the ℓ2-distance we show that the lower
bounds of (Wang et al., 2019) can be quickly evaluated
so that training with them is feasible and show that these
bounds improve the ones of (Saralajew et al., 2020). More-
over, we improve the certification of (Wang et al., 2019)
by integrating that the domain in image classification is
[0, 1]d. For MNIST our ℓ2-PNPC has the best ℓ2-robust
accuracy even outperforming randomized smoothing for
large radii. Moreover, we show how to certify exactly ℓ1-
and ℓ∞-robustness for ℓ2-NPC and in this way can certify
multiple-norm robustness and show that our ℓ2-PNPC out-
performs the multiple-norm robustness guarantees of (Croce
& Hein, 2020a).

C) For the ℓ1-and ℓ∞-NPC we provide novel lower bounds
and analyze their complexity. For ℓ∞-NPCs we thus im-
prove over the bounds given in (Saralajew et al., 2020).

D) As the ℓp-distances are not suited for image classification
tasks, we use a neural perceptual metric (LPIPS) (Zhang
et al., 2018) as a semi-metric for the NPC and provide
robustness guarantees in the perceptual metric. We improve
both in terms of clean and certified robust accuracy over
the clean and empirical robust accuracy of the adversarially
trained ResNet 50 of (Laidlaw et al., 2021)

2. Provably Robust NPC Classifiers
Nearest prototype classifiers require for a given input space
X only a (semi)-metric. To compare with previous work,
we introduce also a (semi)-norm, which requires a vector-
space structure; thus, assuming the existence of a norm is a
stronger assumption than the assumption of the existence of
a metric.
Definition 2.1. A mapping d : X×X → R is a semi-metric
if the following properties holds for any x, y, z ∈ X :

• d(x, y) ≥ 0 (non-negativity)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

If we further require that d(x, y) = 0 =⇒ x = y, then the
semi-metric becomes a metric.
Definition 2.2. A mapping ∥·∥ : X → R is a semi-norm if
the following properties holds for any x, y ∈ X , α ∈ R:

• ∥x∥ ≥ 0 (non-negativity)

• ∥αx∥ = |α| ∥x∥ (absolute homogeneity)

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

If we further require ∥x∥ = 0 =⇒ x = 0, then the
semi-norm becomes a norm.

Note that any (semi)-norm ∥x∥ induces a (semi)-metric d
with d(x, y) = ∥x− y∥.

We denote by (wi)I the set of prototypes. Each prototype is
assigned to one class. Then z ∈ Rd is classified as

f(z) = argmin
y=1,...,K

min
i∈Iy

d(z, wi),

where Iy are the prototypes of class y. A nearest neighbor
classifier (1NN) can also be understood as NPC where one
uses the training set as prototypes and thus are not learned.
However, by training prototypes one can achieve better
classification performance, and also robustness, see Table 5,
with less prototypes meaning that NPC are significantly
more efficient than 1NN. We note that the classification for
a point z with label y is correct if

min
i∈Iy

d(z, wi)−min
j∈Ic

y

d(z, wj)<0,

where Icy is the set of all prototypes not belonging to class y
(the complement of Iy in I).

2.1. Provable robustness guarantees for semi-metrics

Next we define the minimal adversarial perturbation of a
point z for a semi-metric on X , that is the radius r of the
smallest ball Bd(z, r) = {x ∈ X | d(x, z) ≤ r} around z
such at least one point in Bd(z, r) is classified differently
than is z. If a point z is misclassified then we define the
minimal adversarial perturbation to be zero. We assume that
there is a non-empty set of prototypes for every class; thus,
there always exists an adversarial example.

Definition 2.3. The minimal adversarial perturbation
ϵd(z) of z ∈ X of a NPC using semi-metric d is defined as

ϵd(z)=min{r| max
x∈Bd(z,r)

(
min
i∈Iy

d(x,wi)−min
j∈Ic

y

d(x,wj)
)
≥0}

If min
i∈Iy

d(z, wi)−min
j∈Ic

y

d(z, wj) ≥ 0 then we set ϵd(z) = 0.

In (Saralajew et al., 2020) they derive for semi-norms a
lower bound on ϵd and in this way get robustness certificates.
We generalize this lower bound to semi-metrics which is
considerably more general as X need not be a vector space.
It turns out that the only necessary technical requirement for
the proof is the triangle inequality. This is unlike (Saralajew
et al., 2020), where the proof also required the absolute
homogeneity of semi-norms.
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Theorem 2.4. Let (X , d) be a semi-metric space, then it
holds for the minimal adversarial perturbation ϵd(z) of
z ∈ X with correct label y:

ϵd(z) ≥ max

0,

min
j∈Ic

y

d(z, wj)−min
i∈Iy

d(z, wi)

2

 .

We note that if the semi-metric d can be written as d(x, y) =
∥x− y∥ for some semi-norm ∥·∥, then our bound is equal
to the one given in (Saralajew et al., 2020)

2.2. The minimal adversarial ℓq-perturbation of the
ℓp-NPC and lower bounds

In this section we derive the minimal adversarial ℓq-
perturbation for the ℓp-PNPC in Rd where our main interest
is p, q ∈ {1, 2,∞}. In contrast to the semi-metric case, here
we treat the case where the ℓq-metric measuring the size of
the adversarial perturbation is different from the ℓp-metric
used in the NPC. In this section we use the notation

Bq(x, r) = {z ∈ Rd | ∥z − x∥q ≤ r}.

Thus we first define
Definition 2.5. The minimal adversarial perturbation
ϵqp(z) of x ∈ X ⊂ Rd with respect to the ℓq-metric for the
ℓp-NPC is defined as:

ϵqp(z)j = min
r∈R,x∈X

r

sbj. to: ∥x− wi∥p − ∥x− wj∥p ≥ 0

x ∈ Bq(z, r)

If min
i∈Iy

∥x− wi∥p−min
j∈Ic

y

∥x− wj∥p > 0 we set ϵqp(z)=0.

The following reformulation of the optimization problem
for the computation of the minimal adversarial perturbation
ϵqp(z) allows us to provide a generic and direct way to derive
efficiently computable lower bounds on ϵqp(z). Note that in
the following we always integrate the constraint x ∈ X as
we will see that this significantly improves the guarantees,
e.g. when X = [0, 1]d in image classification, compared
to X = Rd as done in (Saralajew et al., 2020; Wang et al.,
2019).
Theorem 2.6 (Exact computation of ϵqp(z)). Let z ∈ X ⊂
Rd and denote by Iy the index set of prototypes (wj) of
class y and by Icy its complement (the index set of prototypes
not belonging to class y). Then define for every j ∈ Icy:

rqp(z)j = min
x∈Rd

∥x− z∥q (1)

sbj. to: ∥x− wi∥p − ∥x− wj∥p ≥ 0 ∀ i ∈ Iy

x ∈ X

Then ϵqp(z) = min
j∈Ic

y

rqp(z)j .

ℓq-threat model

ℓ p
-d

is
ta

nc
e ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard O(d log(d))
ℓ2 Θ(d) Θ(d) Θ(d)
ℓ∞ Θ(d) O(d log(d)) Θ(d)

Table 1: Computational complexity of ρqp(z)i,j .

ℓq-threat model

ℓ p
-d

is
ta

nc
e ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard Poly
ℓ2 Poly Poly Poly
ℓ∞ NP-hard NP-hard NP-hard

Table 2: Computational Complexity of rqp(z) and ϵqp(z).

While the corresponding optimization problems are often
non-convex, we will see in the following that they are equiv-
alent to convex optimization problems in the case where the
ℓ2-distance is used in the NPC (p = 2). Using the formu-
lation of the exact problem as an optimization problem we
can now simply derive lower bounds on ϵqp(z) by relaxing
the optimization problem (1).

We consider for this reason the following optimization prob-
lems. For i ∈ Iy and j ∈ Icy we define:

ρqp(z)i,j = min
x∈Rd

∥x− z∥q (2)

sbj. to: ∥x− wi∥p − ∥x− wj∥p ≥ 0

x ∈ X

In Theorem 2.7 we show that these simpler problems can
often be solved efficiently, although the computation of ϵqp
is often intractable, as we show in Theorem 2.8.

Theorem 2.7. The computational complexities of optimiza-
tion problems ρqp(z)i,j for p, q ∈ {1, 2,∞} for X = Rd are
summarized in Table 1.

Theorem 2.8. The computational complexities of opti-
mization problems rqp(z)j in (1) for p, q ∈ {1, 2,∞} and
X = [0, 1]d are summarized in Table 2.

Apart from the known ℓ2-case (see (Wang et al., 2019))
we show that also ℓ1-NPC can be certified efficiently for
the ℓ∞-threat model. Because of this theorem it is even
more important that at least for the ℓ∞-NPCs efficient lower
bounds are available for all threat models in q = {1, 2,∞}.
We note that the optimization problem for rq2(z)j in (1) is
equivalent to a quadratic program for q = 2 and to a linear
programs for q ∈ {1,∞} for both with and without box
constraints.

The following lemma shows that (2) can be used to get a
lower bound on the minimal adversarial perturbation, and
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Figure 1: Illustration of the ℓq-minimal adversarial perturbations of a ℓ2-NPC for a binary classification problem. The
learned prototypes are shown as the larger red resp. blue dots. For each data point we draw the largest ℓ1-(left), ℓ2-(middle)
and ℓ∞-(right) ball which is fully classified as the same class. The radii are computed using Alg. 1. Though there is no
specific optimization for multiple-norm robustness, ℓ2-NPC possess non-trivial multiple-norm robustness.

subsequently we show that it improves on the previous
bound given in Theorem 2.4 which has been derived by
(Saralajew et al., 2020). In particular, this bound can be
tight and we show in Table 4 in Section 5 that this happens
frequently in practice and thus allows to avoid the signifi-
cantly more complex problems in (1).
Lemma 2.9. It holds

ϵqp(z) ≥ min
j∈Iy

c

max
i∈Iy

ρqp(z)i,j .

Moreover, let (j∗, i∗) be the prototype pair in Iyc × Iy which
realizes the lower bound and denote by x∗ the minimizer of
ρqp(z)i∗,j∗ . Then if x∗ fulfills

∥x∗ − wi∥p − ∥x∗ − wj∗∥p ≥ 0 ∀i ∈ Iy,

then ϵpq(z) = min
j∈Iy

c

max
i∈Iy

ρqp(z)i,j .

Theorem 2.10. The lower bound on ϵpp(z) of Lemma 2.9 is
at least as good as the one of Theorem 2.4. That is,

min
j∈Iy

c

max
i∈Iy

ρpp(z)i,j ≥ min
j∈Iy

c

ρpp(z)i∗,j

≥max

0,

min
j∈Ic

y

∥z − wj∥p −min
i∈Iy

∥z − wi∥p

2

 ,

where i∗ ∈ argmin
i∈Iy

∥z − wi∥p.

In order to be able to use these lower bounds for certified
training of our PNPC, their efficient computation is of high
importance which we discuss next.

For better intuition we discuss some cases in more detail.
The ℓ2-NPC have a nice geometric descriptions as the set

{z| ∥z − wi∥2 = ∥z − wj∥2}

={z| ⟨wj − wi, z⟩+
∥wi∥22 − ∥wj∥22

2
= 0}

certified ball for Rd

certified ball for [0, 1]d

Figure 2: Illustration for ℓ2-NPC for two prototypes (red
and blue): when taking into account that the data lies in
[0, 1]d we can certify a larger ball than in Rd.

is a hyperplane. Thus the computation of ρq2(z)i,j for X =
Rd corresponds to the computation of the ℓq-distance of a
point to a hyperplane:

ρq2(z)i,j =
∥z − wj∥22 − ∥z − wi∥22

2 ∥wi − wj∥q∗
,

where q∗ denotes the dual norm of q. This has also been
derived in (Wang et al., 2019). As illustration how the con-
straints X = [0, 1]d, e.g. in image classification, improve
the certificates, we show in Figure 2 the ball which can be
certified in Rd resp. [0, 1]d.

2.3. How to do the certification efficiently

Table 1 shows that ρqp(z)i,j can be computed efficiently or
even given in closed form except for the two cases when
(p, q) ∈ {(1, 1), (1, 2)}. However, that would still mean
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that the lower bound of Lemma 2.9

ϵqp(z) ≥ min
i∈Iy

max
j∈Ic

y

ρqp(z)i,j ,

would require us to solve naively |Iy||Icy| such problems.
Seemingly, the bound in Theorem 2.4 is much cheaper as it
requires only (|Iy|+ |Icy|) operations even though one has
to note that the bound only exists for the case when p = q.

i) A lower bound: Theorem 2.10 shows that when fixing
i∗ = argmin

i∈Iy

∥z − wi∥ and then computing

minj∈Iy
c
ρqp(z)i∗,j ,

yields by Lemma 2.9 a lower bound on ϵqp(z). By Theorem
2.10 this lower bound is for the case p = q still better than
the one of Theorem 2.4 while having the same complexity
of |Iy|+ |Icy| operations. Obviously, when integrating box
constraints, that is X = [0, 1]d, the gap can only become
larger between the two bounds.

ii) Using simpler lower bounds: When certifying bounds
for X = [0, 1]d we first compute the lower bounds for
X = Rd as they are often available in closed form
and are definitely lower bounds for the more restricted
case X = [0, 1]d. By fixing again i∗ we can then use
sj := ρqp(z)i∗,j and define the minimum and minimizer
as (λ, j∗) = minj∈Ic

y
ρqp(z)i∗,j . Now, let us denote by

κq
p(z)i∗,j the corresponding quantity when using X =

[0, 1]d instead of X = Rd. Then we only need to compute
κq
p(z)i∗,j if sj < κq

p(z)i∗,j∗ , which is typically satisfied for
very few instances, so most computations are pruned.

iii) Dual problems: as in (Wang et al., 2019) we use the
dual problems when computing rq2(z)j . This has three ad-
vantages. First, we always get a lower bound using weak
duality, second, we stop solving rqp(z)j when the dual value
is higher than our currently smallest upper bound and third;
empirically only few constraints of the problems become
active; thus, the solutions are dual-sparse.

Final Certification: in Algorithm 1 we sketch the certifica-
tion process. It does not include all details (see above) which
we use for speeding up the computation of lower bounds as
well as the exact minimal adversarial perturbation.

3. Perceptual Metric
The hypothesis underlying the goal of adversarial robust-
ness is that images which have the same semantic content,
should be classified the same (with the exception at the
true decision boundary). However, this would require a hu-
man oracle which judges if the semantic content is similar.
A proxy is the typical ℓp-threat model, where for suitable
chosen radius ϵp one expects that for a given image x also
Bp(x, ϵp) should be classified the same as for humans the re-
sulting images are (semantically) indistinguishable from the

Algorithm 1 Sketch of certification algorithm for correctly
classified point z

// Computation of λ as lower bound on ϵqp(z)
i∗ = argmin

i∈Iy

∥z − wi∥p
sj = ρqp(z)i∗,j , j ∈ Icy (sj lower bounds rqp(z)j)
(λ, j∗) = minj∈Ic

y
ρqp(z)i∗,j

if minimizer x∗ of ρqp(z)i∗,j∗ is feasible for rqp(z)j∗ then
ϵqp(z) = λ and return

else
λ is lower bound on ϵpq(z)

end if
// Computation of ϵqp(z) ( p = 2 or (p, q) = (1,∞))
µ = rqp(z)j∗ // (it holds µ ≥ ϵqp(z))
for j = 1 to |Icy| do

if sj < µ then
compute rqp(z)j
if rqp(z)j < µ then

µ = rqp(z)j
end if

end if
ϵqp(z) = µ

end for

original image. However, it is well known that pixel-based
ℓp-distances are not a good measure of image similarity. A
huge literature in computer vision discusses the construction
of metrics which better correspond to human perception of
similarity of images e.g. the SSIM metric of (Wang et al.,
2004). More recently, neural perceptual metrics, such as the
LPIPS distance, have been proposed in (Zhang et al., 2018).
The LPIPS distance is based on a feature mapping of a fixed
neural network and has been shown to correlate better with
human perception (Zhang et al., 2018; Laidlaw et al., 2021).
In (Laidlaw et al., 2021) it has been used as threat model in
adversarial training. Moreover, (Kireev et al., 2021) have
shown that the LPIPS distance better correlates with the
severity level of common corruptions than the ℓ2-distance.
Moreover, ℓp-distance based NPC are not competitive for
CIFAR10. These two aspects motivate us to investigate the
perceptual metric-based PNPC as well as novel techniques
for the certification in the LPIPS-threat model.

The perceptual metric: Given the output g(l)(x) ∈
RHl×Wl×Cl of the l-th layer of a fixed neural network (we
use Alexnet as suggested by (Zhang et al., 2018)) of height
Hl and width Wl and channels Cl, we define the normal-

ized output of a layer as ĝ(l)h,w(x) =
g
(l)
h,w(x)∥∥∥g(l)
h,w(x)

∥∥∥
2

. The LPIPS

distance d is then defined in (Zhang et al., 2018) as

d2(x, y) =
∑
l∈IL

1

HlWl

∑
h,w

∥∥∥wl ⊙
(
ĝ
(l)
h,w(x)− ĝ

(l)
h,w(y)

)∥∥∥2
2
,
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where the weights wl are learned using human perception
data and IL is the index set of layers used for the metric.
We follow (Laidlaw et al., 2021) and use the unweighted
(i.e., weights perform an identity mapping) version in order
to be able to directly compare to them. However, it would
be easy to adapt our approach for the weighted version. We
define the embedding, ϕ : [0, 1]d → RD

x 7→ ϕ(x) =

(
ĝ(l)√
HlWl

)
l∈IL

, (3)

so that the unweighted LPIPS distance can simply be written
as a standard Euclidean distance d(x, y) = ∥ϕ(x)− ϕ(y)∥2
in the embedding space.

The mapped image space ϕ(I) of all natural images I is
a subset of ϕ([0, 1]d), which can be seen as an at most d-
dimensional continuous “submanifold” of the embedding
space RD. Thus for all points z ∈ RD\ϕ([0, 1]d) there
exists no pre-image in [0, 1]d. However, the Euclidean dis-
tance between every mapped images x, y ∈ I corresponds
to the perceptual distance between them. Thus we train our
PNPC in the embedding space RD and certify it with respect
to the Euclidean distance which in turn yields guarantees
with respect to the LPIPS distance.

certified ball for Rd

certified ball with SC

Figure 3: The embedded data ϕ(x) lies on the intersection of
the positive orthant and the sphere (shown in black). In the
embedding space the ℓ2-metric corresponds to the percep-
tual metric. Taking these non-negative spherical constraints
(SC) into account we can certify a much larger ball than
using only the standard certification in Rd.

3.1. Certification in the Perceptual threat model

Up to our knowledge this is the first paper showing results
for certification with respect to this threat model aligned
with human vision. We can use all techniques we have
discussed in Section 2 as we are working with a Euclidean
distance in RD. However, we have more knowledge about
ϕ([0, 1]d) as the output of each layer is normalized so that
ϕ(x) lies on a product of spheres with radius rl = 1√

HlWl

as ∥∥∥ϕ(l)
h,w(x)

∥∥∥
2
=

∥∥∥∥∥ ĝ
(l)
h,w√
HlWl

∥∥∥∥∥
2

=
1√

HlWl

:= rl, (4)

for any l ∈ IL, h ∈ IH , w ∈ IW . Additionally, we know
due to the structure of Alexnet that ϕl(x) is non-negative
for all layers, see Figure 3 for an illustration. While we
can integrate some of the properties of the mapping ϕ into
the certification, it is computationally intractable to use as
constraint x ∈ ϕ([0, 1]d). Thus our certification works on
an overapproximation of ϕ([0, 1]d) and thus yields lower
bounds on the minimal adversarial perceptual distance.

Basically, we can write our constraints in RD as

X =X1 × · · · × XL (5)

Xl =

(
1√

HlWl

Scl ∩ [0,∞)cl
)HlWl

, l = 1, . . . , L,

where cl is the number of channels in layer l of the out-
put of the layer l and D =

∑L
l=1 HlWlcl. We use upper

indices (e.g., x(h,w,l)) to denote slice of vector x which cor-
responds to vector of channels at position h,w in layer l.
The constants rl for 1 ≤ l ≤ L were defined in (4).

As we use ℓ2-NPC we have to compute:

ρ(z)i,j = min
x∈RD

∥x− z∥2 (6)

sbj. to: ⟨x,wj − wi⟩+
∥wi∥22 − ∥wj∥22

2
≥ 0∥∥∥x(h,w,l)

∥∥∥2
2
= r2l , l = 1, . . . , L

h = 1, . . . ,Hl

w = 1, . . . ,Wl

xd ≥ 0, d = 1, . . . , D.

Despite this problem is non-convex due to the quadratic
equality constraints we can derive a convex dual problem
(we derive it for an equivalent problem) which is sufficient
to provide us with lower bounds using weak duality.

Proposition 3.1. Define v = wj−wi and b =
∥wi∥2

2−∥wj∥2
2

2 .
A lower bound on the optimal value of the optimization
problem (6) is given by√√√√√2L+ 2

max
λ≥0

−
∑
h,w,l

∥∥∥(z(h,w,l) − λv(h,w,l)
)+∥∥∥

2
rl + λb


which can be efficiently computed using bisec-
tion. The summation

∑
h,w,l is a shortcut for∑

1≤l≤L

∑
1≤h≤Hl

∑
1≤w≤Wl

.

In the experimental results in Figure 4 one can clearly see
that using this lower bound improves significantly over the
standard lower bound of Lemma 2.9.
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4. Efficient Training of PNPC
In this section we describe the training procedure for our
PNPC. The key advantage compared to the work of (Sar-
alajew et al., 2020) is that despite our lower bounds, see
Theorem 2.10, are better and often tight, they can be com-
puted with the same time complexity as theirs if p ∈ {2,∞}.
Thus we can do efficient certified training. As objective we
use the capped sum of the lower bounds:

max
(wi)i∈I

1

n

n∑
r=1

min
{
min
j∈Ic

y

max
i∈Iy

ρqp(zr)i,j , R
}
,

where we recall the definition of ρqp from 2:

ρqp(z)i,j = min
x∈Rd

∥x− z∥q (7)

sbj. to: ∥x− wi∥p − ∥x− wj∥p ≥ 0

x ∈ X

and R is an upper bound on the margin we want to enforce.
The cap is introduced in order to avoid that single training
points have excessive margin at the price of many others
having small margin; in turn, it is equivalent to minimizing
hinge-loss. The loss is minimized via stochastic gradient de-
scent resp. ADAM with large batch sizes. Note further that,
for misclassified points we use a signed version of ρqp(zr)i,j
by flipping the constraint in (2) and using −ρqp(zr)j,i in-
stead, which can be interpreted as signed distance to the
decision boundary. Doing this has the advantage that we
get gradient information from all points. Maximizing our
objective has a direct interpretation in terms of maximiz-
ing robust accuracy or more precisely the area under the
robustness curve capped at radius R. This is in contrast to
(Saralajew et al., 2020) who use as loss their lower bound
divided by the sum of the distances where this interpretation
is due to the rescaling not applicable.

5. Experiments
The code for experiments is available in our repository1

where we also provide the training details. We first eval-
uate the improvements in the certification of better lower
bounds resp. exact computation compared to the ones of
(Saralajew et al., 2020) as well as (Wang et al., 2019). In a
second set of experiments we compare our ℓp-PNPC to the
ℓp-NPC of (Saralajew et al., 2020) resp. to nearest neigh-
bor classification as well as deterministic and probabilistic
certification techniques for neural networks on MNIST and
CIFAR10 (see App. H). Finally, we discuss our NPC using

1https://github.com/vvoracek/Provably-Adversarially-Robust-
Nearest-Prototype-Classifiers.

Table 3: Lower bounds on ϵqp(z). Mean of the lower bounds
of (Saralajew et al., 2020) (Theorem 2.4), the lower bounds
of (Wang et al., 2019)) in (13) (X = Rd), our lower bounds
integrating X = [0, 1]d and the exact radius on the test set
for ℓ2-NPC for ℓ1-,ℓ2- and ℓ∞-threat model.

Lower bounds Exact
Model Num. Threat Th. 2.2 Th. 2.6 Th. 2.6 radius

Proto. model Rd Rd [0, 1]d [0, 1]d

ℓ2-PNPC 4000
ℓ1 - 9.71 11.77 12.11
ℓ2 0.39 1.86 1.96 1.99

MNIST ℓ∞ - 0.14 0.16 0.17

the perceptual metric and its certification where there is no
competitor as up to our knowledge this is the first paper
providing robustness certificates. The training time is about
a few hours on a laptop.

Comparison of our lower bounds: One of the major con-
tributions of this paper are our efficient lower bounds on the
minimal adversarial perturbation ϵqp(z). They can be com-
puted so fast that it is feasible to use them during training.
We show in Table 3 that our ℓq-bounds improve signifi-
cantly over the ones of (Saralajew et al., 2020) (Th. 2.4,
X = Rd), which only work if p = q and (Wang et al.,
2019) (Lemma 2.9, X = Rd, see (13) for p = 2) as we are
the only ones who integrate box constraints (Lemma 2.9,
X = [0, 1]d). In Table 3, we show that for the ℓ1-, ℓ2-
and ℓ∞ threat models our lower bounds are very close to
the exact values. The computation of these lower bounds
takes for the full test set of MNIST: ℓ1: 188s, ℓ2: 33s, ℓ∞:
131s. This is two orders of magnitude faster than the com-
putation of the exact bounds in Table 4. For our ℓ∞-NPC
and ℓ∞-threat model we get mean lower bounds of 0.3545
for (Saralajew et al., 2020), 0.3560 for the ones from (15)
with X = Rd, and 0.3616 for ours from Lemma 2.9 with
X = [0, 1]d in (20). Here the differences are smaller than
for the ℓ2-NPC.

Time for certification: The computation of the exact mini-
mal adversarial perturbation is only feasible for relatively
small neural networks (Tjeng & Tedrake, 2017) and for en-
semble of decision trees (Kantchelian et al., 2016). Both
use mixed-integer formulations which do not scale well. For
boosted decision stumps one can compute the exact robust
accuracy (Andriushchenko & Hein, 2019). However, the
computation of the exact robust accuracy is already consid-
erably easier than the minimal adversarial perturbation. For
ℓ2-NPC we can compute the exact adversarial perturbation
for the ℓ1-, ℓ2-, and ℓ∞-threat model. In Table 4 we report
the certification time per point and other statistics for our ℓ2-
PNPC prototypes on MNIST with 400 prototypes per class
(ppc) and the ℓ2-GLVQ -model of (Saralajew et al., 2020)
on CIFAR10 with 128 ppc. We can also produce weaker

https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers
https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers
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Table 4: Time/Statistics for exact minimal adversarial
perturbation for ℓ2-NPC

Model Num. Threat Direct Total QP/LP Cert. Time
Proto. model solved QP/LP per pt per pt

ℓ2-PNPC 4000
ℓ1 4261 (43.8%) 10195 1.86 0.54s
ℓ2 3170 (32.6%) 11630 1.77 0.49s

MNIST ℓ∞ 2073 (21.3%) 21081 2.75 1.3s

ℓ2-GLVQ 1280
ℓ1 3683 (75.8%) 1817 1.54 0.76s
ℓ2 3546 (73.0%) 1777 1.35 0.25s

CIFAR10 ℓ∞ 3511 (72.2%) 1933 1.43 0.9s

certificates faster. For instance, using Lemma 2.9, we can
certify MNIST robust accuracy 67% in under 2s instead of
the exact 73% reported in Table 5.

Regarding the model of ℓ2-GLVQ on CIFAR10, we have
an accuracy of 48.6% (which corresponds to 4859 correctly
classified test points). Of these ones we can solve between
72.2% for ℓ∞ and 75.8% for ℓ1 directly using Lemma 2.9
by checking the condition after the computation of the lower
bounds. This shows the usefulness of Lemma 2.9 as it avoids
a lot of QPs (ℓ2) rsp. LPs (ℓ1, ℓ∞) to be solved. Next we see
that the number of LPs/QPs needed to be solved per point is
less than 1.43 which has to be compared to the worst case
of |Icy| = 1152. This shows that our prior reduction using
our tight lower bounds integrating box constraints helps to
significantly reduce the number of problems rqp(z)j which
need to be solved. In total we get certification times between
0.25s (ℓ2) and 0.9s (ℓ∞) per point which allows us to do
the exact certification for all three threat models.

Evaluation of our NPC: We report certified robust accu-
racy (CRA) and upper bounds on robust accuracy (URA),
e.g. computed via an adversarial attack, on MNIST and CI-
FAR10 (in App. H) for PNPC and the GLVQ of (Saralajew
et al., 2020). For ℓ2-NPC CRA and URA are equal as we
compute exact adversarial perturbations. As an interesting
baseline, we report results for the one nearest neighbor clas-
sifier (1NN). Additionally, we compare to deterministic and
probabilistic certification techniques of neural networks.

MNIST - ℓ2-NPC: In Table 5 we show the results for the
ℓ2-threat model on MNIST. Our ℓ2-PNPC outperforms
the ℓ2-GLVQ for all ϵ2. The values for ϵ2 were chosen
according to the neural network literature. Note that our
ℓ2-PNPC outperforms all deterministic methods: GlobRob
(Leino et al., 2021), OrthConv (Singla et al., 2022), Lo-
cLip (Huang et al., 2021), BCP (Lee et al., 2020) and CAP
(Wong et al., 2018) in terms of certified robust accuracy
and often in the terms of clean accuracy. For the details on
comparison with orthogonal convolutions, see Appendix I.
The randomized smoothing approach SmoothLip of (Jeong
et al., 2021) outperforms us for σ = 0.5 in terms of clean
accuracy and robust accuracy at ϵ2 = 1.5 but their robust

Table 5: MNIST: lower (CRA) and upper bounds (URA)
on ℓ2-robust accuracy for ℓ2-NPC

MNIST std. ϵ2 = 1.5 ϵ2 = 1.58 ϵ2 = 2
acc. CRA URA CRA URA CRA URA

ℓ2-PNPC 97.3 75.5 75.5 73.0 73.0 56.1 56.1
ℓ2-GLVQ 95.8 69.7 69.7 67.1 67.1 53.5 53.5
1-NN 96.9 52.1 52.1 47.3 47.3 23.7 23.7

GloRob 97.0 - - 62.8 81.9 - -
OrthConv 98.1 - - 61.0 75.5 - -
LocLip 96.3 - - 55.8 78.2 - -
BCP 92.4 - - 47.9 64.7 - -
CAP 88.1 - - 44.5 67.9 - -

SmoothLipσ=0.5 98.7 81.8∗ - - - 0∗ -
SmoothLipσ=1 93.7 62.7∗ - - - 44.9∗ -

Table 6: MNIST: lower (CRA) and upper bounds (URA) on
robust accuracy for multiple threat models for our ℓ2-PNPC,
the ℓ2-NPC of (Saralajew et al., 2020), a 1-NN classifier. As
comparison we show MMR-Univ of (Croce & Hein, 2020a)
which is a neural network specifically trained for certifiable
multiple-norm robustness.

MNIST std. ϵ1 = 1 ϵ2 = 0.3 ϵ∞ = 0.1 union
acc. CRA URA CRA URA CRA URA CRA URA

ℓ2-PNPC 97.3 96.2 96.2 95.6 95.6 85.8 85.8 85.8 85.8
ℓ2-GLVQ 95.8 94.2 94.2 93.2 93.2 80.9 80.9 80.9 80.9
1-NN 96.9 95.0 - 93.6 93.6 78.3 - 78.3 -

MMR-U 97.0 79.2 93.6 89.6 93.8 87.6 87.6 79.2 87.6

accuracy at ϵ2 = 2 is zero, whereas we have 56.1% exact
robust accuracy. Their second model with σ = 1 which is
able to certify also larger radii is in all aspects worse than
our ℓ2-PNPC. This shows that our certified prototype clas-
sifiers can challenge neural networks in terms of certified
robust accuracy. Moreover, (Saralajew et al., 2020) report
for their ℓ2-GLVQ a certified robust accuracy of 34.4% at
ϵ = 1.58 whereas with our exact computation we get that
their exact robust accuracy is 67.1%. This shows the quality
of our exact certification techniques. With our certified train-
ing PNPC has 6% better robust accuracy and 1.5% better
standard accuracy (97.3% vs. 95.8%) than ℓ2-GLVQ.

The advantage of our ℓ2-NPC is that we can certify any
ℓq-threat model, especially ℓ1 and ℓ∞. This allows us to
compute the exact robust accuracy in the union of the
ℓ1-, ℓ2- and ℓ∞-balls. The only other approach which
has provided certified lower bounds (CRA) on multiple-
norm robustness is MMR-U from (Croce & Hein, 2020a)
who certify a neural network. In Table 6 we compare our
multiple-norm robust accuracy for the ϵq which were chosen
in (Croce & Hein, 2020a). Our ℓ2-PNPC outperforms MMR-
U significantly in terms of certified ℓ1-and ℓ2-robustness as
well as in the union.



Provably Adversarially Robust Nearest Prototype Classifiers

Table 7: MNIST: lower (CRA) and upper bounds (URA) on
ℓ∞-robust accuracy for ℓ∞-NPC obtained using Lemma 2.9.

MNIST std. ϵ∞ = 0.1 ϵ∞ = 0.3 ϵ∞ = 0.4
acc. CRA URA CRA URA CRA URA

ℓ∞-PNPC 94.69 91.19 91.19 78.68 78.86 65.58 65.96

ℓ∞-GLVQ 96.34 93.52 93.52 80.76 81.04 61.29 62.94

ℓ∞-neuron 98.6 - - 93.1 95.3 - -
CROWN-IBP 98.2 - - 93.0 94.0 87.4 90.4
ReLU-S 97.3 - - 80.7 92.1 - -
CAP 87.4 - - 56.9 - - -

MNIST - ℓ∞-NPC We compare our ℓ∞-PNPC to the ℓ∞-
GLVQ of (Saralajew et al., 2020). For reference we provide
the best results for the ℓ∞-certfied neural networks: ℓ∞-
neurons (Zhang et al., 2021), CROWN-IBP (Zhang et al.,
2020), as well as slightly older results; ReLU-stability (Xiao
et al., 2019) and CAP (Wong et al., 2018) to put our results
into context. We perform slightly worse than (Saralajew
et al., 2020) for small radii, but significantly better for the
bigger one. Due to our better lower bounds but also by using
AutoAttack (Croce & Hein, 2020b) for computing the upper
bounds we close the gap between upper and lower bounds
from 4.2% in (Saralajew et al., 2020) to 0.3%. To attack
the classifier with AutoAttack, we interpret the negative
distance to the closest prototype from a particular class as
the logit value.

Perceptual metric NPC As discussed in Section 3 it is
unlikely that ℓp-NPC will work for image classifcation tasks
like CIFAR10. However, with the perceptual metric LPIPS
(based on Alexnet) which corresponds to an ℓ2-metric in
the embedding space, we get much better results with our
Perceptual-PNPC (P-PNPC). In Figure 4 we show the certi-
fied robust accuracy (lower bound of Lemma 2.9) as a func-
tion of the LPIPS-radius for the standard ℓ2-lower bounds
and for the improved lower bounds taking into account the
constraints of the embedding. We have three important ob-
servations. We achieve a clean accuracy of 80.3% which is
quite remarkable for a classifier with certified robust accu-
racy. Second, this is up to our knowledge the first result on
certified robustness with respect to the LPIPS-threat model.
Third, (Laidlaw et al., 2021) who do empirical perceptual
adversarial training with a a ResNet 50 get only 71.6% clean
accuracy and only a URA of 9.8% which is more than 30%
worse than our CRA of 40.5%. Moreover, our URA com-
puted using the LPA-attack of (Laidlaw et al., 2021) is with
70.3% remarkably high. These are very promising results
justifying more research in PNPC for perceptual metrics.

On the other hand, in (Laidlaw et al., 2021) it is noted that
models trained to be robust w.r.t. LPIPS-threat model are
empirically robust also to other threat models such as ℓ2
or ℓ∞ - even though one has to state that their model has

only a robust accuracy of 9.8%. This generalization does
not hold for P-PNPC. For ℓ∞ threat model, we observed
(empirical) robust accuracies 49%, 23%, 2%, 0% for radii
1/255, 2/255, 4/255, 8/255. For ℓ2 we have robust accu-
racy 51%, 29%, 5%, 0% for radii 0.14, 0.25, 0.5, 1. While
the robust accuracies are non-trivial, they are not compara-
ble to the ones achieved in (Laidlaw et al., 2021). As our
P-PNPC is much more robust with respect to the LPIPS-
threat model than the neural network of (Laidlaw et al.,
2021), it is thus an open question if this threat model leads
indeed to a generalization to other threat models.
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Figure 4: The certified robust accuracy as a function of the
radius of the LPIPS-threat model. Integrating the spherical
plus non-negativity constraints leads to huge improvements.
The standard accuracy as well as the empirical robust accu-
racy of (Laidlaw et al., 2021) are worse than certified robust
accuracy of P-PNPC by a large margin.

6. Conclusion
We have provided theoretical foundations as well as efficient
algorithmic tools for the computation of the exact minimal
adversarial perturbation, as well as lower bounds, for near-
est prototype classifiers for several threat models, including
the perceptual metric LPIPS. We have shown SOTA per-
formance for deterministic ℓ2-certification on MNIST and
remarkably strong certified robustness results with respect
to the LPIPS metric. Thus we think that NPC deserve more
attention in our research community.
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The appendix includes the missing proofs from the paper (App. A to App. G), results for ℓ2-NPC for CIFAR10 in App. H
and comparison to orthogonal convolutions in I.

A. Proof of Theorem 2.4
Proof. We note that for any x it holds by the triangle inequality

d(x,wi) ≤ d(z, x) + d(wi, z).

Thus it holds
d(x,wi)− d(x,wj) ≤ d(z, wi) + d(x, z)− d(z, wj) + d(x, z),

and we get that all points in Bd(z, r) are classified the same as z if

max
x∈Bd(z,r)

(
min
i∈Iy

d(x,wi)−min
j∈Ic

y

d(x,wj)
)
≤ min

i∈Iy
d(z, wi)−min

j∈Ic
y

d(z, wj) + 2r ≤ 0

This yields that

r ≤
min
j∈Ic

y

d(z, wj)−min
i∈Ic

d(z, wi)

2
.

B. Proof of Theorem 2.6
Proof. We define the set

U
(p)
j = {x ∈ Rn | ∥x− wi∥p − ∥x− wj∥p ≥ 0 ∀ i ∈ Iy}.

as the set of points which are not classified as y when only the single prototype with index j ∈ Icy would be considered. We

get the full set of points not classified as y as the union
⋃

j∈Ic
y
U

(p)
j . We define rqp(z)j = min

x∈U
(p)
j

∥z − x∥q as the radius

of the largest ℓq-ball which still fits into Rd\U (p)
j and thus is fully classified as class y when only considering j ∈ Icy . Thus

the radius ϵqp(z) of the largest ℓq-ball fitting into Rd\
⋃

j∈Ic
y
U

(p)
j =

⋂
j∈Ic

y

(
Rd\U (p)

j

)
is given by

ϵqp(z) = min
j∈Ic

y

rqp(z)j ,

which can be seen using the fact that rqp(z)j is the minimal ℓq-distance to U
(p)
j .

C. Proof of Lemma 2.9
Proof. As for each i ∈ Iy the problem for ρqp(z)i,j is a relaxation of the problem for rqp(z)j (as we are omitting constraints),
it holds for each i ∈ Iy:

rqp(z)j ≥ ρqp(z)i,j =⇒ rqp(z)j ≥ max
i∈Iy

ρqp(z)i,j .

Thus
ϵpq(z) = minj∈Ic

y
rqp(z)j ≥ min

j∈Iy
c

max
i∈Iy

ρqp(z)i,j .

For the second part if x∗ satisfies
∥x∗ − wi∥p − ∥x∗ − wj∗∥p ≥ 0 ∀i ∈ Iy,

then it is a feasible point for the optimization problem of rqp(z)j∗ in (1) and thus ρqp(z)i∗,j∗ = rqp(z)j∗ . By definition and by
the just derived result it holds

ρqp(z)i∗,j∗ = rqp(z)j∗ ≥ ϵqp(z) ≥ ρqp(z)i∗,j∗ ,

and thus equality has to hold.
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D. Proof of Theorem 2.10
Lemma D.1. ρpp(z)i,j ≥

∥wj−z∥p−∥wi−z∥p

2

Proof. First we restate the definition of ρ:

ρqp(z)i,j = min
x∈Rd

∥x− z∥q (8)

sbj. to: ∥x− wi∥p − ∥x− wj∥p ≥ 0

x ∈ X

We consider p = q. By the triangle inequality the following holds for any x ∈ X , thus also for any adversarial perturbation
x for which ∥x− wi∥p − ∥x− wj∥p ≥ 0:

∥x− wi∥p ≤ ∥x− z∥p + ∥z − wi∥p
∥z − wj∥p ≤ ∥x− z∥p + ∥x− wj∥p =⇒ ∥x− wj∥p ≥ ∥z − wj∥p − ∥x− z∥p

(9)

Summing the inequalities up we get for any feasible x ∈ X satisfying the inequality constraint,

∥z − wi∥p − ∥z − wj∥+ 2 ∥x− z∥p ≥ ∥x− wi∥p − ∥x− wj∥p ≥ 0. (10)

which yields finally

∥x− z∥p ≥
∥wj − z∥p − ∥wi − z∥p

2
. (11)

Therefore, ρpp(z)i,j ≥
∥wj−z∥p−∥wi−z∥p

2 .

Proof of Theorem 2.10. If z is misclassified, then it reduces to 0 ≥ 0 which holds. Otherwise, by Lemma D.1, it holds
ρpp(z)i,j ≥

∥z−wj∥p−∥z−wi∥p

2 . Then

min
j∈Iy

c

max
i∈Iy

ρpp(z)i,j ≥ min
j∈Iy

c

ρpp(z)i∗,j

≥ min
j∈Iy

c

∥z − wj∥p − ∥z − wi∗∥p
2

=

min
j∈Ic

y

∥z − wj∥p −min
i∈Iy

∥z − wi∥p

2

We further show that there are cases where the inequality is strict. Consider a d-dimensional example where z = (0, . . . , 0),
{wj | j ∈ Iyc } = {(2, 0, . . . , 0)}, {wi | i ∈ Iy} = {(1, 0, . . . , 0)}. It clearly holds that min

j∈Iy
c

max
i∈Iy

ρpp(z)i,j = 1.5, while

max

{
0,

min
j∈Icy

∥z−wj∥p−min
i∈Iy

∥z−wi∥p

2

}
= 1 for any p.

E. Proof of Theorem 2.7
Theorem 2.7 The computational complexities of optimization problems ρqp(z)i,j for p, q ∈ {1, 2,∞} for X = Rd are
summarised in Table 8.

Throughout the proof, we assume z is correctly classified, otherwise the solution is 0. We prove the theorem gradually
for cases p = 2 and any q, then q = ∞ and any p, then p = 1 and any q ̸= ∞ and finally p = ∞, q = 1, 2. For most of
the cases, we discuss the possibility of incorporating box constraints, which usually increases complexity from O(d) to
O(d log(d)). We also remark that using the median of medians algorithm, one could avoid sorting coordinates, and could
achieve Θ(d) complexities. We, for the sake of simplicity, will be sorting point for the price of log(d) factor in complexity.
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ℓq-threat model

ℓ p
-d

is
ta

nc
e ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard O(d log(d))
ℓ2 Θ(d) Θ(d) Θ(d)
ℓ∞ Θ(d) O(d log(d)) Θ(d)

Table 8: Computational complexity of ρqp(z)i,j .

Proof for case p = 2 and any q.

ρq2(z)i,j = min
x∈Rd

∥x− z∥q (12)

sbj. to: ∥x− wi∥2 − ∥x− wj∥2 ≥ 0

x ∈ X

We equivalently rewrite the constraint in the following way:

∥x− wi∥2 − ∥x− wj∥2 ≥ 0,

∥x− z + z − wi∥22 − ∥x− z + z − wj∥22 ≥ 0,

∥x− z∥22 + 2 ⟨x− z, z − wi⟩+ ∥z − wi∥22 −
(
∥x− z∥22 + 2 ⟨x− z, z − wj⟩+ ∥z − wj∥22

)
≥ 0,

2 ⟨x− z, wj − wi⟩ ≥ ∥z − wj∥22 − ∥z − wi∥22 ,

2 ∥x− z∥q ∥wj − wi∥ q
q−1

≥ 2 ⟨x− z, wj − wi⟩ ≥ ∥z − wj∥22 − ∥z − wi∥22 ,

∥x− z∥q ≥
∥z − wj∥22 − ∥z − wi∥22

2 ∥wj − wi∥ q
q−1

.

Since Hölder’s inequality is tight, we conclude

ρq2(z)i,j =
∥z − wj∥22 − ∥z − wi∥22

2 ∥wj − wi∥ q
q−1

. (13)

We note that analogical derivation holds for minimising ∥x− z∥ in any norm, not just for the q-norm. In that case, ∥·∥ q
q−1

is replaced with the dual norm of the considered norm. The box-constrained version of this problem can be solved in
O(d log d), see e.g., Section 4 of (Hein & Andriushchenko, 2017).

Proof for case p = q = ∞.

ρ∞p (z)i,j = min
x∈Rd

∥x− z∥∞ (14)

sbj. to: ∥x− wi∥∞ − ∥x− wj∥∞ ≥ 0

x ∈ X

We note that whenever ∥x− wi∥∞ − ∥x− wj∥∞ ≥ 0, then also ∥x′ − wi∥∞ − ∥x′ − wj∥∞ ≥ 0, where x′(l) = x(l) +

α sign(w
(l)
j −w

(l)
i ) for any positive α and some l = 1 . . . d, and x′(l) = x(l) for the coordinates. That is, we can move x(l) in

the direction from w
(l)
i to w(l)

j , since if |x′(l)−w
(l)
j | > |x(l)−wj(l)|, then also |x′(l)−wl

i| > |x′(l)−wj(l)|. On the other hand,

if |x(l)−w
(l)
i | > |x′(l)−w

(l)
i |, then also |x(l)−w

(l)
i | < |x(l)−w

(l)
j |, thus l was not the maximising index of ∥x− wi∥∞, and

consequently ∥x− wi∥∞ = ∥x′ − wi∥∞. The remaining case is trivial; thus, ∥x′ − wi∥p−∥x′ − wj∥p ≥ 0. This argument
may be repeated d times to conclude that when ρ∞∞(z)i,j = ϵ, then a minimizer of Problem 14 is x∗ = z+ ϵ sign (wj − wi).



Provably Adversarially Robust Nearest Prototype Classifiers

Therefore, the problem is to find the smallest ϵ for which ∥z + ϵ sign(wj − wi)− wi∥∞ ≥ ∥z + ϵ sign(wj − wi)− wj∥∞.
Note that

∥z+ϵ sign(wj− wi)−wj∥∞ = max
l=1,...,d

max
{
z(l) + ϵ sign

(
w

(l)
j − w

(l)
i

)
− w

(l)
j ,−

(
z(l) + ϵ sign

(
w

(l)
j − w

(l)
i

)
− w

(l)
j

)}
;

thus, it is a maximum of 2d linear functions, each of which has slope either 1, or −1. Let αi =
argmin sign(wj − wi)(z − wi) and βi = argmax sign(wj − wi)(z − wi), analogously for αj , βj . Then

∥z + ϵ sign(wj − wi)− wi∥∞ − ∥z + ϵ sign(wj − wi)− wj∥∞ =

max
{
−ϵ− sign

(
w

(αi)
j − w

(αi)
i

)(
z(αi) − w

(αi)
i

)
, ϵ+ sign

(
w

(βi)
j − w

(βi)
i

)(
z(βi) − w

(βi)
i

)}
−

max
{
−ϵ− sign

(
w

(αj)
j − w

(αj)
i

)(
z(αj) − w

(αj)
j

)
, ϵ+ sign

(
w

(βj)
j − w

(βj)
i

)(
z(βj) − w

(βj)
j

)}
.

Moreover, we can analyse to slope of ∥z + ϵ sign(wj − wi)− wi∥∞ − ∥z + ϵ sign(wj − wi)− wj∥∞ and see that it is
non-zero only in the interval between points

ϵi =
− sign

(
w

(αi)
j − w

(αi)
i

)(
z(αi) − w

(αi)
i

)
− sign

(
w

(βi)
j − w

(βi)
i

)(
z(βi) − w

(βi)
i

)
)

2
,

and

ϵj =
− sign

(
w

(αj)
j − w

(αj)
i

)(
z(αj) − w

(αj)
j

)
− sign

(
w

(βj)
j − w

(βj)
i

)(
z(βj) − w

(βj)
j

)
)

2
,

where the slope is 2. Now it is easy to compute the value of ∥z + ϵ sign(wj − wi)− wi∥∞−∥z + ϵ sign(wj − wi)− wj∥∞
for very big (V+) and very small (V−) values of ϵ, where the active linear function is the one with negative slope. Concretely

V− = sign
(
w

(αj)
j − w

(αj)
i

)(
z(αj) − w

(αj)
j

)
− sign

(
w

(αi)
j − w

(αi)
i

)(
z(αi) − w

(αi)
i

)
,

V+ = sign
(
w

(βi)
j − w

(βi)
i

)(
z(βi) − w

(βi)
i

)
− sign

(
w

(βj)
j − w

(βj)
i

)(
z(βj) − w

(βj)
j

)
.

Now we use the fact that the slope is 2 between ϵi and ϵj to find the point where the norms are equal; Thus, we can express
ρ∞∞(z)i,j as

ρ∞∞(z)i,j = max{ϵi, ϵj} −
V+

2
,

or as

ρ∞∞(z)i,j = min{ϵi, ϵj} −
V−

2
.

We can take the mean of both expression, then we arrive at

ρ∞∞(z)i,j = ϵi + ϵj −
V− + V+

2
,

which simplifies to

ρ∞∞(z)i,j = −
sign

(
w

(αj)
j − w

(αj)
i

)(
z(αj) − w

(αj)
j

)
+ sign

(
w

(βi)
j − w

(βi)
i

)(
z(βi) − w

(βi)
i

)
2

,

and by substituting back the definitions of αj , βi:
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ρ∞∞(z)i,j =

max
l=1,...,d

− sign
(
w

(l)
j − w

(l)
i

)(
z(l) − w

(l)
j

)
− max

l=1,...,d
sign

(
w

(l)
j − w

(l)
i

)(
z(l) − w

(l)
i

)
2

. (15)

Proof for case q = ∞, p ̸= ∞ . The value of ρ∞p (z)i,j is the minimal non-negative ϵ for which the following maximization
problem has non-negative value.

max
x∈Rd

∥x− wi∥pp − ∥x− wj∥pp (16)

sbj. to: ∥x− z∥∞ ≤ ϵ

x ∈ X

It can be decomposed into d independent problems indexed by l.

max
x(l)∈R

|x(l) − w
(l)
i |p − |x(l) − w

(l)
j |p (17)

sbj. to: |x(l) − z(l)| ≤ ϵ

x(l) ∈ X (l)

Derivative of the objective function w.r.t. x(l) is p|x(l) − w
(l)
i |p−1 sign (x(l) − w

(l)
i )− p|x(l) − w

(l)
j |p−1 sign (x(l) − w

(l)
j ),

which is non-zero whenever w(l)
i ̸= w

(l)
j . Thus, the maximum is attained at a point where a constraint is active, and the

value of the problem is |z(l) + ϵ sign (w
(l)
j − w

(l)
i )− w

(l)
i |p − |z(l) + ϵ sign (w

(l)
j − w

(l)
i )− w

(l)
j |p. When p = 2, the value

of the objective is a quadratic function in ϵ; thus, the value of the original objective is also a quadratic function in ϵ and we
can easily obtain a solution to the original problem. For the sake of completeness, we show that this approach results in the
same ρ∞2 (z)i,j as we derived before:

d∑
l=1

((
z(l) + ϵ sign (w

(l)
j − w

(l)
i )− w

(l)
i

)2
−
(
z(l) + ϵ sign (w

(l)
j − w

(l)
i )− w

(l)
j

)2)
≥ 0,

d∑
l=1

(
(z(l) − w

(l)
i )2 − (z(l) − w

(l)
j )2 + 2ϵ sign (w

(l)
j − w

(l)
i )(w

(l)
j − w

(l)
i )
)
≥ 0,

∥z − wi∥22 − ∥z − wj∥22 + 2ϵ ∥wj − wi∥1 ≥ 0,

ϵ ≥
∥z − wj∥22 − ∥z − wi∥22

2 ∥wj − wi∥1
.

(18)

If p = 1, the value of the objective is piecewise linear and non-decreasing; thus, the original objective is again, piecewise
linear and non-decreasing. Then we can order the breaking points and find the smallest admissible ϵ for the original problem
using binary search. Note that the objective is maximised not just in the aforementioned case, but also when

x(l) =

{
w

(l)
j , if |z(l) − w

(l)
j | ≤ ϵ.

z
(l)
j + ϵ sign

(
wl

j − zl
)
, otherwise.

(19)

For other values of p, it may be difficult to solve the problem exactly. However, as we have already shown, it is easy (Θ(d))
to determine if ρ∞p (z)i,j > ϵ given an ϵ, thus the problem can be solved approximately using binary search for any p with
logarithmic complexity in accuracy.

To conclude the cases ρp∞(z)i,j , we discuss the addition of box constraints. As we have shown, a minimizer of the
problems is always x∗ = z + ϵ sign (wj − wi), and identical arguments would suggest that with box constraints, it would
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hold that x∗ = max(0,min(1, z + ϵ sign (wj − wi))). Therefore, given a radius, certification is done in O(d) even with
box constraints. Otherwise, we would need to either order coordinates according to value of ϵ when a box constraint
for x∗ = max(0,min(1, z + ϵ sign (wj − wi))) becomes active, and then perform a binary search over the constrained
problems. This adds a log(d) factor to the complexity. Note that for the case p = 1 we are already performing a binary
search, so we do them at once. Or we can do a binary search over ϵ to find a minimal one which causes

x = max(0,min(1, z + ϵ sign (wj − wi))) (20)

to be misclassified.

Proof for case p = 1, q ̸= ∞. We ave already discussed the case of ρ∞1 (z)i,j , so it is omitted here. For all other values of q,
we show its NP-hardness by reducing the knapsack problem to the decision version of problem if given ϵ > 0, ρ∞1 (z)i,j ≤ ϵ.

Theorem E.1 (Knapsack). The following problem is NP-complete.
Given vectors w, p ∈ Nn and constants W,P . Decide if there is a vector x ∈ {0, 1}n such that ⟨p, x⟩ ≥ P and ⟨w, x⟩ ≤ W .

For the sake of clarity, we use u, v instead of wi, wj to get rid of unnecessary subscript. Let w, p,W,P describe an instance
of the knapsack problem. Let a pair of prototypes ut, vt ∈ Rn+2 be defined in the following way for some real t and
l = 1, . . . , n

u
(l)
t =

q
√

w(l),

v
(l)
t =

q
√

w(l) − p(l)

t
,

(21)

let also

u
(n+1)
t =

q
√
W +

max
(
0,
(
2P −

∑n
i=1 p

(i)
))

t
,

v
(n+1)
t =

q
√
W,

u
(n+2)
t =

q
√
W,

v
(n+2)
t =

q
√
W +

max
(
0,
(∑n

i=1 p
(i) − 2P

))
t

,

(22)

and ϵ = q
√
W . Now we show that whenever there is an allocation x ∈ {0, 1}n such that ⟨p, x⟩ ≥ P and ⟨w, x⟩ ≤ W , then

ρq1(0) ≤ ϵ for any sufficiently large t such that the first n components of v(t) are positive. It holds that:

∥vt∥1 ≤
n∑

i=1

q
√
w(i) −

n∑
i=1

p(i)

t
+ 2

q
√
W +

max
(
0,
(∑n

i=1 p
(i) − 2P

))
t

≤
n∑

i=1

q
√

w(i) + 2
q
√
W ≤ ∥ut∥1 . (23)

Consider the following point

δ(k) =

{
q
√
w(k), if x(k) = 1.

0, otherwise.
(24)

It has q-norm of at most ϵ:

∥δ∥q =

(
n+2∑
i=1

δ(i)q

) 1
q

=

(
n∑

i=1

x(i) · w(i)

) 1
q

≤ q
√
W = ϵ. (25)
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Also it holds that

∥vt − δ∥1 =

n∑
i=1

(
x(i) · p

(i)

t
+ (1− x(i))

q
√

w(i)

)
+ 2

q
√
W +

max
(
0,
(∑n

i=1 p
(i) − 2P

))
t

,

≥
n∑

i=1

(1− x(i))
q
√
w(i) + 2

q
√
W +

P +max
(
0,
(∑n

i=1 p
(i) − 2P

))
t

,

≥
n∑

i=1

(1− x(i))
q
√
w(i) + 2

q
√
W +

∑n
i=1 p

(i) − P +max
(
0,
(
2P −

∑n
i=1 p

(i)
))

t
≥ ∥ut − δ∥1 .

(26)

Therefore, ρq1(0) ≤ ϵ.

Now we move on to the second direction; we show that whenever the constructed problem is feasible, then also the knapsack
problem is feasible.

Let there be a δ such that ∥δ∥q ≤ ϵ and ∥vt − δ∥ ≥ ∥ut − δ∥. Then we can WLoG assume δ(n+1) = 0, and q
√
w(l)−p(l)/t ≤

δ(l) ≤ q
√
w(l) for l = 1, . . . , n. Now consider the following allocation for k = 1, . . . , n.

x(k) =

{
0, if δ(k) = 0.

1, otherwise.
(27)

We show that if t is sufficiently large, then x is a valid allocation. First, let us look at the ⟨w, x⟩ ≤ W constraint;

n∑
i=1

δ(i)q =

n∑
i=1

wi · xi − o(1) = ⟨w, x⟩ − o(1) ≤ W ;

thus, ⟨w, x⟩ ≤ W for sufficiently large t.

For the other constraint, first note for l = 1, . . . , n:

(
|vt − δ|(l) − |ut − δ|(i)

)
=

{
p(i)/t, if x(i) = 0.

≥ −p(i)/t, otherwise.
(28)

Then

n∑
i=1

(
|vt − δ|(i) − |ut − δ|(i)

)
≥
∑n

i=1 p
(i) − 2 ⟨x, p⟩
t

, (29)

and finally

∑n
i=1 p

(i) − 2P

t
≥
∑n

i=1 p
(i) − 2 ⟨x, p⟩
t

,

⟨x, p⟩ ≥ P.

(30)

Proof for case p = ∞, q = 1.

ρ1∞(z)i,j = min
x∈Rd

∥x− z∥1 (31)

sbj. to: ∥x− wi∥∞ − ∥x− wj∥∞ ≥ 0

x ∈ X
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Let δx = x − z where x ∈ argmin ρ1∞(z)i,j , We note that there exists x such that δx contains only a single non-zero
element. To see why, let there be some δx with multiple non-zero elements from which we construct δx′ with more zeros
such that x′ ∈ argmin ρ1∞(z)i,j . Let l∗ = argmaxl |x(l)−w

(l)
i |. Take any index k ̸= l∗ such that δ(k)x ̸= 0. Then consider

a perturbation δx
′

δ
(l)
x′ =


δ
(l)
x + |δ(k)x | sign(x(l) − w

(l)
i ), if l = l∗.

0, if l = k.

δ
(l)
x , otherwise.

(32)

Now, ∥x′ − wi∥∞ = ∥x− wi∥∞ + |δkx| ≥ ∥x− wj∥∞ + |δ(l)| ≥ ∥δ′ − wj∥∞ which concludes the argument. Now it is
sufficient to solve the problem for every coordinate separately and take the maximal value; thus, the original problem is
solved in linear time.

Proof for case p = ∞, q = 2.

ρ2∞(z)i,j = min
x∈Rd

∥x− z∥2 (33)

sbj. to: ∥x− wi∥∞ − ∥x− wj∥∞ ≥ 0

x ∈ X

Let x be the minimizer. Then we split the proof into two cases. Either there is an index l such that ∥x− wi∥∞ =

|x(l) − w
(l)
i | = |x(l) − w

(l)
j = ∥x− wj∥∞. In that case, |z(l) − w

(l)
j | > |z(l) − w

(l)
i | and |w(l)

i − w
(l)
j | is maximal. Then

we can compute x in one pass and verify that indeed ∥x− wi∥∞ = ∥x− wj∥∞.

Otherwise, let us Assume that we know ∥x− wi∥∞ = ∥x− wj∥∞ = d for the optimal x. That is, for every coordinate l we
have to ensure that |x(l) − w

(l)
j | ≤ d, and also that there is a coordinate k where |x(l) − w

(l)
i | = d; thus, we can construct x

minimizing ∥x− z∥2 as

x(l) =


w

(l)
j + d sign(z(l) − w

(l)
i ), if |w(l)

j − x(l)| > d.

w
(l)
i + d sign(w

(l)
j − w

(l)
i ), if l = k.

z(l), otherwise,

(34)

where k = min argmax
l

sign
(
w

(l)
j − w

(l)
i

)(
z(l) − w

(l)
i

)
.

Now we sort (so further we assume the array is sorted) the coordinates according to values of |w(l)
j − x(l)|.

Then minimum of ∥x− z∥22 is attained for some d which lies in some interval [|w(m)
j − x(m)|, |w(m+1)

j − x(m+1)|]. Inside
every such interval, ∥x− z∥22 is a quadratic expression in d. For the m-th interval, the equation is

∥x− z∥22 =

m∑
l=1

(
z(l) − w

(l)
j + d sign(z(l) − w

(l)
i )
)2

+
(
z(l) − sign

(
w

(k)
j − w

(k)
i

)(
z(k) − w

(k)
i

))2
.

So we can minimize a quadratic function ∥x− z∥22 over an interval [|w(m)
j − x(m)|, |w(m+1)

j − x(m+1)|]. We can also see
that for the m+ 1-th equation, we only add one term to the m-th equation; thus, we can solve every interval in O(1) and
take the minimal ϵ. Consequently, the time complexity is dominated by O(d log(d)) needed for sorting which concludes the
proof.
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ℓq-threat model

ℓ p
-d

is
ta

nc
e ℓ1 ℓ2 ℓ∞

ℓ1 NP-hard NP-hard Poly
ℓ2 Poly Poly Poly
ℓ∞ NP-hard NP-hard NP-hard

Table 9: Computational Complexity of rq(z).

F. Proof of Theorem 2.8
Theorem 2.8 The computational complexities of optimization problems rqp(z)i,j in (1) for p, q ∈ {1, 2,∞} and X = [0, 1]d

are summarized in Table 9.

Proof. The Problem rq1(z)j for q ̸= ∞ cannot be easier than the problem ρq1(z)i,j , thus since the latter is NP-hard, the first
also has to be NP-hard. For the case r∞1 (z)j , we recall that the optimal argument of ρ∞1 (z)i,j was in the form

x(l) =

{
w

(l)
j , if |z(l) − w

(l)
j | ≤ ϵ,

z
(l)
j + ϵ sign

(
wl

j − zl
)
, otherwise,

(35)

where ϵ is the value of ρ∞1 (z)i,j . Therefore, r∞1 (z)j = maxi ρ
∞
1 (z)i,j and the overall complexity is O(d log(d)|Iyc |). When

p = 2, then the problem reads as

rq2(z)j = min
x∈Rd

∥x− z∥q

sbj. to: ∥x− wi∥2 − ∥x− wj∥2 ≥ 0 ∀ i ∈ Iy

x ∈ [0, 1]d

which is a convex optimization problem for any q and can be solved in polynomial time.

Finally, for the case p = ∞ we show that it is NP − complete to solve the feasibility problem of rqp(z)j , thus the problem
is NP-hard for any q. To shorten the notation, we consider Iy = 1, . . . , n and whenever we say that some proposition holds
for wi, then we mean it holds for any wi, i ∈ 1, . . . , n.

We show this by reducing 3-SAT to it. Let there be a formula in CNF
∧n

i=1

(
α(i) ∨ β(i) ∨ γ(i)

)
, where all all the literals are

from a set of v variables. For the sake of brevity, we make a correspondence between the literals and indices 1, . . . , v. Also
when literal corresponding to i is negative, we will write it as −i. We will consider the following set of prototypes from
R(v+1).

wj = (0, . . . , 0, 3)

w
(l)
i =


−1, if l ∈ {α(i), β(i), γ(i)},
2, if −l ∈ {α(i), β(i), γ(i)},
0, otherwise.

Clearly, for any x ∈ [0, 1]d it holds that ∥wj − x∥∞ ≥ 2, and also ∥x− wi∥∞ ≤ 2. Therefore, if rp∞(z) is feasible, then

∥x− wi∥∞ = 2, which is equivalent to proposition
(
x(|αi|) = 1+signαi

2

)
∨
(
x(|βi|) = 1+sign βi

2

)
∨
(
x(|γi|) = 1+sign γi

2

)
.

Such proposition have to be satisfied for every i, therefore it is equivalent to a formula in CNF

n∧
i=1

((
x(|αi|) =

1 + signαi

2

)
∨
(
x(|βi|) =

1 + signβi

2

)
∨
(
x(|γi|) =

1 + sign γi
2

))
,

which is clearly equisatisfiable with the original CNF formula; thus, the feasibility problem is NP-complete.
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G. Proofs from the Perceptual Metric NPC
Here we slightly deviate from the main text, that we consider the squared objective which clearly is an equivalent problem

ρ2(z)i,j = min
x∈Rd

∥x− z∥22

sbj. to: ⟨x,wj − wi⟩+
∥wi∥22 − ∥wj∥22

2
≥ 0∥∥∥x(l)

∥∥∥2
2
= r2l

x ≥ 0,

where we use a shortcut x(l), instead of x(h,w,l), to simplify notation.

Proof of Proposition 3.1. Note that

∥x− z∥22 =
∑
l∈Il

∥∥∥x(l) − z(l)
∥∥∥2
2
,

and as
∥∥z(l)∥∥

2
= rl and we have

∥∥x(l)
∥∥
2
= rl as constraint, we can equivalently minimize −

∑
l∈IL

〈
x(l), z(l)

〉
as objective.

Let v = wj − wi and b =
∥wi∥2

2−∥wj∥2
2

2 . The Lagrangian of the non-convex problem (due to the quadratic equality
constraints) is

L(x, λ, α, µ)
µ≥0

= −
∑
l∈IL

〈
x(l), z(l)

〉
+ λ

(∑
l∈Il

〈
v(l), x(l)

〉
+ b
)
+
∑
l∈IL

αl

2

(∥∥∥x(l)
∥∥∥2
2
− r2l

)
−
∑
l∈IL

〈
µ(l), x(l)

〉
We get as critical point condition:

∇x(l)L = −z(l) + λv(l) + αlx
(l) − µ(l) = 0,

which yields

x(l) =
1

αl

(
z(l) − λv(l) + µ(l)

)
.

The dual function q(λ, α, µ) becomes

q(λ, α, µ) =−
∑
l∈IL

1

αl

(∥∥∥z(l)∥∥∥2
2
− λ

〈
v(l), z(l)

〉
+
〈
µ(l), z(l)

〉)

+ λ

(∑
l∈IL

1

αl

(〈
v(l), z(l)

〉
− λ

∥∥∥v(l)∥∥∥2
2
+
〈
v(l), µ(l)

〉)
+ b

)

+
∑
l∈IL

1

2αl

(∥∥∥z(l)∥∥∥2
2
+ λ2

∥∥∥v(l)∥∥∥2
2
+
∥∥∥µ(l)

∥∥∥2
2
− 2λ

〈
z(l), v(l)

〉
+ 2

〈
z(l), µ(l)

〉
− 2λ

〈
v(l), µ(l)

〉)

−
∑
l∈IL

αlr
2
l

2
−
∑
l∈IL

1

α

(〈
µ(l), z(l)

〉
− λ

〈
µ(l), v(l)

〉
+
∥∥∥µ(l)

∥∥∥2
2

)
,

which simplifies to

q(λ, α, µ) = −
∑
l∈IL

1

2αl

∥∥∥z(l) − λv(l) + µ(l)
∥∥∥2
2
+ λb−

∑
l∈IL

αlr
2
l

2
.

We solve explicitly for α and get

αl =
1

rl

∥∥∥z(l) − λv(l) + µ(l)
∥∥∥
2
.

Then we get
q(λ, µ) = −

∑
l∈IL

∥∥∥z(l) − λv(l) + µ(l)
∥∥∥
2
rl + λb.



Provably Adversarially Robust Nearest Prototype Classifiers

Table 10: CIFAR10: lower (CRA) and upper bounds (URA) on ℓ2-robust accuracy

CIFAR10 std. ϵ2 = 0.1 ϵ2 = 36/255 ϵ2 = 0.25
acc. CRA URA CRA URA CRA URA

PNPC 49.2 43.9 43.9 41.9 41.9 36.4 36.4
GLVQ 48.6 43.3 43.3 41.5 41.5 37.9 37.9
1-NN 35.7 31.2 - 29.7 29.7 25.7 -

GloRob 77.0 - - 58.4 69.2 - -
LocLip 77.4 - - 60.7 70.4 - -
BCP 65.7 - - 51.3 60.8 - -

SmoothLipσ=0.25 77.1 - - - - 67.9∗ 67.9∗

Solving explicitly for µ, we get

q(λ) = −
∑
l∈IL

∥∥∥∥(z(l) − λv(l)
)+∥∥∥∥

2

rl + λb.

So this is a lower bound on −
∑

l∈IL

〈
x∗(l), z(l)

〉
, where x∗ is the optimal primal variable by weak duality and thus going

back to our actual objective we get using
∥∥x∗(l)

∥∥
2
=
∥∥z(l)∥∥ = rl that

∥x∗ − z∥ =

√
∥x∗ − z∥22 =

√
2
∑
l∈IL

r2l − 2
∑
l∈IL

〈
x∗(l), z(l)

〉
≥

√√√√2
∑
l∈IL

r2l + 2

(
max
λ≥0

−
∑
l∈IL

∥∥∥(z(l) − λv(l)
)+∥∥∥

2
rl + λb

)
,

where we have used weak duality. Now we go back to indexing using h,w, l instead of just l. Since rl =
1√

HlWl
, it holds

that ∑
h=1,...,Hl

∑
w=1,...,Wl

r2l = 1;

thus, we can simplify the final expression as√√√√√2L+ 2

max
λ≥0

−
∑
h,w,l

∥∥∥(z(h,w,l) − λv(h,w,l)
)+∥∥∥

2
rl + λb

.

Thus we have a one-dimensional convex optimization problem to solve in order to get a lower bound on the original objective,
which is all we need for the certification.

H. Results for CIFAR10 with ℓ2-NPC
CIFAR10 - ℓ2-NPC In Table 10 we compare certified robust accuray (CRA) and an upper bound on the robust accuray
(URA) of several models on CIFAR10 for ℓ2-threat model. Our ℓ2-PNPC (800ppc) is slightly better than ℓ2-GLVQ (128ppc)
in terms of clean accuracy, and robust accuracy for ϵ2 ∈ {0.1, 36/255}, but ℓ2-GLVQ is better for ϵ2 = 0.25. Note that the
1-NN is significantly worse showing that learning the prototypes helps improving the performance. Nevertheless, all NPC
models are not competitive with neural networks which is to be expected as the ℓ2-distance is not a good measure for image
similarity. This is why we study PNPC with the perceptual metric which achieves to clean accuracies which are higher than
the one of neural networks with provable robustness guarantees.

Table 11 shows the performance of ℓ2-NPC for multiple threat models. ℓ2-PNPC outperforms ℓ2-GLVQ in terms of clean
accuracy, ℓ1- and ℓ2-robust accuracy but is worse for ℓ∞-robust accuracy and as this is the most difficult threat model it is
also worse in the union. MMR-U outperforms the ℓ2-NPC but the margin is relatively small.
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Table 11: CIFAR10: lower (CRA) and upper bounds (URA) on robust accuracy for multiple threat models for our ℓ2-PNPC,
the ℓ2-NPC of (Saralajew et al., 2020), a 1-NN classifier. As comparison we show MMR-Univ of (Croce & Hein, 2020a)
which is a neural network specifically trained for certifiable multiple-norm robustness.

CIFAR10 std. ϵ1 = 2 ϵ2 = 0.1 ϵ∞ = 2/255 union
acc. CRA URA CRA URA CRA URA CRA URA

ℓ2-PNPC 49.2 42.5 42.5 41.9 41.9 32.7 32.7 32.7 32.7
ℓ2-GLVQ 48.6 42.3 42.3 41.5 41.5 35.2 35.2 35.2 35.2
1-NN 35.7 30.0 - 29.7 29.7 22.5 - 22.5 -

MMR-U 53.0 36.6 43.6 46.4 48.1 36.2 36.2 35.4 36.2

Table 12: MNIST: Certified robust accuracy of networks with orthogonal convolutions. We computed robust accuracy after
every epoch and the reported numbers are the maximal ones. The radius is 1.58

blocks
γ

0 0.1 0.2 0.5 1

1 57.17 58.23 58.75 58.82 58.57
2 58.31 58.85 59.63 59.21 58.99
4 59.50 60.75 61.02 60.33 58.82
6 59.78 60.47 59.05 59.99 57.53

I. Comparison with orthogonal convolution networks
We evaluated the robustness orthogonal convolution networks on MNIST at radius 1.58. According to the evaluation
in (Singla et al., 2022), the currently best method for orthogonal convolution networks is to combine skew orthogonal
convolutions with Householder activations. According to the official repository, they suggest to choose to set the following
parameters

• --conv-layer - We chose soc because it consistently outperformed baselines in the paper.

• --activation - We chose hh1 activation, which is used in the experiments in the original paper.

• --num-blocks - We tried 1, 2, 4, 6 blocks, possible values are 1 . . . 8. In the original paper, it did not seem that
more blocks boost performance.

• --gamma - We tried 0, 0.1, 0.2, 0.5, 1. The original experiments used 0.1.

• --lln - The authors suggest to use last layer normalization when the number of classes is large, e.g., for CIFAR100,
and do not use it for CIFAR10. We also did not use it.

We padded the MNIST images by 2 black pixels, so that we can directly use the original architecture which relied on the
fact that the input images are 32× 32. We also turned off the normalization by mean and variance as it is not commonly
use for MNIST. We removed random horizontal flip from the set of possible augmentations, otherwise the setup is exactly
as recommended. We note that the padding of MNIST image by 2 pixels is likely not the optimal way how to adapt the
network to work with MNIST dataset.

The orthogonal convolutions from (Li et al., 2019) reports 56.4% certified robust accuracy. The method of (Trockman &
Kolter, 2021) yielded 54% robust accuracy with the suggested setup.

I.1. Empirical robustness

We evaluated the empirical robustness of (Singla et al., 2022) using AutoAttack which is a stronger attack than what the
competing methods used in Table 5. Thus, we don’t conclude that orthogonal convolutions are (significantly) less empirically
robust than the other evaluated methods.


