First-Order Regret in Reinforcement Learning with Linear Function
Approximation: A Robust Estimation Approach

Andrew Wagenmaker ! Yifang Chen' Max Simchowitz

Abstract

Obtaining first-order regret bounds—regret
bounds scaling not as the worst-case but with
some measure of the performance of the opti-
mal policy on a given instance—is a core ques-
tion in sequential decision-making. While such
bounds exist in many settings, they have proven
elusive in reinforcement learning with large state
spaces. In this work we address this gap, and
show that it is possible to obtain regret scal-
ing as O(\/d*H3 - V- K + d*>5H3log K) in
reinforcement learning with large state spaces,
namely the linear MDP setting. Here V" is the
value of the optimal policy and K is the number
of episodes. We demonstrate that existing tech-
niques based on least squares estimation are insuf-
ficient to obtain this result, and instead develop a
novel robust self-normalized concentration bound
based on the robust Catoni mean estimator, which
may be of independent interest.

1. Introduction

A central question in reinforcement learning (RL) is under-
standing precisely how long an agent must interact with its
environment before learning to behave near-optimally. One
popular way to measure this duration of interaction is by
studying the regret R i, or cumulative suboptimality, of on-
line reinforcement algorithms that explore an unknown en-
vironment across K episodes of interaction. Typical regret
guarantees scale as R < O(y/poly(d, H) - K), where d
measures the “size” of the environment and H the horizon
length of each episode.

In many cases, however, regret bounds scaling at least as
large as Q(\/? ) may be deeply unsatisfactory. Consider, for

"Paul G. Allen School of Computer Science and Engineer-
ing, University of Washington, Seattle “CSAIL, MIT, Cam-
bridge, MA. Correspondence to: Andrew Wagenmaker <ajwa-
gen@cs.washington.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

2 Simon S. Du! Kevin Jamieson

example, an environment where the agent receives rewards
only at very hard-to-reach states; that is, states which can
only be visited with some small probability p < 1. In this
case, the maximal cumulative reward, optimal cumulative
expected-reward, or value V;* will also be quite small. In
other words, the cost of making a “mistake” at any given
episode results in a loss of at most V;* reward, and the
cumulative loss associated with, say VK , mistakes, should
also scale with this maximal penalty.

Motivated by this observation, there has been much recent
interest in achieving so-called small-value, small-loss, or
“first-order” regret bounds, which scale in proportion to
Vi R < O(G/Vy -poly(d, H) - K) (it is well know
that the the scaling /V*K is unimprovable in general,
even in simple settings). Bounds of this form have received
considerable attention in the online learning, bandits, and
contextual bandits communities, and were responsible for
initiating the study of a broad array of instance-dependent
regret bounds in tabular (i.e. finite-state, finite-action) RL
settings as well.

First-Order Regret Beyond Tabular RL. Though first-
order regret has been achieved in both non-dynamic envi-
ronments (e.g. contextual bandits) and in dynamic envi-
ronments with finite state spaces (tabular RL) (Zanette &
Brunskill, 2019; Foster & Krishnamurthy, 2021), extension
to reinforcement learning in large state and action spaces
has proven elusive. The main difficulty is that, even though
the cumulative expected value of any policy is bounded as
V¥, the value-to-go associated with starting at some state
sp, at step h, denoted V;*(sy,), may be considerably larger.
Again, the paradigmatic example is when the reward is equal
to 1 on a handful of very hard-to-reach states. This means
that the variance of any learned predictor of the value func-
tion V;*(s;,) may also be highly nonuniform in the state sy,.
In the RL setting, this becomes more challenging because
the distribution across states evolves as the agent refines
its policies. And while in tabular settings, one can address
the non-uniformity by reasoning about each of the finitely-
many states separately, there is no straightforward way to
generalize the argument to larger state spaces.

Contributions and Techniques. In this paper, we pro-
vide first-order regret bounds for reinforcement learning
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in large state spaces, the first of their kind in this setting.
Our results focus on the setting of MDPs with linear func-
tion approximation (Jin et al., 2020b), where the transition
operators are described by linear functions in a known, d-
dimensional featurization of a potentially infinite-cardinality
state space. In this setting, we achieve the following regret
bound.

Theorem 1 (Informal). Our proposed algorithm, FORCE,
achieves the following first-order regret bound with high
probability: Rx < O(\/d3H3 -V - K + d3>°H? log K).

To our knowledge, FORCE is the first algorithm to achieve
first-order regret for RL in large state spaces. Our algorithm
builds on the LSVI-UCB algorithm of (Jin et al., 2020b) for
worst-case (non-first-order) regret in linear MDPs. LSVI-
UCSB relies on solving successive linear regression prob-
lems to estimate the Bellman-backups of optimistic overes-
timates of the optimal value function. In that work, the anal-
ysis of the regression estimates relies on a so-called “self-
normalized martingale” inequality for online least squares—
a powerful tool which quantifies the refinement of a ridge-
regularized least-squares estimator under an arbitrary se-
quence of regression covariates ¢, to targets y; satisfying
Ely: | ¢¢] = (¢, 0x), and under the assumption of sub-
Gaussian noise. This tool has seen widespread application
not only in linear RL, but in bandit and control domains as
well (Abbasi-Yadkori et al., 2011; Sarkar & Rakhlin, 2019).

In the tabular RL setting, first-order regret bounds can be
obtained by applying Bernstein-style concentration bounds,
which allows the exploration level to adapt to the underlying
problem difficulty. Towards achieving first-order regret in
linear RL, we might hope that a similar approach could be
used, and that developing variance-aware or Bernstein-style
self-normalized bounds may provide the necessary refine-
ments. A second challenge arises in the RL setting, however,
since, as mentioned, the “noise” is inherently heteroscedas-
tic (i.e., the noise variance changes with time)—the vari-
ance of y; depends on ¢;. Thus, not only do we require
a variance-aware self-normalized bound, but such a bound
must be able to handle heteroscedastic noise as well.

The recent work of (Zhou et al., 2020) addresses both of
these issues—proposing a Bernstein-style self-normalized
bound, and overcoming the heteroscedasticity by relying on
a weighted least-squares estimator which normalizes each
sample by its variance. A naive application of these tech-
niques, however, results in a scaling of 1/0 i, in the regret
bound, where o,,;, is the minimum noise variance across
time. While this dependence can be reduced somewhat, ulti-
mately, it could be prohibitively large, and prevents us from
achieving a first-order regret bound in the case when V}* is
small.

The 1/0min dependence arises because, if we normalize
by the variance in our weighted least-squares estimate, the

normalized “noise” has magnitude, in the worst case, of
O(1/0min)- In other words, we are paying for the “heavy
tail” of the noise, rather than simply its variance. Obtaining
concentration independent of such heavy tails is a problem
well-studied in the robust statistics literature. Towards ad-
dressing this difficulty in the RL setting, we take inspiration
from this literature, and propose applying the robust Catoni
estimator (Catoni, 2012). In particular, we develop a novel
self-normalized version of the Catoni estimator, as follows.

Proposition 2 (Self-Normalized Heteroscedastic Catoni Es-
timation, Informal). Given observations y; = (0, @d¢) +n;
with Ely | ¢ = (#,0.), Ellne]> | ¢4] < oo, and
|ne| < oo with probability 1, let cat[v] denote a Catoni
estimate of 0, in direction v from the observed data. Then,
with high probability, for all v simultaneously:

cat[v] — 07 6,] < [|o]| 5= (, flog L + dCiog + ﬁno*ug)

+ (lower order term)

where A = A + Zil o7 2Py, , o? is an upper bound
on E[y? | ¢1], Crog is logarithmic in problem parameters,
and the ‘lower order term’ can be made as small as T~ for
any constant q > 0.

To apply Proposition 2, we take ¢, 1 = d(Sp.k, ank) as
the features, and yp, , = V;¥, | (Sn+1,k) as the targets, where
% .1 () is an optimistic overestimate of the value function.
In particular, Vhﬁrl(-) depends on, and may be correlated
with, past data. Following (Jin et al., 2020b), we address this
issue by establishing an error bound which holds uniformly
over possible value functions. We call this guarantee the
‘Heteroscedastic Self-Normalized Inequality with Function
Approximation’. The proof combines Proposition 2 with a
careful covering argument, which (unlike past approaches
based on standard ridge-regularized least squares) requires
a novel sensitivity analysis of the Catoni estimator.

2. Related Work

Worst-Case Regret Bounds in Tabular RL. A signifi-
cant amount of work has been devoted to obtaining worst-
case regret bounds in the setting of tabular RL (Kearns
& Singh, 2002; Kakade, 2003; Azar et al., 2017; Dann
et al.,, 2017; Jin et al., 2018; Dann et al., 2019; Wang
et al., 2020; Zhang et al., 2020b;a) via both model-based
(Azar et al.,, 2017; Dann et al., 2017) and model-free
(Jin et al., 2018) methods. These bounds take the form
O(y/poly(H) - SAK + poly(S, A, H)). Recently, several
works have focused on obtaining bounds that only scale
logarithmically with the horizon, H, in the setting of time-
invariant MDPs with rewards absolutely bounded by 1 (e.g.
(Zhang et al., 2020a)).
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RL with Function Approximation. In the last several
years, there has been an explosion of interest in the RL
community in obtaining provably efficient RL algorithms
relying on function approximation (Jiang et al., 2017; Du
et al., 2021; Jin et al., 2021). Many works have studied
the special case of linear function approximation (Yang &
Wang, 2019; Jin et al., 2020b; Wang et al., 2019; Du et al.,
2019; Zanette et al., 2020a;b; Ayoub et al., 2020; Jia et al.,
2020; Weisz et al., 2021; Zhou et al., 2020; 2021; Zhang
et al., 2021; Wang et al., 2021). This paper adopts the lin-
ear MDP model of (Jin et al., 2020b), where the transition
probabilities and reward functions can both be parameter-
ized as a linear function of a feature map; a parallel line
of work has studied the linear mixture MDP setting of (Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2020) where
the MDP can be summarized by a finite-dimensional mix-
ture model. Like this work, (Zhou et al., 2020) develop a
variance-aware self-normalized inequality, which is used
to obtain dimension-optimal scaling in the linear mixture
setting. As noted, the approach in (Zhou et al., 2020) is
unable to obtain first-order regret in the linear MDP setting.

First-Order and Problem-Dependent Regret Bounds in
RL. The RL community has tended to pursue two pri-
mary directions towards obtaining problem-dependent re-
gret bounds. The first is the aforementioned first-order
bounds, the focus of this work. To our knowledge, the only
work in the RL literature to obtain first-order regret is that
of (Zanette & Brunskill, 2019), which attains both horizon-
free regret for bounded rewards, and second-order (variance
dependent) regret, yet only applies to the tabular setting;
(Jin et al., 2020a) subsequently establish a first-order re-
gret bound based on the algorithm of (Zanette & Brunskill,
2019). A parallel line of work (Simchowitz & Jamieson,
2019; Xu et al., 2021; Dann et al., 2021) establishes logarith-
mic regret scaling with the suboptimality gaps between the
Q-functions, which was recently extended to linear MDPs
by (He et al., 2021).

First-Order Regret Beyond RL. A significant body of
literature exists towards obtaining first-order regret bounds
in settings other than RL. This work spans areas as diverse
as statistical learning (Vapnik & Chervonenkis, 1971; Sre-
bro et al., 2010), online learning (Freund & Schapire, 1997;
Auer et al., 2002; Cesa-Bianchi et al., 2007; Luo & Schapire,
2015; Koolen & Van Erven, 2015; Foster et al., 2015), and
multi-armed bandits, adversarial bandits, and semibandits
(Allenberg et al., 2006; Hazan & Kale, 2011; Neu, 2015;
Lykouris et al., 2018; Wei & Luo, 2018; Bubeck & Sel-
lke, 2020; Ito et al., 2020). Most relevant to this paper is
past work in the contextual bandit setting (Agarwal et al.,
2017; Allen-Zhu et al., 2018). In particular, (Foster & Kr-
ishnamurthy, 2021) establish a computationally efficient
algorithm to achieve first-order regret for contextual bandits

with function approximation. Unfortunately, their regret
bound scales with the number of actions, and is therefore
not applicable to large action spaces.

Robust Mean Estimation. Our algorithm critically relies
on robust mean estimation to obtain concentration bounds
that avoid large lower-order terms. We rely in particular
on the Catoni estimator, first proposed in (Catoni, 2012).
While the original Catoni estimator assumes i.i.d. data,
(Wei et al., 2020) show that a martingale version of Catoni
is possible, which is what we apply in this work. We remark
that several applications of the Catoni estimator to linear
bandits have been proposed recently (Camilleri et al., 2021;
Lee et al., 2021). We refer the reader to the survey (Lugosi
& Mendelson, 2019) for a discussion of other robust mean
estimators.

3. Preliminaries

Notation. All logarithms are base-e unless otherwise
noted. We let logs(z1, 22, ...,2,) = Y ., log(e + z;)
denote a term which is at most logarithmic in arguments
T1,T2, ..., 2, > 0. We let BYR) = {x € RY
||| < R} denote the ball of radius R in R?, and spe-
cialize B¢ := B%(1) to denote the unit ball. S~ denotes
the unit sphere in R?. We use < to denote inequality up
to absolute constants, O(-) to hide absolute constants and
lower-order terms, and O (+) to hide absolute constants, log-
arithmic terms, and lower-order terms. Throughout, we let
bold characters refer to vectors and matrices and standard
characters refer to scalars.

We also highlight MDP-specific notation; see below for
further exposition. We let sj ; and ay j denote the state
and action at step h and episode k, and denote features and
rewards @y, = @(Sh ks an k), Thk = Ta(Shk, An k). T
denotes the policy played at episode k. We use Fy, j to
denote the o-field (U _, UFZY {(sprpry anr g )} UMy
{(sn' k> an’ k)}), so that ¢y, i is F, -measurable. We will
let En[V](s,a) = Eyop,(|s,0)[V(5)], s0 En[V](s,a) de-
notes the expected next-state value of V' given that we are
in state s and play action a at time h.

3.1. Markov Decision Processes

We consider finite-horizon, episodic Markov Decision
Processes (MDPs) with time inhomogeneous transi-
tion kernel. An MDP is described by a tuple
(S, A, H,{P,}_ |, {rp}t_}), with S the set of states, A
the set of actions, H the horizon, P, : S x A — A(S) the
probability transition kernel at time h, and r, : S x A —
[0, 1] the reward function. We assume that { P, } /L | is ini-
tially unknown to the learner, but that r;, is deterministic
and known. Without loss of generality, we further assume
the intial state s; is deterministic. At each episode, the
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agents begins in state s;; then for each time step i > 1, an
agent in state sy, takes action ay,, receives reward 7y, (sp, ap)
and transitions to state s’ with probability P, (s'|sp, ap).
This process continues for H steps, at which point the MDP
resets and the process repeats.

A policy 7 : S x [H] — A(A) is a mapping from states
to distributions over actions. For deterministic policies
(Vh, s, 7 (s) is supported on only 1 action) we let 7y (s)
denote the unique action in the support of the distribution
7r(s). To an agent playing a policy m, at step h they choose
an action ay, ~ m,(sy). We let E;[-] denote the expectation
over the joint distribution trajectories (s1, a1, . .
induced by policy 7.

'7SHaaH)

The the Q-value function for policy 7 is defined as
Qi (s,a) = Eg Zg:h rh(Shryans)|sn = s,an = al,
and the value function by V7 (s) = Eqor,(5[QF (s, a)].
We denote the optimal Q-value function by Q7 (s,a) =
sup, Q7 (s,a), the optimal value function by V;*(s) =
sup, V7 (s), and the optimal policy by 7*. We define
Vii1(s) = Qf41(s,a) = 0 for all s and a. Finally, note
that we always have that Q7 (s,a) < H, for all 7, h, s, a,
since we collect a reward of at most 1 at every step.

Episodic MDPs and Regret. In this paper, we study min-
imizing the regret over K episodes of interaction. At
each episode k, the learning agent selects a policy 7%, and
receives a trajectory (six,G1k,---,SH L GHE). Again,
the transition kernels (P,)¥_, are unknown to the learner,
whereas (as discussed above), the reward function is known.
The regret is defined as the cumulative suboptimality of the
learner’s policies:

Ric = Y [V (s1) = V™ (s1)].

As s; is fixed, we will denote the value of policy 7 as
VI := V" (s1). Using this notation we can express the
regret as Rx = z,le[vl* — V™).

3.2. Reinforcement Learning with Linear Function
Approximation

In the tabular RL setting, it is assumed that |S| and |.A| are
both finite. This assumption is quite limited in practice,
however, and is not able to model real-world settings where
the state and action spaces may be infinite. Towards relaxing
this assumption, we consider the linear MDP setting of (Jin
et al., 2020b), which allows for infinite state and action
spaces. In particular, this setting is defined as follows.

Definition 3.1 (Linear MDPs). We say that an MDP is a
d-dimensional linear MDP, if there exists some (known)
feature map ¢(s,a) : S x A — R? and H (unknown)
signed measures p;, € R? over S such that:

Ph("sﬂa) = <¢(S7a)7ﬂh(')>'

We will assume that ||¢(s,a)ll2 < 1 for all s,a, and
el ()2 = I [oes [dpn()lll2 < V.

Note that, unlike the standard definition of linear MDPs
which assumes that the reward is also linear, r,(s,a) =
(¢(s,a),B;), we consider more general possibly non-linear
(though bounded) reward functions. To accommodate this
change we must assume that the reward is deterministic and
known to the learner. We also consider time-varying reward
in the appendix, and in the subsequent section remark on
how unknown rewards can be accommodated, if we assume
they are linear.

3.3. Catoni Estimation

A key tool in our algorithm is the robust Catoni estimator
(Catoni, 2012). The Catoni estimator is defined as follows.
Definition 3.2 (The Catoni Estimator). Let X;,..., X7 be
a sequence of real-values. The Catoni robust mean estimator
with parameter o > 0, denoted catr , is the unique root z
of the function

feat(z; X1or, @) = 1 et (( Xy — 2)),  (3.1)

where e, () is defined by

_ Jlog(1+y+v?)
wcat(y) - {—log(l _ y+y2)

y=>0
y<0’

The following result illustrates the key property of the
Catoni estimator.

Proposition 3 (Theorem 5 of (Lugosi & Mendelson, 2019)).
Let X1, ..., X1 be independent, identically distributed ran-
dom variables with mean y and finite variance o? < oc. Let
d € (0,1) be such that T > 2log(1/5). Then the Catoni
mean estimator catr o, with parameter

2log1/d

S Tog 175
To?(1+ T—zolgog 1/5)

o =

satisfies the following guarantee with probability 1 — 26,

202 log1/8
|catra — pl <\ 75108 175"

As Proposition 3 shows, the Catoni estimator requires only
that the second moment of the distribution is bounded to
obtain concentration, and has estimation error which scales
only with the second moment and independent of other
properties of the distribution. We make key use of this result
in the following analysis, and state our novel extension of the
Catoni estimator to general regression settings in Section 5.

4. First-Order Regret in Linear MDPs

We are now ready to present our algorithm, FORCE.
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Summary of Key Parameters. Our algorithm applies the
robust Catoni estimator to measure the next-state expecta-
tion of the value function. The Catoni estimator requires
an estimated upper bound on the value function, which we
denote as vy, ;, and describe in detail below. Throughout,
we let vi,in = 1/K denote a lower floor on these estimates.
Using these estimates, we introduce the value-normalized
feature covariance, with its regularized analogue

k

1
Z ——Ohrdp s Ank =AM+, @1
— h

For a given (k, h) and direction v, we use the above co-
varaince to define a (directional) Catoni parameter

n(v) = min {5. Hv||§;k_l,amax} :

where (3 is defined in the FORCE pseudocode, and we take
Omax = K/Vmin = K?2. For a given k,h and direction
v € R, we adopt the o, (v) as the Catoni parameter, and
set caty, i [v] to refer to the associated Catoni estimate on
the data

Jk—1.

X, = de)hJVierl <8h+1y7)/\7’21,T7 T=1,...

Algorithm 1 First-Order Regret via Catoni Estimation
(FORCE)
1: input: confidence §, number of episodes K

20 AN 1/H? vpin + 1/K, ¢ e universal constant
3: Kinit < ¢ (d2 log(max{d,v,.i, K, H}) + log 22K)
4: B« 6\/ d? log (max{d, vi H, K}) + log 21K 2HK
5. fork=1,2,3,..., K do
6: forh=H H—-1,...,1do
7: if £ < Kinis, set \_/%L,k‘—l — 2H?
8: else set \7%,1@—1 as in Equation (4.5)
9: Form Ap, ;1 as in Equation (4.1)

// Eh[vff—ﬁ—l}(v) i= catp i [(k 1)Ah k—1Y]
10: Compute summary 13,’; as in Equation (4.3)
11: Compute Q% (-, -) as in Equation (4.4)
12: V() « max, Q% (-, a)
13: forh=1,2,...,Hdo
14: Play aj, , = arg max, Q¥ (sp.x,a)

Algorithm Description. FORCE proceeds similarly to the
LSVI-UCB algorithm of (Jin et al., 2020b) by approximat-
ing the classical value-iteration update:

Qr (s a) < rp(s,a) + Eh[n}lz}x Qhi1(+a)](s,a). (42)
It is known that this update converges to the optimal value
function. While in practice we cannot evaluate the expecta-
tion directly, it stands to reason that an update approximating

(4.2) may converge to an approximation of the optimal value
function. As in (Jin et al., 2020b), we therefore apply an
optimistic, empirical variant of the value iteration update,
which replaces Q* with QF, the optimistic estimate of Q*
at round k, and the exact expectation with an empirical ex-
pectation. The key difference in our approach as compared
to (Jin et al., 2020b) is the setting of the optimistic estimate.
While (Jin et al., 2020b) rely on a simple least-squares esti-
mator to approximate the expectation, we rely on the Catoni
estimator. We show that, with high probability:

|cath7k[(k — - Eh[viﬁ-l](sv CL)|

S Blé(s a)la;

DA} 1 9(s,0)]

Thus, setting [y, [ViF 1](v), our estimate of the next-
state expectation, to caty, ;[(k — 1)A;}€_1v] ensures that
Iﬁh[V,fH](v) approximates the expectation in (4.2) for
v = ¢(s,a). Asdiscussed in more detail in Appendix A.1.1,
instead of using [, [V}, 1](v) directly, Line 10 summarizes

E, [V;F.1](v) with a linear approximation to it,

(v, w) — Ex[V}¥,1](v)]

Tolla-y,

WY < argmin  sup
w  yeBI\{0}

. (43)

This approximation, (¢(s, a), Wy ), is shown to be an ac-
curate approximation of B, [V)F. 1](v) in Lemma A.1, intu-
itively because the “ground truth” is itself linear. Solving the
optimization on Line 10 may be computationally inefficient,
so we provide a computationally-efficient modification in

Section 4.2 which has only slightly larger regret.

With the aforementioned linear approximation, we define
our optimistic overestimate of the ()-function on Line 11 as

Q) = min {r( ) + ($(-,-), @f)
+ 68116, a1 2 B2/RH , (44)

approximating the value-iteration update of (4.2) with addi-
tional bonuses to account for the approximation error.

A Note On Scaling. To achieve first-order regret, we need
both the errors in our estimates and the magnitude of the
bonuses to scale with the magnitude of the value func-
tion. To accomplish this, we ensure the bonuses scale with
(s, a) ”AZLN where Ay, ;1 is the regularized variance-

normalized covariance in (4.1), and \7,21 x_1 1s defined as

V2 .y = max {20Hcath,k_1[(k — )AL bhi]

+20H(bns il ), V) @49)

2
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so that, up to effectively lower-order terms accounting for
the estimation error,

Enl(Viy1)?)(Shrs ahr) 2 Vi .

As we will show, this choice of \7%77 is sufficiently large

to ensure our Catoni estimate, E,[V/*,_,](v), concentrates.
At the same time, when Ey[(V;7,1)?](sh,r, an,-) is small
for some 7, the variance-normalized regularization Ay, ;1
ensures the bonus [[¢(s,a)||,—1  is small as well.

h,k—1

4.1. Formal Regret Guarantee

We analyze two regret bounds for FORCE. In the first bound,
we analyze the description given in Algorithm 1, which
gives a sharper regret guarantee at the expense of computa-
tional inefficiency:

Theorem 4 (Main Regret Bound). Fix a failure probability
d € (0,1) and K € N. Then, the regret of FORCE as
specified in Algorithm 1 satisfies the following bound with
probability at least 1 — 36:

Ric S \JBHVYK -log® BE 4 d7/2 % 10gT/? HE.

As Theorem 4 shows, up to lower order terms scaling only
polynomially in d, H,log K, and log 1/§, FORCE achieves
a first-order scaling in its leading order term of O(/V*K).
We sketch the proof of Theorem 4 in Appendix A and defer
the full proof to Appendix C.

Comparison to (Jin et al., 2020b). Note that V* < H,
since we assume that the reward at each step is bounded by
1. Thus, Theorem 4 shows that in the worst case FORCE
has regret scaling as O(v/d3H*K). This exactly matches
the regret of LSVI-UCB given in (Jin et al., 2020b). How-
ever, we could have that V;* < H, in which case FORCE
significantly improves on LSVI-UCB. Note also that the
minimax lower bound scales at least as Q(v/d?K) (Zanette
et al., 2020b)—while we do not match this in general, our d
dependence does match the d-dependence of the best-known
computationally efficient algorithm (Jin et al., 2020b).

Extension to Linear Mixture MDPs. While we have fo-
cused on the linear MDP setting in this work, we believe our
techniques and use of the Catoni estimator could be easily
extended to obtain first-order regret bounds in the linear
mixture MDP setting. As noted, while (Zhou et al., 2020)
achieves nearly minimax optimal regret, their techniques
do not easily generalize to obtain a first-order regret bound.
We leave extending our method to linear mixture MDPs to
future work.

Handling Unknown and Linear Rewards. We have as-
sumed that the reward function is known, but that it may be

nonlinear. If we are willing to make the additional assump-
tion that the reward is linear, r,(s,a) = {(¢(s,a), ) for
some 0y, we can handle unknown reward by modifying the
Catoni estimator on Line 9 to use the data

XT - #’UT¢h,t(Th,‘r + V};{f+1(sh+1,r))v TE [k - 1]1

and adding 477 , _, tovZ , . With this small modification,
FORCE is able to handle unknown rewards and achieves the
same regret as given in Theorem 4.

4.2. Computationally Efficient Implementation

As noted, FORCE is not computationally efficient because
it is not clear how to efficiently solve the optimization on
Line 10'. In this section, we provide a computationally
efficient alternative, which only suffers slightly worse regret.

To obtain a computationally efficient variant of FORCE, we
propose replacing Lines 9 and 10 with the following update:

En[ViFy ] (i) < caty ik — 1AL u fori=1,....d
Bf U - [En[ViF (1), . EnlVE A (ug)] T 46)
where U = [uq,...,uy] denotes the eigenvectors of

Ap, ;1. This update is computationally efficient, as it in-
volves only an eigendecomposition, the computation of d
Catoni estimates (which can be computed efficiently), and a
matrix-vector multiplication. The above approach satisfies
the following guarantee:

Theorem 5 (Computationally Efficient Regret Bound).
Consider the variant of FORCE with Lines 9 and 10 re-
placed by (4.6), and Q% (s, a) on Line 11 replaced with

QF(-,-) = min{ry(-,-) + (B(-, ), W)
+3(VA+2BlIp( ) + SR ),

1

Then with probability at least 1 — 30, the regret is at most

Ric 5 \/d4H3V1*K log® HE 4 q*[3 1og™/? HE

and computation scales polynomially in d,H, K, and

min{|.A|, 0(29)}.

If we are willing to pay an additional factor of v/d, it fol-
lows that we can run FORCE in a computationally efficient
manner, assuming |.A| is small. The dependence on |.A|
seems unavoidable and will be suffered by (Jin et al., 2020b)
as well, since computing the best action to play, ay, 5, on

"Note that one could also solve Line 10 by approximating
the sup over B%\{0} to a max over a sufficiently-fine e-net of
B4\ {0}. Using standard covering estimates, this would require
an exponentially-large-in-d cover of the ball, and thus require
computing 2944 Catoni estimates.
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Line 14 will require enumerating all possible choices of
a. If | A| is infinite, we can reduce this to only 2°(%) by
covering all possible directions of ¢ (s, @), but it is not
clear if this can be reduced further in general.

S. Catoni Estimation in General Regression
Settings

In this section we develop a general set of results that extend
the standard Catoni estimator to general martingale and
heteroscedastic regression settings. The results presented
here are critical to obtaining the first-order regret scaling
of FORCE. We remark that the results in this section are
based on a martingale version of the Catoni estimator first
proposed in (Wei et al., 2020).

5.1. Martingale Catoni Estimation

We begin by formalizing a martingale-linear regression set-
ting in which our bounds (without function approximation)
apply. The setting is reminiscent of that considered in
(Abbasi-Yadkori et al., 2011), but with two key general-
izations: (a) the targets y; can be heavy-tailed, we only
require they have finite-variance, and (b) for each target y;
we have an associated upper bound o7 on its conditional
square expectation. This latter point is crucial for modeling
heteroscedastic noise.

Definition 5.1 (Heteroscedastic Heavy-Tailed Martingale
Linear Regression). Let (F;)¢>0 denote a filtration, let ¢p; €
Rébea sequence of random F;_;-measurable vectors, and
y; € R be Fy-measurable random scalars satisfying

Y = (P, 0,) + 1,  Elye|Fio1] = (¢r,04)

for some 0, € RY and n; satisfying E[n;|F;_1] = 0, and
E[n?|F:—1] < oo, but otherwise arbitrary (as such, the
distribution of 7; may depend on ¢,;). Furthermore, let
o? be a F;_1-measurable sequence of scalars satisfying
o7 > E[y?|F;—1], and let

Xr =0, iy -

In the regression setting of Definition 5.1, our goal is to
estimate 6, in a particular direction, v € R4, given observa-
tions {(¢¢, yt,0¢)} 1. As a warmup, the following lemma
bounds certain directional Catoni estimates.

Lemma 5.1 (Heteroscedastic Catoni Estimator). Assume
we are in the regression setting of Definition 5.1. For a
fixed vector v € R let cat[v] denote the Catoni estimate
applied to (X;)1_,, where X; := v ¢y; /02, with a fixed
(deterministic) parameter o« > 0. Then, for any failure
probability 6 > 0 and fixed cumax > 0, if our deterministic

« can be written as
log(2/6
= min ’Y'Maamax (5.1
[v]l=r

for some (possibly random) v > 1, then

2
10g K 2log %
T2 amaxT

1
cat['u] — T'UTETQ* < 2(1 + 'Y)”'UHET

provided that T > (2 + 272) log %.

Note that the introduction of the slack parameter v > 1
accounts for the fact that « is assumed to be chosen deter-
ministically, while 37 is random. Lemma 5.1 shows that we
can apply the Catoni estimator to estimate 6, in a particular
direction, with estimation error scaling only with an upper
bound on E[n? | F;_1] and independent of other properties
of 7, such as its magnitude. This is in contrast to Bernstein-
style bounds which exhibit lower-order terms scaling with
the absolute magnitude of 7,. Lemma 5.1 serves as a build-
ing block for our subsequent estimation bounds, where the
choice of finite oy« serves a useful technical purpose.

5.2. Self-Normalized Catoni Inequality

Next, we bootstrap Lemma 5.1 into a full-fledged self-
normalized inequality for heteroscedastic noise. To do so,
we need to address two technical points:

e The ideal choice of a (for which -y is close to 1) is not
deterministic, but data-dependent.

e To estimate O, in direction v, we would like to
consider cat[v], where v = TE;lv, since then
70! X7 -0, = v'0,. However, this choice of v in-
troduces correlations between v and our observations
{(¢+,ys,04)}L_,, which prevents us from applying

Lemma 5.1 directly.

We adress both via a uniform-convergence-style argument
and argue that a bound of the form given in Lemma 5.1
holds for all v simultaneously. This requires a subtle argu-
ment to bound the sensitivity of the Catoni estimator, given
in Appendix B.5. With this bound in hand, we establish the
following truly heteroscedastic self-normalized concentra-
tion inequality, the formal statement of Proposition 2 in the
introduction.

Corollary 1 (Self-Normalized Heteroscedastic Catoni Esti-
mation). Consider the setting of Definition 5.1, and suppose
that with probability 1, |n;| < 8, < co and 0 > 02, >0
for all t. For a fixed regularization parameter \ > 0, define

the effective dimension

dr :==c-d-logs (T, o}

max,)\_l o2 ) .

» Y min? XN

Let cat [TA;I'U] denote the Catoni estimate applied to
(X)L, X; = T'vTA;l(btyt/af, parameter o given by

o = min {\/HTATlvHEQT - (dr +1og1/9), amax}
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and, Ap = M\ + ZZ;I o7 2pip/) . Then, as long as T >
5(log1/6 + dr), with probability at least 1 — 6, for all
v e B simultaneously,

|cat [TA7'v] —v "6, (5.2)

1
< 5lollaz (yflox § +dr + VAL + Lk

In contrast to Lemma B.5, Corollary 1 only adds the re-
quirement that 7; and o2, satisfy probability-one upper
and lower bounds, respectively, which enter only logarithmi-
cally into our final bound?. Similarly, the parameter v, ax
also enters at most logarithmically into the final bound, and
hence can also be chosen suitably large to make the second
term in (5.2) suitably small. Intuitively, a;,ax ensures that
the Catoni estimator is sufficiently robust to perturbation,

which is necessary for our uniform convergence arguments.

Corollary 1 is a special case of a more general result, Theo-
rem 6, which extends Corollary 1 to the function approxi-
mation setting, where

ye = (P wa) + fu(h) + 1

for some (possibly random) function f, and ¢} distributed
so that E[y; | Fi—1] = (¢, 0,). This generalization to
accommodate function approximation is critical towards
applying Catoni estimation in linear RL. We present this
result in Appendix A. Up to logarithmic factors, our bound
in Corollary 1 matches that of (Abbasi-Yadkori et al., 2011).
The key difference is that, whereas (Abbasi-Yadkori et al.,
2011) considers the norm in a covariance not weighted by
the variance, ||v\|1~x;1 with A := A\ + Zthl ¢/, our
guarantee uses the weighted-covariance norm A := Al +
S 07 2pip; . Ttis clear that the latter is much larger
when o7 are small, leading to a smaller error bound.

Our bound is similar in spirit to another self-normalized
heteroscedastic inequality recently provided by (Zhou et al.,
2020). The key distinction is that the Catoni estimator lets
us obtain estimates that scale with the standard deviation
of the noise, o, and only logarithmically with the absolute
magnitude, 3,,. This is in contrast to the bound obtained in
(Zhou et al., 2020), which scales only with ¢ in the leading
order term, but scales with 3, in the lower order term. In
situations where 3, is large, which will be the case when
deriving first-order bounds for linear RL, this scaling could
be significantly worse. To make this concrete, the following
example illustrates Corollary 1 on a simple problem.

Example 5.1 (Regression with Bounded Noise). Consider
the linear regression setting where we receive observations

Y = (s, 0,) + 11

’In the case when the noise is unbounded, note that, by Cheby-
shev’s inequality, one can just take 3, < \/max; 02 /d, at the
expense of at most § > 0 failure probability, whilst maintaining a
logarithmic dependence on 1/4 in the final bound.

for some F;_;-measurable ¢; and noise 7, satisfying
Elne | Fioa] = 0, Var[ne | Fi—1] = 0®, and [n,] < B,
almost surely for some 3,. Assume o2 is known and that
|(0s, d¢)| < e for all t. Define 07 = 2(e? + 02) for all ¢
and note that 02 > 2E[y? | F;_1]. Now take some v € R?
and consider applying the Catoni estimator to the data

X, =Tv A puyi/o?, Ar (I+X27)

_ 1
T 2€2 4 202

for ¥p = Zthl @i/, and with « set as in Corollary 1.
Note that, given our setting of Ap, we have

lollazs = V2 + 202 )l (1430

and we can set oy = 1 and opin = 1/7, so dpr = O(d -
logs(T', 02, 3,)). Corollary 1 then gives, with probability at
least 1 — 6, for all v simultaneously,

|cat [TA;'v] —v 6,

<6 (e lvllsm 1 /los | + d logs(T, ) )

In contrast to this, using the same regularization as above,
the Bernstein self-normalized bound of (Zhou et al., 2020)
will scale as (hiding logarithmic terms),

\J(é- 0,)

<O (Iellasmp - (v +5,))

where 0 denotes the least-squares estimate.

Example 5.1 shows that the Catoni estimator obtains only
a logarithmic dependence on /3, while the Bernstein self-
normalized bound of (Zhou et al., 2020) yields a linear
dependence. When j3, is large, the Catoni estimator is
therefore significantly tighter. Example 5.1 could model,
for example, a linear bandit problem where the value of the
optimal arm is 0 (which is always achievable by shifting the
problem), and we are in the regime where we are playing
near-optimally, so that (0, ¢;) = 0. In this regime, € ~ 0,
so the dominant scaling will be (5(||v\|(1+2T)_1 o/d).

5.3. Catoni Estimation for First-Order Regret

Finally, we sketch out the key property of the Catoni estima-
tor that allows it to achieve a first-order regret bound. To this
end, we first describe shortcomings of existing techniques
based on least-squares estimation which prevent them from
achieving first-order regret.

In the linear MDP setting, the least-squares value itera-
tion approach of (Jin et al., 2020b) aims to construct op-
timistic estimators, Qﬁ(&a), to the optimal value func-
tion, Q7 (s, a), satisfying Q% (s,a) > Q5 (s,a). (Jin et al.,
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2020b) construct such estimators recursively by applying a
least-squares value iteration update and solving?

k-1

w), = argmin Y (Vi1 (shr1,) = w ' nr)® + w3
weR? T=1

Intuitively, if enough data has been collected, this update

will produce a QB,’j which accurately approximates the ex-

pectation over the next state*. Indeed, (Jin et al., 2020b)

show that, for any ,

<afw ¢(8’ a)> + Th(sa Cl) - QZ(Sv CL)
= ]Eh[vhk+1 - V}Zr-s—l}(sv Cl) + gh(sv CL)

for some |&x(s,a)] S

~

dHH¢(S’a)”K;},%1’ where

Kh,k—l =\ + Zf: th,fcb,f’r. Applying this estimator,
(Jin et al., 2020b) are able to construct an optimistic value
function, and ultimately obtains regret of O(Vd3H4K).
This is fundamentally a Hoeffding-style estimator, however,
and does not scale with the variance of the next-state value
function. As such, it does not appear that tighter regret
bounds can be obtained using this approach.

A natural modification of this estimator would be the
weighted least squares estimate

k-1
w}li = arg min Z (V%f+1(sh+la,\';)_wT¢h,T)2 + )\”w”g
weR? T4 kT

for 5}, . an upper bound on Vary p, (.fs, ,.an..) Vi1 ()]
An approach similar to this is taken in the linear mixture
MDP setting of (Zhou et al., 2020), where it is shown that
this approach does indeed yield variance-dependent bounds
when a Bernstein-style self-normalized bound is applied.
However, as noted, this Bernstein-style bound still scales
with the magnitude of the “noise” in its lower-order term,
which here will be of order H /o in, for oy a lower bound
on 7, .. Carrying their analysis through, we see that this
H /oy term enters their regret bound, yielding a leading
order term in their regret of

(Vd+ afm N 2nk Th 1

AS Op k> Omin, this can be lower bounded by

(53)> (Vd+ )\ /o2 \HK > HVHK.

In fact, (Jin et al., 2020b) uses a slightly different update,
including 7, in the regression problem so that (wF, ¢(s, a))
estimates the reward and next-state expectation.

*Recall that, in linear MDPs, E,[V](s,a) = (¢(s,a),wv)
for some wy and any arbitrary function V : S — R (Jin et al.,
2020b), so we would expect a linear function WY to be able to
represent the Q-function.

(5.3)

Thus, while this approach may yield an improved d and H
dependence, it is unable to obtain a first-order scaling of

O(/VK) when V}* is small.

The key shortcoming of this approach is the dependence
on H/omin—without this term, we see that the regret

would scale with v/d, /2 hk 31%,1« It is possible to show

that, with proper setting of &y, j, this can be bounded by

O(\/dH?V}K), achieving the desired first-order regret
bound. As noted, the H/op,;, dependence results because
Bernstein’s inequality scales with the magnitude of the
“noise”. However, as shown above and illustrated in Ex-
ample 5.1, the confidence interval of the Catoni estimator
scales only at most logarithmically with the magnitude of
the noise. By applying the Catoni estimator—the approach
FORCE takes—instead of weighted least squares with a
Bernstein bound we can therefore remove this H /oy, de-
pendence, and achieve a first-order regret bound.

6. Conclusion

In this work we have shown that it is possible to obtain
first-order regret in reinforcement learning with large state
spaces. Our algorithm, FORCE, critically relies on the ro-
bust Catoni estimator, and our analysis establishes novel
results on uniform Catoni estimation in general martingale
regression settings, which may be of independent interest.

Several questions remain open for future work. First, while
we show that it is possible to obtain a computationally effi-
cient version of FORCE, doing so incurs an additional v/d
factor. Removing this factor while maintaining computa-
tional efficiency would be an interesting direction and may
require new techniques. More broadly, obtaining a com-
putationally efficient algorithm with regret scaling as Vd?
would be an interesting future direction. (Zanette et al.,
2020b) show that it is possible to obtain a Vd? scaling, but
their algorithm is computationally inefficient. In addition,
obtaining optimal H dependence is of much interest. While
FORCE will achieve this for V* < 1, technical challenges
remain to showing this holds in general. We believe our
use of the Catoni estimator could be a key step towards
achieving this, but leave this for future work. Finally, de-
veloping first-order regret bounds for more general function
approximation settings (Jiang et al., 2017; Du et al., 2021) is
an exciting direction. The results in this work rely strongly
on the linearity of the MDP, yet, as a first step, it may be
possible to extend our techniques to bilinear classes (Du
et al., 2021), which also exhibit a certain linear structure.
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A. Overview of Analysis

We next provide an overview of the analysis. First, in Appendix A.1 we sketch out a generalization of the Catoni self-
normalized Catoni estimator from Section 5 which is necessary to applying Catoni estimation in linear RL: Catoni estimation
with function approximation. Finally, in Appendices A.2 and A.3 we show how Catoni estimation can be applied to obtain
the regret guarantee given in Theorem 4. Full proofs of the Catoni estimation results are deferred to Appendix B, while the
full regret proof is given in Appendix C.

A.1. Self-Normalized Catoni Estimation with Function Approximation

To apply our self-normalized bound in the linear RL setting, we need to allow for regression targets which are potentially
correlated with the features ¢, in a very specific way. More precisely, the targets y; take the form y; = (u,, ¢¢) + fo(P})
where ¢} is a F;-measurable feature vector, and f, is a function which may depend on all the data {(¢,y:, o) }1_;. The
function f, is therefore not F;-measurable, and so y; does not satisfy the condition of Definition 5.1. To handle these
challenges, we introduce the following regression setting, which specifies the precise conditions needed for our most general
result.

Definition A.1 (Heteroscedastic Regression with Function Approximation). Given dimension parameters d,d’,p € N,
scaling parameters H, 3, 8, > 0, and minimal varaince o2, the heteroscedastic regression with function approximation
setting is defined as follows. Let (F;);>0 be a filtration, and consider a sequence of random vectors (¢, ¢,)_; and random

scalar oututs (y;)7_, and noises (1;)7_, and variance bounds (o?)7_, such that

e ¢, € R?is F;_;-measurable, ¢, € R is F, measurable, and lldell2, |42 < 1.

e There exists a signed measure p over B¢ with total mass |||p|(B%)[|2 < B, such that, for all ¢, the conditional
distribution of ¢} given F;_; ensures that, for all bounded functions f,

ELf(@) | Fia] = (61, / F(¢)dp(e')). (A1)

e |n:| < B3, with probability 1, and E[n, | F;_1] = 0.

e There exist a parameter u, € R? with ||u,|[2 < B, a function class .% of functions f : R — [-H,H], and a
function f, € . which may be random and dependent on (¢;, ¢})7_, such that, for all ¢, y; = (u, @¢) + fx (@) + .
Thus,

Efyi|Fir] = (b, 0,) for 6, = u, + / £o(&)du(e).

e o are uniformly lower bounded by oy, finite, 7;_; measurable, and satisfy

E [(g0 ) + £u(80) +m)° | Foa] < 507 (A2)

[\)

e The covering numbers of .% are parameteric, in the sense that there exists a p € N and R > 0 such that, for ¢ > 0, the
e-covering number of .# in the metric disto (f, ') 1= supycpa [f(@') — f/(¢')] is bounded as N(.F, distoo, €) <
plog(1 + 2£), where N(.Z, dist o, €) is the e-covering number of .% in the norm dist .

Note that Definition A.1 strictly generalizes Definition 5.1 since we can always choose f, = 0 to be a fixed function, and
are left only with the noise ;. For this most general setting, we attain the following result:

Theorem 6 (Heteroscedastic Catoni Estimation with Function Approximation). Assume that we are in the setting of
Definition A.1. Define

dr = c- (p+d) - logs (T, Opuas; A, 000 Bus Bus By R H)

» Y min’ MK

Let cat [TA;I'U] denote the Catoni estimate applied to (X)L, and parameter o given by

Xy =Tv Ay ¢uye/0}, o =min {\/ ITAZ v||52 - (dr +log 1/6), a}
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and for Ar = M\ + ZZ;I oy 2pid, . Then, as long as T > 6(log 1/8 + dr), with probability at least 1 — 6, for all v € B?
simultaneously,

B 3(logt +d
lcat [A7'0] — v 0.] < 5[lvl|5-r - (s/log 1/6+dr + ﬁ\|0*||2) + %. (A3)

A couple remarks are in order. First, Corollary 1 is just the special case obtained by setting f,(-) = 0 to be the zero function,
and sole element of .# = {f,}. Second, as will be observed, the assumptions in Definition A.1 precisely line up with
those required for linear RL. The proof of Theorem 6, detailed in Appendix B.3, follows by applying Lemma 5.1 and
carefully union bounding over the parameter space. It invokes a novel perturbation analysis of the Catoni estimator, given in
Appendix B.5, which may be of independent interest. Again, we remark «a,,,,x can be chosen suitably large that estimation

error of the Catoni estimator scales primarily as ||v|| AV log(1/6) + dr.

A.1.1. LINEAR APPROXIMATION TO THE CATONI ESTIMATOR

In the linear RL setting, we will rely on the Catoni estimator to form an optimistic estimate, Q% (s, a), of Q5 (s, a). To
construct this estimator, we will set y; = V,fH (Sht1,1)—thus, f, will itself be an optimistic Q-value estimate. In order to
apply Theorem 6 directly to the linear RL setting, we therefore need to cover the space of all Catoni estimates. It is not clear
how to do this in general without covering all O(dT') parameters the Catoni estimator takes as input, which will result in
suboptimal K dependence in the final regret bound.

To overcome this challenge, we make the critical observation that (A.3) implies that, up to some tolerance, there exists a
linear function which approximates cat[TA;lv] Sfor all v, namely (v, 0,). As we do not know 6,, we cannot compute
this function directly. However, the following result shows that we can exploit the fact that there exists such a linear
approximation in order to come up with our own linear approximation:

Lemma A.1. Let cat[A~1v] denote a Catoni estimate, as defined in Lemma 5.1. Assume that, for all v € V for some
Y CRY 0¢ YV, we have

|cat[A "] — (v,0,) | < Ci||v||a-1 + Co/T (A4)
for some Cq, Cs. Set
~ _ -1
6 = arg min sup (6, v) — cat{ A" v] (A.5)
6 wey [v]|a-1

Then, for all v € V, we have
(6, v) — cat|A™ )| < Ci|v]|a-s + Co/T,  [(6,0) — (v,60,)| < 2C1|[v|a-1 +2Co/T.

Given this result, if we approximate our ()-functions by Catoni estimates, ]E;L [V,fﬂ](s, a), instead of directly using

E, [ViF.1](s,a) we can rely on a linear approximation to it, (@}, ¢(s,a)). By Lemma A.1, this will be an accurate
approximation for all s, a. As we can easily cover the space of d-dimensional vectors, this allows us to cover the space of
all of our Q)-function estimates. As we will see, in practice we rely on optimistic () functions which also depend on some
A = 0, so we will ultimately choose .% in Definition A.1 so that p = O(d?).

Note that solving (A.5) is not computationally efficient in general, yet as we described in Section 4.2 and show in more
detail in Appendix B.4, a linear approximation to a Catoni estimator can be found in a computationally efficient manner if
we are willing to pay an extra factor of v/d in the approximation error. We further note that there cannot exist an (s,a) for
which ¢(s, a) = 0, for otherwise Definition 3.1 would imply that Py, (+|s, a) is not a valid distribution. Thus our assumption
that 0 ¢ V does not restrict our application of Lemma A.1 to linear MDPs, where we will choose V to correspond to feature
vectors.

A.2. From Catoni Estimation to Optimism

Note that ﬁfb in (??) can be written as

k—1
~Fk -1 k 52
wy, = Z Ahyk-_1¢h,‘rvh+1(sthLT)/Vh,r‘
T=1
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In other words, ﬂ),lj is simply the sample mean. This motivates applying the Catoni estimator to the problem. Indeed,
consider setting E,[V/¥,;](s,a) = caty, x—1[(k — 1)A}, },_; ¢(s, a)]. By Definition 3.1, we can set 6, in Definition A.1 as

6. [ Vi) dmn(s)
and will have that (¢(s, a), 0.) = E,[V}¥, |](s, a). Theorem 6 then immediately gives that, for all s, a, h, k,
[En[Vitia)(s, @) = EalVi](s,0)| S (1 4+ HVA)BI (s, a1+ Vinin /K2 (A.6)

where here 5 = 6+/log 1/6 + dr for dr = O(d + pmap) and prmap the covering number of the set of functions ViE ().
Recall that we chose aax = K /Vmin in the linear RL setting. Thus, the lower-order term of 332 /(axk) of Theorem 6
can be upper bounded as 3Vimin 52 / k2, asin (A.6).

Given this ]/E\h[V}fH](s, a), let @} denote the linear approximation to E, [V)F.1](s, a), as described in Lemma A.1. By
Lemma A.1, it follows that for all s, a,

(@], d(s, a)) = En[Vi¥ia(s,a)] S (1+ HVA)B[(s, a)la;r  + Vinin3% /7. (A7)

Constructing Optimistic Estimators. Fix some h and k and assume that (A.7) holds for all s, a. Let
Q¥ (s,a) = min {rh(s, a) + (¢(s,a), wr) + 3(1 + H\&)BH«;{)(S,&)HA}—LI + Bvmin 32 /K2, H} .
Assume that V;F, | (s) is optimistic, that is, V;¥, | (s) > V;,, (s) for all s. Then (A.7) and this assumption imply that

Qh(s,a) = min {ra(s, @) + (@(s, @), @) + 3(1+ HYNSI (s, ) [ x,1 | + Bvewin B /K2, H |
> min {r(s,a) + Ea[Vii1](s.0) + 200+ HVB| (5, )|y, + in /K, H |
> min {rh(s, a) + E[Viia](s,0) + 201+ HVN)BI(5,0) [, + 2vimin5 /42, H}
> min {ry(s,a) + Ex Vi) (s,a), H}
= Qi (s, a).
In other words, given that @Z accurately approximates the next state expectation, (A.7), and that Vfﬂ(s) is optimistic, it

immediately follows that Q% (s, a) is also optimistic.

Defining the Function Class. It remains to determine the value of pyqp. Applying the above argument inductively, we
see that to form an optimistic estimate, it suffices to consider functions in the set

Fun = { £0) = min{(-.w0) + B - s+ e H} + wle < B Az A}

for some 3, ¢, and Sy,. Fmdp depends on two parameters—the d-dimensional w and d X d dimensional A. Thus,
using standard covering arguments, it’s easy to see that N(Fnap, disteo, €) = O(d?log(1 + 1/¢)), so it suffices to take
DPmdp = O(d?). Given this and the definition of dr, we see that in our setting we will have that dr = O(d?), so

B =0(/log1/o + d?).

A.3. Proving the Regret Bound

Henceforth, we will assume that (A.6) holds for all s, a, h, and k. We turn now to showing how the above results can be
used to prove a regret bound. The following lemma, which is a simple consequence of (A.6), will be useful in decomposing
the regret.

Lemma A.2 (Informal). Let 6f = V¥ (sF) =V, (sf) and (i | = Bn[0F 1] (Shk» ani) — 05, 1. Then, with high probability,

O < Oy + Gy +min{5(1+ HVN)Bllpnlla-1 | + 5V /K2, HY.
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By definition of R g, the optimism of V}f (s), and Lemma A.2, we can bound

Rk

IN

(V1" (s1) = V™ (s1))

(Vi (s1) = V™ (1))

M= T 11>
Mm

A

K H
C +szln{ 1+H\F)ﬂ”¢h kHA 1 +Vm11152/k27H}-
k=1h=1

=~
[
—
>
Il

1

Zszl ZhH:1 ¢ }’f is a martingale-difference sequence and can be bounded using Freedman’s Inequality to obtain the desired
V5 dependence. In particular, we have, with high probability

Z GBS \/HQV{K -log 1/8 + (lower order terms).
k=1h=1

In addition, vy,i, /32 /k? sums to a term that is poly(d, H), so we ignore it for future calculations. We focus our attention on
the term:

K H
> > min{(1+ HVNBlnrlla-t . H}

k=1h=1

which can be expressed as:

K H
ZZ hkmln{ —&—H\f)ﬁ”gbh k/vh kHA 1 H/\_lh,k}. (A.8)

k=1

Typically, terms such as this are handled via the Elliptic Potential Lemma. However, to apply the Elliptic Potential Lemma
(Abbasi-Yadkori et al., 2011) here, we need to choose A = 1/v2, to guarantee A > maxy , ||@n 1 /Vn.1||3. Due to the v/A
dependence, this will result in a 1 /vy, scaling in the final regret bound, which is prohibitively large. To overcome this, we
instead apply the following result, to control the number of times ||¢p, k /i k|| ;1 can be large:

Lemma A.3. Consider a sequence of vectors (x;)l_1,x; € R%, and assume that ||x;|s < a for all t. Let V; =
M+ ®x] for some \ > 0. Then, we will have that |l |ly,—1 > bat most
t—1

dlog(1 + a*T/\)/log(1 +b)
times.
Let Ky, = {k : quh’k/\’/;hk||A}_1k71 < 1}. Then we can bound (A.8) as

H

H
A8 Y > (L+ HVNB e min{l|ns/Vnpllazt 13+ D HIKS]
h=1

h=1keK)

H
<S> a+HVN A)BVn i oin|dn i /Vn k| o1 1} dH? log(1+ K/ (i)

h=1keK,

where the first inequality holds by definition of /Cj, and the second holds by Lemma A.3. By Cauchy-Schwarz, the first term
can be bounded as

H K H K
S (L+HVNB sz%k ZZmin{||¢h,k/\7h,k|\i;1k_l71}.

h=1k=1 h=1k=1
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As we take the min over 1 and ||y, 1 /Vp & ||i,1 , regardless of the choice of A we can now apply the Elliptic Potential
h,k—1

Lemma to get

H K
>N minfldn.r/Vn

h=1k=1

2 1} SdHlog(1+ K/(d\vE,)).
h,k—1

Choosing A = 1/H?, we then have that the regret is bounded as

K

H
> W, +poly(d, H,log K).
h=1k=1

< B\JdH log(1 + HE/(dv2,;,)
It remains to bound \7,217 - After some manipulation, and using the definition of vj, ;, given in FORCE, we can bound

H K
Z Z ‘_’ch < H?*V*K + (lower order terms).
h=1k=1

Putting this together yields a final regret bound of

ﬂ\/dH log(1 + HK/(dv2,,))\/H?V*K + (lower order terms).

In the proof, slightly more care must be taken with handling \7,2% & to avoid a lower order K 1/4 term, but we defer the details
of this to Appendix C.

B. Technical Results

B.1. Covering and Elliptical Potential Lemmas

Definition B.1 (Covering Number). Let X be a set with metric dist(-, -). Given € > 0, the e-covering number of X’ in dist,
N(X,dist, €), is defined as the minimal cardinality of a set N C X such that, for all z € X, there exists an ' € N with
dist(z,2’) <.

Lemma B.1 ((Vershynin, 2010)). For any € > 0, the e-covering number of the Euclidean ball B4(R) := {x € R : ||z||2 =
1} with radius R > 0 in the Euclidean metric is upper bounded by (1 + 2R /€)%

Lemma B.2 (Lemma D.6 of (Jin et al., 2020b)). Consider the class of functions from R? to R of the form

f(#) = min{(w, §) + B p|a-1, H}

where the parameters w, 3, A satisfy ||wl|a < Buw, 8 € [0, B), and A = M\I. Let N, be an e-covering of this set with respect
to the norm disto (f, f') := supgepa | f(@) — f'(@)|. Then,

log |NV;| < dlog(1 + 4B /€) + d*log(1 + 8VdB?/(Ae?)).

Lemma B.3 (Elliptic Potential Lemma, Lemma 11 of (Abbasi-Yadkori et al., 2011)). Under the same assumptions as
Lemma A.3, for any choice of A > 0, we will have that

T
> min{1, [@]|2, 1 } < 2dlog(1 + a*T/(dA)).
=1 !

Furthermore, if A > max{1, a?},

T
D llzdllyy s, < 2dlog(1+a*T/(dN)).

t=1
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Lemma B.4 (Freedman’s Inequality (Freedman, 1975)). Fo C F1 C ... C Fr be a filtration and let X1, Xo, ..., X1 be
real random variables such that X, is Fy-measurable, E[X|F;_1] = 0, | X¢| < b almost surely, and Zthl E[X2|F 1] <V
for some fixed V > 0 and b > 0. Then for any 6 € (0,1), we have with probability at least 1 — 6,

T
ZXt < 24/V1og(1/d) + blog(1/9).

Proof of Lemma A.3. Our goal is to bound the number of times that ||x; ||V111 > b. A now-standard determinant computa-
tion (see, e.g. Abbasi-Yadkori et al. (2011)) based on the Sherman-Morrison identity yields

det(V
det(V;) =det(Vi_1)(1 4+ ||:1:t\|%,:1) = ||wt||%,;11 = det(\(/fi)l) —1.

It follows that, whenever || ||\, -1 > b, it must also be the case that
t—1

det(Vf)
———= —1>b <= det(V 1+b)det(Viq).
det (V1) > et(Vie) > (1 4b) det(Vi_1)
In particular, if N denotes the number of times that ”xtHv,‘_ll > bfort € {1,...,T}, then it follows that det(Vr) >

(1 4+b)N det(Vy) = (1 + b))V A, At the same time,

T
det(Vr) = det ()\I + ngj)

s=1

T d
< (4ol
s=1
< (A +a*T)
Combining these inequalities gives:

dlog(\ + a®T) — dlog(\)

1+ b0V < (XN +a?T)? N
(1+0b) <A+aT) = < log(1 + )

O

We remark that a variant of Lemma A.3 appeared in concurrent work (Kim et al., 2021), and originally as an exercise in
(Lattimore & Szepesvari, 2020).

B.2. Martingale Catoni Estimation

Lemma B.5 (Martingale Catoni Estimator, Lemma 13 of (Wei et al., 2020)). Let Fo C F1 C ... C Fr be a filtration and
let X1, X5, ..., X1 be square-integrable real random variables such that X is F;-measurable, and

o Conditional means E[X{|F:—1] = (: for some fixed (non-random) C;.
e Average conditional mean ( := % Zthl -

o Conditional variances 23:1 E[(X¢ — ()?|Fi—1] <V for some fixed (non-random) V> 0.

Then for any confidence & € (0, 1) and sample size T > o*(V + Zle(g —()?) + 2log §, we have with probability at
least 1 — 26, the Catoni estimator catr o satisfies

«Q (V + Zthl(Ct - <)2) N 2log % .

tra — (|l <
|catr, (< T ol
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We recall the heteroscedastic heavy-tailed martingale linear regression setting as defined in Definition 5.1.

Definition 5.1 (Heteroscedastic Heavy-Tailed Martingale Linear Regression). Let (F;)¢>o denote a filtration, let ¢, € R?
be a sequence of random F;_-measurable vectors, and y, € R be F;-measurable random scalars satisfying

Y = (¢, 0.) + 1, Elye| Fioa] = (¢, 0.)

for some 0, € R and 7, satisfying E[n;|F;_ 1] =0, and E[n?|F;_1] < oo, but otherwise arbitrary (as such, the distribution
of n; may depend on ¢;). Furthermore, let o7 be a F;_1-measurable sequence of scalars satisfying o7 > E[y?|F;_1], and
let

Sri= Y07 by

Lemma 5.1 (Heteroscedastic Catoni Estimator). Assume we are in the regression setting of Definition 5.1. For a fixed vector
v € R? let cat[v] denote the Catoni estimate applied to (X;)!_,, where X; := v ¢yy; /02, with a fixed (deterministic)
parameter o > 0. Then, for any failure probability § > 0 and fixed auax > 0, if our deterministic « can be written as

o = min {'y-lOg(Z/é),amaX} 5.1

[vllsr

for some (possibly random) v > 1, then

log2  glog2
(A vllse\ 5> + s

1
cat[v] — T’UTETH* <2

provided that T > (2 + 2?) log %.
Proof. We apply Lemma B.5 to the scalar data X; := v " ¢y, /o2. Note that with this choice of X},

E[X,|Fi_1] = éthqﬁj 0, = (,[v]

t

so we will have that

T T

1 1

7O B Fal =5 Qv%tqﬂe ¢[v]
t=1

t=1

Applying Lemma B.5 gives that, with probability at least 1 — &,

o (V+ S Gl = C)?) 108375

catfe] — Cfo]| < . =

where V' > 0 is any fixed upper bound on the quantity

Z )? | Feea] =

™=

E o (07 g — v ) 0.)° 171

o~
Il
=

(UT¢t/Ut)2E (g — &/ 6.)% /07| Fer]

Il
B

~
I
-

Our assumption on o, ensures that

1> U;ZE[?/? | ftfl] = a[ZVar[yt] + U;ZE[yt \ -7:t71]2
=E[(yr — ¢{ 0.)%/07 | Foor] + 07 % (0] 6,)°, (B.1)



First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach

so it suffices that we select V' to be
T
V=Y (0"/00) = v]%,
t=1

Furthermore, since ([v] is the average of the terms (;[v], we can upper bound

> (Gelv] = Cv])?

t=1

T
Gl = (v drgp/ 0./07)

t=1

(v pr/00) (@) 6./0¢)?

E

~
I
—

Il
E

~
Il
-

Again, our assumption on oy ensures (qth 0, /0:)? < 1 via Equation (B.1), so we can bound
T T
D (Glol = ¢ < (0 pi/or)” = |vl%, -
t=1 t=1

Putting these two bounds together, we have that

|cat[v] — ¢[v]| < “ (V + 2?21(@[11} - C[v])Q) .\ 2log%.

T aT
2a|v||% 2log 2
< a 2, B.2
< h t—7 (B.2)
provided that
a 2
2
T > 2a ||U||ZT—|—2log5>a E: )—l—2log(S

log2/8

Introduce o := T2 50 that & = min{yag, amax | (recall v > 1 is a possibly random scalar but that « is deterministic).
=7

Then, yap > «. Hence, it is enough that
2 20,112 2 2 2
T > 27 ogllvls, + 2log = = (2+277)log 5
Moreover, using & = min{~yayg, @max } and v > 1, we can continue the bound in Equation (B.2) via

2 min{amax, vao}||v||§:T 2 log%

|Cat['v] - C[’U” g T min{amaxa VQO}T

2vapllv|%, N 2log2  2log 2

T "YO(OT amaxT

log 2/6 QIOg%
2+ 2v)||va\/7Jr OmaxT"

IN

B.3. Self-Normalized Catoni Estimation

Definition A.1 (Heteroscedastic Regression with Function Approximation). Given dimension parameters d,d’,p € N,
scaling parameters H, 3, 3, > 0, and minimal varaince o2 , the heteroscedastic regression with function approximation
setting is defined as follows. Let (]—'t)t>0 be a filtration, and consider a sequence of random vectors (¢, ¢;)7_; and random
scalar oututs (y;)7_; and noises (1;)7_, and variance bounds (¢)~_; such that
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¢ € R is F,_j-measurable, ¢ € R? is F; measurable, and ||¢¢||2, [|¢}]]2 < 1.

There exists a signed measure g over B¢ with total mass |||u|(B%)||2 < B, such that, for all ¢, the conditional
distribution of ¢} given F;_; ensures that, for all bounded functions f,

ELf(@)) | Fia] = (61, / F(¢)dp(e')). (A1)

0| < B, with probability 1, and E[n; | Fz—1] = 0.

There exist a parameter u, € R? with ||u,||2 < S, a function class . of functions f : RY — [—H, H], and a
function f, € .# which may be random and dependent on (¢, ¢})~_; such that, for all ¢, y; = (u,, P;) + fu(P}) + 1.
Thus,

Elys| Foo1] = ($0,0.) for 0, = u, + / £(&)du(¢).

o are uniformly lower bounded by oy, finite, F;_;1 measurable, and satisfy

E | (¢, us) + fu(@}) + 77t)2 | ft71:| < 103 (A.2)

\V]

The covering numbers of .% are parameteric, in the sense that there exists a p € N and R > 0 such that, for € > 0, the
e-covering number of .7 in the metric distoo (f, ') 1= supgicpa [f(@') — f'(¢')] is bounded as N(.F, dist o, €) <
plog(1 + 22), where N(Z, dist, €) is the e-covering number of .% in the norm dist .

We now state an intermediate technical proposition, from which derive our main self-normalized guarantee as a special case:

Proposition 7. Let ¢ > 0 denote a universal constant, take parameters A > 0 and amax > 1, and consider the regression
with function approximation of Definition A.1 with parameters d,p, o2, Bu, B, R, H. For a sample size T' € N introduce
the effective dimension

» Y min MK

dr:=c-(p+d)-logs (T, a2 A\ ot Bus By, R, H) .

For vectors v € R?, define the mean parameter

(0] := %~T2T -0,

and let cat[v] denote the Catoni estimator using features and o[v| parameter

~T 2 ~ : dr+log1/d
Xi=v (btyt/o—t’ Oé[’U] = mln{ TH§H§ / ) amax} .
V T

Then, if T > 6(1og% + dr), with probability 1 — 6, it holds that Vv € B and for all A = \I,

) B - log + +dr  3(log 3 + dr)
|Cat [A lv] —¢ [A 1”” <4ja 1leT\/éTiQ—‘r anile .

Proof of Theorem 6. We instantiate Proposition 7 with A = (Al 4+ X7) = 437 For this choice of A, it holds that

A 0]E, =T ATISr AT e < T3 .

Moreover, A = % - Al so taking A <— /T, dr still has the same form for a possibly larger constant ¢ > 0. Next,

1
(A 1] = TUTAflzT -0,
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=v (B + )72 -0,
=00, — ' (Tr+ )7L,

It follows that
|cat [A7'v] — v 0.] < |cat [Az v] — (AT )| + A0 (Sp + M) -6,
We bound |cat [A7'v] — ¢([A~1v]| by Proposition 7 and bound

Mol (B + A0 0] < Ao (B + D722 (S + A~ op 16,12
< VA|[v]|a-1]16.]2-

Proof of Proposition 7. The proof requires a careful covering of directions v " A~!, and regression functions f € .%.

Notation. Let us establish some notation to facilliate the covering. Given f € .%#, we define the associated targets
Gi(f) = (br,ws) + (@) +m O(f) = us +/f(¢/)dﬂ(¢/)-

Given v € R? and f € .Z, define

C[Q’Z f] = ~TET0*7
and let cat[v, f, @] to denote the Catoni estimator using parameter & and features

- 1+, -

Xi[v, f]:= p d:e(f) (B.3)
t

Over loading notation, define cat[v, f] to denote the following estimate using the correct, data-dependent :

\/log 2M4
cat[s, f] = cat[s, f,a[@]], a[d] = min W,am : (B.4)
Xr

Note that the correspondence between the original notation parameterized by direction A ~'v and the new notation is given
by

cat[v, f,] = catiA" ], (v, fi] =C A w], v=Alv. (B.5)
We note that by the assumption that ||v||s < 1 and A > AI, it suffices to consider ¥ in the set

Vi={v:|v|]2 < Bs Bs:=1/A}

Lastly, we define the interval

A
A::{a:fgagamax}

Rounding «. To handle that a[v] is data-dependent, we will build a cover using the Catoni estimator with rounded values
of a[v]. Note that this step is purely for the analysis, and does not need to be incorporated into the algorithm. For € > 0 and
scalar k, set

round(x, €) == inf{(1 4+ ¢)* : (1 +€)* >z, keN}L
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Fixing an €,ng € (0,1/4) to be chosen, set

catmalv, f] = cat[v, f, amd[V]],

_ . \/log 2L (B.6)
where ang[v] = min ¢ round W, €md | » max
P

Note that since ||¢¢]|2 < 1 and ||v]|2 < 1/X for v € V, we have that o[v] € A for v € V. Note then that the rounded Catoni
parameters lie in the finite set

A
Qpnd [m S Arnd7 where Ang 1= {(1 + ernd)k : T < (1 + ernd)k < amax} U {amax}~ (B.7)

Furthermore, the cardinality of A4 can be crudely bounded by

log (T otmax/A)

log(1 + €mnd)
<1+ (Tamax//\) : 2/‘5rnd (B.3)
2T ovmax

)\emd '

|~Arnd‘ < 10g1+emd (Tomax/N) =1+

<1+

where we used the crude bound logz < 1+ x for x > 1, and log(1 + €) > €¢/2 for e € (0,1/4).

Uniform bound on a cover. Let A; € V C R% and Ay C .% denote fixed (deterministic), finite sets whose product
N = Nj x N3 has cardinality at most | Ayng| - JNV| < M. We use Lemma 5.1 to establish a uniform bound on the errors
|cat[v, f, &] — C[v, f, &]| of the Catoni esimator corresponding to pairs (U, f) € N and & € Ang. To do this, we have to be
somewhat careful, because we require that conditional variances are upper bounded by 2. To this end, we argue a bound on
the Catoni error when the following random event holds:

& ={E [gt(f)Q | Fioa] < o, Vt},

Note that &; is indeed random because o7 are random. Using linearity of expectation, we have

B (D1Fe-1] = @) + {00, [ 1(8)au(a))
- <¢>t,u* 4 / f(¢’)du(¢’)>
= (¢0.0(5)).

so the linearity of expectation assumption required by Lemma 5.1 will be met. Hence, for all pairs (v, f) € N such that &;
holds, and all & € A,nq such that

e 4> afv
~ . ~  +/log %
e ( can be expressed as min < v - oTss Cmax
T

o T'>(2+427)log 2.
then it holds that with probability 1 — 2,

log % n 2log %
T2 OmaxT

|cat[v, f,&] — C[v, f]] < (24 29)||9||s, ,  whenever &; holds.
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In particular, selecting & = ayng[V], we can choose 4 = 1 + €nd. AS €rng Was chosen such that e,y < 1/4, 2 + 25 < 5.
Hence, we find that with probability at least 1 — 4,

- - . log % ZIOg% -
|catind [V, f] — C[0, f]]| < 5|72, I i V(f,v) € N such that £ holds,
max

provided that T' > (2 + 272) log %. Given our setting of 7, it suffices to take T > 6 log %.

Approximation by covering. Having achieved a pointwise bound, we observe that, on the 1 — § event above, for any
(v, f) €V x Z, and any (v, fo) € N for which £y, holds,

|cat[v, f] — ([v, f]]
< |cat[v, f] — catmalvo, fol| + [C[v, f] — C[vo, fol| + [catimd[vo, fo] — C[vo, foll

log % 2log %

< |cat[§, f] - Catrnd[i;O?fO]l + |<['E’ f] - C['EO»fO“ + 5H170||2T

T2 Amax ]
~ log 22 2]og 2M g2M _
<SlEle\| =+ g O\ [IRlse — B0l |
(2)
+ |<[,Eu f] - C[i70>f0” + ‘Cat[i77 f] - Catrnd[’b/(thH (B9)

(1) (i)

Recall B, = |[uy |2, B = |||l (BT )||2, 025, < 02, and distoo (£, fo) = Supgreg,, |f(@) — fo(@')|. We further assume

min —
that ||vg||2, [|0]]2 < B5. We show that, for these scalings, it suffices to ensure that |0 — ¥ ||z and dist (f, fo) are at most
polynomial in relevant problem parameters:

Lemma B.6. There exists a constant Cpoly = poly(cf;fn, T, B5, Cmax, H, Bu, By, By) such that, if
Ina‘X{H,l7 - §0||27 diStOC(fv fO)a Ernd} < 1/Cpoly7
then

. . . log2M
Term (i) + Term (4¢) + Term (4i3) <

amaxT

We defer the proof of Lemma B.6 to the end of the section. In addition, we show that if dist. (f, fo) is sufficiently small,
then the element fy from the covering satisfies the desired variance upper bound:

Lemma B.7. Suppose that f satisfies the variance bound in Equation (A.2), that is,

E[((¢e, us) + () +10)° | Foi] < z02. (B.10)

1
2
Then, if distoo (f, fo) < 1/Cpoty for an appropriate choice of Cpoy as in Lemma B.6, £, holds, i.e.,
E[((¢1,ws) + fo($1) + )" | For] < 07
Proof. For any f satisfying Equation (B.10),
E[((¢r ) + fo() +10)" | Fioa] < 2E[(he, wa) + £(@)) + )" | Femr] + 2EI(£(9) — fo(80)” | Foi]
< 307 + 2istuc (o)’

2

Since 07 > 02, it is enough that distoo (f, fo)* < Z5i=, which is ensured by an appropriate choice of Cpoly - O
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Concluding the proof Let us summarize our current findings. We see that if AV C V x % is a collection of pairs (v, fo)
satisfying

e The cardinality bound |Amq| - [N| < M
e The approximation bound that,
YoeV,feZ, (v, fo) €N suchthat max{||v — vo||2, diste ([, fo)} < 1/Cpoly,
and that €;ng < 1/Cpo1y, Where again
Cpoty = POLy (051 T, Bs Amascs H, By Bus By) = poly (02, T 1/ A, atmaxs H, Bu, By Bn)-
Then, Equation (B.9), the fact that f, satisfies Equation (B.10), and Lemmas B.6 and B.7 imply that with probability 1 — ¢,
2M

log =5~ n 310g%

~ .
VB eV, feat(®. £.) — (B £)] < 5[l | o+ T

provided that 7" > 6 log %. We now find an M sufficiently large to ensure the covering conditions hold. To this end, it
suffices to ensure that " = N7 x N, where A7 is an € = 1/Cpo1y net of V, and N5 is an € = 1/Cpo1y net of % in the norm
distoo (-, -). By Lemma B.1 and the fact that V is a Euclidean ball of radius S5 = 1/, it suffices to take

2Cpo
log | V1| < dlog(1 + %ly).

Similarly, by assumption that the covering numbers of % are N(.%#, dists (-, ), €) < plog(1 + %),
log | V2| < plog(1 + 2RCpoly )-

Finally, using the bound on |.A,,q| from Equation (B.38),

2T max 2 O T max
log [ Ama| < log(1 + 22222 < Jog(1 4 2ol Cmax
Aernd A
Hence, we can bound, for universal constants ¢/, ¢ > 0,
2M 2| Arna| [N [|V2]
log— =log ——M——
1) 1)
1
<log 5 +log2+(p+d)- ' logs (R, T, ctmax, A", Cpoly )
1 1
= IOg 5 + (p + d) tC |OgS <67 Ta Ra A717 Ur;iznv O‘?naxa Ha 6#5 ﬂua 67]) .

::dT

_ _ _ _ log2 +dr 3log24
Yo eV, at(®, f) = (@, f)l <50l || =T+
max

which, returning to the orginal notation parameterized by (v, A) and noting the equivalence of notation in Equation (B.5),
we see that with probability 1 — §, it holds that Vv € B and A = \I (ensuring A~ 'v € V)

log ¢ +dp logs +dr
A" 10] — C([A" 0] < A . —
|cat[A™ v] — ([AT ]| S| vz, T2 - max T’

For this choice of M,
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B.3.1. PROOFS SUPPORTING PROPOSITION 7
Proof of Lemma B.6. Recall 8, = |uyl2, B = |l(B)2, 02, < 02, By > |n:| with probability 1, and

disteo (f; fo) := supgep,, [f(@') — fo(¢')|. We further assume that vo, v € V, i.e.

1@0ll2; [[@]l2 < Bs,

and that we may choose Cpoly = poly(a;l?n, T, B, Omax, H, Bu; Bu, Bn) to be an aritrary polynomial in these quantities.

M by selecting Cp,o1y appropriately. Throughout, we use

We move term by term, showing we can make each at most =2,
max

the fact that, for 6 € (0,1/2) and M > 1, log(2M/§) > 1.

log(2M/6)

Claim B.8 (Bounding Term (¢)). Term () is at most e

VIoSEMTS) _ 1os(201/s)

3amaxT  — 3amaxT °

- ||lv — wg||2. Hence, for an appropriate choice of Cpoy,

the above is at most Term (i) is at most

Proof. We have

) log 2. _ ~
Term (i) := 5\ —=— “[[I¥ll=r — o]l |
log 2M. o~ o~
<5\ =\ IZllop - 8 = Toll2.
Since ||¢¢|| < 1 and 4 > opmin by assumption, ||Xr|lop = || Zle 0, 219 |lop < To2 . The bound follows. O
Claim B.9 (Bounding Term (i3)). We can bound
.. ~ ~ 1 . -
Term (ii) := [C[v, f] = ¢[@o, fol| < —5— (Bufs - distec (f, fo) + (Bu + HBL) D — Toll2) (B.11)
. . PN log(2M/46)
Hence, the appropriate choice of Cpoy ensures Term (i) is at most o

Proof. We expand

(5. 11~ s fol = 7 (37 S20() — 5] 506(fo))

= %~T2T (é(f) - é(fo)) + % @ —00) " 2r0(fo).

Hence, using the bound || 7|0, < T/02,, developed above,

min

C[o, f] = C[vo, fo| < 21 (15116(f) — 6(fo)l + 16(fo)lll& — Bl

O min

Note that ||v|| < 85 by assumption. Further, we bound

16(F) — 6(f)]l2 = H [ 7= 10 @)au(e)

< el (Bar)llz - [1f = foll 2o (B,) < Budistoo (f, fo)- (B.12)

and moreover,

162 <l + H [ 5@)ante)

< But 11ul(Bo)le max fo(¢)] < B+ HB,  (B.13)

Combining the bounds concludes the proof. O

log(2M/5)

Claim B.10 (Bounding Term (ii7)). An appropriate choice of Cpoly ensures Term (idi) is at most =2 =
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Proof. Recall that Term (i4i) = |cat[v, f] — catnd[Vo, fo]|- Recall that cat[v, f] uses the data and parameter

~ T, ~ . 1 6
Xt[v7 f] = %UT(btyt(f) Oé[’l)] == min {Og2]\4/70[max} )

0]l

whereas cat,nq[Vo, fo] uses the same X, replaced with ¥y and fy, and uses the rounded version a,n4[v]. To compute the
sensitivity bound, we consider differences between various quantities of interest. Throughout, we use

[9: ()] = [ {be,ue) + f(@)) +ne| < Bu+H+ By

Difference in scalar data. We have

X005 1)~ Xulbo, foll = | 87 SF(F) — 550 Sl fo)

t t

< 11l g1 — ol + 151t - )
< o (HIT Bl + [51L1F(8) ~ fol@))])

<ex = o ((Bu+ H+ B)lIE — Bollz + Bodistoo (£, fo)) -

min
Difference in Catoni parameters. Setting ¢ = \/log2M/§ and a(v) := ||9||s,., we can express

a[v] = min {a(cg)am} - max{a(f:)c, ¢/Cmax}

This gives that the difference between the unrounded parameter with v, «[v], and the also unrounded parameter «[vg] with
g are bounded as

1 _ 1
max{a(v),c/amax} max{a(V),c/Amax}
) - max{o(To), =)

} - max{a(vo) }

|a[v] — afo]| = ¢

max{a(v)

’ Omax ? Omax

(6]

max{a(v)

7 Omax 7 Omax

< Ja®) — a(@)| _ cha(®) — a(®o)

2
amax

< Oax\/ O T+ [0 — o2
where the last line uses the definition of ¢, and the argument of Claim B.8 to bound |a[v] — a[vg]], as well as log(2M/§) < 1.
Note however the cat,nd[Vo, fo] uses the rounded parameter ang[0o]. Directly from its definition, we can see that
a[vo] < ama[vo] < (1 + €ma)alvol,
so that
|ae[vo] — amnd[V0]] < €md[Vo] < €mdOmax-
By the triangle inequality, we therefore conclude
|afv] — ama[vo]| < [afv] — a[vo]| + |afve] — amalvo]|

< O412nax Ur;iQnT : ||i7 - 'EOH2 + €rndQmax -

i=€q
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Upper bounding data norms and lower bound «[v]. We have

max{| X[, ]|, | X+ [0, fol|} < o7 2| ]l max{ |||z, [|Do[|} - max{|g:(f), v (fo)l}
< Ur;?nﬁﬁ(H + Bu+ By) == x-

2

min?

of] = mm{wwam} . min{ bgmg/f{am}

H’B”ET ﬂ?}T/O—min

and, upper bounding |73, < 83T /o

1
> :=min{ ————=—, Qmax ,
{6"7 V TO'?nin }
We now invoke a perturbation bound for the Catoni estimator (Lemma B.13), which ensures that, as long as
~ 1 . ~
€:=a)ex + 3yxeq < 18 min {1, a('u)272} ,

for which it suffices that

1 2
Qmax€x + 37X€a < T8 min {L O;ZX 5o-r:1i2n(H + ﬁu>2/T} ’

max

we will have

1+ 204(17)76 n 2¢ < 1+ 2cumax'y6 n 2¢

*_ | <
SRR a(v) a(v)? — o a_

Examining the above bounds, we have that |cat(v, f) — cat(y, fo)| < €o provided

max{Hﬁ - 50||27diStOO(fv fO),ﬁrnd} < 6(2) : 1/pOIY(O'I;i2naTa 5ﬁ7amax;Ha 5u75n)a €0 <1 (B14)

1 < log(2M/5)
maxT —  3amaxT *

The bound follows by taking € to be =

B.4. Linear Approximation to Catoni

Proof of Lemma A.1. By definition of 6 and (A.4), we will have that

(6, v) — cat[A~1v]| (6, v) — cat[A~1v]|

sup = min sup
veY H’UHA*1 0 wvey H'UHA*1
< sup |(0,,v) — cat[A~1v]|
veY [v]la-:
Cy
<Ci+ —//+—.
P Tofla
Rearranging this implies that for all v € V),
(8, v) — cat[A~v]| Cy ~ o Cy
<Ci+ =——— <= [(0,v) —cat|[A"v]| < C1||v||a-1 + =.
H’UHA*1 1 TH’UHA*1 ‘< > [ ” 1H ||A T
Similarly,
0 v\ — -1 0 1) _ -1 —1,,1 _ -1
up 0.0~ CIATel| _1B.v) — catlAMo]) ¢ featlATNo] - CIATM]| L 200
vey [vlla-1 vey [vlla- Tljv|[a-



First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach

Lemma B.11. Assume that, for all v € V we have
[cat[A™ ] — ([ATMw]| < Cul|vlla-1 + Co/T
for someV C R 0¢V, and ([A~'v] = (v,0,). Let uy, . .., uq denote the eigenvectors of A, and set
6= [wi,. .., uq] - [cat[A" uy], ..., cat[A " tuy]) T,
Then, for allv € V,
|(v,8) — cat[A™ ]| < (Vd+ 1)C1|[v]a-1 + (\/&-5}3 [0/]|2 + 1)Co/ T,

~

|(0,8) — ([A~"]| < (Vd +2)Ci[v]|a- + (Vd - sup, [v']2 +2)C2/T.
v'e

Proof. Let

~ 0,v) —cat[A~!
(9:a\urgminmax‘< ) — cat{A™ o]
9 wveV ]|

Fix some v € V, and express v as v = Zle a;u;. Then,
[(v,0) — (0,0)] =D ai(u;, 0 — )] <> ai]|(u;, 0 — 6)].
i=1 i=1

By construction, we will have that (u;,8) = cat[A~'w;]. Furthermore, by Lemma A.1, 6 will satisfy |(u;,8) —
cat[A‘luiH < Cl||ui||A71 + CQ/T Thus,

d d
D laill(ui, 6 = )| = > Jallcat[ A ui] — (u;, 6))]
i=1 i=1

d
<Y lail(Crlluil|a-r + Co/T)

i=1

where the last inequality follows by Cauchy-Schwarz. Since u,; are the eigenvectors of A and are therefore orthogonal, we
will have that

d d d
Yoalluil? = | QO au) TAZN (Y asuwi) = [[v]| -
i=1 T i=1 i=1

Finally, we can bound

d d
S il < V| S a2 = Vdy/|[v]3 < V- sup []]2.
i=1 i=1 v'ey

The first result follows by upper bounding
[(v,8) — cat{A™ ]| < [(v,8) — (v,0)| + |(v,8) — cat[ A~ 0]
and again applying Lemma A.1. The second result follows since
[(0.0) — C[A”"]| < |(v,6) — cat{ A ]| + [cat[A™ ] — ([A™ 0]

and using the first result and the assumption on |cat[A ~v] — ([A ™ v]|. O
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Lemma B.12. Let cat[A~1v] denote a Catoni estimate as defined in Lemma 5.1, and assume that the data used to form
cat|A~ 1], {X;(v, A)}_,, satisfies | X, (v, A)| < y||v||a-1 for all t and v, and that ||v||p-1 < ||v||2/V/\. Then for 6 as
defined in Lemma A.1, if we have S~ C V, for S*=1 the unit sphere, we have:

16]12 < 2v/VA

and for 0 as defined in Lemma B.11 and any V:

16]l2 < Vv /VA.

Proof. By Claim B.14 and our assumption that | X; (v, A)| < 7||v||2, we can bound |cat[A~1v]| < 7||v||2. First consider
setting @ as in Lemma A.1. Fix v € S¢~!. By assumption v € V), so we have

(6, v) — cat[A 10|

(6, v)] < [lv]|a-1 + |cat[A ™ ]|
[v][a-1
6,v') — cat/A~1v/
<|vfla-+ |sup 16,2) /ca A~ ] + |cat[A ™ ]|
oS -
[ 0.v') — cat/[A— 1o’
= ||v||a-1 |min sup (6, v) /ca [ 'v]q + |cat[A " ]|
L 0 vev [[v'[| a1
[ t{ A1
< Jvlfa- M] + |cat[A ™ ]|
lorev [[v/]la-
[ Y[v'||a-1
< ol [sup AT 4o
lorev [[V'[[a-1

<lvlla-r +ylvlla-

< 2v/VA

As this holds for all v € S%=1, it follows that [|8]]2 < 27v/v/X.

If @ is set as in Lemma B. 1 1, we have that

d d
1912 < (| D catlA—tu]2 <\ | > A2 llwillf 2 = V/d/ .
i=1 =1

B.5. Catoni Perturbation Analysis

Lemma B.13. Consider some fixed X = {X;}T |, X := {X,}L_| satisfying |X;| < 7,|X¢| <  for all t, and some fixed
a > 0,a > 0. Let z* denote the root of the function fei(z; X, @) and Z* the root of fear(z; X, @). Then, assuming that

T
1 = ~ 1 .
€= ;:1 a|l Xy — Xi| +3yja—al < Tgmm{l,o}’ﬁ}

~ 142 /2
« o

Proof. For simplicity, we will denote f(z) := feat(z; X, @) and f(z) = feat(z; )?, @). Fix some A > 0 with A < ~. Note
that f(z) is differentiable, even at z = 0, and

we will have

d d Tyt Y20
, , 2 =
%f(z) = Z _awcat(a(Xt - Z))? wcat(y) = yl*% y < 0

t=1 1-y+y?/2
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By the Mean Value Theorem,
fETHA)=f(z"+A) = f(z") = f'(y)A
for some y € [2*, z* + A] which implies that

0> fz"+A)—A sup  f'(2).
z€[z*,z*+A]

Note that 1., (y) > 0 for all y, that ¢/, (y) decreases as |y| increases, and that .., (y) = Y., (—y). It follows that

S o (a(Xy — 2)) < —at(a| Xy + al2"[ + ad).
zZE|z*,z*+

Claim B.14. z* € [—7,7].

Proof of Claim B.14. Recall that, by assumption, | X;| < . Furthermore, note that if X; — z* < 0 for all ¢, then f(z*) < 0,
and similarly, if X; — z* > 0 for all ¢, then f(2*) > 0. Since f(z*) = 0, this implies that max; X; > 2* and min; X; < z*,
which implies that z* € [—, ], and so |z*] < . O

By Claim B.14, we can upper bound

—athiy (] Xy | + al2[ 4 ad)

IN

—og (207 + @)
C 1+ a2y +A)
L+ a2y +A)+a?(2y+ A)2)2

which implies that

T
sup f(2) <Y sup —al (X, — 2))

zE€[z*,z*+A] 1—1 2€[z*,2* +A]
- Ta+Ta?(2y+ A)
T 1+a@2y+A)+a?(2y+ A)2)2

SO

TaA(l+ a2y + A))

0= 1) 2 I A T T A T a2 @y + A2

(B.15)

Note that |1, (y)| < 1 for all y, which implies that |t)cat(y) — Yeat(¥)| < |y — ¢'|- It follows that

cat

IfE+A) - fZ"+A)] <

M=

[Weat(@(Xy — 2% — A)) — Pear(@( Xy — 2* — A))|

.
Il

la(X, — 2* = A) —a(X, — 25 — A)|

M=

t=1
T T

< Za|Xt - Xi| + Z la — al|Xi| + Tla — al[z” + A
t=1 t=1

<N a|X; — Xy| + 3TH|a — &

M=

~~
Il

1
=e-T

Thus,

TaA(l+ a2y + A))

S+ A 0o T A) 1 a2y + A2
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~ . TaA(l+ a2y + A))
z A+ L+a(2y+A)+a2(2y +A)2/2 r.

If

aA(l+ a2y + A)) >0
1+ a@2y+A)+a?(2y+A)2)2 -

(B.16)

then by (B.15) it follows that 0 > f(z* 4+ A). Since f is monotonically decreasing in z and f(3*) = 0, 3* < 2* + A.

It remains to determine what choice of A is sufficient. Solving (B.16) for A, we will have that (B.16) is met as long as

AS (1+2a7)e — (1 +2a7y) + /=€ + 2¢ + (1 + 4y + 4a29?)
- 200 — e '

By assumption we have that 1 > ¢, so —€2 + 2¢ + (1 + 4ary + 4a?~?) is non-negative. We can then bound

(1+2a7)e — (1 +2a7) + /=€ + 2¢ + (1 + 4oy + 4a242)
200 — e
< (1+2a7)e — (1 +2a7) + V=€ + 26 + /(1 + day + 4a2?)

200 — e
14 2ay)e+ vV —€? + 2¢
e
142 2
Si—i_ e+ —Z
@

<

A sufficient condition to meet (B.16) is then

_ 1+2a76+ 2e
a?’

- 1+2 /2
(67 (67

We have required that A < ~, but note that this is met for this choice of A since we have assumed that

1 2.2
€ < min 77@70[7
6" 3" 18

A

Thus,

and e satisfying this will ensure that A < . Notice that the above condition is satisfied when
€< i min {1 a2'72}
— 18 ) M
The result follows by repeating this argument in the opposite direction. O

C. Regret Analysis

We will consider a slightly more general setup here than that considered in the main text. In particular, we will allow for the
reward function to be time-varying: at episodes k, the reward is specified by r’,j (s,a). We will make several assumptions on
this reward.

Assumption 1 (Time-Varying Reward). The reward function r’fb(s, a) € [0,1] is Fix—1-measurable, and non-increasing

ink: rf(s,a) < rﬁfl(& a) for all s, a, h, k. Furthermore, for each h,k, v € % for some function class #, and # has
covering number bounded as N(%, distoo, €) < dg log(1 + 282),
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As the reward function changes at each step, we will denote the value function for policy 7 at episode k by be’“(s, a) (and
similarly th’ﬂ (s)). We will also redefine regret as

Ric:=y (V" = V™)

for Vlk’* the optimal value function for reward *. To accommodate time-varying reward in FORCE, the update of the
optimistic @-estimate on Line 11 must be changed to:

Qi(a ) <~ min{rﬁ('v ) + <¢(a ')a @Z> + 66“‘1’(’ ')||A;‘1k71 + 12Vmin62/k2? H}
and the following settings of Kj,;; and 5 must be used:

Kinit + ¢ ((d® + dg) log(max{d, v}, K, H, Ryz}) + log(2HK/5))

min’

B+ 6\/c(d2 + dg)log (max{d, v;iln, H K, R%}) + log(2H K /9).

We then have the following result.

Theorem 8 (Regret Bound for Time-Varying Reward). Fix a failure probability § € (0,1) and K € N, and assume that
the reward satisfies Assumption 1. Then, the regret of FORCE, modified to handle time-varying rewards as outlined above,
satisfies the following bound with probability at least 1 — 36:

K
Ry < c1y|d(d? + dg)H? - log(Rg HK /5)log” (HK /6) - Y " V{*
k=1

+ coVd(d? + dg)*? H? 1og® *(Rp HK /8) log(HK /6)

for universal constants cy, ca. Furthermore, if we use the computationally efficient update as outlined in Theorem 5, with
probability at least 1 — 30, the regret is bounded by

K
Ri < c1y| d2(d? + dg) H? -log(Rg HK /8) log® (HK /8) - Y~ Vi
k=1

+ cod(d? + dg)*? H? 1og® *(Rp HK /8) log® (HK /§)

and computation will scale polynomially in d, H, K, and min{|.A|, O(29)}.

Theorem 4 and Theorem 5 are direct corollaries of Theorem 8, where we simply set rﬁ = ry, for all £, replace Zszl Vlk’*
with K'V}*, and note that since the reward is deterministic in this case, no cover over reward functions is necessary, so the
regret scales independently of d and Rg. Throughout the remainder of this section, we will consider this more general
time-varying reward setting.

C.1. Preliminaries and Notation

Define the following events:
A= { eatns (b = DAE @] = BAVEIGon00000)| < Bl0nalagy, + v/

Bin = {vv € B : [BalVilia(v) —EalViia(v)] < Bllvllays | + vmmﬁ?/kZ}

K H
= [ [(BrnnAxn)

k=Kinit h=1
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where we denote IEh[thH](v) = catp k[(k — 1) ;k 1), B =6+/Crnap + log(2HK/5), and

Crndp = c(d* + dg) - logs (d, v}, H,1/)\, K, Rgp)

? mln ?

for a universal constant c. Here we overload notation slightly and define:

En[VE () = (v, / Vo () dpan(s)))-

We will also define 1, (v) = r3,(s,a) if v = ¢(s,a), and 0 otherwise. Throughout this section, we will also denote
En[ViF 1 1(s,a) == Ex[ViF)(0(s, a)).

The analysis of the computationally inefficient and computationally efficient versions of FORCE are nearly identical, and we
therefore prove them in tandem. To facilitate this, we will define the parameter

~ 273 efficient = false
(Vd+2)3 efficient =true

where the efficient flag corresponds to which version of the algorithm we are running: efficient = false
corresponds to running the version of FORCE as stated in Algorithm 1, and efficient = true corresponds to running
the computationally efficient version as described in Section 4.2. Given the definition of 3, we can then write the update to

QF as
Qﬁ(v ) — min{r,’i(-, ) + <¢(’ ')7 13@ + SEHQb(’ .)||A;,1Ic—1 + 3Vming2/k2, H},

and this update holds in either the efficient or inefficient case. We will use B throughout the analysis, and set vy, = 1/K,
Omax = K /Vmin as in FORCE.

C.2. Catoni Estimation is Correct for Linear MDPs

Lemma C.1. Consider the function class
Fdp = { () = minfr() + () + 35 - ams + e 7}« Jwlly < AHVE/(W2,,), A= M7 e 2}

and assume ¢ > 0, N(%, distoo, €) < dg log(1 + 252). Then,

2885° + 8H 4R
N(Fmdp, distoo, €) < (4d2 + dg)log <1 + \f( 883 + 8H /v ) /A + Rj) .

€

Furthermore, conditioned on the event N~ NneE_ (Brw N Bi—1,1) N Arp, the Catoni estimation problems on
T= K nit  h/=h+1 , , s
Line 8 at episode k of FORCE are instances of the regression with function approximation setting of Definition A.1 for

L =Vd, B,=0, F =P

Similarly, conditioned on the event ﬂT K . ﬁh,:h_H (Brn N By p') N Ar p, the Catoni estimation problems on Line 10
and in the computationally efficient update of Equation (4.6), are instances of the regression with function approximation
setting of Definition A.1 for

=Vd, Bu=0, F =T

Proof. We will instantiate Definition A.1 with ¢, = ¢, r, ¢, = Ppt1,7. 4 = pn, 0 = ¥y, r, and the function class
F = Fmdp- FORCE solves two different forms of regression problems. In the first setting, when solving for v} , ; on

Line 8, we consider Yr = Vh+1 (sh+1,7), and u, = 0. In the second, when solving either caty, x[(k — 1)A;}C_1v] or
caty, ,[(k—1) . k (U], weset y, = Vh+1(5h+1 +) and set u, = 0.
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We verify that this meets the criteria of Definition A.1. First, note that by definition of 7}, -, we will have that ¢, - is
Fn,--measurable and that ¢py1  is Fp41 --measurable. In addition, ||¢p |2 < 1 and |[¢p41,7]2 < 1 by assumption.
Given the linear MDP structure of Definition 3.1, for any bounded function f,

E[f(hs17) | Frrl = (bnr, / (s a1 (5)))dgan(s)).

Note that we can think of f1,(-) as a measure over R?, as required by Definition A.1, by associating s" with ¢(s’, 7}, (s')),
and putting a measure of 0 on all vectors v such that there does not exist s, a with v = ¢(s, a). In addition, by assumption

|e20](S)]]2 < V/d, so we can take 3, = V/d.
In both settings, since u, = 0, it suffices to take /3, = 0. Note that for any s, a, h, k, 7, we can bound
(s, a)TAI:,iq‘ZSh,TthH(3h+1;)/\7i77

—1/2 . _
<165 a)llacs, - 1A lopll ol Vs (sn )1 /93,

H
< ll¢s,a)lla;n - Vo
so by Lemma B.12, we will have that |lwy |2 < ‘isz‘_/a. It follows that, by construction of V/¥ ,(-), we will have

th+1(') € Fmdp-
It remains to show that the condition on vy, -, (A.2), is met at round &. In our setting, for the Catoni estimation on Line 8 at
episode k, (A.2) is equivalent to

_ 1
Eh[(vhk+11)2] (Sh,‘m ah,‘l’) < §Vf21,‘r'

However, by Lemma C.5, this holds for all 7 > Kj,;; on the nk=2 ﬂg:hﬂ (Brw N Bi—1,p) N A . For 7 < Kinit

T=Kinit
it trivially as we set \7,2177 = 2H? and since V}f_ﬂ (s") € [0, H]. For the Catoni estimation on Line 10 or in Equation (4.6),
(A.2) is equivalent to

1_
Enl(Vik )2 (hyrs anr) < §Vf2m~

Again by Lemma C.5, this holds on the event ﬂf;}(im Og:hﬂ (Brw N By ) N Az, for 7 > Kipie. For 7 < Ky this
trivially holds since vi = 2H?.

Finally, we bound the covering number of %,,qp. Consider f1, fo € Fnap, then

distoo (f1, f2) = sup |fi1(@) — f2()]
peB

= sup | min{ri(¢) + (¢, w1) + 38| Blly+ +¢ H}
peBL

— min{ra (@) + (&, wa) + 38| Bll 1+ H}|-
Assume that f1(¢) = f2(¢) = H, then we can clearly bound
f1(¢) = F2(@)] < [r1(8) — r2(¢)] + | min{(, w1) + 38|l 5+, H} — min{(p, wa) + 35| 5.1, H}|:
If f1(¢p) < H, fo(¢p) < H, using that &, r1 (), 72(¢p) > 0, we can bound

|f1(®) — fa(@)| = [r1(@) + (P, w1) + 3B||¢HA;1 — (r2(¢) + (¢, w2) + 3EH¢||A;1)|
= |r1(¢) + min{(¢, w1) + 3E”¢HA;17H} — (r2(¢) + min{(¢p, w2) + 35“¢||A;1,H})|
< [ri(é) — r2(@)| + [ min{(¢, wn) + 35”4’”1\;1’1{} — min{(¢, wa) + 3§||¢||A;1aH}|-
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If f1(¢) = H, fo(¢) < H,

1f1(#) = fo(@)] < [r1(#) + min{(d,w1) + 3B Bl| s+, H} — (r2(¢) + (¢, w2) + 3B]|p 1)
= |r1(¢) + min{(¢, w1) + 35 Bll5 1, H} — (r2($) + min{(d, ws) + 35|l 5, H})|
< |r1(¢) = r2(@)| + [min{ (@, w1) + 38| D]l 5+, H} — min{(¢p,ws) + 35 Bll5 1, H}.
The same argument holds of f1(¢) < H, fo(¢) = H. Altogether then,

distoo (f1, f2) < sup |ri(¢) — ra(eh)|

¢peB

+;ug | min{(p, w1) + 38 Blly -1, H} — min{(e, ws) + 35| d]l 5.+, H}.
c d

It follows that we can construct ¢/2-nets of % and the class
7 = {1() = min{(w) + 35 - |a-s, H} : wll2 < 4HVA/ (W), A = AT}

separately, and the union of these nets will serve as an e-net of #,,qp. By assumption, we have N(Z, dists, €/2) <
dg log(1 + 4]%5) Furthermore, .# is identical to the function class considered in Lemma B.2, so

N 8 288V/d3?
N(Z, disto, €/2) < dlog (1 + ~ 2‘[> + d?log ( )\\Cﬁ >

min

< 4d?log (1 + V(2885 + 8H/me)>
- e ’

This implies that (since log-covering numbers are additive)

2
N(Fmdp, distos, €) < 4d? log (1 + f(2885 ;8H/me)> + dglog (1 + Rﬂ)
€

2
< (4d* + dgg) log (1 | V(2885* + 8H€/vmm)/A + 4Rg;> |

O
Lemma C.2. Assume we are in the linear MDP setting and are running Algorithm 1 with A\ < 1/H?. Then as long as
K > Kinit, we will have that P[E] > 1 — 6.
Proof. First, note that

H

K
U (Bi, U Af,
h=Kinie h=1

Then,
Claim C.3.
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Claim C.3 and a union bound imply that

K

H
P[Ee] = U (Bin UALL)
k=Kinit h=1

T

K
< Z > P (B, N (N k,, et (Birw 0 Agr o)) 0 (051 Biow )]
k=Kinit h=1

=
>

n
Mw
M=

P [Af 4 O (M 2k Vo=t (Brw 0 Awn)) 0 (O < B )]

x

<)

it b

Il
-

i

P (Bl (Mo k... ey (Brrne N A o)) 0 (N =y 1 Beow)]

i
M=

k=Kinit h=1
K H
+ Z D P AL M, Mot (Brw 0 Aewr) 0 (M= B )] -
k=Kinit h=1
We first bound
P AL | N ey (B 0 Aprone) 0 (N =1 Beowr) ] -

By Lemma C.1, we have the regression estimate caty, j [(k‘ 1)Ah k1P, k} satisfies Definition A.1 conditioned on the

event m’lz’;lKin;t N1 (Bir o N Apr o) (N, 1 Brw ). We now apply Theorem 6. First note that since amax = K /Vinin,
|16r]l2 < V/d, and using the values for 5, and §,, from Lemma C.1, as well as the covering number bound of %,,qp, it
follows that Cy,ap, upper bounds dr°. Since we have assumed K > Kiyit, by our choice of Kinit = c¢(log(2H K /8)+Crnap)s
it follows that the minimum sample condition of Theorem 6 is met for k£ > Kjy;;. Finally, note that in this setting, using the
definition of linear MDPs, Definition 3.1, we will have that

6. = [ Viis(s)dan ().

Thus, by Theorem 6, with probability at least 1 — 6/(2HK),

cot (= DAL ] = s [ Vi ()i (5)

3(Crnap + log(2HK/9))
Qmax(k — 1)

< 510nslagy., (/Coan +082HE/3) + VAIB.I2 ) +
Note that,
162 = | / Vo () dpn(s) 2 < H| / dpan ()l < HVA

where the last inequality follows by Definition 3.1. It follows that for A < 1/H? and proper choice of the universal constant
in Cygp, We can bound

1
VABll2 < 2/ Cunap + 10g(2HK/3).

As (Dn i, [ pn(s’ Vh+1( s')ds') = Eh[th+1}(sh7k, ap,r) by Definition 3.1, by our choice of 5 we conclude that with
probability at least 1 — §/(2HK)°®,

caty, k [(k - 1)A}:}€71¢h,k} — En[Viii] (shks an k)

< Blignrllazy, + vminB /K.

°Note that if k& > Kinit = 4(Cimap + log(2HK/J)), then K > B, so we can remove 3 from the definition of dr as it will be
dominated by K.

SWe have replaced 1/(k — 1) in the lower order term with 1/k for future notational convenience. Note that this is valid since
k > Kinit > 1 so we can accommodate this change by slightly increasing the constant in 3.
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This is precisely the definition of Ay, 5, however, so it follows that

]

P [ i,h| mZT_l N m}I;I/:1(Bk’,h’ NApp)N (m}I;I/:h+1Bk,h’)] < SHE

=Kini

The bound on

P (B | (M, ey (Brrw N A ) O (NFr—p g1 Brow )]

can be shown almost identically. As such, we omit the calculation and conclude that
P (B | (M Oy (B 0V Ag w)) 0 (NFiZp i1 B )] < 5o
Combining these bounds gives that P[£°] < §. O
Lemma C4. Fix h, k > Ky, and k' > k. Then if By and By s hold for all b/ € [h, H], we will have
5QN(s,0) = Qi (s,a)
forall i € [h, H]. In particular, 5V}% (s) > th,,(s).

Proof. We will prove this by induction. In the base case, take h’ = H. On By, g N By g, we have

5Ql (5. a) = min {5rfy(s,) + 5((s, @), @hy) + 155 (s, )| x|+ 15vinin B2/, 5H }
(a)

> min

(5,0) + En[5Vh 1](5,0) + 55ll6(s, ) ., + 5vaninB2/K2, 5H |

/

{ori

®) mln{57” 5,a) + 58 @(s,0) [, + Vanin I /k2,5H}
{ri
{ri

> min {7y (s,a +55Hc}’>(s a)||A— ) +5Vming2/(kl)27H}
S min {1k (5.) + (9(s,0), @) + 37100 )llp-1 -+ BB/ (K2, 1
= Qli(s.0)

where (a) follows since we are on By, i and by Lemma C.6, (b) follows since V/;, | (s') = 0 by definition, (c) follows

since reward is non-increasing in k so ¥ (s,a) < ¥ (s, a), and since Az 1 = Ak, and (d) follows since we are on
By i, and by Lemma C.6. This implies that, for all s,

5V (s) = 5Ql (s, 75 (s)) > 5Qf (5, 7 (5)) = Qi (s, () = Vi (s). (C.H

For the inductive step, assume that 5V,% , (s) > V,f,/H (s) for all s and that By, j; N By 5, holds. Then we can repeat the
above calculation, but now lower bounding

Ep [5V;f/+1}(8, a) > Ep [fo’—s—l}(sa a).

In full detail,
5Q%(s,a —mm{Sr (5,a) 4+ 5(p(s,a), W) + 155‘@(5:@)”/\*1 LT 15vmin52/k'2,c\7H}
>m n{57’ ((5,0) + En[5Vi5 1)(s,0) + 58 b5, )l 1 +5vminﬁ2/k2,5H}
>m {5rh, 5,0) + B [V 1](s,0) + 581 6(s. )1, +5vmm§2/k2,5ﬂ}
> min {rh, 5,0) + (@(s,0), @) + 38| b5, 0)lla 1 +3vmin§2/(kz’)2,H}
= Qh,(s,a).

It follows that 5V% (s) > V%' (s) by the same argument as in (C.1). This proves the inductive step, so the result follows. []
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Lemma C.5. Set
Vi, = max {ZOHcathJc [(k — 1)A,j}€_1¢h7k} +20H B dnklla-1  + 20Hviin 57 /K, vfmn}.
Then V3, ;. is Fi, -measurable, and, for any k' > k, on the event Nfi_, .\ (Byn' N Byr ) N A p, we have

/ 1
En[(Vit1)*1(shks ank) < 5\7;%,;@7 2
AHEL V) 4] (Shoks ane) < Vi

and

Vi, < max {QOHIE;L Viteal (s ani) + 40HBllpnrll o1 +40HvVmin 52 /K2, vgﬁn}. (C3)

Proof. By definition ¢y, i, Ay 1—1, and 7, , are F}, p-measurable. As we only rely on data up to episode k£ — 1, it follows
that ¢y, » and sy, are also Fj, -measurable. Finally, we see from the definition of Algorithm 1 that th—&-l is formed
using only data up to and including episode k£ — 1. It follows that vy, j, is F}, -measurable.

Note that we can trivially bound

Eh[(‘/fﬁlrlf](sh,k» ah7k> < HEh[thil](sh,k; ah’k)

where the last inequality follows since V;%., (s') € [0, H]. By Lemma C.4, on the event N _, . (Byy N By pr), we will
have that

HE [V (snks an k) < SHER[VIE ] (5n,s an i)
On the event Ay, ,, we can bound
En Vil (snk, an) < catp [(k — DA 1Ok |+ BlSnklla-t A+ viin /R

The lower bound (C.2) follows by our choice of \7,21’ - The upper bound (C.3) follows since, on Ay, j,, we have

caty, i, [(k - I)A;}cfl(bh,k} < En[Via](shoks ank) + Bllnklla-r  + Vmin 37 /K.

Lemma C.6. On the event By, p, if we are running Algorithm 1, we will have that

(s, 0), @F) —EnlViliy1l(s.0)] < Bli(s, @)l a1 | +vauinB® /R,
(s, a), @h) — Ba[Vifya(s, )| < Blld(s, @)l a1 |+ Vinin /K

for all s and a.

Proof. This follows directly from Lemma A.1 and Lemma B.11, the definition of 3 and B i, and since E [V/F, |](s, a) is
linear in ¢ (s, a) and we assume that ||@(s, a)|l2 < 1 for all s, a and that there does not exist s, a such that ¢(s,a) = 0. O

Proof of Claim C.3. Clearly,

K H

U (Brn UAL L)
k=Kinit h=1

K H
= U U [(Bﬁ,h U AL\ ((UZI_:le U= (B U AG 1)) U (UR —p (B U Ai,h/)))]
k=Kinit h=1
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K H
U [Bia\ (U Uy (B g U A ) U (UFF e (B U A50))) |

k=Kinit h=1
K H
k
U U U [0\ (U, Ul (Bl U A ) U (UF i (Bl U A0) |-
k=Kinit h=1
Noting that
k—

X\ ((Uk/:lxm Uhi—1 (Birp U Ajy ) U (Up—ps1 (BE U AL 1))

= X N0 (M =t (Brr o 0V A ) 0 (O3 1 (Biw 0 Agenr)))
for any X completes the proof. O
C.3. Optimism

Lemma C.7. On the event &, for all s, a, h, and k > Kt and any 7, we have

=~ X k,m k,m

En[Vita](s,a) +75(s,a) = Q7 (s,a) = Ba[Viyy — Vi l(s, @) + & (s,a)
where £¥ (s, a) satisfies |€F (s, a)| < B¢ (s, a)||A;1k71 + VininB2 /K2

Proof. By definition, we have that

P (s,a) = 1f(s.a) + B[V (s, a).

On &, we have that
En[Vi1)(s,0) — EalVia) (5, 0)| < Blo(s, a)lla-t | + 627k
so we can therefore write
B[Vl (s, @) = Ea[Vi](s,0) + €5, 0)
for a term £F (s, a) satisfying
€55, )| < Bllbls, )l st + vinin B2/
It follows that

Eh[‘/hk-ﬁ-l](sv a) + ’/‘Z(S, CL) - QZ(& a’) = ]Eh[‘/}f-‘rl - V]fj:i](& a’) + fﬁ(sa CL).

Lemma C.8. On the event &, for all s,a,h, and k > Ky, we have that QF (s, a) > QZ’*(S, a).

Proof. We will prove this by induction for a fixed k. First, take h = H. Since V1 1(s) = V/;,,(s) = 0 by definition, by
Lemma C.7 we have

B (Vi 1)(s,a) + i (s,0) = Q" (5,0)| < Bll(s,a)lazs, | + Va5 /K
which implies
Q3" (s,a) < min{rf(s,a) +Eu[Vi 1](s,0) + (s, a)llx, | + vinS*/K*, H}
< min{r}(s,a) + (¢(s, ), @) + (B + B)|b(s, a)||A o van(8% 4 B) /K HY
< min{rf (s, a) + ($(s,a), @) +36l|(s, @)l[x | + v /K H)
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= Ql;i(sv a’)

where we have used Lemma C.6 and that 8 < B Now assume that Qﬁﬂ(s, a) > Qﬁ’_ﬁl (s,a) for all (s,a) and some h.
Again by Lemma C.7, we have that

[En[Vifii)(s,a) = Q4" (s,a) = Ba[Vily — Vi) (s, 0)| < Bll (s, a)llaz_, + Vinin B/ 2.

By the inductive hypothesis Ej [V;F, | — thrl](s, a) >0, so

@y (s,0) < minf{rfi(s, a) + Ba[V¥1)(s,0) + Bl (s, a)lla- |+ vinB*/K°, H}
< min{r}i(s, a) + ($(s,a), @y) + (5 + B)l|(s, a>||A— V(8% + 5%)/4%, H)
—mmﬁ@@+w@wwm+ww@@mﬂ4+mm@m%m
= Qi(s.a)
This proves the inductive hypothesis so the result follows. O

Lemma C.9 (Formal version of Lemma A.2). Let §F = V}F(sk) — th’m“ (sf) and Cf .\ = En[0F 1](Shk, ank) — 05 1.
Then, on the event &, for any k > Kinit,

OF < Oh iy + Chyr + min{5B8]dnklla-t |+ 5vainB°/K, HY.
Proof. We have

QF(s,a) — Zﬂrk (s,a) @ min{rf (s, a) + (p(s,a), W) + 36”91)(8’&)”1\2,271 + 3vmin B2 /K%, H} — Qﬁ)ﬂ-k (s,a)

( ~ ~
< min{rk(s,) + (6(5,), ) — Q5™ (s50) + 371005, ) s, + B /47, H)

© . - ~
< min{rf(s,a) + Ea[Vili1)(s.@) — Qy™ (s,0) + 48] d(s,a)llp 2 + 4vmin S/, H)
@ . ~ -

< min{En[Viyy — Vi 1(s,a) + 5Bll¢(s, )l 1 + Svinin 5 /4%, H}

(©) - . -

< EnlVifir = Vi )(s.a) + min{55]|@(s, a)llx | + Sviun B /K7, H)

where (a) is by definition of Q% (s, a), (b) holds since QZ’”"‘ (s,a) > 0, (c) holds by Lemma C.6, (d) follows by Lemma C.7,
and (e) follows since E;[V/F | — thﬂ’“](s a) > 0 by Lemma C.8.

Now note that since at episode k we play action a¥ = arg max, Q¥ (s¥, a), we will have that
55 - QZ(SZ7G‘Z) - Zﬂrk (Sﬁ,aﬁ).
The result follows by the definition of V;*(s) and th””“ (s). O

C.4. Regret Bound
Lemma C.10. With probability at least 1 — 9, we can bound

K H K H
Z ZC;?S Z Z 1(8h=1k, an—1k) - log1/d + 2H log 1/4.

k=Kinit h=1 k=Kin

Proof. This is a direct application of Lemma B.4, Freedman’s inequality. Recall that

¢ =Eno1[08](sh1,0: an—1,4) — 0 = En_1[VF = V™ |(sn_1p, an—1.6) — (VE(s§) — Vi ™ (s§)).
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Thus, we can bound
Gl < 2H
since the value function will always be bounded in [0, H]. Next, note that
En—1[(¢F)(sn-1,0: an-1,8) < 2B [(ViF = V™)) (8p- 1,5, an—1,1)
< AR, 1 (V2 4+ (V™)) (Sh—1.hs ano1k)

< 8En1 [(ViF)?)(5h—1,k> ah—1.1)
S 8H]Eh_1 [th] (Sh—l,lw ah—l,k)

where the second to last inequality uses Lemma C.8. Using these bounds the result then follows directly from Lemma B.4.
O

Lemma C.11. With probability at least 1 — §, we have

K H K K
ZZE’L 1 Vh (Sh—1ksah—1k) < H - Z Vlk’*—|—RK+2 < Z Vlk’*—|—RK> -log1/6 +1log1/d
k=1h=1 k=Kinit k=Kinit

where Ric = Yo,y (Vi (s1) = V™ (s1)).
Proof. By Lemma C.6, on &,

(s, @), @) — Ba[ViEs)(s,0)] < Blbls, a)llpoy o+ vinin B2/42
which implies that

EnlVifial(s,0) < ((s,a), @) + Bllb(s, a)ll a1 |+ vawin /K%,
Thus,

Qi (5,0) = min{rh(s.a) + (@(s. @), @) + 331 8(s a1+ BinB/0%, H}
> min{r}(s,a) + Ep[ViF,1](s,a), H}.
Since 7}’ (s) = argmax, QF (s, a), we have that V., (s") = QF_, (s', 7}, (s')). Using that reward is always nonnegative,
we can therefore unroll V;*(s1) backwards as:
Vit (s1) = QF(s1, 71 (1))

> min{r} (sy, 77 (51)) + Es, [Q5 (52,75 (s52)) | 51,71 (s1)], H}

> min{Es, [Q5 (s2, 75 (s2)) | 51,7 (s1)], H}

= Ey,[Q5 (52,75 (52)) | 51,71 (s1)]

> Eg,[min{r (s2, 75 (s2)) + Es, [Q5 (53,75 (53)) | 82,75 (s2)], H} | 51,77 (51)]

> By, [Es, [Q5 (53,75 (53)) | 52,75 (s2)] | 51,71 (s1)]

= B+ [QF (53,75 (53))]

> Bk [QF (s, 7k (s1))]
=B [Viy (s1)]

where here E [ | s, a] denotes taking the expectation over the next state s’ given that we are in (s, a), and E_«[-] denotes
the expectation over trajectories generated by 7. We conclude

Vi (s1) > Exe [V (sn)]
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for any h. Given this, since we play policy 7 at episode k, we will have that
Er,En1[Vi](sh-18, ah-1,6) = Em [V (s7)] < En, [V (s7)] = V(s1)

which allows us to bound

K H
Z ZEh—l[Viﬂ(sh—l,kaah—l,k)

k=Kinit h=1

K H K H
Z Z Er Bn1[ViF](sho1y an1.k) + Z Z En 1 [VF](sho1hr an-1.) — ExuBn 1 [ViFI(Sh_1.ky an_1.1))

k=Kinit h=1
K K H
Z )+ D> D> (Er [V (sho1k0 an-1k) — EnBa 1 [Vl (Sho1ky an-14))-
Klmt k:Kimt h=1
By definition of Rz,
K K N K _
H Y VEs)=H Y V{™(s))+HRx <H Y V" (s1)+ HRg.
k=Kinit k=Kinit k=Kinit
It remains to bound
K H
Z (En—1 V¥l (sh-1.8> ah-1.1) — By Ea 1 [ViFl (815> an—1.%))-
k=Kinit h=1

Note first that \Eh_l[V}f](sh_Lk, Ah—1k) — EﬂkEh_l[V}f](sh_l,k, ap—1,)| < H almost surely,
By [Bro1 [ViF)(sn-18, an-1%) — Exp Ene1 Vi (sh—1,%, an—1,%)] = 0,
and

B [(Br—1 [ViF(sh—1.8> ah—1,6) — By Ea1 [ViFl(8n-1.5 an—1.%))%] < By [Bre1 [ViF)(sh-1.4> an—1,1)?]
< HE,, [EEn_1 [V (Sh-1.k, an—1.1)]
< HVlk(sl)

where the last inequality follows by what we have shown above. Applying Freedman’s inequality (Lemma B.4), we can then
bound, with probability at least 1 — 4,

K H
Z(th[Vf](Shq,k, an—1%) = En, Bt [V (Sh—1ks an-11))
k=Kinit h=1
K
<2,|H?> Y Vf(s1)-log1/s+ Hlog1/s
k=Kinit

K
<2,|(H? Y V" (s1) + H*Ry) -log 1/6 + Hlog 1/5
k=Kinit

where the last inequality follows by what we have shown above. O

Proof of Theorem 8. By definition of R i and Lemma C.8,

K K
Ric = (V" (1) = V™ (1)) < HKuwie + ) (V(s1) = V"™ (1)) =t HEinit + Rix.
k=1 k=Kinit
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Decomposing the regret. By Lemma C.9,

K H K H
Rk < Z ZC;]f—l- Z Zmln{55||¢(s a)l[a-1 + 5Vmin2/k? H}
k=Kinis h=1 k=Kinis h=1
K H K H _ K H _
S Y S S S min(lee s H S S SR
k=Kinis h=1 k=Kinis h=1 ' k=Kinis h=1

By Lemma C.10, with probability 1 — ¢, Z N K Z 1—1 (i can be bounded as

init

K H K H
S S <320 > S EnalViFl(sho1ks an—1x) - log 1/6 + 2H log 1/5.

k=Kinit h=1 k=Kinit h=1
Furthermore,
K H _ B
Z Z Vmin62/k2 S 1062vain
k=Kinit h=1
Controlling the optimistic bonuses. Let K}, = {k > Kj,; : \|¢h,k/\7h,k||A}—1k <1} and K, = {Kinit, - . ., K\Ch.
v, k—1
Then,

K H N X .
S Y mnlsAldnlagy = D Yo
=K,

init h=1

At o H/ Ve
k

k=Kin
H H
Z Z Vnkllh /Vnalla-1 |+ > HIKS|
h=1 " h=1

ey

By Lemma A.3, and since ||¢F /Vj, k|l2 < 1/Vmin almost surely, we can bound |K§| < 2dlog(1 + K/(Av2,,)), which
implies that

H

> HIKS| < 2dH?log(1 + K/(AWh,))-
h=1

Denote
Nh,r = QOHE}L [V]Z—+1](Sh,7—7 ah,'r)~

By Lemma C.5 and the definition of v, _, we can bound

53 Y

k—1
h=1keK,
—57y Z i
h=1keKy,
_H Nhk + 20Hﬂ||¢h,k||A;1 + 20HVpnin 82 /K2 + V2, B
<58) ) 5 dnk/Vnklla-1
h=1keKn h.k

H
<58Y > (V5 + 20HB /K +viain) b Onillas_, + 20HBl b /Vnalhr )

where the final inequality follows since, by Lemma C.5, we can lower bound V3 , > n, 1/5, and since we can always lower
bound v, 1, > Viin.
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Recalling the definition of K}, we can bound

H
5> 20Hﬁ||¢)h,k/\7h,k||i; < 100H6ﬁ22mln{\\¢h/vhk||2 1

h=1keKy h=1k=1
< 200H?BBdlog(1 + K/(d\W2,,))

where the last inequality follows by Lemma B.3. By Cauchy-Schwarz and again using the definition of Xy, we can bound

552 Z 577hk+20H5 /k2+Vm1n)H¢h/Vh k”A‘

h=1keK;
N H H
<58,4D 0 D (Gnnk +400H284 kA + V20 Y 0> Ik /vnll? -
h=1keK;, h=1keK, ok
_ H
<58,[4) D (5nnk +400H2B4 /K4 + V2 ) Zmeﬂwh/vh flia 1
h=1keK, \h 1k=1
H K
< 55\/2dH log(1 + K/(dN2,;,)) Z S D+ 3200H3B1 + AHKV2,,
h=1 Km\t

H K
< 55\/2dH log(1 + K/(d\2,,)) [ (|40 3w +60HY25% 2\ [HIZ,,

h=1k=Kinit
where we again apply Lemma B.3 and use that v/a + b < v/a 4+ v/b for a,b > 0.

Finishing the Proof. By definition,

H K
Z Z Nhk = Z Z 20HE Vi 1](sh ks an.k) Z > 20HEn 1 [V (sh-1kan-1.8)-
h=1 k=K

h=1 k=Kinit h=1 k=Kinit init

Collecting terms, we have then shown that,

Ric < e\ JdH log(1 + K/(dW2,,)) HZ Z 1 [ViF](sh-10 an-1.)
h=1k=Kinit

+ o\ dH log(1 + K /(dX2y,)) HV2 i K
+esBB2H?Vdlog(1 + K /(dW2;,))

for universal constants ¢y, ¢3, c3. By Lemma C.11 we can bound, with probability at least 1 — 6,

K H K K
Z ZEVh U(Sh—1.k,0n-15) < H - Zv{“*+7€K+2 (ZVlk’*JrﬁK) -log1/6 +1og1/d

k=Kinit h=1 k=1 k=1

K
<4Hlogl/é - (Z Vi +7€K>

k=1

SO

K
Ry < clﬂ\/dH log(1+ K/(d\W2,,)) | «| H2log 1/ - (Z Vi 4 7€K> +\/HV2, K

k=1
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+ e3BBHVdlog(1 + K/(dW2y,)).

Finally, choosing v2 . = 1/K and solving the above for Ri gives

K
Ry < clﬁ\/dH log(1 + K/(d\W2,)) | H21og1/5 - > " Vi + a2 H*Vdlog(1 + K/ (dAv2,,)) - log 1/6.
k=1

Since R < HKjni + R K, union bounding over £, which holds with probability at least 1 — § by Lemma C.2, and the
two additional events stated above, and using that 3 = 61/Cap + log(2H K /5) and

Cundp = c(d® +dz) - logs (d, v}, H,1/X\, K, Rgp) ,

» Ymin?

and the definition of E , and setting A = 1/H?, gives the final result. O
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