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Abstract
Characteristic functions (from cooperative game
theory) are able to evaluate partial inputs and
form the basis for attribution methods like Shap-
ley values. These attribution methods allow us
to measure how important each input component
is for the function output—one of the goals of
explainable AI (XAI). Given a standard classifier
function, it is unclear how partial input should be
realised. Instead, most XAI-methods for black-
box classifiers like neural networks consider coun-
terfactual inputs that generally lie off-manifold,
which makes them hard to evaluate and easy to
manipulate. We propose a setup to directly train
characteristic functions in the form of neural net-
works to play simple two-player games. We apply
this to the game of Connect Four by randomly
hiding colour information from our agents during
training. This has three advantages for comparing
XAI-methods: It alleviates the ambiguity about
how to realise partial input, makes off-manifold
evaluation unnecessary and allows us to compare
the methods by letting them play against each
other.

1. Introduction
The safe deployment of AI-systems in high-stakes applica-
tions such as autonomous driving (Schraagen et al., 2020),
medical imaging (Holzinger et al., 2017) and criminal jus-
tice (Rudin & Ustun, 2018) requires that their decisions can
be subjected to human scrutiny. The most successful mod-
els, often based on machine learning (ML) and deep neural
networks (DNN), have instead grown increasingly complex
and are widely regarded to operate as black-boxes. This
spawned the field of explainable AI (XAI) with the explicit
aim to make ML models transparent in their reasoning.
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1.1. Explainable Artificial Intelligence

Though XAI had practical success, such as detecting biases
in established data sets (Lapuschkin et al., 2019), there
is currently no consensus among researchers about what
exactly constitutes an explainable model (Lipton, 2018).
For a good overview see (Adadi & Berrada, 2018).

Models such as k-nearest neighbours, succinct decision trees
or sparse linear models are deemed inherently interpretable
(Arrieta et al., 2020), which makes them preferable (Rudin,
2019). However, the most impressive breakthroughs in the
field of AI have only been possible with DNNs. In this
light, a second paradigm emerged: to apply these successful
models and explain them post-hoc.

In this work, we focus on saliency (or relevance) attribution
methods. Given a classifier and input, these methods rate
the importance of each feature for the classifier output, often
displayed visually as a heatmap, called a saliency map. We
give an overview over the proposed methods in Section 2.

1.2. Characteristic Functions

Cooperative game theory considers attribution problems
very similar to saliency attribution, where a common pay-
off is to be fairly distributed to a number of players. In
the context of ML, players correspond to features and the
pay-off is the classifier score. Let d ∈ N be the number
of features, and [d] = {1, . . . , d}. One key concept is the
characteristic function ν : 2[d] → R which assigns a value
to every possible subset of d, called a coalition. We refer the
reader to (Chalkiadakis et al., 2011) for a good introduction.

For binary classifiers this led to the concept of prime impli-
cant explanations (PIE) that search for the smallest coalition
S ⊂ [d] that ensures a value of ν(S) = 1, see (Shih et al.,
2018). These explanations can be efficiently computed for
certain simple classifiers.

The Shapley values, an established method defined as

ϕν,i =
∑

S⊆[d]\{i}

(
d− 1
|S|

)−1

(ν(S ∪ {i})− ν(S)),

are the unique attribution methods that satisfy certain desir-
able fairness criteria, see (Shapley, 2016) and Appendix E.1.
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Figure 1. Connect 4 with missing colour information shown in grey. a) A game between two pairs of maskers and players. The maskers
decide which colour information to pass on to the players with an upper limit of revealing half the played pieces. The player has to decide
his move based on the information sent by the masker. The players are both modelled by the same policy network. Which information to
reveal will later be chosen by different saliency methods. b) The game board is encoded in three input channels: Two binary matrices
indicating the pieces of each player and one indicate the open fields.2 With full information the encoding is redundant, with only partial
information the agent is unsure about the colour of some pieces but can still make valid moves.

Both prime implicant explanations as well as Shapley values
have inspired heuristic saliency methods for neural networks
(see Section 2), though none maintain their desirable theoret-
ical properties while at the same time being computationally
efficient (Wäldchen et al., 2021).

1.3. Evaluating Saliency Methods

In (Doshi-Velez & Kim, 2017) the authors differentiate be-
tween human-based and functionally-grounded evaluation.
The former has the advantage of measuring directly which
explanations are legible and helpful to humans, but are
costly and hard to generalise from one task to another. The
latter aims to design proxy tasks whose success is correlated
with the quality of the explanation, see e.g. (Pruthi et al.,
2022). This allows for larger scale experiments, however,
not all proxy-task are necessarily linked to good explana-
tions (Biessmann & Refiano, 2021).

The proxy task we consider here is: successful play of ab-
stract games with limited information. In our case study we
investigate the game Connect Four (Allis, 1988). We make
use of the fact that neural networks have emerged as one of
the strongest models for reinforcement learning, and e.g.,
constitute the first human competitive models for Go (Silver
et al., 2017) and Atari games (Mnih et al., 2015).

Our exact setup is illustrated in Figure 1. A masker and a
player are paired against a second team of the same form.
The masker, equipped with an XAI-method, presents a lim-
ited amount of information to their player, who selects the
next move. The players are modelled by DNNs without
memory and base their decision only on the information
currently provided by the masker.

1.4. Our Contribution

We show that for image obfuscation, one of the most used
evaluation metrics, the best-performing methods create fea-
tures that were not present in the original image, a phe-
nomenon resulting from evaluating classifiers off-manifold.

As a remedy, we directly train agents as characteristic func-
tions for reinforcement learning, by randomly hiding colour
features and show that this setup delivers results compara-
ble to training solely on full information. Additionally, we
demonstrate a relatively monotonous relationship between
information and performance in the game, which justifies
the setup explained in Figure 1 as a sensible proxy task for
XAI methods.

Since our agents can handle partial input, we can directly
compute Shapley values via sampling. These are theoreti-
cally well understood and rely only on counterfactual input
the agent has been trained on—which makes this a sound
attribution method. We demonstrate their usefulness by
comparing to the ground truth available for certain board
situations. Additionally, we learn that training on hidden
input is not enough to ensure interpretability if the training
is linked to the wrong objective.

We then compare a selection of XAI methods in a round-
robin tournament in Connect Four, which has some advan-
tages that image obfuscation comparisons generally lack:

1. It is canonically clear how missing information should
be modelled (since it is included in the training).

2. There is no need to evaluate the classifier off-manifold.
3. We have a concrete task (Winning the game) to com-

pare the XAI-methods.
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2. Related Work
We restrict our analysis to local, post-hoc saliency meth-
ods for neural network classifiers, both model specific and
model-agnostic. We differentiate the following three cate-
gories.

Local Linearisation Linear methods are considered inter-
pretable, so it is a natural approach for nonlinear models to
instead interpret a local linearisation. In this category we
find gradient maps (Simonyan et al., 2013), SmoothGrad
(Smilkov et al., 2017) and LIME (Ribeiro et al., 2016) which
samples around the input and fits a new linear classifier.

Heuristic Backpropagation These methods replace the
chain-rule of gradient backpropagation with different heuris-
tically motivated rules and propagate relevance scores back
to the input (Zeiler & Fergus, 2014). Newer methods in-
clude GuidedBackpropagation (GB) (Springenberg et al.,
2015), DeepLift (Shrikumar et al., 2017), DeepShap (Lund-
berg & Lee, 2017a) and LRP (Bach et al., 2015). These
methods have the advantage of being comparably fast.

Partial Input These methods rely on a characteristic func-
tion νf,x for a classifier function f and an input x. The
standard way to define νf,x(S) for a feature set S, put forth
by (Lundberg & Lee, 2017b), is to regard the missing fea-
tures xSc as random variables and take an expectation value
conditioned on the given parameters xS , i.e.,

νf,x(S) = Ey[f(y) |yS = xS ]

=

∫
f(x)p(xSc |xS) dxSc . (1)

Being able to evaluate partial input, these methods either op-
timise an objective similar to prime implicant explanations,
for example Rate-Distortion Explanations (RDE) (Macdon-
ald et al., 2020) and Anchors (Ribeiro et al., 2018), or ap-
proximate Shapley values (Sundararajan & Najmi, 2020).
This is computationally expensive, but has the advantage of
being close to theoretically sound concepts. This soundness,
however, depends strongly on how correctly the conditional
distribution p(xSc |xS) is modelled, as we will discuss next.

The Problem with Off-Manifold Input These post-hoc
methods share that they consider counterfactual information:

“What if I would change parts of the input, or leave them out
completely?”, see Appendix A for more detail.

These saliency methods can all be manipulated by princi-
pally the same idea: replace an existing model by another
one that agrees on the data manifold but not off-manifold.
This allows to hide biases in classifiers for on-manifold in-
puts almost at will, as demonstrated for gradient maps and
integrated gradients (Anders et al., 2020; Dimanov et al.,

Image FW AFW

LCG LAFW Sensitivity

Figure 2. RDE-Explanations of a bird image taken from (Macdon-
ald et al., 2021) with permission of the authors. The proposed
optimisation methods (FW, AFW, LCG, LAFW) search for the
smallest set of features that still maintain the classification of
“bird”. All produce a mask that creates a new bird head as a mask.
The sensitivity map does not show this behaviour.

2020), LRP (Anders et al., 2020; Dombrowski et al., 2019),
LIME (Slack et al., 2020; Dimanov et al., 2020), DeepShap
(Slack et al., 2020; Dimanov et al., 2020), Grad-Cam (Heo
et al., 2019), Shapley-based(Frye et al., 2020) and general
counterfactual explanations (Slack et al., 2021). Alterna-
tives to saliency methods use generative models to produce
counterfactuals that stay on-manifold (Nguyen et al., 2016;
Booth et al., 2021; Wäldchen et al., 2022).

Image Obfuscation In the absence of human annotations
(such as bounding boxes or pixel-wise annotations), some
functionally grounded evaluation for image data obfuscate
part of the image and measure how much the classifier out-
put changes (Mohseni et al., 2021). The idea is this: keeping
the relevant features intact should leave the classification
stable, obfuscating them should rapidly decay the classifier
score. This method was introduced as pixel-flipping (Samek
et al., 2017) and used to evaluate XAI-methods for image
recognition (Fong & Vedaldi, 2017; Macdonald et al., 2019)
and Atari games (Huber et al., 2021).

In (Macdonald et al., 2019) the authors directly optimise
for a mask that selects sparse features which maintain the
classifier decision, severely outperforming competitors. In
(Macdonald et al., 2021) this method gets improved further
with methods from convex optimisation (Frank-Wolfe opti-
miser). However, visually inspecting the produced saliency
maps reveals they create new features that were not present
in the original image. This is possible over a mechanism
similar to adversarial examples, see Figure 2, which means:
the optimal mask creates its own features! This shows that
proxy tasks have to be designed with care if they are meant
to be useful for comparing saliency methods. Not only
are the methods vulnerable to manipulation by going off-
manifold, the evaluation tasks themselves can be exploited
by making use of off-manifold inputs.
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3. Setup
Instead of trying to turn a classifier function into a char-
acteristic function, we propose to directly train on hidden
features. Policy and value functions (see (Li, 2017)) for
agents that play simple two-player, turn-based games (such
as Go, Checkers, Hex) are particularly well suited for this
task.

The logic of these games is complex enough to make the
use of black-box functions such as neural network sensi-
ble, and in the case of Go the unbeaten standard. At the
same time, the input is low-dimensional and discrete. Ad-
ditionally, the input components have weaker correlations
between neighbours which makes hiding information easier.
Hiding random pixels in an image can be undone by inpaint-
ing, whereas the same process would be very difficult for a
Connect Four game board. These factors facilitate sampling
partial inputs during training.

3.1. Hiding the Player Colour

The most straight-forward way of hiding information from
an agent would be to completely hide a game field. However,
we want to preserve the ability to select legal moves, and let
the sensibility of the move be the only concern of the agent
(instead of legality). For a lot of the games (e.g., Connect
Four, Go, Hex) knowing which fields are occupied allows
to make valid moves. For others (Chess, Checkers) valid
moves depend on the colour and type of the pieces, so we
will concentrate on the former.

To hide the colour information, we represent a game po-
sition as three binary matrices indicating which fields are
occupied by the first player (red), the second player (blue)
and which remain free. The colour information can be hid-
den by setting the entries in the respective matrix to zero.
We illustrate this concept in Figure 1 a) for the game of
Connect Four.

3.2. Reinforcement Learning for Connect Four

The game of Connect Four was chosen because of its sim-
plicity and low input dimension. Deep-RL has been ap-
plied to Connect Four in the form of both Deep-Q-Learning
(Dabas et al., 2022), Policy Gradient (PG) (Crespo, 2019)
and AlphaZero-like approaches (Wang et al., 2021; Clausen
et al., 2021). The AlphaZero-like approach combines a
neural network with policy and value head with a MCTS3

lookahead to make its decision. Even though it has emerged
as the most powerful method, we want to explain purely
the network decision without the MCTS involved. We thus
follow the PPO approach of Schulman et al., since it yields
a strongly performing pure network-agent for Connect Four

3Monte-Carlo Tree Search, see (Silver et al., 2017)
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Figure 3. Network architecture for the PPO-agent. The convolu-
tional layers (Conv) have 3× 3 filters, 512 channels, 1× 1 stride
and use zero-padding. The fully connected (FC) layers for the
policy and value head use softmax and tanh-activation respectively.
All other layers use ReLU-activations.

even without the help of the MCTS (Crespo, 2019).

Our PPO-agent We represent the input by a state s ∈
{0, 1}3×6×7 with three channels as explained in Figure 1
(b). The value function that predicts the expected reward
V (s) and the policy function that determines the probability
P (a | s) of taking action a ∈ [7] are both modelled by the
same network with with a policy and a value head, see Fig-
ure 3. Our architecture extends the model of Crespo by
two fully connected layers, which empirically yields bet-
ter performance. Agents can play competitively, always
choosing the most likely action a∗ = argmaxP (· | s) or
non-competitively, sampling from P (· | s). We give a full
overview over architecture and training parameters in Ap-
pendix B.

Hiding features during training During self-play, we
randomly hide the colour information of a certain percent-
age of fields by setting the respective entry in the the first
and second input channel to zero, see Figure 1 b). The
information that the field is occupied remains in the third
channel. Every turn ph is drawn uniformly from [0, pmax

h ].
Let t ∈ [42] be the turn number, then we hide the colour
information of ⌊pht⌋ random pieces selected uniformly at
random. We explored different values for pmax

h and trained
the following agents:

• FI: PPO-Agent trained with full information.

• PI-50: Partial information with ph ∼ U([0, 0.5])
• PI-100: Partial information with ph ∼ U([0, 1])

3.3. Benchmarking

To demonstrate that this setup still trains capable agents we
compare them to the benchmark results from the original
setup presented in (Crespo, 2019). We let our agents play in
competitive mode against an MCTS-agent taken from (Vogt,
2019). For three different difficulties, the MCTS is allowed
to simulate 500, 1000 or 2000 games. Additionally, we used
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a) Win Rate against MCTS

Orig. FI PI-50 PI-100
MCTS 500 0.92 0.972 0.793 0.684
MCTS 1000 0.896 0.936 0.66 0.469
MCTS 2000 0.825 0.91 0.497 0.328

b) Number of Optimal Moves

Agent Orig. FI PI-50 PI-100
Correct Moves 38 39 39 29

Table 1. Comparison of our agent with the original proposal by
(Crespo, 2019) in competitive mode. The numbers show the win-
rate against the MCTS with different simulation limits over 1000
games. b) For a game between two Connect Four solvers, we
tracked how many of the optimal moves were correctly predicted
by the different agents, i.e., were given the highest probability in
the policy output. The optimal game always takes 41 moves in
total.

a game played by two perfect solvers4 and measured how
many of the 41 moves were predicted correctly by our agents.
For the results see Table 1. Our FI-agents performs best,
both against the MCTS and predicting the optimal moves.
Incorporating partial information into the training leads to a
worse performance by PI-50 and PI-100. Nevertheless, at
least the PI-50 is a capable agent that could not be beaten by
the authors. We thus opt to use the PI-50 agent to compare
the saliency methods in Section 5.

To show that for each agent more information is in-
deed useful5, we tracked their performance playing non-
competitively for different amounts of randomly hidden
colour features, see Figure 4. For the FI-agent and the PI-50
agent we see near-monotonous decay in game performance
against the optimal agent, an MCTS-1000 and themselves
with full information. This justifies our idea of a proxy task
to compare saliency methods: select the most useful 50%
of features that allow the PI-50 agent to win the game!

4. Explanations with Partial Information
Since our agents have been trained with missing informa-
tion, their policy and value functions can be seen as a char-
acteristic function with respect to the colour features. For
t ∈ [42] let st ∈ [0, 1]3×6×7 be a board state after turn t
and S ⊆ [t] be a set of colour features. Then we define
s(S) as a partial board state including only the colour fea-
tures in S. Let a∗ = argmaxP ( · ; s), then we can define
νpol : 2[t] → [0, 1] and νval : 2[t] → [−1, 1] as

νpol(S) = P (a∗; s(S)) and νval(S) = V (s(S))

4Taken from (Pons, 2019)
5This is not obvious: during training the agent could get used to

an average amount of partial information and play worse if given
more colour features.
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Figure 4. Relationship between the percentage of hidden fields and
game performance, measured in game length against a perfect
solver (a), winrate against an MCTS1000 (b) and against the agent
itself with full information (c) for the FI, PI-50 and PI-100 agents.
In (a) we give as reference a random agent who plays an average of
12 turns before losing and another optimal solver who always plays
41 turns. Our agents never win against the solver. The FI-agent
start out strongest, but was never trained on hidden features, so
drops towards the random agent. The PI-50 starts with slightly
weaker game length but keeps an advantage over random even for
no colour information at all. The PI-100 agents shows a weakest
performance given full information but even rises slight with less
information. In (b) and (c) all agents decrease in performance with
fewer features revealed.

and interpret them as the characteristic functions from the
policy and value output respectively. From now on, we
use the characteristic function associated with the policy
network, since this is the part that actually plays the games,
whereas the value network is only involved in training.

This allows us to directly compute explanations for them in
the form of Shapley values or prime implicant explanations.
We now explain how we efficiently approximate both.

4.1. Sampling Shapley Values

Computing Shapley values is #P-complete (Deng & Pa-
padimitriou, 1994) , but they can be efficiently approximated
by sampling. The simplest approach is to utilise the fact that
the Shapley values for t features can be rewritten as

ϕi =
1

t!

∑
π∈Π([t])

(ν(Pπ
i ∪ {i})− ν(Pπ

i )), (2)
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where Π([t]) is the set of all permutations of [t] and Pπ
i

the set of all features that precede i in the order π. To
approximate the whole sum we can sample uniformly from
Π([t]). To stick true to our philosophy of evaluating ν
only on-manifold, we can only use PI-100 to calculate the
Shapley-values who has been trained on all levels of hidden
features. To use the PI-50 agent, we define partial Shapley-
values for a hidden percentage ph by only sampling from

Πph

i = {π ∈ Π([t]) s.t. |Pπ
i | ≥ pht},

which are all permutations that have input i in the last pht
position. Sampling from Π0.5

i makes sure that at least 50%
of colour information is disclosed. We show in Appendix C
that we keep the symmetry, linearity and null player crite-
rion, but lose efficiency.

To get an (ϵ, δ)-approximation ϕ̄i of ϕi in the sense that
P
[∣∣ϕi − ϕ̄i

∣∣ ≤ ϵ
]
≥ 1− δ we need Nϵ,δ = 1

2ϵ
−2 log(2δ−1)

many samples, according to the worst-case bound given
by the Hoeffdings-inequality (Hoeffding, 1994). For our
comparison we choose a (0.01, 0.01)-approximation which
amounts to ≈ 26500 samples.

More efficient methods to sample Shapley-values have been
developed utilising group testing (Jia et al., 2019) or kernel-
herding (Mitchell et al., 2021) both providing a quadratic
improvement of the accuracy in terms of number of function
evaluations although with some computational overhead.

4.2. Prime Implicant Explanations with Frank-Wolfe

Prime implicant explanations can be efficiently calculated
for simple classifiers like decision trees or ordered binary
decision diagrams (Shih et al., 2018). In (Macdonald et al.,
2020) the authors extended the definition of prime impli-
cants to a continuous probabilistic setting to explain neural
networks. They optimise for implicants of size k ∈ N via
convex relaxation, which forms the basis for RDE. Adapted
to our scenario the corresponding objective becomes

S∗ = argmin
|S|≤k

(ν([T ])− ν(S))2.

Whereas Macdonald et al. rely on an approximation to Equa-
tion (1), our formulation has no probabilistic aspect, since
we directly access a characteristic function. In (Macdonald
et al., 2021) the authors show how to minimise this func-
tional efficiently with Frank-Wolfe solvers, a projection-free
method for optimisation on convex domains (Pokutta et al.,
2020). We copy their approach and apply it to find small
prime implicant explanations for varying k, a saliency attri-
bution which we call the FW-method. More details about
the FW-method are included in Appendix D. The Frank-
Wolfe method might attribute the maximum weight of 1 to
multiple features, so we break ties randomly when selecting
the most salient ones.

Shapley Sampling FW
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Figure 5. Comparison of the Frank-Wolfe-based and Shapley
Sampling-based attribution methods with the ground truth. The
bars show how often the method identified the 3 (green), 2 (yellow),
1 (red) or 0 (black) of the three most important game pieces. We
observe that Shapley sampling is able to identify the most pieces
correctly for a hidden percentage of ph = 0.5. The Frank-Wolfe
method performs generally worse than Shapley Sampling. Smaller
k tend to polarise the results with more boards where either all
three or zero of the correct pieces have been found.

4.3. Finding Ground Truth Pieces

The policy network of the PI-agent is able to find a winning
move in 99% of cases. It stands to reason that the three
pieces that are completed by the move can be seen as ground
truth features for the decision.

We use this to compare partial Shapley Values with the FW-
method. We let the agent play against itself and registered
500 final board states for which the agent was at least 90%
sure of the winning move. All game pieces that form a line
of four with the winning move6 are considered as ground
truth for the focus of the policy network. We track how often
the three most salient pieces according to the attribution
methods are among the ground truth pieces. For 500 games
we note whether three, two, one or zero pieces are correct,
see Figure 5, for partial Shapley values with varying ph and
the FW-method for varying k.

Shapley Sampling Partial Shapley values generally yield
good results, finding at least two correct pieces in at least
75% of all boards. However, calculating the Shapley-values
all the way up to ph = 1 gives worse results than stopping
at 0.5, both for PI-50 and PI-100. The plots for PI-100 can
be found in Appendix E.1. Further investigating revealed
that the output of the PI-100 policy function for ph > 0.5
becomes essentially random for many board situations. A
possible reason is that for low information the optimal move
becomes ill-defined, and the entropy loss is to be too small
to force the policy to be approximately uniform. We will
come back to this point in Section 7.

6It can happen that one move completes multiple lines.
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Figure 6. Top: One move explained by different saliency maps: The PI-50 agent placed a piece in the second column, blocking a potential
win by their opponent (red cross). The saliency maps for this move are shown for each method. Bottom: The agent is presented with the
colour information of the 50% most salient pieces according to each method (marked in white). This can lead to a different decision, here
for LRP and Random, allowing the opponent to win.

Frank Wolfe Solver The FW method is faster than Shap-
ley sampling, but exhibits worse performance. Interestingly,
for small k it polarises, having a higher percentage of boards
where it finds either all or non of the ground truth pieces.
For large k it usually converges to an attribution that se-
lects many pieces with maximum value of 1. Breaking ties
randomly then leads to average results. For small k it of-
tentimes selects pieces that suggest the right move but for
a different reason than the ground truth pieces. Addition-
ally, the FW performance suffers from relying on convex
relaxation of set membership, which means optimising over
continuous colour features thus going off-manifold. This
can be seen by the fact that the continuous input values
almost always lead to the right policy, but selecting the k
most salient features, thus thresholding the input back to
binary values, sometimes leads to a different policy.

5. Comparing XAI-methods
We can now compare different saliency methods via the
setup explained in Figure 1. As our agent we select PI-50
and allow to show 50% of colour features, thus remaining
on-manifold. To implement the masker, we let an XAI-
method explain the decision of the policy function for the
most probably action. For every occupied field we sum the
absolute value of saliency score from the first two colour
channels (that represent which player occupies the field).
The saliency scores on empty fields and on the third channel
are ignored. Then we select the 50% (rounded up) highest
scoring colour features, breaking ties randomly, and hide
the rest from the board state (set them to 0). This state is
then used by the player, (PI-50, non-competitive) to select
a move. We present an illustration for all used saliency
methods in Figure 6.

We compare the saliency methods Gradient, GuidedBack-
prop (GB) SmoothGrad, LRP-ϵ, DeepTaylor and Random
from the Innvestigate7 (Alber et al., 2018) and DeepShap

7https://github.com/albermax/innvestigate

from the SHAP8 toolboxes with recommended settings.
Random, which assign a random Gaussian noise as saliency
value, and the FW-method explained in the previous chapter
serve as comparison for the other methods.

We let each saliency method compete in a round-robin tour-
nament with 1000 games for each encounter. In case of a
draw, both methods score half a victory. We display the num-
ber of victories for each encounter in Figure 7 together with
two challenges described in Section 4.3 and Section 3.3.

Results The results are displayed in Figure 7. The meth-
ods form two groups of performance. DeepShap, Guid-
edBackprop and the Frank-Wolfe-based method perform
best and equally well. The second group is formed by
gradient, LRP and DeepTaylor who show a weaker perfor-
mance. SmoothGrad has the worst showing, potentially
owing to the fact that it does not automatically sample other
valid board situations. These results are confirmed by the
information-performance graphs, introduced in Section 3.3
for play against PI-50 with full information, where instead
of randomly selecting the revealed features they are selected
by each saliency method, see Figure 7. We complement
the tournament results with their standard deviation over 10
training runs in the appendix in Figure 11.

Regarding FW, we showed in Section 4 that the optimiser
does not always find what we consider the important pieces
but rather the pieces that ensure the policy network makes
the right decision. Thus DeepShap and GuidedBackprop
compare very favourably considering FW optimises directly
for winning the game.

Additionally, DeepShap, Gradient, LRP-ϵ and GuidedBack-
prop severely outperform Shapley Sampling in finding the
ground-truth pieces. This shows that heuristic methods can
have merit over theoretically founded one. We explain a
possible reason for the weak performance of the Shapley
values and a way forward to improve it in Section 6.

8https://github.com/slundberg/shap

https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
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Figure 7. Comparison of different XAI-methods playing Connect Four. Left: Win rates row vs column, with draws counting as 1
2

. Top
right: Win rate of PI-50 with varying percentage of hidden information against itself. The partial colour features have been selected using
the XAI-methods. The win rate of the agent decays slower, when the method is better at selecting the crucial information. Bottom right:
Comparison of the XAI-methods in the ground truth task described in Section 4.3. We can see that DeepShap and GuidedBackprop
perform well in all these tasks.

6. Limitations and Outlook
We considered the game Connect Four since legal moves can
reliably be made when only colour information is missing.
This allowed us to train our agents to make almost no illegal
moves. However, our setup can be generalised beyond such
games via a model-based RL-agent. E.g., the AlphaGo-
policy network filters out illegal moves before the final
softmax of the policy layer. Following this approach extends
the setup to any abstract game.

A further extension to real-world data is indeed nontrivial.
Complex data like images or videos often encodes infor-
mation redundantly, so hiding it is an involved task with
many uncertainties. This is precisely why we propose sim-
ple games as a proxy task. We compare the XAI-methods in
one domain (optimal for evaluation) to decide which ones
are promising enough to employ in another (e.g., real-world).
We can expect the performance to carry over if the method
itself is based on sound principles. So far, no method has
been proven sound since there are complexity barriers (Mac-
donald et al., 2020), but the property can at least be falsified
using theoretical and applied sanity checks (Adebayo et al.,
2018; Nie et al., 2018; Sixt et al., 2020). Thus, both practi-
cal evaluation on proxy-tasks and theoretical analysis of the
methods are necessary.

One problem we discovered is that the sampled Shapley
values become less performant for higher rates of missing
information. In our setup the policy network is trained to
predict sensible game actions—a task that becomes increas-
ingly ill-defined for low information input. The entropy
term in the policy loss, see Appendix B, was not strong
enough to force the policy towards a uniform distribution
over all actions. Thus the network output in this regime
was essentially random which can dominate the summation
in Equation (2). Using a well-trained value head instead of
the policy head could stabilise this behaviour. The value
head should conservatively estimate the win probability
close to 0.5 for different configurations of large hidden in-
formation. These terms will then cancel out in Equation (2).

Training a value head capable of playing the game can
be achieved through Q-learning—even in scenarios where
it performs slightly worse than PPO as it only indirectly
optimises for policy. Q-learning trains a value function to
obey an consistency condition in form of the Bellmann-
equation (Sutton & Barto, 2018). This indirectness can
become useful since the objective remains well-defined even
if almost no information is given, and the agent defaults to
a conservative estimate. A similarly option for supervised
learning on partial information is to include a default “I don’t
know” output that is preferred to a wrong answer. Then the
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objective on low information data becomes well defined
and techniques such as Shapley sampling can be used as a
theoretically sound saliency method. Tempering with the
model to hide biases would require changing on-manifold
behaviour which could be detected through performance
tests.

7. Conclusion
We have demonstrated that simple game setups can be used
to train agents capable of handling missing features. This
allowed us to design a proxy task for XAI-methods based
on the idea that such agents make better decisions if pro-
vided more relevant information. We evaluate a collection of
saliency methods and see strong performances for DeepShap
and GuidedBackprop. Whether this performance will carry
over to real-world applications depends on the theoretical
soundness of the methods. We thus encourage further inves-
tigation into sanity checking the well-performing methods.

Prime Implicant Explanations and Shapley values are de-
fined over desirable properties, and the actual algorithm
to compute them depends on the model. In contrast, most
saliency attribution methods for neural networks are defined
directly over algorithmic instructions and lack definite prop-
erties that make them useful. Thus experimental evaluation
is necessary to assess their merit. We thus proposed a new
proxy-task that allows us to alleviate shortcomings present
in other setups.

As explained in Section 2, using proxy tasks that evalu-
ate the classifier off-manifold can have paradoxical conse-
quences. The optimal strategy can lie in using a kind of
“super-stimulus” mask, analogously to adversarial examples.
In this case the mask is not adversarial to the original clas-
sification but rather ensures that the network output stays
the same by manufacturing new features. However, as for
adversarial examples this is done by exploiting off-manifold
bahaviour of the network. To avoid this, we directly train
our networks on the partial information used for evaluation.

The resulting characteristic function given by the policy
network allows us to estimate Shapley values via sampling.
This attribution method is theoretically well understood and
only relies on on-manifold inputs which justifies trusting
the resulting saliency maps. We observed, however, that the
Shapley values become unreliable for high rates of miss-
ing information. We discuss why using the value function
should be more stable and encourage to research how the
Shapley sampling performs for a Q-learning setup.

In our investigation the heuristic saliency methods com-
pared very favourably to the more theoretically founded
methods. If they can be made robust to manipulation, e.g.,
by approaches from (Frye et al., 2020) and (Anders et al.,
2020), they could constitute promising tools for XAI.
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A. Saliency Methods and Off-Manifold Counterfactuals
Considering a classifier function f : [0, 1]d → [0, 1] and an input x ∈ [0, 1]d, saliency methods attribute importance (or
relevance) values to each input feature xi, with i ∈ [d], for the classifier decision f(x). In a sense they describe what the
classifier focuses on. For a good introduction we refer to (Adebayo et al., 2018). We now argue that the three categories of
saliency methods introduced in Section 2 all rely on counter-factual inputs that lie off-manifold.

Local Linearisation For LIME (Ribeiro et al., 2016) this is clear since the method samples new inputs y around x, labels
them f(y) and fits a linear classifier to these new data points. Arguably, gradient-based methods are always off-manifold for
highly non-linear classifiers if the gradient itself is not part of the objective function of the training. In this case, there is
principally no reason why the gradient should contain any useful information about the classification. The fact that it often
does can be explained for models trained via gradient descent, which implicitly enforces useful gradient information. This
however, quickly breaks down when the models are manipulated after training, see (Dimanov et al., 2020). Likewise, for
piece-wise constant models that are trained by pseudo-gradients the gradient information is always zero.

Heuristic Backpropagation For backpropagation-based methods these counterfactual inputs are less obvious. Lundberg
& Lee explain this connection for DeepLift, DeepShap and LRP, which compare the inputs of every layer to baseline values
that depend on the specific method (Lundberg & Lee, 2017a).

Partial Input Methods that derive characteristic functions from standard classifiers do this mostly via expectation values
(Frye et al., 2020) over a conditional distribution of counterfactual inputs as in Equation (3). However, if the distribution is
not modelled correctly, which is difficult for real-world data, it is supported mainly off-manifold. Explanation models that
use such a characteristic function, e.g in the form of prime implicants (such as RDE, (Macdonald et al., 2020) or anchors
(Ribeiro et al., 2018)) or for Shapley values will inherit this flaw, as explained in (Frye et al., 2020).

B. Description of the Training Process
Our training setup is based on Algorithm 1 (“PPO, Actor-Critic Style”) in (Schulman et al., 2017). This setup was applied
to Connect Four as described in (Crespo, 2019), and we adopt most of the hyper-parameters for the training of our agents.

Network Architecture We use a modified version of the architecture proposed by Crespo with two additional fully
connected (FC) layers, described in Figure 3. We changed the input dimension to 3× 6× 7, representing the fields occupied
by the first player (red), the second player (blue) or no one respectively. The input gets transformed by a series of 4
convolutional layers of filter size 3× 3 with stride 1, 512 channels and ReLU activations and zero-padding for the first two
layers to keep the board shape of 6× 7, which is then reduced to 4× 5 and 2× 3 after the last two conv-layers respectively.
The resulting tensor is flattened and passed through a series of FCs with ReLU activation, one of shape 3072× 1024, one
1024 × 512 and three 512 × 512. Then we split the output into the policy head with an FC of size 512 × 7 and into the
value head with size 512× 1. The policy head has a softmax activation function, the value head a tanh activation.

Training Parameters Our PPO-agent plays against itself and for every turn saves state, value output, policy output, reward
and an indicator for the last move of the game. We give a reward of 1 for wins, 0 for draws, -1 for losses and -2 for illegal
moves. Illegal moves end the game and only the last turn gets saved to memory. We make use of a discount factor γ = 0.75
to propagate back reward to obtain discounted rewards for each state. For clipping the policy loss, we set ϵ = 0.2. The total
loss weighs the policy loss with 1.0, the value loss with 0.5 and the entropy loss with 0.01. Every 10 games we update the
network parameters with Adam on torch standard settings and a learning rate of l = 0.0001 for 4 steps.

C. Partial Shapley Values
The Shapley Values are the most established attribution method from cooperative game theory, as they are unique in
satisfying the following desirable properties: linearity, symmetry, null player and efficiency (Shapley, 2016). They can be
defined as a sum over all possible permutations of the set [d] of d players as follows:

ϕi(ν) =
1

d!

∑
π∈Π([d])

(ν(Pπ
i ∪ {i})− ν(Pπ

i )),
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where Π([d]) is the set of all permutations of [d] and Pπ
i the set of all features that precede i in the order π.

The size of the coalition Pπ
i corresponds to the number of colour features in our Connect Four board states. In our

investigation ν is based on the policy layer of the PI-50 agent who has only been trained up to 50% missing information. To
avoid off-manifold input we thus want to define partial Shapley values that sample only permutations that ensure a coalition
size of at least pd for some p ∈ [0, 1].

To achieve this, we define for every player i ∈ [d] a set of permutations

Πp
i = {π ∈ Π([d]) s.t. |Pπ

i | ≥ pd},

and define partial Shapley values as

ϕp
i (ν) =

1

d!

∑
π∈Πp

i

(ν(Pπ
i ∪ {i})− ν(Pπ

i )). (3)

Since the (full) Shapley values are the unique attribution method that fulfil the criteria of symmetry, linearity, null player and
efficiency, we loose at least one property. We now show that we retain every property except for efficiency.

Symmetry If two players i, j are equivalent, i.e., ν(S ∪ i) = ν(S ∪ j) for all coalitions S that contain neither i nor j, then
the symmetry property requires ϕi(ν) = ϕj(ν).

When choosing a different set of permutations Πi for each i then this property holds as long as the collection {Πi}di=1

is symmetric in the sense that ∀i, j ∈ [d] : Πi = Πj [i ↔ j], where Πj [i ↔ j] means that we exchange the position of
the features i and j for every ordering in Πj . It is easy to see that for our {Πp

i }di=1 this is indeed the case. Thus all terms
in Equation (3) are symmetric between i and j and thus the partial Shapley values are symmetric.

Linearity Linearity means that ∀i ∈ [d] : ϕi(ν + ω) = ϕi(ν) + ϕi(ω). Since the expression in Equation (3) is still linear
in ν, the linearity property remains

Null Player The value ϕi(ν) is zero for any null player i, and i is a null player if ν(S) = ν(S ∪ {i}) for all coalitions S
that do not contain i. This property is trivially true for the partial Shapley values since all summands are zero for a null
player.

Efficiency The partial Shapley values are not necessarily efficient anymore. Consider for example the characteristic
function

ν(S) =

{
1 |S| ≥ pd,

0 |S| < pd.

In this case for every i ∈ [d] and π ∈ Πp
i we have ν(Pπ

i ∪ {i}) = ν(Pπ
i ) = 1 and thus ϕp

i = 0. In that case∑
i ϕi(ν) = 0 ̸= 1 = ν([d])− ν(∅), which is required by the efficiency criterion.

D. The FW-method
To find a small set of colour features that ensure a sensible move from the agent we follow the ideas presented in (Macdonald
et al., 2020) and define a rate-distortion functional over a convex set. Our setup is slightly simplified, since we have an
advantage in that we can directly deal with partial input without the need to replace the missing features with random
variables from a base distribution.

Let x ∈ {0, 1}3×6×7 be a state describing the game board defined as [xr,xr,xo], where xr,xb,xo ∈ {0, 1}6×7 indicate
the fields occupied by the red and blue player as well as the open fields respectively, as illustrated in Figure 1. For a
continuous mask m ∈ [0, 1]6×7 that indicates which colour information to show, we define the masked state as x[m] =[
m⊙ xr,m⊙ xb,xo

]
, where ⊙ is element-wise multiplication. Let a∗ = argmaxP ( · ;x[m]) be the chosen action by the

policy layer, then we define the policy distortion with regards to the mask m as

Dpol(m) = (P (a∗;x)− P (a∗;x[m]))2.
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For a chosen rate of k ∈ N we define the optimal mask m∗ as

m∗ = argmin
m∈B6×7

k

Dpol(m), where Bd
k =

{
v ∈ [0, 1]d

∣∣ ∥v∥1 ≤ k
}

is the k-sparse polytope (see (Pokutta et al., 2020)) with radius 1 limited to the positive octant. To optimise the objective
we use the solver of Pokutta et al. made available at https://github.com/ZIB-IOL/StochasticFrankWolfe
with 50 iterations. For a given state s and most likely action a∗ the FW-method thus returns m∗ as a saliency map.
Oftentimes, multiple m∗

i converge to 1, so we break ties randomly when selecting the most relevant features according to
this method.

E. Supplementary Numerical Experiments
In this section we add a number of supplementary experiments that help put the results in the main paper into context and
can guide future numerical investigations.

E.1. Shapley Sampling for PI-100
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Figure 8. Comparison of Shapley Sampling for our different agents. The bars show how often the method identified the 3 (green), 2
(yellow), 1 (red) or 0 (black) of the three most important game pieces. The method gives the best results (finding the most pieces) for the
PI-50 agent.

We compare the Shapley Sampling approach for the ground-truth task described in Section 4.3 for different agents in Figure 8.
The method works best for the PI-50 agent with ph = 0.5, presumable because it uses the most capable agent with the
largest set of permutations that still ensure staying on-manifold.

E.2. Parameter Search

The methods SmoothGrad and LRP depend on tunable parameters. The SmoothGrad explanation depends on the number of
samples that are drawn for a Gaussian distribution around the input value. LRP uses ϵ as a numerical stabilisation term in the
denominator, see (Bach et al., 2015). For both values, we used the default value recommended by the Innvestigate package,
see https://github.com/albermax/innvestigate. We compare different parameters in Figure 9 and confirm
a week dependence of the performance.

E.3. Including the Third Channel

To select the most important colour features according to a saliency method we sum the absolute values of the first and
second channel for each played piece and select the k pieces with the largest values. The third channel (indicating occupancy)
does not factor in. The occupancy information could be relevant because of the piece itself, or just to know where a new
piece would end up when inserted in a column. So the importance of the occupancy does not necessarily indicate importance
of the colour. In Figure 12 we show the performance of the individual saliency methods if we included the absolute value of
the third channel in our sum.

Both GuidedBackprop and DeepTaylor perform somewhat better. The Frank-Wolfe-based saliency attribution performs
worse. This is to e expected since now the optimisation includes the third channel which does not correspond to the

https://github.com/ZIB-IOL/StochasticFrankWolfe
https://github.com/albermax/innvestigate
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Figure 9. Parameter search for SmoothGrad and LRP-ϵ: For both methods we observe only weak dependence on the parameters. Left:
Varying the number of samples drawn for SmoothGrad. Section 5. Right: Varying the stabilising parameter ϵ for LRP-ϵ.
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Figure 10. Including the third channel to determine which colour information is selected for each method. We observe that both
GuidedBackprop and DeepTaylor perform better, whereas the FW-method decreases in performance. We do not want to put too much
importance on this result and include it for the sake of comprehensiveness.

information that is actually hidden. Thus the FW-method might select some pieces where the third channel is relevant for
the decision but where the colour information was not important.

E.4. Supplementary Tournament Results

In Figure 11, we again present the win rates in the tournament as in Figure 7 and supplement the standard deviation over 10
training runs, the rate of games ending in a draw as well as the rate of games ending with illegal moves. We see that the
standard deviation, rate of draws and rate of illegals is small and do not alter our ranking in Section 5.

E.5. Shapley Sampling

We include the Shapley sampling saliency method with ph = 0.5 described in Section 4.1 and compare it to the other
methods. We see that it performs worse than almost all other methods. We give a possible explanation for the bad
performance of Shapley sampling in Section 6.
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Figure 11. Top Left: Win rate for different pairings in the tournament according to the setup described in Section 5 (same as in Figure 7).
Top Right: Standard Deviation of the win rate over 10 different training runs. We see generally small standard deviation compared to the
mean win rates. Bottom Left: Rate of draws for each encounter between saliency methods. Bottom Right: Rate of illegal moves by either
agent for each encounter.
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