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Abstract
Retrosynthesis prediction is one of the fundamen-
tal challenges in organic synthesis. The task is to
predict the reactants given a core product. With
the advancement of machine learning, computer-
aided synthesis planning has gained increasing in-
terest. Numerous methods were proposed to solve
this problem with different levels of dependency
on additional chemical knowledge. In this paper,
we propose Retroformer, a novel Transformer-
based architecture for retrosynthesis prediction
without relying on any cheminformatics tools for
molecule editing. Via the proposed local attention
head, the model can jointly encode the molecular
sequence and graph, and efficiently exchange in-
formation between the local reactive region and
the global reaction context. Retroformer reaches
the new state-of-the-art accuracy for the end-to-
end template-free retrosynthesis, and improves
over many strong baselines on better molecule
and reaction validity. In addition, its generative
procedure is highly interpretable and controllable.
Overall, Retroformer pushes the limits of the reac-
tion reasoning ability of deep generative models.

1. Introduction
Retrosynthesis (Corey & Cheng, 1989) is one of the major
building blocks in organic synthesis, which aims to discover
valid and efficient synthetic routes (i.e., reactants) given a
target molecule (i.e., product). It is crucial for the phar-
maceutical industry as one of the main challenges for drug
discovery is to efficiently synthesize novel and complex
compounds in the laboratory (Blakemore et al., 2018).

Recently, computer-aided synthesis planning has gained vast
attention for its potential to save a tremendous amount of
time and efforts from traditional retrosynthesis approaches.
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Various machine learning approaches were proposed with
different levels of dependency on additional chemical knowl-
edge. These methods can be categorized into three groups.
First, template-based methods (Coley et al., 2017; Dai et al.,
2019; Chen & Jung, 2021) view the retrosynthesis prediction
as the template retrieval problem, where a template encodes
the core reactive rule (Figure 1). After the templates are
retrieved, these methods use cheminformatics tools like RD-
Kit (rdk) to build up full reactions from the templates. De-
spite the state-of-the-art accuracy and guaranteed molecule
validity, these methods are limited to the scope of the exist-
ing template database. In contrast, template-free methods,
the second class, use deep generative models to directly
generate the reactants given the product. Since molecule
can be represented by both the graph and the SMILES se-
quence, existing approaches reframe the retrosynthesis into
either sequence-to-sequence (Lin et al., 2020; Chen et al.,
2019; Zheng et al., 2020; Tetko et al., 2020; Seo et al., 2021;
Kim et al., 2021) or graph-to-sequence problem (Tu & Co-
ley, 2021). These generative methods do not rely on any
additional chemical knowledge and can perform chemical
reasoning within a larger reaction space. The third class is
semi-template-based methods, which combine the advan-
tages of both the generative models and the prior chemical
knowledge. Conventional frameworks (Yan et al., 2020; Shi
et al., 2020; Somnath et al., 2020; Wang et al., 2021) in
this category follow the same idea: They first identify the
reactive sites and convert the product into synthons using
RDKit. Then, another model completes synthons into reac-
tants. These methods are competitive in accuracy and are
interpretable by their stage-wise nature.

In this work, we are interested in the template-free genera-
tive approach for retrosynthesis prediction. Existing meth-
ods fail to fully explore the potential of deep generative
model in terms of reaction reasoning, and we argue that
the end-to-end Transformer-based (Vaswani et al., 2017)
architecture can reach the same competitive benchmark ac-
curacy as well as good validity and interpretability. We pro-
pose Retroformer, a novel end-to-end retrosynthesis Trans-
former that introduces a special attention head. It is able
to jointly encode the sequential and graphical information
of the molecule and allow efficient information exchange
between the local reactive region and the global reaction
context. The generative process is also sensitive to the exact
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Figure 1: Sample reaction (top), reaction centers highlighted
in red, which corresponds to the reaction template (bottom).

reactive region. Our end-to-end model does not rely on
any additional help from cheminformatic tools for molecule
editing. Experiments show that our model can improve
over the vanilla Transformer by 12.5% and 14.4% top-10
accuracy in the reaction class known and unknown settings,
respectively. It reaches the new state-of-the-art accuracy
for template-free methods and is competitive against both
template-based and semi-template-based methods. It also
enjoys better molecule and reaction validity compared to
strong baseline models. The model is highly interpretable
and controllable for downstream usage. Our contributions
are summarized as:

• We propose Retroformer, a novel Transformer-based
architecture that introduces the local attention head, to
push the limits of the reaction reasoning ability of deep
generative models in retrosynthesis prediction.

• The proposed method reaches 64% and 53.2% top-1
accuracy for reaction class known and unknown set-
tings, respectively, which is the new state-of-the-art
performance for template-free retrosynthesis.

• The proposed method further improves the top-10
molecule and reaction validity by 23.6% and 22.0%,
respectively, compared to the vanilla retrosynthesis
Transformer.

2. Related Work
2.1. Retrosynthesis Prediction

Existing methods in retrosynthesis prediction can be
grouped into three categories: template-based, template-
free, and semi-template-based. The reaction template en-
codes the core reactive rules. As shown in Figure 1, a con-
ventional template tells the potential reactive region within
the molecule, as well as its potential chemical transforma-
tion. These templates are either expert-defined or auto-
matically extracted by algorithms. In this work, we strictly
differentiate the three categories by the levels of dependency
on additional chemical knowledge during inference.

Template-based methods rely on an external template
database. Since the template is a more efficient and in-
terpretable representation for reactions (Heid et al., 2021;
Wan et al., 2021), a large body of works (Coley et al., 2017;
Dai et al., 2019; Chen & Jung, 2021) focus on capturing
the reactive scores between the molecules and templates.
Retrosim (Coley et al., 2017) uses molecule fingerprint sim-
ilarity to rank the candidate templates. GLN (Dai et al.,
2019) and LocalRetro (Chen & Jung, 2021) use graph neu-
ral network (GNN) to capture the molecule-template and
atom/bond-template relationship, respectively. Despite their
state-of-the-art top-k accuracy, all template-based methods
suffer from the incomplete coverage issue and do not scale
well.

Template-free methods, in contrast, adopt deep generative
models to directly generate the reactants molecules. Be-
sides graph, molecules can be represented using SMILES
sequence. Existing works (Lin et al., 2020; Chen et al.,
2019; Zheng et al., 2020; Tetko et al., 2020; Seo et al.,
2021; Kim et al., 2021) take advantage of the Transformer
(Vaswani et al., 2017) architecture and reframe the prob-
lem as the sequence-to-sequence translation from product
to reactants. Graph2SMILES (Tu & Coley, 2021) replaces
the original sequence encoder with a graph encoder to en-
sure the permutation invariance of SMILES. These methods
rely on little additional chemical knowledge for inference.
However, chemical validity can be a huge concern because
validity is often not part of the training objective. Another
factor comes from the ignorance of graphical structure dur-
ing the sequence generation. Also, generated outcomes
from beam search often suffer from the diversity issue (Vi-
jayakumar et al., 2018), which is another practical concern
for retrosynthesis.

Semi-template-based methods combine the advantage of
both the generative models and additional chemical knowl-
edge. In this work, we strictly categorize generative models
which require additional help from RDKit (rdk) for molecule
editing into this method group. MEGAN (Sacha et al., 2021)
reframes the generative procedure as a sequence of graph
edits that are completed by RDKit. In addition, most exist-
ing works (Yan et al., 2020; Shi et al., 2020; Somnath et al.,
2020; Wang et al., 2021) approach the task by a two-stage
procedure. Despite their architecture differences between
GNN and Transformer, they follow the same idea: They
first convert the product into synthons by predicting its re-
active sites and performing molecule editing via RDKit,
then complete the synthons into reactants by either leaving
groups selection (Somnath et al., 2020), graph generation
(Shi et al., 2020), or SMILES generation (Yan et al., 2020;
Wang et al., 2021). Although the framework fits better with
chemists’ intuition of solving the problem, it brings several
disadvantages. First, it requires two separate models to per-
form each subtask. RetroPrime (Wang et al., 2021) uses two
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Figure 2: Architecture overview. The model takes molecular SMILES S and a) bond feature matrix A as inputs. Besides the
encoder outputs h, the b) predicted reactive probability is c) converted to the indicators of Src and passed to the decoder.
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Figure 3: Local-global self-attention head in encoder.

Transformers, which doubles the computational complexity.
Second, the two learning stages are independent. It means
that knowledge behind reaction site prediction cannot prop-
agate to reactants completion, which loses some chemical
senses. Third, any subtle mistake from reaction site predic-
tion will directly mislead the results. In contrast, our work
attempts to walk around these disadvantages with an end-to-
end Transformer while still maintaining its interpretability.

Besides different architecture designs, self-supervised
molecule pretraining is also shown to be effective in ret-
rosynthesis prediction. DMP-fusion (Zhu et al., 2021) pre-
trains the molecule with a dual view of SMILES and graph.
Chemformer (Irwin et al., 2021) applies masked SMILES
modeling to learn the molecule representation.

2.2. Graph Transformer

The introduction of Transformer into the graph domain has
gained increasing interest. The global receptive fields of the
self-attention and the local message passing of the graph neu-
ral network are inherently complementary and compatible.
Attempts have been made in ways of incorporating graph
information into the self-attention computation (Ying et al.,
2021; Łukasz Maziarka et al., 2020; 2021) and integrating

the conventional graph neural networks (Gilmer et al., 2017)
with Transformer architecture (Dwivedi & Bresson, 2021;
Chen et al., 2021).

3. Preliminary
Let S = [s1, s2, ...sn] be the molecular SMILES sequence
with n number of tokens. Let Gmol = (Vm, Em) be the
molecular graph. It is formed by |Vm| number of atoms
with |Em| number of bonds. For computation convenience,
we further introduce the SMILES graph Gsmi = (Vs, Es).
Vs is made up of all the SMILES tokens, including the
atom tokens (e.g., “C”, “O”) as well as the other special
tokens (e.g., “=”, “1”): Vm ⊆ Vs = S. In Gsmi, the special
tokens are treated as trivial nodes with no neighbors. Its
edge Es represents the graphical connections between atom
tokens, which is essentially the same as bond connections
Em in Gmol. In general, Gsmi is a larger but sparser graph
compared to Gmol. The introduction of Gsmi is merely
to ensure the alignment relationship between the atoms in
graph and the tokens in SMILES.

4. Retroformer
We propose Retroformer, a novel Transformer-based model
that is able to perform interpretable retrosynthesis predic-
tion in an end-to-end manner. We propose a special type of
local attention head that can support efficient information
exchange between the local region of reactive importance
and the global reaction context. Its generative procedure is
also sensitive to the exact local region. The overall train-
ing and inference can be done in an end-to-end manner.
It is a fully template-free method without any additional
dependency on RDKit for molecule editing. The overall ar-
chitecture contains an encoder, a decoder, and two reaction
center identifiers. We also propose to use SMILES align-
ment and on-the-fly data augmentation as two additional
training strategies.
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4.1. Local-Global Encoder with Edge Update

Since molecular graph can provide additional information
on top of the SMILES sequence, our encoder takes both S
sequence and Gsmi (i.e., adjacency matrix and bond fea-
ture) as inputs. The bond features we considered are listed
in Appendix E.1. Different from the existing graph Trans-
formers (Ying et al., 2021; Łukasz Maziarka et al., 2020;
2021) that compute graph self-attention within the entire
module, our model encodes the graph information at the
head level. We specify two types of attention heads: global
head and local head. The global head is the same as the
vanilla self-attention head, where its receptive field is the
entire SMILES sequence. The local head, on the other
hand, considers the topological structure of the molecule.
The receptive field of an individual token is restricted to its
one-hop neighborhood, which is similar to (Zhang et al.,
2021). In addition, we perform element-wise multiplication
between the key vector and the edge feature to incorporate
the bond information into the calculation. The roll-out form
of the local head self-attention at layer l for the ith token is
formulated as:

xl+1
i local =

∑
j∈N(i)

σ(
qi(A

l
ij � kj)T√
d

)vj (1)

[qi, kj , vj ] = [hliW
Q, hljW

K , hljW
V ]

where A is the bond feature matrix, WQ,WK ,WV are the
projection matrix for calculating query q, key k, and value
v, and σ is the softmax operation. The computed representa-
tions from the global and local heads are then concatenated
along the hidden dimension and passed to a linear layer,
which represents the updated token features hl+1. Mean-
while, the edge update module is a fully connected layer
(FFN) that takes the concatenation of the updated features
of the receiving and sending tokens as inputs:

hl+1 = Linear([xl+1
global;x

l+1
local]) (2)

Al+1
ij = Al

ij + FFN([hl+1
i ;hl+1

j ]) (3)

The integration of the local, global attention heads, and
the edge update module allows the model to efficiently ex-
change information between the local region and global
molecular context. Same as the vanilla Transformer
(Vaswani et al., 2017), layer normalization and residual
connection are enforced between encoder layers. The final
encoder outputs are the updated token representation h and
the bond representation A.

4.2. Reaction Center Detection

A reaction center represents the group of atoms and bonds
that are contributing factors to the chemical transformation.
However, existing semi-template-based methods (Yan et al.,
2020; Somnath et al., 2020; Shi et al., 2020; Wang et al.,

2021) simplify this concept as the exact reactive sites. We
argue that this simplification may lead to information loss
of the reaction context, such as the influence of functional
groups. These methods also cannot perform retrosynthesis
in an end-to-end manner, since they rely on RDKit to convert
the product into synthons. Instead, Retroformer predicts
the reactive probability Prc(.) of each atom and bond and
converts the reactive region of S into the attention receptive
field for the decoder. In short, the detected reaction center
Src is a subset of S.

Figure 2b shows a heat map visualization of the predicted
reactive probability. It is done by two fully connected layers
named Atom RC Identifier and Bond RC Identifier:

Prc(si) = σ
(
FFNatom(hi)

)
, si ∈ Vm (4)

Prc(eij) = σ
(
FFNbond(Aij)

)
, eij ∈ Em (5)

We will show in Section 5.3 that the learned reaction cen-
ter can be easily visualized and matched with chemical
heuristics. We then convert the atom and the bond reactive
probability into the reactive indicator of tokens in Src by
either one of the following two strategies:

• naive: we naively set a token as reactive if it exists in a
reactive edge (i.e., Prc(e) > 0.5) and is reactive itself
(i.e., Prc(s) > 0.5). Note that the special tokens are
guaranteed to be non-reactive. This strategy is used at
both training and inference stages.

• search: we conduct a subgraph search on the molecular
graph and rank the subgraphs by their reaction center
score:

∑
si∈Src

logPrc(si)+
∑

si,sj∈Src
logPrc(eij).

Only atoms with Prc(s) > αatom and bonds with
Prc(e) > αbond are considered in the search to re-
duce the computational time. Detailed algorithm is
described in Appendix E.4. Then, top-n subgraphs are
selected as reaction center candidates. The model then
generates k/n reactants for each reaction center, where
k is the total number of predicted reactants. The final
results are ranked by the sum of the reaction center
score and the generative score. This strategy is only
used at inference stage.

4.3. Local-Global Decoder

The decoder takes its generative outcomes from the previous
step, the encoder outputs h, and the reaction center Src

as inputs. Similar to the encoder, we also introduce two
different heads in its cross-attention module. The global
head is the same as the vanilla head. The local head, on
the contrary, is only visible to the detected reaction center
Src. It computes the sparse cross-attention instead of the
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Figure 4: Token and atom alignment between product and
reactants in SMILES and graph representations, respectively.
The right most figure is the ground truth alignment matrix.

full cross-attention.

yl+1
i local =

∑
sj∈Src

σ(
qikj

T

√
d

)vj (6)

[qi, kj , vj ] = [gliW
Q, hjW

K , hjW
V ]

Same as the encoder, the computed representations from the
global and local heads are then concatenated along the hid-
den dimension and passed to a linear layer, which represents
the representation gl+1.

gl+1 = Linear([yl+1
global; y

l+1
local]) (7)

It essentially converts the decoder into a conditional gen-
erative module, which is similar to the reactants genera-
tion module conditioned on the converted synthon (semi-
template-based approaches). However, since Src only sug-
gests the region of reactive importance, the condition is
more relaxed than the strict condition of the converted syn-
thon. More importantly, since Retroformer can be trained
end-to-end, generative feedback can backpropagate to the
reaction center learning.

4.4. SMILES Alignment

SMILES alignment is an additional learning task of Retro-
former. Similar to machine translation, the SMILES se-
quences of the source and the target molecules are often par-
tially aligned. A large portion of the molecules remains un-
changed during the reaction. Figure 4 shows this alignment
relationship in both graph and SMILES representations. The
node alignment between graphs (i.e., atom mapping) can
be easily converted into token alignment between SMILES.
Detailed substring matching algorithm with atom-mapping
is described in Appendix E.3.

Inspired by the effectiveness of the guided attention in
(Deshpande & Narasimhan, 2020), we introduce the at-
tention guidance loss between the ground truth alignment
and the attention weights from the decoder’s global cross-
attention heads. We treat the computed cross-attention at
each decoder step as a probability distribution and impose
a label smoothing loss (Pereyra et al., 2017). It is a soft
cross entropy loss with the label smoothing technique and is
shown to be effective in classification performance. Hypo-

thetically speaking, this guided attention can encourage the
model to understand chemical reactions more efficiently.

4.5. Data Augmentation

We follow the same data augmentation tricks used in (Seo
et al., 2021; Tetko et al., 2020) for the SMILES generative
models, which are the SMILES permutation of the product
and the order permutation of reactants. However, instead of
expanding the training dataset off-the-shelf, we choose to
perform the augmentation on-the-fly. At each iteration, there
is a probability of 50% to permute the product SMILES and
the reactants ordering. This dynamic permutation allows
the model to focus more on the canonical SMILES and use
the permuted SMILES for regularization. Ablation towards
different augmentation methods is discussed in Appendix B.

4.6. Loss

The training schema can be viewed as an end-to-end multi-
task learning. The overall loss is made up of four parts:
L = LLM + LRCbond

+ LRCatom
+ LAG, where LLM

is the language modeling objective, LRC∗ is the reactive
probability loss, and LAG is the SMILES alignment loss.

5. Experiments
Data We use the conventional retrosynthesis benchmark
dataset USPTO-50K (Schneider et al., 2016) to evaluate
our method. It contains 50016 atom-mapped reactions that
are grouped into 10 reaction classes. We use the same data
split as (Coley et al., 2017). We canonicalize the molecule
SMILES with atom mapping following the same protocol
given in (Somnath et al., 2020). We then use RDChiral
(Coley et al., 2019) to extract the ground truth reaction
center and use the algorithm in Appendix E.3 to extract the
ground truth SMILES token alignment.

Evaluation We adopt the conventional top-k accuracy
of the full reactants to evaluate the retrosynthesis perfor-
mance. We also evaluate the top-k validity of the gen-
erated routes. For molecule validity, we treat a candi-
date as valid if RDKit (rdk) can successfully identify the
molecule SMILES. The top-k validity is calculated as:
V alid(k) = 1

N×k
∑N

1

∑k
1 1(SMILES is valid). We fur-

ther evaluate our method with the round-trip accuracy
(Schwaller et al., 2020), which is an approximation met-
ric for reaction validity. It measures the percentage of pre-
dicted reactants that can lead back to the original product.
We take the pretrained Molecule Transformer (Schwaller
et al., 2019) as the oracle reaction prediction model be-
cause of its state-of-the-art performance. Our top-k round-
trip accuracy calculation is slightly different from the def-
inition adopted by RetroPrime (Wang et al., 2021) and
LocalRetro (Chen & Jung, 2021): RoundTrip(k) =

1
N×k

∑N
1

∑k
1 1(Reach Ground Truth Product).
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Table 1: Top-k accuracy for retrosynthesis prediction on USPTO-50K. * indicates the model with SMILES augmentation.
For comparison purpose, the Aug. Transformer is evaluated without any test augmentation. Best performance is in bold.

Model
Top-k accuracy (%)

Reaction class known Reaction class unknown
1 3 5 10 1 3 5 10

Template-Based
GLN (Dai et al., 2019) 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7
LocalRetro (Chen & Jung, 2021) 63.9 86.8 92.4 96.3 53.4 77.5 85.9 92.4
Template-Free
Transformer 57.1 71.5 75.0 77.7 42.4 58.6 63.8 67.7
SCROP (Zheng et al., 2020) 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7
Tied Transformer (Kim et al., 2021) - - - - 47.1 67.1 73.1 76.3
Aug. Transformer* (Tetko et al., 2020) - - - - 48.3 - 73.4 77.4
GTA* (Seo et al., 2021) - - - - 51.1 67.6 74.8 81.6
Graph2SMILES (Tu & Coley, 2021) - - - - 52.9 66.5 70.0 72.9
Retroformerbase (Ours) 61.5 78.3 82.0 84.9 47.9 62.9 66.6 70.7
Retroformeraug* (Ours) 64.0 81.8 85.4 88.3 52.9 68.2 72.5 76.4
Retroformeraug+* (Ours) 64.0 82.5 86.7 90.2 53.2 71.1 76.6 82.1
Semi-Template-Based
RetroXpert* (Yan et al., 2020) 62.1 75.8 78.5 80.9 50.4 61.1 62.3 63.4
G2G (Shi et al., 2020) 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5
GraphRetro (Somnath et al., 2020) 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5
RetroPrime* (Wang et al., 2021) 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1
MEGAN (Sacha et al., 2021) 60.7 82.0 87.5 91.6 48.1 70.7 78.4 86.1

Table 2: Top-k SMILES validity for retrosynthesis predic-
tion on USPTO-50K with reaction class unknown.

Model Top-k validity (%)
1 3 5 10

Transformer 97.2 87.9 82.4 73.1
Graph2SMILES 99.4 90.9 84.9 74.9
RetroPrime 98.9 98.2 97.1 92.5
Retroformeraug 99.3 98.5 97.2 92.6
Retroformeraug+ 99.2 98.5 97.4 96.7

Baseline We take GLN (Dai et al., 2019) and LocalRetro
(Chen & Jung, 2021) as two strong baseline models from
the template-based group. We take SCROP (Zheng et al.,
2020), Tied Transformer (Kim et al., 2021), Augmented
Transformer (Tetko et al., 2020), GTA (Seo et al., 2021),
and Graph2SMILES (Tu & Coley, 2021) as the baseline
models from the template-free group. We also train a vanilla
retrosynthesis Transformer from scratch using OpenNMT
(Klein et al., 2017). We take RetroXpert (Yan et al., 2020),
G2G (Shi et al., 2020), GraphRetro (Somnath et al., 2020),
RetroPrime (Wang et al., 2021), and MEGAN (Sacha et al.,
2021) as strong semi-template-based baselines. We do not
include the pretraining approach in the performance com-
parison. We experiment with three variants of the proposed
model: Retroformerbase represents the model with no data

Table 3: Top-k round-trip accuracy for retrosynthesis pre-
diction on USPTO-50K with reaction class unknown.

Model Top-k round-trip acc. (%)
1 3 5 10

Transformer 71.9 54.7 46.2 35.6
Graph2SMILES 76.7 56.0 46.4 34.9
RetroPrime 79.6 59.6 50.3 40.4
Retroformeraug 78.6 71.8 67.1 57.6
Retroformeraug+ 78.9 72.0 67.1 57.2

augmentation and the naive reaction center detection strat-
egy; Retroformeraug represents the model with data augmen-
tation and the naive strategy; Retroformeraug+ represents
the model with data augmentation and the search strategy.

Implementation Details Built on top of the vanilla Trans-
former (Vaswani et al., 2017), our model has 8 encoder
layers and 8 decoder layers. The model is trained using
the Adam optimizer (Kingma & Ba, 2017) with a fixed
learning rate of 1e − 4, and a dropout rate of 0.3. The
embedding dimension is set to 256, and the total amount
of heads is set to 8. We split the heads by half for global
and local heads. Retroformerbase is trained on 1 NVIDIA
Tesla V100 GPU for 24 hours. Our code is available at
https://github.com/yuewan2/Retroformer.

https://github.com/yuewan2/Retroformer
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Table 4: Effects of different components on retrosynthesis performance with reaction class unknown.

Settings Modules Top-k accuracy (%)

Guidedlast Guidedall
Local-global

Encoder
Local-global

Decoder
Reaction

Center Search
1 3 5 10

(a)
√ √

45.5 60.7 65.4 69.9
(b)

√ √ √
47.0 63.1 66.9 71.1

(c)
√ √ √

47.9 62.9 66.6 70.7
(d)

√ √
44.1 60.1 64.7 70.2

(e)
√ √

46.7 63.7 68.4 73.9
(f)

√ √ √ √
48.4 66.8 73.2 78.8

Table 5: Effects of local-global encoder, reaction center
search, and data augmentation on reaction center detection
performance. Ablation (c) corresponds to Retroformerbase.

Settings Top-n accuracy (%)
1 1 2 3

Ablation (d) 55.4 +search 71.6 84.1 89.9
Ablation (c) 63.0 +search 75.8 88.2 91.3

Retroformeraug 67.5 +search 79.3 90.0 92.9

5.1. Performance

Top-k Accuracy With the reaction class known, our aug-
mented model can achieve a 64.0% top-1 and 88.3% top-10
accuracy. It reaches the state-of-the-art performance for
template-free methods and is competitive against template-
based and semi-template-based methods. It improves over
the vanilla retrosynthesis Transformer by 6.9% top-1 and
11.9% top-10, respectively. With the reaction class un-
known, our augmented model can achieve a 52.9% top-1
and 76.4% top-10 accuracy. The top-1 accuracy reaches the
state-of-the-art performance as Graph2SMILES. In addition,
Retroformerbase surpasses the vanilla retrosynthesis Trans-
former by a large margin in both settings. It demonstrates
the promising potential for the deep generative model to
perform end-to-end retrosynthesis prediction and reaction
space exploration.

We further demonstrate the strength of the reaction
center detection. With the top-n subgraphs proposed,
Retroformeraug+ can further boost the performance to the
new state-of-the-art accuracy for template-free retrosynthe-
sis in both experiment settings. We provide further ablation
and interpretation of the search strategy in Section 5.2,
Section 5.3 and Appendix E.4.

Top-k SMILES Validity We take the vanilla retrosynthe-
sis Transformer, Graph2SMILES, and RetroPrime as strong
SMILES generative baselines for validity comparison with
our model. We do not include template-based methods
in this evaluation since molecule SMILES built from tem-

plates are guaranteed to be valid. As we mentioned before,
SMILES generative models are more likely to struggle with
the validity issue. Without knowing the proper reaction cen-
ter, the models may modify the molecule fragments that are
distant from the core reactive region, which is chemically
trivial. As shown in Table 2, both of our model variants
enjoy better molecule validity than others. It improves the
top-10 validity over the vanilla Transformer by 23.6%. It
shows that being aware of the local reactive region can en-
courage the model to avoid errors that propagate via the
non-reactive regions.

Top-k Round-trip Accuracy To measure the reaction
validity, we take the pretrained Molecule Transformer
(Schwaller et al., 2019) as the oracle reaction prediction
model to measure the percentage of top-k proposed syn-
thetic routes that can lead back to the ground truth product.
Table 3 shows the performance comparison of the round-
trip accuracy. It shows that our method improves over the
existing methods by a large margin. Our model exceeds the
vanilla Transformer by 22.0% top-10 round-trip accuracy,
and it also improves over RetroPrime by 12.2%. It shows
that our model is more likely to propose valid and efficient
synthetic routes for downstream usage.

5.2. Ablation Study

We further conduct ablation study to evaluate the effects
of each component on retrosynthesis performance. As for
the guided alignment loss, we experiment with two settings:
Guidedall: the alignment loss is enforced at the first global
heads of all decoder layers; Guidedlast: the loss is enforced
at the first global head of the last decoder layer.

Table 4 shows that all proposed components are necessary
for Retroformerbase to reach the best retrosynthesis perfor-
mance. The improvement from (a) to (b) and (a) to (c)
shows that the model can better capture the reaction knowl-
edge from learning the SMILES alignment. We choose (c)
over (b) as our final alignment loss because of its compara-
ble performance and its lighter training duty. The 2.9% top-1
improvement from (d) to (c) indicates the effectiveness of
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Figure 5: Retrosynthesis prediction of a randomly selected molecule.

our local-global graph Transformer encoder. Comparing (c)
and (e), we could see that the local-global decoder achieves
higher top-1 accuracy than the full global decoder, whereas
the latter version has better top-k accuracy for k > 1. This
is also reasonable. Focusing on a specific reaction center
makes the generative process more constrained. The perfor-
mance drop for k > 1 indicates the loss of outcome diversity.
However, the local-global decoder is compatible with the
reaction center search, whereas the full global decoder is
not. With the search strategy, the model can boost the top-k
accuracy and improves the top-10 accuracy by 4.9% from
(e) to (f).

In addition to the overall performance, we also evaluate the
effects of the encoder structure, the proposed search strat-
egy, and the data augmentation trick on the reaction center
detection top-n accuracy. As shown in Table 5, comparing
(d) and (c), the local-global encoder structure improves the
reaction center detection accuracy by a large margin, from
55.4% to 63%. The improvement is expected given the en-
coder is now aware of the graphical structure of the molecule.
When the data augmentation is applied, Retroformeraug fur-
ther improves the accuracy by 4.5% accuracy. Reaction
center subgraph search demonstrates its strength by its con-
sistent improvements over all settings. We can also perform
the top-n reaction center ranking rather than relying on a
single candidate by the naive cutoff strategy.

5.3. Qualitative Analysis

In addition to its competitive benchmark performance,
Retroformer is fully interpretable and controllable by exter-
nal chemical instruction.

To evaluate the interpretability and the quality of the
detected reaction center, we randomly select a product
molecule from the test set of USPTO-50K and predict the
reactants with the search strategy. We also evaluate the set-
ting where we explicitly specify a reaction center and give
it to the decoder. We term this setting as the reaction center
retrieval. As shown in Figure 5, the search algorithm pro-
poses three different reaction centers (highlighted in green)
given the raw reactive log probabilities. The numbers rep-
resent the reactive scores of each subgraph candidate. In
this example, the top candidate matches the ground truth
reaction center in the data. The third column indicates the
top-2 verified predicted reactants given both the reaction
center and the encoded molecule. The numbers represent
the generative scores of each reactants. It shows that the
model can understand the concept of reaction center and
propose chemical transformations compatible with it. The
outcomes from the retrieved reaction center (highlighted
in blue) also demonstrate that the generation is fully con-
trollable by external instruction (i.e., the specification of a
particular reaction center). Additional analysis with respect
to the learned token alignment is described in Appendix D.
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6. Conclusion
We propose Retroformer, a novel Transformer-based archi-
tecture that reaches the new state-of-the-art performance
for template-free retrosynthesis. With the proposed local
attention heads and the incorporation of the graph informa-
tion, the model is able to identify local reactive regions and
generate reactants conditionally on the detected reaction
center. Being aware of the reaction center also encourages
the model to generate reactants with improved molecule
validity, reaction validity, and interpretability. We plan to
further research the multi-step template-free retrosynthe-
sis planning problem using Retroformer as the single-step
retrosynthesis prediction backbone.
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A. Appendix: Validity and Round-trip Accuracy
Table 6 shows a detailed comparison between all variants of Retroformer in terms of top-k SMILES validity and round-trip
accuracy. It helps to understand the effects of search strategy and data augmentation alone on validity performance.

Table 6: Top-k SMILES validity and round-trip accuracy for retrosynthesis prediction with reaction class unknown.

Model Top-k validity Top-k round-trip acc.
1 3 5 10 1 3 5 10

Retroformerbase 98.4 97.0 95.4 90.5 76.4 69.4 64.2 53.6
Retroformerbase+ 98.5 97.4 96.3 94.0 77.4 69.3 64.2 53.9

Retroformeraug 99.3 98.5 97.2 92.6 78.6 71.8 67.1 57.6
Retroformeraug+ 99.2 98.5 97.4 96.7 78.9 72.0 67.1 57.2

B. Appendix: Data Augmentation
Although SMILES augmentation has become a common trick that improves over the SMILES-based molecular deep learning
model, the implementation varies. Here, we perform an ablation study with our augmentation method, 2P2R s (Seo et al.,
2021), and x5M (Tetko et al., 2020). 2P2R s represents adding an additional permuted SMILES (i.e., change the starting
atom of the product and shuffle the reactants ordering) for each original SMILES into the dataset. x5M represents adding
four additional permuted SMILES as well as its inverted format. The inverted format is essentially the forward reaction
SMILES, with a special token added at the beginning of its string for retrosynthesis training. In our work, we apply random
permutations at each training iteration instead of expanding the dataset ahead since we want the canonical form and the
permuted form to be equally weighted, while still allowing the model to see various permutations. It also avoids storing a
much larger dataset ahead.

Table 7 shows the performance comparison of different augmentation methods applied on Retroformer. All methods show
significant performance improvement over the non-augmented setting. 2P2R s is slightly less effective than x5M and ours,
which can be explained by its small augmentation amount. Our method is slightly less effective than x5M, even though the
augmentation amount from random permutation is much larger. It implies the reducing marginal improvement brought by
brutally increasing the permutation amount, which is consistent with the finding in (Tetko et al., 2020). It also indicates the
effectiveness of data augmentation from the forward reaction.

Table 7: Performance comparison between different data augmentation methods with reaction class unknown.

Settings Top-k accuracy
1 3 5 10

None 47.9 62.9 66.6 70.7
2P2R s 51.9 67.7 72.3 77.0

x5M 52.8 68.7 72.9 78.6
Ours 52.9 68.2 72.5 76.4

C. Appendix: Model Complexity
We measure the model complexity (i.e., total number of parameters and inference time) of Retroformer compares to other
Transformer-based retrosynthesis baselines: vanilla Transformer, GTA (Seo et al., 2021), and RetroPrime (Wang et al.,
2021). Note that the complexity of Augmented Transformer (Tetko et al., 2020) and Tied Transformer (Kim et al., 2021)
should be roughly the same as the vanilla Transformer since they only differ by training strategies. Table 8 shows the
complexity comparison measured on a NVIDIA T4 GPU with batch size equaling 8. The second column represents the
vanilla Transformer based on our implementation. Its difference in inference time compared to the vanilla Transformer
by OpenNMT (Klein et al., 2017) is mainly caused by the implementation difference in dataloading and beam search. It
implies that Retroformer can be further sped up by efficient designs of the decoding algorithm.
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Table 8: Model complexity comparison. * means the model is built by OpenNMT.

vanilla* vanilla GTA* RetroPrime* Ours
#params 23.2M 23.2M 17.4M 75.4M 30.3M
sec/mol 0.17 0.47 0.59 2.18 0.48

D. Appendix: Qualitative Analysis, Atom Mapping
Since our model is trained to learn the token alignment between the source and the target SMILES, the predicted attention
can be easily converted to atom mapping. Different from the RXNMapper (Schwaller et al., 2021) that uses an additional
neighbor attention multiplier to calculate the atom mapping from the attention weights, we directly use the attention weights
to do the assignment while ignoring the molecular graphical structure. Note that it does not guarantee either the one-to-one
mapping from product atom to reactants atom or the equivalence of the mapped element. Figure 6(a) shows a success case
of the inferred atom mapping. Figure 6(b) shows a typical failure case. This assignment mistakenly aligns [O:11] with
[N:11]. The mistake is explainable since [HN:8] and [O:11] within the reactants are the exact position where chemical
transformation happens. Also, this naive atom mapping fails to assign the one-to-one mapping, which is also reasonable
because of the symmetry present in the second reactant.Atom mapping: success cases:

+

(a) Success Case
Atom mapping: failure cases:

+

(b) Failure Case

Figure 6: Sample Atom Mapping.

E. Appendix: Implementation Details
E.1. Appendix: Bond Features

Table 9 shows the bond features considered in the proposed Retroformer, more specifically in the local-global encoder.

Table 9: Bond features.

Bond Feature Possible Values Size
Bond Type Single, Aromatic, Double, Triple 4
Aromatic True, False 1
Conjugated True, False 1
Part of Ring True, False 1

E.2. Appendix: SMILES Graph Construction

To ensure the alignment between the SMILES token and the atoms in graph, we expand the original molecular graph Gmol

into the SMILES graph Gsmi by Algorithm 1. readSmiles(), getAtoms(), getNeighbors(), and writeSmiles() are
functions supported in RDKit (rdk). The tagging procedure is to inform the connection relationship between SMILES
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tokens. Rewriting the tagged SMILES without canonicalization is to ensure that the SMILES syntax does not change after
the tagging.

Algorithm 1 SMILES Graph Construction

Input: molecule canonical SMILES S
Initialize V as a token list of S.
Initialize E as an empty set.
Initialize A as an empty list.
M = readSmiles(S)
for ai ∈ getAtoms(M ) do

Assign tag #1 to the SMILES symbol of ai.
for aj ∈ getNeighbors(M,ai) do

Assign tag #2 to the SMILES symbol of aj .
end for
Get the tagged SMILES S′ = writeSmiles(M , canonical=False)
Retrieve the token connections e(#1,#2) by the tagged S′ and add them to E.
Retrieve the bond feature of e(#1,#2) and add them to A.

end for
Output: V , E, A

E.3. Appendix: SMILES Token Alignment Computation

The ground truth token alignment between the product SMILES and the reactants SMILES is computed as Algorithm 2. The
algorithm takes the atom-mapped product and reactants as inputs. The computation works with both the canonical SMILES
and the permuted SMILES.

Algorithm 2 SMILES Token Alignment Computation

Input: atom-mapped product SMILES Sp and atom-mapped reactants SMILES Sr.
Initialize the token mapping dictionary r2s.
for sri ∈ Sr do

if sri is not visited and sr is an atom token then
Locate the token spj in Sp with the same atom mapping number as sri : am(spj ) == am(sri).
while sri == spj or am(spj ) == am(sri) do

Add alignment relationship {i : j} into r2s.
Increment i and j.

end while
end if

end for
for {i : j} ∈ r2s do

Decrement i and j.
while sri == spj

and sri is not an atom symbol do
Add alignment relationship {i : j} into r2s.
Decrement i and j.

end while
end for
Output: r2s.

E.4. Appendix: Reaction Center Subgraph Search

Algorithm 3 shows the detailed search reaction center subgraph search algorithm, and Figure 7 shows a visualization of its
procedure. In general, it searches for the candidate subgraphs (i.e., reaction centers) within the molecular graph via recursive
pruning. It adopts a set of hyperparameters to avoid searching over the entire subgraph space.
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Figure 7: Visualization of the reaction center subgraph search algorithm: (1) Predict raw atom and bond reactive probability
(i.e., reaction center detection); (2) Retrieve connected components based on the reactive probability; (3) Iterative pruning
with maxBranch = 3. The number represents the reactive probability of the pruned atom; (4) Retrieve and rank all the
candidate subgraphs (i.e. reaction centers); (5) Select the top-n diverse candidates from all subgraphs.

The reaction center subgraph search is done in multiple stages: First, the algorithm removes all nodes whose Prc(si) < αatom

and edges whose Prc(eij) < αbond, and retrieves all the connected components C from the edited graph. Second, for
each connected component c = (Vc, Ec), the algorithm retrieves all its subgraphs and the corresponding reactive scores
via recursive pruning. The recursive pruning takes maxRootSize,minLeafSize,maxBranch as three arguments to
control its search space. If the number of nodes |Vc| is larger than maxRootSize, then the algorithm directly removes
|Vc| −maxRootSize number of nodes with the lowest reactive scores. At each iteration, the algorithm considers nodes that
lie along the border of the current graph as pruning candidates to ensure that the pruned graph is still a connected graph.
maxBranch is the maximum branching factor of the recursive pruning. The algorithm first ranks the pruning candidates
by their atom reactive probability, and keeps only the top-maxBranch candidates for pruning. The recursion stops when
|Vc| = minLeafSize. After all subgraphs are retrieved from a root connected component c, we rank them by their reactive
scores. Prior to the overall subgraph ranking, we remove all subgraphs (excluding the top-1 subgraph) that share at least two
common nodes with the top-1 subgraph to ensure the candidates’ diversity. At last, we gather the remaining subgraphs from
all the root connected components C and retrieve the top-n reaction center candidates by their reactive scores.

In our experiments, we set n = 3. Note that it only guarantees the maximum amount of reaction center candidates. We set
the temperature T = 10 to flatten the reactive probabilities Prc(s) and Prc(e). As for αatom and αbond, instead of having a
fixed value, we dynamically set the two parameters as the kths and kthe percentile of Prc(s) and Prc(e), respectively. Based
on the best validation performance, we set ks = 40, ke = 40 for reaction class unknown setting, and ks = 40, ke = 55
for reaction class known setting; β is the parameter that controls the minLeafSize. For simplicity reason, we set
β = 0.5,maxRootSize = 25, and maxBranch = 5.

The exact reactive score for a candidate subgraph G = (V,E) is computed as follow:
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Algorithm 3 Reaction Center Subgraph Search

Input: Prc(s), Prc(e), Gsmi, αatom, αbond, β.
Remove all nodes whose Prc(si) < αatom from Gsmi.
Remove all edges whose Prc(eij) < αbond from Gsmi.
Retrieve all the connected components C from the edited SMILES graph.
for c = (Vc, Ec) ∈ C do

Set maxRootSize = 25.
Set maxBranch = 5.
Set minLeafSize =

∑
si∈c 1(Prc(si) > β), where si ∈ c.

if |Vc| > maxRootSize then
Remove |Vc| −maxRootSize nodes with the lowest Prc(si).

end if
Retrieve all subgraphs of c (with scores) via recursive pruning with maxBranch and minLeafSize.
Remove all subgraphs who share more than two common nodes with the top-1 subgraph.

end for
Output: Subgraphs with reactive scores.

1 + ϕ(|V |, µ, σ2)

M

( ∑
si∈V

logPrc(si) +
∑

eij∈E
logPrc(eij)

)
(8)

where M = |V |+ |E| is the normalization factor, and ϕ(.) is the density function of a normal distribution of the size of
reaction centers. We set µ = 5.55 and σ = 1.2, which are computed from the training dataset. This is a heuristic factor
taken from the observation that the size of the reaction centers has little relationship with the size of the molecule, but is
rather normally distributed (Figure 8).

Figure 8: Histogram of the size of reaction centers in the training set of USPTO-50K.


