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Abstract
High-quality data plays a central role in ensur-
ing the accuracy of policy evaluation. This paper
initiates the study of efficient and safe data col-
lection for bandit policy evaluation. We formu-
late the problem and investigate its several repre-
sentative variants. For each variant, we analyze
its statistical properties, derive the corresponding
exploration policy, and design an efficient algo-
rithm for computing it. Both theoretical analy-
sis and experiments support the usefulness of the
proposed methods.

1. Introduction
Bandit policies have been widely applied to areas including
advertising (Bottou et al., 2013), search (Li et al., 2011) and
healthcare (Zhou et al., 2017). Before deploying a target
policy, it is typically crucial to have an accurate evaluation
of its performance, which can subsequently provide valu-
able information for deployment decisions or model im-
provement. This is in general achieved by utilizing logged
data, known as the off-policy evaluation (OPE) problem.

Although OPE has been studied extensively (Dudı́k et al.,
2014; Li et al., 2015; Swaminathan et al., 2016; Wang et al.,
2017; Su et al., 2020; Kallus et al., 2021; Cai et al., 2021),
the existing works mainly focus on various estimators with
a fixed dataset. However, limited attention has been paid to
the dataset itself, which plays a vital role in estimation ac-
curacy. For instance, inverse probability weighting (IPW,
Li et al., 2015), one popular OPE method, has a key re-
quirement that the logging policy has “full support”. This
usually translates into requiring the logging policy to be
close enough to the target policy (Sachdeva et al., 2020;
Tran-The et al., 2021). For direct method (DM, Dudı́k
et al., 2014), it is also common that some feature directions
are less explored in the logged dataset, which impacts the
accuracy of this regression-based estimator.
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To improve the accuracy of policy evaluation, a natural idea
is to actively collect high-quality data, and ideally, the data
collection rule should be tailored to the given evaluation
task. This problem is surprisingly unexplored. Moreover,
due to the common safety concerns (Wu et al., 2016; Zhu &
Kveton, 2022), it is of great practical importance to make
sure the data collection rule is safe.

In this paper, we initiate the study of Safe Exploration for
Policy Evaluation and Comparison (SEPEC), the design of
an efficient and safe exploration policy that collects a high-
quality dataset for the given evaluation task. We focus on
non-adaptive policies, as they are simple to implement lo-
gistically. Indeed, in practice, the challenge of requiring in-
vestments (e.g., in infrastructures) for adaptive algorithms
has been widely recognized (Zanette et al., 2021; Zhu &
Kveton, 2022), especially before the value is proved via
OPE. Our proposal is summarized in Figure 1.

Another possible approach to policy evaluation is being
on-policy (i.e., following the target policy). However, the
safety concern typically does not allow a direct deploy-
ment. In addition, perhaps surprisingly, the on-policy eval-
uation is not optimal under some setups (e.g., when the
variances of different arms differ) or for some evaluation
tasks (e.g., comparing the target policy with a baseline pol-
icy). See Section 3.1 for an example. Therefore, more care-
ful analysis and design are required.

As expected and shown later, our proposed solutions vary
across different bandit setups, evaluation tasks, and value
estimators. To shed light on this novel problem, we study
its three representative variants, including multi-armed
bandits (MAB) with IPW, contextual MAB (CMAB) with
IPW, and linear bandit with DM. Our results can be ex-
tended to several other setups that are introduced as well.
Finally, although other evaluation problems (e.g., estimat-
ing the value of the target policy in Section 3.4) can be ad-
dressed similarly to our work, for concreteness, we focus
on policy comparison, where we estimate the value differ-
ence between the target and baseline policies. This task is
closely related to deployment decision making.

Contribution. Our contributions can be summarized as
follows. First, motivated by practical needs for improv-
ing policy evaluation accuracy and the common safety con-
cerns, we propose and formulate the SEPEC framework. To
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Figure 1: SEPEC: designing a safe and efficient exploration pol-
icy to collect high-quality data for a given evaluation task.

the best of our knowledge, this is the first work studying
how to collect data for efficient policy evaluation, with or
without safety constraints. Second, we investigate its three
representative variants thoroughly. We analyze their sta-
tistical properties, design tractable optimization problems,
and provide efficient optimization algorithms. The situa-
tions with or without side information are both considered.
Third, we theoretically prove the efficiency and optimality
of our approach. Lastly, we demonstrate the superior per-
formance of SEPEC through extensive experiments.

2. Objective and Existing Approaches
For concreteness, we first introduce the objective of SEPEC
under MAB, and will extend it to other settings later. For
any positive integer M , we denote the set {1, . . . ,M} by
[M ]. Let ∆K−1 be the K-dimensional simplex. In a
K-armed bandit, we represent a policy by a vector π =
(π(1), . . . , π(K))T ∈ ∆K−1, where π(a) is the proba-
bility that arm a is pulled under policy π. After choos-
ing an arm At, we receive its stochastic reward Rt. Let
ra = E[Rt|At = a] be the expected reward of arm a
and σ2

a = var(Rt|At = a) be the variance of its re-
wards. Let r = (r1, . . . , rK)T . The value of a policy is
V (π) =

∑
a∈[K] π(a)ra. Sometimes we write Vr(π) to

emphasize the dependency on r. We make the standard as-
sumptions that ra ∈ [0, 1] and σ2

a ≤ σ2 for some σ > 0. A
problem instance is specified by (r, {σa}).

We assume that we are given a target policy π1 and a
safe baseline policy π0. We may also have side informa-
tion, such as an existing dataset D0. We focus on estimat-
ing the value difference V (π1) − V (π0), although several
other estimands (e.g., V (π1)) can be addressed similarly.
In practice, OPE methods are commonly used to estimate
this lift and test its significance using existing data, which
determines the deployment decision. However, the dataset
is typically assumed as well explored, and little attention
has been paid to how it arises. We aim to fill this gap.
Specifically, given an exploration budget T , a risk toler-
ance ϵ ∈ (0, 1), and a user-specified estimator that maps a
dataset D to a value estimate of policy π as V̂ (π;D), we

aim to design an exploration policy πe to collect a dataset
De of size T , while achieving the following two objectives
simultaneously:

• Safety: Exploration should be safe, in the sense that
Vr(πe) ≥ (1 − ϵ)Vr(π0) holds, either for all prob-
lem instances r or with a high probability given side
information.

• Efficiency: The exploration should be efficient, which
we define as the minimization of var

(
V̂ (π1;D0 ∪

De)− V̂ (π0;D0 ∪De)
)
, i.e., the maximization of the

evaluation accuracy with the given estimator. Specif-
ically, we mainly focus on unbiased value estimators,
and in this case, the variance is closely related to many
practical metrics, such as the mean squared error and
the statistical power of testing V (π1) > V (π0). See
Section 4.2 for details.

Two existing approaches. To satisfy the safety constraint
while exploring, the most popular practice (Thomas et al.,
2015; Jiang & Li, 2016; Slivkins, 2019), arguably, is to al-
locate an ϵ ∈ (0, 1) proportion of the budget to an explo-
ration policy b′ ∈ ∆K−1, and construct a mixture policy
πe = ϵb′ + (1− ϵ)π0. The common choice of b′ is π1 (i.e.,
on-policy) or the uniform distribution (i.e., random explo-
ration). This approach, albeit being safe, could be ineffi-
cient. For example, πe is confined in a small policy class,
and as we will show shortly, we can actually obtain a safe
policy directly in a larger class via optimization. Besides,
even within this policy class, b′ needs to be carefully de-
signed and this problem alone is also underexplored.

Another existing approach is Zhu & Kveton (2022), which
also aims to collect high-quality bandit feedback in a safe
manner. Our approach to handling the safety constraints is
partially inspired by this paper. However, their targeted ap-
plication is policy optimization, and hence they propose to
maximize mina∈[K] πe(a), or in other words, they aim to
collect data for evaluating all policies jointly by reducing
uncertainty uniformly. Therefore, their exploration policy
is not tailored for evaluation, and will be less efficient with-
out utilizing its specific structure. The SEPEC problem re-
quires a more careful task-oriented analysis and design. A
concrete example follows below.

Illustrative example. We start with analyzing the effi-
ciency in a toy example without safety constraints. Con-
sider π0 = (0.4, 0.1, 0.5)T and π1 = (0.1, 0.4, 0.5)T .
Then, one immediate observation is that, arm 3 does not af-
fect the estimate of the value difference V (π1)− V (π0) =
(0.1−0.4)r1+(0.4−0.1)r2+0, and so no budget should be
spent on arm 3 when exploring. Therefore, either follow-
ing π1, running A/B experiment (allocating x% budget to
π1 and (100−x)% to π0), or using the uniform exploration
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of Zhu & Kveton (2022) is clearly sub-optimal. The prob-
lem will become even more interesting when we maximize
the efficiency with safety constraints, stochastic contexts,
and generalization functions.

3. Methodology
In this section, we discuss our methodology by studying
three OPE setups, including MAB with IPW, CMAB with
IPW, and linear bandits with DM. We choose these setups
as they are representative, covering common features such
as stochastic contexts and generalization functions. These
discussions provide insights into this novel problem, and
a few extensions will be introduced as well. In addition,
we study both the case without side information, where we
need to ensure safety under all instances, and the case with
side information, which will enter the final estimator and
also can help us relax the safety constraint.

For each setup, we start by analyzing the variance of the
whole exploration and evaluation procedure. This raw ob-
jective is typically infeasible to optimize (e.g., it may in-
volve unknown parameters). Therefore, we then design a
tractable surrogate optimization problem, by solving which
one can obtain an efficient policy. The optimization algo-
rithm will be introduced at the end. We summarize the
high-level idea in Figure 2.

estimator & 
side information

statistical
property

tractable 

optimization problem

exploration
policy

analyze optimization

algorithmdesign

Figure 2: Workflow for designing an exploration policy.

3.1. MAB with IPW

We first apply SEPEC to evaluating an MAB policy using
the IPW estimator, without side information. With a dataset
De = {(At, Rt)}Tt=1 collected following πe, the IPW esti-
mator is

V̂IPW (π;De) =
1

T

T∑
t=1

π(At)

πe(At)
Rt.

Our objective can be written as

argmin
πe∈∆K−1

var
(
V̂IPW (π1;De)− V̂IPW (π0;De)

)
s.t. Vr(πe) ≥ (1− ϵ)Vr(π0),∀r ∈ [0, 1]K .

This problem is particularly challenging because (i) the
dependency of the objective on πe is complex, and (ii)
the safety constraint involves the unknown function V and
hence is not easy to guarantee.

Objective function. We aim to first transform the objective

into a tractable form. Let π∆ = π1 − π0. We have

T × var
(
V̂IPW (π1;De)− V̂IPW (π0;De)

)
= T × var

(
T−1

T∑
t=1

π∆(At)

πe(At)
Rt

)
= varAt∼πe

(π∆(At)

πe(At)
Rt

)
(1)

= EAt∼πe

[
var(

π∆(At)

πe(At)
Rt|At)

]
+ varAt∼πe

[
E(

π∆(At)

πe(At)
Rt|At)

]
=

∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a + varAt∼πe

[π∆(At)

πe(At)
rAt

]
(2)

=
∑

a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a − c, (3)

where c = (V (π1) − V (π0))
2 is independent of πe. The

third equality is due to the law of total variance and the last
one is due to var(X) = E(X2)− E2(X). We note that (3)
cannot be optimized directly, as σa’s and ra’s are in gen-
eral unknown. In fact, there does not exist a policy πe that
achieves global optimum for all instances (see Appendix
D.4 for proof). However, this transformation provides in-
sights into an efficient allocation rule. Without additional
information, we consider an upper bound of the objective,
by replacing σa’s and ra’s with their joint upper bounds.
Our relaxed objective is

argmin
πe∈Π∆

∑
a∈[K]

π2
∆(a)

πe(a)
, (4)

where the feasible set Π∆ = {π ∈ ∆K−1 : π(a) >
0 if π∆(a) > 0} can be easily verified as convex. This en-
sures the positivity assumption required by IPW (Li et al.,
2015). Although commonly assumed, this assumption has
been found violated in many OPE applications (Sachdeva
et al., 2020; Tran-The et al., 2021), where IPW methods
can fail catastrophically. This is particularly severe with
contextual bandits or large action space. SEPEC proactively
resolves this issue. Finally, without safety constraints, the
solution of (4) is πe(a) ∝ |π∆(a)|. This result is intuitive:
the larger the difference, the more we explore.

We make two remarks regarding the raw objective function
(2). First, perhaps surprisingly, by similar arguments, we
can show that the on-policy strategy (i.e., πe = π1) is not
optimal even in minimizing var

(
V̂ (π1;De)) without safety

constraints, when σa’s or ra’s vary across arms. Instead,
πe(a) ∝ π1(a)× (r2a + σ2

a) is the most efficient one.

Second, the two terms of (2) correspond to the intrinsic un-
certainty from the reward noise after pulling arms and the
extrinsic randomness from sampling arms. When T ≫ K,
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it is possible to (approximately) remove the second term by
considering a deterministic allocation. Specifically, given
πe, instead of sampling the T data points, we can assign
Na = T×πe(a) data points to the ath arm, which is known
as the optimal continuous design in statistics (Lee, 1988).
However, in general, it is hard to guarantee that Na’s are
all integers, and one has to resort to randomized rounding
to obtain an allocation {Na} that is close to πe. Although a
few such techniques (Bouhtou et al., 2010; Allen-Zhu et al.,
2017) can yield small variance inflation when T ≫ K, they
are in general hard to generalize to broader setups such as
contextual bandits, where the budget for each context is
small and also stochastic. This is a setting of sharp dif-
ference with the standard experimental design literature.
Therefore, we choose to sample from Multinomial(T, πe),
which is a popular randomized rounding approach recently
(Azizi et al., 2021; Zhu & Kveton, 2022).

Optimization without side information. With a tractable
and appropriate surrogate objective, we are now ready to
consider the safety constraint. The first observation is that
Vr(πe) ≥ (1 − ϵ)Vr(π0),∀r ∈ [0, 1]K is equivalent to
πe(a) ≥ (1− ϵ)π0(a),∀a ∈ [K]. This is because we need
to ensure safety even in the worst case. Indeed, if there
exists at least one arm a such that πe(a) < (1 − ϵ)π0, we
can always construct an instance to violate the constraint,
with ra = 1 and ra′ = 0,∀a′ ̸= a. Thus our optimization
problem is

argmin
πe∈Π∆

∑
a∈[K]

π2
∆(a)

πe(a)

s.t. πe(a) ≥ (1− ϵ)π0(a),∀a ∈ [K],

(5)

and its solution is a safe policy. This problem is convex
and hence can be efficiently solved by many optimization
algorithms (Boyd et al., 2004).

Utilization of side information. Next, we study how to
improve over (5) when there is side information, such as an
existing dataset D0 generated by a known behavior policy
πb. Typically πb is just π0, but could be different. We as-
sume πb satisfies the positivity assumption; otherwise one
can use IPW with a mixed propensity (Kallus et al., 2021).
Specifically, we consider IPW with multiple logging poli-
cies (Kallus et al., 2021), and the original problem becomes

argmin
πe∈Π∆

var
( T∑

t=1

π∆(At)

πe(At)
Rt +

∑
(Ai,Ri)∈D0

π∆(Ai)

πb(Ai)
Ri

)
s.t. Vr(πe) ≥ (1− ϵ)Vr(π0),∀r ∈ Cδ(D0).

Here Cδ(D0) is an (1 − δ)-confidence region on r ob-
tained from D0, which can be constructed based on con-
centration inequalities. Alternatively, one can consider a
Bayesian viewpoint when there is a prior on r that sum-
marizes domain knowledge, and Cδ(D0) is the credible re-

gion derived from the corresponding posteriors. We as-
sume Cδ(D0) is a convex region, which is commonly the
case following either approach. See Appendix A.1 for de-
tails. The convexity allows finding the most violated con-
straint, for any fixed πe, efficiently. As such, the side infor-
mation helps relax the safety constraint. Finally, we notice
that for any r, Vr(πe) ≥ (1 − ϵ)Vr(π0) is equivalent to
rT (πe − (1− ϵ)π0) ≥ 0, a linear constraint in πe.

In addition, the objective is equal to

var
( T∑

t=1

π∆(At)

πe(At)
Rt

)
+ var

( ∑
(Ai,Ri)∈D0

π∆(Ai)

πb(Ai)
Ri

)
,

thanks to the independence between De and D0. The sec-
ond term does not depend on πe and hence can be dropped
in optimization. In other words, perhaps surprisingly, the
additional dataset D0 does not directly enter the objective.
The main reason is that, every data point contributes in-
dependently to the IPW estimator. This may not hold for
other estimators, as shown for DM in Section 3.3.

Optimization with side information. By similar argu-
ments to (5), we propose an optimization problem

argmin
πe∈Π∆

∑
a∈[K]

π2
∆(a)

πe(a)

s.t. rT (πe − (1− ϵ)π0) ≥ 0,∀r ∈ Cδ(D0).

(6)

This problem is particularly challenging as the constraint
implicitly contains an infinite number of constraints. We
note that, for any finite set Θ ⊂ ∆k−1, the corresponding
constraint rT (πe − (1 − ϵ)π0) ≥ 0,∀r ∈ Θ is actually
a finite number of linear constraints on πe. Therefore, we
propose to solve (6) by adapting the cutting-plane method
(Bertsimas & Tsitsiklis, 1997). Specifically, the cutting-
plane method iteratively adds more constraints to a finite
set to approximate the convex feasible set, until no con-
straint in the original problem is violated. The convergence
analysis is provided in Boyd & Vandenberghe (2007). We
present the algorithm details in Appendix A.3.

Remark 1. Recall that the raw objective (3) involves the
unknown parameters σa’s and ra’s. We relax it using the
upper bounds to guarantee the worst-case efficiency. When
side information is available, alternatively, one can try
to infer these parameters and consider a different objec-
tive function than (6), with a Bayesian or high-probability
guarantee. We discuss this more in Appendix B.5.

3.2. CMAB with IPW

In this section, we apply SEPEC to contextual MAB
(CMAB). At every round t, we observe a context xt from
a finite set of contexts X , choose an arm At ∈ [K],
and then receive a stochastic reward Rt. We similarly
define the mean reward r(a|x) = E[Rt|At = a,xt = x],
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the mean reward vector r(·|x) ∈ [0, 1]K , and the pol-
icy π(·|x) ∈ ∆K−1. We also use r = (r(·|x))x∈X
and π = (π(·|x))x∈X to denote the corresponding vec-
tor concatenated over X . With π0 and π1 given, we de-
fine π∆ as their difference. For design purpose, we make
a common assumption (Wu et al., 2015; Zhu & Kve-
ton, 2022) that the context distribution p(x) is known,
since there is typically a large dataset of contexts. Let
Vr(π|x) =

∑
a∈[K] π(a|x)r(a|x). The policy value is

Vr(π) =
∑

x∈X p(x)Vr(π|x). Define Π∆ = {π :
π(a|x) > 0 if π∆(a|x) > 0,∀a,x}. Π∆ is a convex set by
definition.

For any dataset De = {(xt, At, Rt)}Tt=1 collected fol-
lowing a policy πe, we consider the IPW estimator
V̂IPW (π;De) = T−1

∑T
t=1

π(At|xt)
πe(At|xt)

Rt. Without side in-
formation, our problem is defined as

argmin
πe∈Π∆

T × var
(
V̂IPW (π1;De)− V̂IPW (π0;De)

)
s.t. Vr(πe) ≥ (1− ϵ)Vr(π0),∀r ∈ [0, 1]K|X |.

(7)

We aim to construct an efficient and safe exploration pol-
icy as in the MAB (Section 3.1). The main additional chal-
lenges come from the stochasticity in the contexts and that
we need to solve the problem jointly over all contexts.

No side information. We begin with studying the case
without side information. We first note that our objective
in (7) can be decomposed as

Ext∼p(x)

{
var[

(π∆(At|xt)

πe(At|xt)
Rt

)
|xt]

}
+ varxt∼p(x)

{
E[
(π∆(At|xt)

πe(At|xt)
Rt

)
|xt]

}
.

The second term is equal to

varxt∼p(x)

[ ∑
a∈[K]

π∆(a|xt)r(a|xt)
]
,

does not depend on πe, and hence can be dropped in opti-
mization. The first term can be regarded as the expectation
of the MAB objective (1) over the context distribution.

The second observation is that, the safety constraint is
equivalent to πe(·|x) ≥ (1 − ϵ)π0(·|x),∀x ∈ X . Oth-
erwise, one can always construct a counter-example by
setting r(·|x) = 0, except for one context x′ where
the constraint is violated. Then, we have V (πe) =
p(x′)V (πe|x′) < (1 − ϵ)p(x′)V (π0|x′) = (1 − ϵ)V (π0),
when p(x′) > 0.

Therefore, by similar arguments as in Section 3.1 on de-
riving the surrogate objective, we propose the following
tractable optimization problem

argmin
πe∈Π∆

∑
x∈X

∑
a∈[K]

p(x)
π2
∆(a|x)
πe(a|x)

s.t. πe(·|x) ≥ (1− ϵ)π0(·|x),∀x ∈ X ,

which can be solved by optimizing

argmin
πe(·|x)∈Π∆(x)

∑
a

π2
∆(a|x)
πe(a|x)

s.t. πe(·|x) ≥ (1− ϵ)π0(·|x),
(8)

for each context x ∈ X separately. This is due to the addi-
tive form of IPW and the worst-case safety constraint. The
optimization can be done similarly to (5).

Side information. The scenario considered above is ar-
guably conservative. For instance, one may expect to solve
all contexts jointly, which allows us to violate the con-
straint on some contexts and remedy on the others. We
next consider the case with side information, e.g., an exist-
ing dataset D0 = {(xi, Ai, Ri)}, that allows us to do so.

Regarding the objective function, by similar arguments to
the MAB (Section 3.1), D0 only adds a πe-independent
term that can be dropped. However, D0 can help us to relax
the safety constraint. We can similarly construct a high-
probability region Cδ(D0) such that r ∈ Cδ(D0) holds with
probability at least 1 − δ. An efficient and safe policy can
then be obtained from

argmin
πe∈Π∆

∑
x

p(x)
∑
a

π2
∆(a|x)
πe(a|x)

s.t.
∑
x∈X

(
πe(·|x)− (1− ϵ)π0(·|x)

)
× p(x)r(·|x)T ≥ 0,∀r ∈ Cδ(D0),

(9)

where we notice that, for every fixed r, the constraint is
linear in πe. Therefore, similar to (6), we propose to solve
this problem by combining convex optimization algorithms
with the cutting-plane method. See Appendix A.3 for algo-
rithm details.

3.3. Linear bandits with DM

Efficiency learning with a large action space typically re-
lies on generalization functions, which also introduce in-
teresting structures to the design of SEPEC algorithms. To
shed light on this, we study linear bandits. At round t,
we choose an arm xt from a set of arms A with size K,
and then receive a stochastic reward Rt. Each arm is rep-
resented by a d-dimensional vector. Note that we over-
load notation and use xt to denote the feature vector of
the pulled arm, instead of stochastic context. We assume
that the expected reward of arm x is r(x) = xTθ∗ for
some unknown parameter vector θ∗. For design purpose,
we assume homoscedasticity, i.e., var(Rt|At) ≡ σ2. We
use most notation introduced in the MAB. We remark that
Vθ∗(π) = (

∑
x∈A π(x)x)Tθ∗ = ϕ̄T

πθ
∗, where ϕ̄π =∑

x∈A π(x)x is the mean feature direction of π. We as-
sume that Vθ∗(π0) ≥ 0.

To estimate the value of a policy π, we consider the di-
rect method (DM, Dudı́k et al., 2014). With a dataset
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D = {(xi, Ri)}, DM first estimates θ∗ via least-square re-
gression as θ̂ = (

∑
(xi,Ri)∈D xix

T
i )

+(
∑

(xi,Ri)∈D xiRi),

and then plugs-in θ̂ in the value definition to construct
V̂DM (π;D) =

∑
x∈A π(x)(xT θ̂) = ϕ̄T

π θ̂.

Objective function. We pull T arms Φ = (x1, . . . ,xT )
T

to collect a dataset DΦ, which is stochastic and depends on
Φ. In this section, we directly consider the case with side
information, since it does not make a significant difference
in derivations. We assume we have an existing dataset D0

and denote the corresponding feature matrix as Φ0, which
we assume is full-rank. Its existence simplifies our exposi-
tion. Alternatively, one can always use forced exploration
to form a basis, or consider regularized least squares.
Towards the goal of variance minimization, we note that

varΦ∼πe

(
V̂DM (π1;D0 ∪ DΦ)− V̂DM (π0;D0 ∪ DΦ)

)
= EΦ∼πe

[
var

(
V̂DM (π1;D0 ∪ DΦ)− V̂DM (π0;D0 ∪ DΦ)|Φ

)]
+ varΦ∼πe

[
E
(
V̂DM (π1;D0 ∪ DΦ)− V̂DM (π0;D0 ∪ DΦ)|Φ

)]
= σ2EΦ∼πe

[
ϕ̄T

∆π(Φ
TΦ+ΦT

0 Φ0)
−1ϕ̄∆π

]
+ varΦ∼πe [V (π1)−V (π0)]

= σ2EΦ∼πe

[
ϕ̄T

∆π(Φ
TΦ+ΦT

0 Φ0)
−1ϕ̄∆π

]
+ 0. (10)

The generalization function introduces interesting struc-
tures. For example, unlike in IPW, D0 also enters our
optimization objective, since actions are related through
their features. Intuitively, we should spend less budget on
those extensively explored directions. Moreover, unlike
IPW, the second term of (10) is zero. This is because,
conditioned on any set of sampled arms Φ, DM estimator
is always unbiased and hence its conditional expectation is
independent with Φ.

The optimization of (10) is very challenging, since
it involves an expectation over the inverse of a ran-
dom matrix. We notice that this objective is related
to the G-optimal experiment design problem (Shah &
Sinha, 2012), where we aim to minimize the maxi-
mum uncertainty by argminΦ maxx̃∈X x̃T (ΦTΦ)−1x̃.
For this problem, since a direct optimization is still
NP-hard, it is common to solve its continuous relax-
ation (Shah & Sinha, 2012; Zhu & Kveton, 2022)
argminπe

maxx̃∈X x̃T (T
∑

x∈A πe(x)xx
T )−1x̃, and

then apply certain randomized rounding methods to
construct {x1, . . . ,xT } from the distribution πe.

Motivated by the good property of this approximation
(Shah & Sinha, 2012; Lattimore & Szepesvári, 2020), we
consider a similar relaxation for our problem as

argmin
πe∈Π′

∆

ϕ̄T
∆π(T

∑
x∈A

πe(x)xx
T +ΦT

0 Φ0)
−1ϕ̄∆π,

where Π′
∆ = {π ∈ ∆K−1:

∑
x∈A π(x)xxT is invertible}

is a convex set by definition. In Section 4, we prove that
this objective is actually the asymptotic variance of the DM
estimator.

Optimization. After obtaining a tractable objective func-
tion, we next study solving the exploration policy with
the safety constraint. Again, we can construct a high-
probability region Cδ(D0) for θ in either a frequentist way
or a Bayesian way. With either approach, the region is
typically an ellipsoid and hence convex, which we assume
hereinafter. See Appendix A.1 for some examples. The
convexity allows finding the most violated constraint, for
any fixed πe, efficiently. The exploration policy can be ob-
tained from

argmin
πe∈Π′

∆

ϕ̄T
∆π(T

∑
x∈A

πe(x)xx
T +ΦT

0 Φ0)
−1ϕ̄∆π

s.t. Vθ(πe) ≥ (1− ϵ)Vθ(π0),∀θ ∈ Cδ(D0).

(11)

The constraint is equivalent to
(
πe − (1 − ϵ)π0

)T
Xθ ≥

0,∀θ ∈ Cδ(D0), where X is the feature matrix obtained
by stacking vectors in A. Therefore, Problem (11) is con-
vex. For a finite set of constraints, we adapt the popular
Frank–Wolfe (FW) algorithm (Frank et al., 1956), which is
a projection-free algorithm with good convergence guaran-
tees (Jaggi, 2013). To handle the infinite number of con-
straints, we combine the FW algorithm with the cutting-
plane method. See Appendix A.4 for details.

3.4. Policy evaluation

For concreteness, we choose the policy comparison prob-
lem to present our methodology. We would like to empha-
size that all discussions are equally applicable to evaluating
the value of a single policy, i.e., estimating V (π1). To see
this, note that due to linearity, all discussions on the objec-
tive functions still hold, e.g., by replacing π∆ in (1) with π1

or ϕ̄∆π in (10) with ϕ̄π1 . Moreover, the safety constraint is
independent of the estimand. Therefore, the optimization
problem can be formulated and solved in almost the same
manner as for policy comparison.

3.5. Extensions

As we expect and also observed, the specific solution for
SEPEC vary across different bandit setups, evaluation tasks
and value estimators. To initiate the study of this novel
area, we considered three representative variants covering
MAB, contextual problems, generalization functions, IPW
and DM. Our discussion, derivations and algorithms can be
extended to at least the following problems.

First, for MAB, the DM estimator is equivalent to an alter-
native IPW-form estimator, which we analyze in Appendix
B.1. Second, for stochastic contextual linear bandits where
the stochastic context xt and action At together generate a
feature vector ϕxt,At

that determines the reward linearly,
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our analysis for IPW and linear bandits can be combined
and extended. See Appendix B.2 for details. Third, lin-
ear bandits with IPW are usually referred to as the pseudo-
inverse estimator (Swaminathan et al., 2016), and its con-
textual version is particularly useful on some structured
problems, such as slate recommendation. Our analysis in
Section 3.3 can be extended to these problems. See Ap-
pendix B.3 for details. Lastly, another popular value es-
timator is the doubly robust (DR) estimator (Dudı́k et al.,
2014), which combines IPW and DM. Discussions in Sec-
tion 3.2 can be similarly applied to minimize the asymp-
totic variance when DR is used as the value estimator. See
Appendix B.4 for details.

4. Theoretical Analysis
In this section, we provide theoretical analysis for SEPEC.
Since our optimization problems can all be solved exactly,
the safety constraint can be satisfied as promised. There-
fore, we will focus on the efficiency maximization problem
in Section 4.1. All proofs are deferred to Appendix D. The
connection between our objective and the testing power is
discussed in Section 4.2.

4.1. Efficiency

We first study MAB with IPW. The same conclusions can
be established for CMAB under similar conditions. To
provide insights, we first consider the case without side
information and safety constraints to derive an explicit
form of the overall variance. Denote var(V̂IPW (π1;De)−
V̂IPW (π0;De)) as ν(πe; r, {σa}) when the true parame-
ters are r and {σa}. Denote the solution of (4) as π∗

e .

Lemma 1. The overall variance ν(π∗
e ; r, {σa}) is

1

T

[ ∑
a∈[K]

|π∆(a)|×
∑

a∈[K]

|π∆(a)|(σ2
a + r2a)−

(
V (π1)− V (π0)

)2]
.

As expected, the variance decays at rate T−1. The result is
intuitive as it depends on how different the two policies are
(i.e.,

∑
a |π∆(a)|) and if the difference is more significant

on those more important arms (with larger σ2
a or r2a).

Next we study the efficiency. As mentioned in Section
3.1, the objective involves unknown parameters and there
is no policy that always dominates (see Appendix D.4 for
proof). Therefore, to provide insights, we study the min-
imax performance and the average performance. For the
former, we consider the set of instance I = {(r, {σa}) :
0 ≤ r ≤ 1, 0 ≤ σa ≤ σ, ∀a}. For the latter, we consider
any instance distribution Q such that EQ(ra), varQ(ra) and
EQ(σ

2
a) all have fixed values across the K arms. For either

Problem (4), (5) or (6), denote the solution (i.e., our pol-
icy) as π∗

e and the set of feasible policies as Π. Note that

Π can be different with Π∆, since Π may be under safety
constraints. SEPEC enjoys the following nice properties.

Theorem 1. The policy π∗
e is minimax optimal, i.e.,

π∗
e ∈ argmin

πe∈Π
max

(r,{σa})∈I
ν(πe; r, {σa}).

The policy π∗
e is also the most efficient on average, i.e.,

π∗
e ∈ argmin

πe∈Π
E(r,{σa})∼Q ν(πe; r, {σa}).

Finally, we study linear bandits with DM. For any policy
πe, with logged data D0, we denote the ultimate objective
(10) as ν∗(πe;D0) and the surrogate objective in (11) as
ν(πe;D0). We have the following promised result.

Theorem 2. For any policy πe ∈ Π′
∆, we have T ×

|ν(πe;D0)− ν∗(πe;D0)| → 0 as T grows. In other words,
the surrogate objective ν(πe;D0) is the asymptotic vari-
ance of V̂DM (π1;D0 ∪ De)− V̂DM (π0;D0 ∪ De).

In this sense, we regard our surrogate problem as a good
proxy, which we solve exactly. Moreover, notice that ν and
ν∗ are both continuous. Therefore, suppose the optimum is
in a compact set where the convergence is uniform, then we
know T×|ν∗(π∗

e ;D0)−minπe
ν∗(πe;D0)| → 0, i.e., π∗

e is
asymptotically optimal. We leave the finite-sample analysis
for future research and investigate it experimentally here.

4.2. Connection with hypothesis testing

In real applications, one important task is to test whether
or not the target policy π1 is significantly better than π0,
which impacts deployment of π1. Thus we investigate the
relationship between the power of such a test and our ob-
jective var

(
V̂ (π1;De) − V̂ (π0;De)

)
. For simplicity, we

discuss MAB with IPW and without side information. A
similar connection can be established for other setups con-
sidered in this paper (see Appendix A.2). Specifically, we
consider the test

H0 : V (π1) ≤ V (π0) v.s. H1 : V (π1) > V (π0).

Denote our variance objective (1) by σ(πe) and let σ̂(πe)
be a consistent estimator with De (typically the plug-in esti-
mator with sample variance). By the central-limit theorem
and the Slutsky’s lemma, we have

σ̂(πe)
−1

√
T
[(
V̂ (π1;De)− V̂ (π0;De)

)
−
(
V (π1)− V (π0)

)] d→ N (0, 1),

when T grows. Therefore, a popular (asymptotically) α-
level test (Cai et al., 2020) is to reject the null when

√
T σ̂(πe)

−1
(
V̂ (π1;De)− V̂ (π0;De)

)
≥ z1−α,

where z1−α is the upper αth quantile of the standard nor-
mal distribution. For any ∆ > 0, the (asymptotic) power
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under the local alternative H1 : V (π1)− V (π0) = ∆/
√
T

is hence 1 − Φ
(
z1−α − σ(πe)

−1∆
)
, where Φ(·) is the cu-

mulative distribution function of standard Gaussian. Since
the other terms are all constant, it is clear that σ(πe) de-
termines the power. Therefore, with a fixed budget, one
can improve the power by designing a better policy πe to
reduce σ(πe), which corresponds to our objective.

5. Experiments
In this section, we compare the empirical performance of
various methods. We focus on three metrics: (i) the root
mean square error (RMSE) of estimation, which quanti-
fies the efficiency; (ii) the power of detecting V (π1) >
V (π0) when it holds, which quantifies the downstream im-
pact; and (iii) the loss from safety violation max(0, T (1−
ϵ)×V (π0)−

∑T
t=1 E(Rt|At)), which quantifies the risk.

We compare our method SEPEC with several baselines. The
first two are introduced in Section 2. To recap, the mix-
ture policy πe = ϵπ1 + (1 − ϵ)π0 is a common way to
run safe policy comparison, while the Safe Optimal Design
(SafeOD) proposed in Zhu & Kveton (2022) ignores task-
specific structure. Besides, we study the performance of
uniform sampling, which is a common exploration policy;
and A/B test, which allocates a half of the budget to π1 and
the rest to π0, and is a common practice for policy compar-
ison. Finally, we consider the variant of SEPEC that does
not consider the safety constraint during optimization.

For MAB, we set K = 10, T = 500, δ = 0.05, σa ≡ 3,
sample ra ∼ Uniform(0, 1), and vary the risk tolerance
ϵ. We assume the noise is Gaussian, and construct Cδ(D0)
from the posteriors of {ra}, with |D0| = 100 logged data
points and the prior N (ra, 0.2

2) for every arm a. To mimic
the real applications where risk and opportunity coexist, we
generate π0 and π1 in the following manner: we first sam-
ple from Ber(0.5) to determine if the null H0 : V (π1) ≤
V (π0) is true. If true, we sample r̃a ∼ Uniform(0, 1), set
π1 as π1(a) ∝ r̃a, and then set π0 as π0(a) ∝ 0.5r̃a+0.5ra.
If not, we set π0(a) ∝ r̃a and π1(a) ∝ 0.5r̃a + 0.5ra. The
results are used to report the RMSEs and risks. We also run
a test of level 5% to detect V (π1) > V (π0), and report the
power when H1 is true. The configurations for CMAB and
linear bandits are similar. For CMAB, we consider 30 con-
texts with {p(xi)} sampled from Dirichlet(130). For linear
bandits, we sample θ∗ from the standard multivariate nor-
mal and x from the unit sphere uniformly, with K = 100,
d = 5, T = 200, and |D0| = 100. A detailed description
of experiments is in Appendix C.1.

Results. Results aggregated over 2000 runs are reported
in Figure 3. Overall, we observe that SEPEC consistently
yields negligible loss from violating the safety constraint,
and achieves lower RMSE and higher power compared
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Figure 3: Experiment results. The error bars indicate the standard
errors of the averages.

with the other two safe policies (Mixture and SafeOD). The
comparison with these two algorithms highlights the im-
portance of carefully designing the exploration policy and
utilizing task-specific structures. On the other hand, the
A/B test and uniform exploration have slightly higher ef-
ficiency when the risk tolerance is very low, but are fairly
risky. Moreover, compared with these two algorithms, the
variant of SEPEC without safety constraints consistently
shows better efficiency, which further supports the useful-
ness of a carefully designed exploration policy. As ex-
pected, when the safety constraint is less tight, the effi-
ciency of SEPEC increases. The cost of satisfying the safety
constraint is notably low in linear bandits, which is due to
the generalization function.

To investigate the robustness of the findings, we repeat the
experiment under a wide range of parameters in Appendix
C.2. In addition, to study the performance on real datasets,
we conduct experiments using the MNIST dataset (Deng,
2012) and present the results in Figure 4, with more details
given in Appendix C.3. The findings are consistent.
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Figure 4: Experiment results on the MNIST dataset. The error-
bars indicate the standard errors of the averages. For methods that
consider the safety constraint, the losses from safety violation are
around zero and hence may overlap.

6. Related Work
Off-policy evaluation. The OPE literature can be roughly
classified as the DM (Dudı́k et al., 2014), IPW (Horvitz &
Thompson, 1952; Li et al., 2015), and doubly robust esti-
mators (Dudı́k et al., 2014; Kallus et al., 2021; Su et al.,
2020). Few of the existing papers pay attention to data
quality. Oosterhuis & de Rijke (2020) studies the explo-
ration problem in a very specific ranking task, and only
IPW is considered with no theoretical guarantee provided.
Tucker & Joachims (2022) is a parallel work that also stud-
ies data collection for OPE of bandit policies. The paper
focuses on CMAB with IPW (and studies several exten-
sions such as evaluating multiple policies), while we pro-
vide a more comprehensive study of various bandit setups
and value estimators. Moreover, neither of the two papers
studies the safety issue, which is practically important and
introduces non-trivial challenges.

Conservative bandits. Safety constraints have been con-
sidered in the conservative bandits literature (Wu et al.,
2016; Amani et al., 2019; Moradipari et al., 2020), where
the key idea is to follow the baseline policy when the next
taken action could be risky. This shares similar spirits with
the mixture policy. Our objective of designing an explo-
ration policy for OPE is orthogonal to this area which aims
to minimize the cumulative regret.

Pure exploration. Similar to our work, the pure explo-
ration literature (Xu et al., 2018; Degenne et al., 2019; Az-
izi et al., 2021) aims to maximize the information gain,
with the objective of learning a good policy. Our work has

a different objective in many aspects: we focus on the ef-
ficiency of policy evaluation, study non-adaptive policies,
and further consider safety constraints.

Optimal experiment design. Our problem is related to
optimal experiment design (Allen-Zhu et al., 2017; Baird
et al., 2018; Fontaine et al., 2021), where the goal is also
to design a high-quality data collection rule for statistical
inference. Only a few of these works consider the bandit
problem and none of them study OPE. We also consider
the safety constraint, which is of great practical importance
and makes the problem more challenging.

7. Conclusions
This paper initiates the study of efficient exploration for
bandit policy evaluation and additionally considers safety.
We call this problem SEPEC and study several of its rep-
resentative variants. At a high level, our work contributes
to disentangling exploration and evaluation/optimization in
bandits. We believe that this direction is of huge practical
importance, as our exploration strategy is easy to deploy,
safe, and enables better statistical inference. Extensions to
the Bayesian setup, sequential design, and reinforcement
learning are all interesting next steps.

In Section 3.2, we assumed a finite context set for simplic-
ity. A closer look at the derivations shows that, if there is
no side information or we do not plan to use it (e.g., when
we want worst-case safety guarantee), then this assumption
is not required: every time when a new context is observed,
we can just solve (8) once. All nice properties are retained.
In fact, we empirically observed that the efficiency loss
is minimal, unless the risk budget is very low. The same
argument applies when one does not need the safety con-
straint. The action set can be context-dependent as well. If
one would like to use side information to guarantee high-
probability safety with infinite contexts, then πe(a|x) must
be parameterized (e.g., as a neural network). As a trade-
off, additional assumptions on the policy class are needed.
We leave differentiable policies for future research. Finally,
considering a finite context set covers applications where
the context variables are discrete (e.g., day of the week,
gender, age group, etc.).

We also assumed in Section 3.2 that the context distribution
is known. This is a common assumption (Wu et al., 2015;
Zhu & Kveton, 2022) that simplifies theory. It is usually
reasonable because we typically have a large set of histor-
ical contexts. If not, one can either (i) optimize for every
context independently as in (8), since possibly there is also
not much side information; (ii) or replace p(x) in the ob-
jective of (9) by an upper bound and that in the constraint
by a convex confidence region, for which we can similarly
solve with a high-probability safety guarantee and worst-
case efficiency guarantee.
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A. Additional Details of the Proposed Methods
A.1. Safety constraint with side information

In this section, we give a few examples on how to construct the high-probability confidence (or credible) region Cδ(D0)
and show why it is convex in these cases. For any vector v and matrix V , we denote ||v||V = vTV −1v.

For MAB, we can construct a confidence region by using an (1 − δ/K)-confidence interval for each arm separately. For
example, suppose the noise is sub-Gaussian and there is at least one data point for each arm. We have P

[
|r̂a − ra|/σa ≥√

2/nalog(2/δ)
]
≤ δ, where na and r̂a are the count and sample mean for arm a, respectively. Therefore,

Cδ(D0) = {r : max(r̂a − σa

√
2/nalog(2K/δ), 0) ≤ ra ≤ min(r̂a + σa

√
2/nalog(2K/δ), 1),∀a ∈ [K]}

is a valid confidence region, based on the Bonferroni correction. We remark that, other choice is also possible than splitting
the δ equally over arms.

Alternatively, we can consider the Bayesian perspective. We additionally assume the existence of a prior over ra as
N (µa,0, σ

2
a,0) for every arm a independently. By assuming that the reward from arm a follows N (0, σ2

a), we can derive
ra|D0 ∼ N

(
r̂′a, σ̂

2
a

)
, where σ̂2

a = (1/σ2
a,0 + na/σ

2
a)

−1 and r̂′a = σ̂2
a(µa,0/σ

2
a,0 + nar̂a/σ

2
a). Therefore, one valid credible

region is

Cδ(D0) = {r : max(r̂′a − zδ/2K σ̂a, 0) ≤ ra ≤ min(r̂′a + zδ/2K σ̂a, 1),∀a ∈ [K]},

where we construct an interval for each arm separately. Alternatively, utilizing the fact that these Gaussian variables are
independent, we can construct a joint region.

Notably, all examples above give us a convex set. The high-probability region in the CMAB case can be similarly derived.

For linear bandits, based on D0, with a given regularization parameter λ, we can construct a covariance matrix V̂0 =∑
(xi,Ri)∈D0

xix
T
i + λI, an initial estimate θ̂0 = V̂ −

0 1(
∑

(xi,Ri)∈D0
xiRi), and a corresponding high-confidence region

for θ∗ as Cδ(D0) = {θ : ||θ − θ̂0||V̂0
≤ Sδ}. By carefully choosing Sδ as given in Theorem 2 of Abbasi-Yadkori et al.

(2011), we can guarantee that P
(
θ∗ ∈ Cδ(D0)

)
≥ 1− δ.

For the Bayesian perspective, we additionally assume the existence of a prior over θ as N
(
µθ,Σθ

)
, which can be learned

either from domain knowledge or via meta-learning (Kveton et al., 2021; Wan et al., 2021). Assume that the noise follows
N (0, σ2). The standard Bayesian results on Gaussian linear regression tell us that

θ|D0 ∼ N
(
Σ̂
(
Σ−1

θ µθ +
∑

(xi,Ri)∈D0

xiRi/σ
2
)
, Σ̂

)
, Σ̂ =

(
Σ−1

θ +
∑

(xi,Ri)∈D0

xix
T
i /σ

2
)−1

Let θ̂ = Σ̂
(
Σ−1

θ µθ+
∑

(xi,Ri)∈D0
xiRi/σ

2
)
. We can then define the ellipsoid as Cδ(D0) = {θ : ||θ− θ̂||V̂ ≤ χ2

d(1−δ)}.

A.2. Connections with hypothesis testing

For linear bandits, the problem reduces to the random design analysis of linear models (Hsu et al., 2011). We assume
homoscedasticity, i.e., var(ϵt) ≡ σ2. We focus on that D0 is empty for simplicity, and it is straightforward to extend to the
case with D0. By the central limit theorem and the Slutsky’s lemma, we can establish that

√
T (β̂ − β)

d→ N
(
0, σ2

(∑
x

πe(x)xx
T
)−1

)
, T → ∞.

which implies
√
T
[(
V̂DM (π1;D)− V̂DM (π0;D)

)
−
(
V (π1;D)− V (π0;D)

)] d→ N
(
0, σ2ϕ̄T

∆π

(∑
x

πe(x)xx
T
)−1

ϕ̄∆π

)
, T → ∞.

Therefore, by similar derivations as in the MAB case, we can design a valid testing procedure and identify that the testing
power is determined by ϕ̄T

∆π

(∑
x πe(x)xx

T
)−1

ϕ̄∆π , i.e., our optimization objective.

Regarding CMAB with IPW, note the fact the the estimator, as in the MAB case, is also an U-statistic (i.e., the average of
i.i.d samples). Therefore, we can similar derive its asymptotic distribution and relate the asymptotic variance (and hence
the power) with our optimization objective. For example, let σ(πe)=

√
var(πe(At|xt)−1π∆(At|xt)Rt) and σ̂(πe) be a
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consistent estimator (typically the plug-in estimator with sample variance). By the central-limit theorem and the Slutsky’s
lemma, we again have

√
T

σ̂(πe)

[(
V̂ (π1;De)−V̂ (π0;De)

)
−
(
V (π1)−V (π0)

)] d→ N (0, 1),

when T grows. The remaining discussions are exactly the same with the MAB case.

A.3. Optimization algorithm for MAB and CMAB with IPW

As we mentioned in the main text, at the first glance, it is challenging to solve (6) as it involves infinite number of linear
constraints. Fortunately, both the objective and the feasible set are convex, and so we can adapt the cutting-plane method
(Boyd & Vandenberghe, 2007) to solve.

As an iterative algorithm, there are two main steps in the cutting-plane method. At every iteration, we need to (i) proposed
a query point π(i)

e , and then (ii) check with an oracle on whether or not π(i)
e is in a target convex set (the feasible set in our

case): if true, then we can terminate; otherwise, we find a plane to separate π
(i)
e and the target convex set (i.e., the cutting

plane).

The choices of π(i)
e and the cutting plane are both central to the computational efficiency. Following (Zhu & Kveton, 2022),

we design the algorithm as in Algorithm 1, where both are obtained by a solving a simple subproblem. Specifically, the
one for π(i)

e has a convex objective function and a set of linear constraints, and the one for r(i) is a linear programming
problem. The optimization algorithm for the CMAB case can be designed similarly. The convergence analysis is provided
in Boyd & Vandenberghe (2007).

Algorithm 1: Safe MAB exploration with the cutting-plane method
Data: π0, π1 , Cδ(D0) , ϵ
Set i = 0, π(0)

e = π0 and Θ = ∅.
while Not converge do

i = i + 1
Apply convex optimization algorithms to obtain π

(i)
e by solving

argmin
πe∈Π∆

∑
a∈[K]

π2
∆(a)

πe(a)

s.t. rT (πe − (1− ϵ)π0) ≥ 0,∀r ∈ Θ.

if minr∈Cδ(D0)r
T (π

(i)
e − (1− ϵ)π0) ≥ 0 then

Terminate the iteration
else

Solve r(i) = argminr∈Cδ(D0) r
T (π

(i)
e − (1− ϵ)π0) ; // Constraint is maximally violated

Update Θ = Θ ∪ {r(i)}
end

end
Output: πe = π

(i)
e

A.4. Optimization algorithm for linear bandits with DM

We first introduce how to solve for a finite set of constraints Θ:

argmin
πe∈∆K−1

J (πe) = ϕ̄T
∆π(T

∑
x∈A

πe(x)xx
T +ΦT

0 Φ0)
+ϕ̄∆π

s.t. max
θ∈Θ

(
(1− ϵ)π0 − πe

)T
Xθ ≤ 0.

We propose to adapt the Frank–Wolfe (FW) algorithm (Frank et al., 1956), which is a projection-free algorithm for convex
optimization and it enjoys nice convergence property (Frank et al., 1956; Lattimore & Szepesvári, 2020; Jaggi, 2013). We
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summarize in Algorithm 2. For Step 1, we note that the partial derivative can be derived as

∂J (πe)

∂πe(xi)
= −T

{
ϕ̄T

∆π(TG(πe) +G0)
−1xi

}2

where G0 = ΦT
0 Φ0 and G(πe) =

∑
x πe(x)xx

T . For Step 2, we notice that it is a linear programming problem.

Algorithm 2: Optimization for linear bandits with the FW algorithm

Data: π0 , Cδ(D0) , ϵ , X , Φ0 , ϕ̄∆π

Set i = 0, π(0)
e = π0 and Θ = ∅.

while TRUE do
i = i + 1
1. Compute the gradient d(i) = ∂J (πe)/∂πe|πe=π

(i)
e

2. Compute a feasible direction as ∆πe by solving

argmin
w∈∆K−1

d(i)w

s.t. max
θ∈Θ

(
(1− ϵ)π0 − w

)T
Xθ ≤ 0.

3. Run line search to find the optimal step size λ(i) by solving argminλ∈[0,1] J
(
π
(i)
e + λ(∆πe − π

(i)
e )

)
4. Update π

(i+1)
e = π

(i)
e + λ(i)(∆πe − π

(i)
e )

end
Output: πe = π

(i)
e

Algorithm 3: Safe linear bandits exploration with the FW algorithm and the cutting-plane method

Data: π0 , Cδ(D0) , ϵ , X , Φ0 , ϕ̄∆π

Set i = 0, π(0)
e = π0 and Θ = ∅.

while TRUE do
i = i + 1
Run the FW algorithm to obtain π

(i)
e by solving

argmin
πe∈∆K−1

J (πe) = ϕ̄T
∆π(T

∑
x

πe(x)xx
T +ΦT

0 Φ0)
−1ϕ̄∆π

s.t.
(
(1− ϵ)π0 − πe

)T
Xθ ≤ 0,∀θ ∈ Θ

if maxθ∈Cδ

(
(1− ϵ)π0 − π

(i)
e

)T
Xθ ≤ 0 then

Terminate the iteration
else

Solve θ(i) = argmaxθ∈Cδ

(
(1− ϵ)π0 − π

(i)
e

)T
Xθ ; // Constraint is maximally violated

Update Θ = Θ ∪ {θ(i)}
end

end
Output: πe = π

(i)
e

Next, we integrate the cutting-plane method and the FW algorithm to solve the most challenging problem (11), where there
exists a infinite number of constraints. Refer to Appendix A.3 for an introduction to the cutting-plane method. We note
that, since the cutting-plane method only requires a feasible query point in every iteration instead of running the whole
FW algorithm every time, one can stop the FW after a few iterations. This does not affect the convergence over the whole
algorithm.

In Algorithm 3, a key step is to find a good cutting plane, or equivalently, θ ∈ Cδ on which the constraint is maximally
violated by the current policy π(i). Assume Cδ(D0) = {θ : ||θ − θ̂0||V̂0

≤ Sδ} for some θ̂0 and V̂0. Let vπ(i) =
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(1 − ϵ)π0 − π(i)

)T
X

]T
. We need to maximize a linear function on an ellipsoid. Fortunately, the solution can be

obtained explicitly (Zhu & Kveton, 2022) as

θ(i) = argmax
θ∈Cδ(D0)

[(
(1− ϵ)π0 − π(i)

)T
X

]
θ = θ̂0 +

V̂0vπ(i)√
vT
π(i) V̂0vπ(i)/Sδ

.

B. Extensions
B.1. MAB with DM

An alternative estimator for MAB is the direct method (DM). In MAB, DM essentially plugs-in the estimated mean

of every arm as V̂ (π;D) =
∑

a

[
π(a)

∑
(At,Rt)∈D RtI(At=a)∑
(At,Rt)∈D I(At=a)

]
. We note this estimator is actually equivalent to

|D|−1
∑

(Ai,Ri)∈D
π(Ai)
π̂∗
e (Ai)

Ri, where π̂∗
e(a) = |D|−1

∑
(Ai,Ri)∈D I(At = a), i.e., the IPW-form estimator with the esti-

mated propensity π̂∗
e(a). A well-known but perhaps counter-intuitive result (Brumback, 2009) is that, even if D is collected

by following πe and πe is known, V̂IPW (π;D) is still more efficient than plugging-in the known function πe.

The following result is standard (Li et al., 2015) and we just recap here for completeness:

V̂ (π;D)− V (π)

=
∑
a

[
π(a)

∑
(At,Rt)∈D RtI(At = a)∑
(At,Rt)∈D I(At = a)

]
− V (π)

=
∑
a

[
π(a)

(∑(At,Rt)∈D RtI(At = a)∑
(At,Rt)∈D I(At = a)

− ra
)]

=
∑
a

[
π(a)

(∑(At,Rt)∈D(Rt − ra)I(At = a)∑
(At,Rt)∈D I(At = a)

)]
=

∑
a

[
π(a)

( |D|−1
∑

(At,Rt)∈D(Rt − ra)I(At = a)

|D|−1
∑

(At,Rt)∈D I(At = a)

)]
d−→ N

(
0,
∑
a

π2(a)

πe(a)
σ2
a

)
.

By the additivity, we can see this relationship holds for the value difference V (π1)−V (π0) as well. All of our discussions
on the safety constraints and optimization algorithms can be directly extended to this case. Finally, similar extensions can
be constructed for CMAB as well.

B.2. Stochastic contextual linear bandits

Next, we consider the contextual bandits setting with a linear generalization function, i.e., the stochastic contextual linear
bandits problem. At every round t, a stochastic context xt will be sampled i.i.d. and can not be known a priori. The
agent will then choose an arm At, which together with xt gives us the transformed feature vector ϕt = ϕxt,At

. Let ϕ̄π =

Ex∼p(x),a∼π(a|x)ϕx,a. Assume p(x) is known and hence ϕ̄π is also known. Given an estimate θ̂ obtained via least-square
regression, recall our value estimator via DM is V̂θ̂(π) = Ex∼p(x),a∼π(a|x)ϕ

T
x,aθ̂ =

[
Ex∼p(x),a∼π(a|x)ϕ

T
x,a

]
θ̂ = ϕ̄T

π θ̂.
Let ϕ̄∆π = ϕ̄π1 − ϕ̄π0 . W.l.o.g., we assume the noise variance is upper bounded by 1. Without other information or
constraints, by similar arguments as in Section 3.3, our objective can be transformed as follows

var(V̂ (π1;De ∪ D0)− V̂ (π0;De ∪ D0))

= ϕ̄T
∆πcov(θ̂)ϕ̄∆π

= ϕ̄T
∆π

{
EΦ∼πe,x

[
cov(θ̂ | Φ)

]
+ covΦ∼πe,x

[
E(θ̂ | Φ)

]}
ϕ̄∆π

= ϕ̄T
∆π

{
EΦ∼πe,x

[
(ΦTΦ+ΦT

0 Φ0)
−1

]}
ϕ̄∆π

(12)

Here, Φ and Φ0 is the feature matrix stacked over points in D and D0, respectively. More specifically, Φ =
(ϕx1,A1

, . . . ,ϕxT ,AT
)T . We use Φ ∼ πe,x to emphasize the expectation is taken over Φ, which depends on both the
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policy πe and the stochastic context x.

Besides, the safety constraint also needs to be satisfied. Therefore, our problem can be written as

argmin
πe

ϕ̄T
∆π

{
EΦ∼πe,x

[
(ΦTΦ+ΦT

0 Φ0)
−1

]}
ϕ̄∆π

s.t.
[
ϕ̄T

π∗
e
− (1− ϵ)ϕ̄T

π0

]
θ ≥ 0,∀θ ∈ Cδ(D0),

πe(· | x) ∈ ∆K−1,∀x ∈ X

(13)

The challenges on optimization include that (i) both the objective and ϕ̄πe
in the constraint can have complex dependency

on πe, (ii) the constraint implicitly includes infinite linear constraints, and (iii) the stochasticity in the context is hard to
handle, unlike in Section 3.3.

When there is a finite number of contexts, following similar arguments as in Section 3.3, we can consider the following
surrogate objective instead, which can be similarly proved as the asymptotic variance of our procedure:

argmin
πe

ϕ̄T
∆π

{[
(T

∑
x,a

p(x)πe(a|x)ϕx,aϕ
T
x,a +ΦT

0 Φ0)
−1

]}
ϕ̄∆π

s.t. min
θ∈Cδ(D0)

[∑
x,a

p(x)πe(a|x)ϕx,a − (1− ϵ)ϕ̄π0

]T
θ ≥ 0.

(14)

The problem can be solved similarly as in (11) by utilizing the convexity. See Appendix A.4 for details.

B.3. Pseudo-inverse estimator for linear bandits and its contextual version

Under the linear generalization assumption, besides the DM estimator, we can also consider the Pseudo-Inverse (PI) esti-
mator (Swaminathan et al., 2016). Instead of inferring θ, PI directly constructs a weighted average of the observed rewards
as in IPW, but it also utilizes the linear structure. PI is particular useful when being applied to some structured problem
such as slate recommendation (Swaminathan et al., 2016). Let G(π) =

∑
x π(x)xx

T . We first note that

V (π;D) = ϕ̄T
πθ = ϕ̄T

πG(π)−1
∑
x

π(x)x(xTθ)

Motivated by this relationship, the PI estimator is constructed as

V̂PI(π;D) = |D|−1
∑

(xi,Ri)∈D

ϕ̄T
πG(π)−1(Rixi) = |D|−1ϕ̄T

πG(π)−1
∑

(xi,Ri)∈D

Rixi (15)

Let Φ be the feature matrix stacked over points in D. We first derive the finite-sample conditional variance
var(V̂PI(π1;D)|Φ) as

var(V̂PI(π1;D)|Φ) = |D|−2
∑

(xi,Ri)∈D

[
ϕ̄T

π1
G(π1)

−1xi

]2
var(Ri | xi)

For simplicity of notations, w.l.o.g., we assume the noise variance is 1. By the law of total variance, we can obtain that

T × var(V̂PI(π1;De))

= T × EΦ∼πe
var(V̂PI(π1;De)|Φ) + T × varΦ∼πe

E(V̂PI(π1;De)|Φ)

= Exi∼πe

[
ϕ̄T

π1
G(π1)

−1xi

]2
+ T × varΦ∼πe

{
T−1ϕ̄T

πG(π)−1ΦTΦθ
}

→ ϕ̄T
π1
G(π1)

−1G(πe)G(π1)
−1ϕ̄π1

+ varx∼πe

{
ϕ̄T

πG(π)−1xxTθ
}
.

(16)

The proof for the asymptotic variance statement (i.e., the last row) is by similar arguments as in Appendix D.3.

By similar arguments as in the IPW for MAB case, the raw objective (16) is infeasible to solve, as it involves the unknown
parameter θ. Therefore, we relax with the upper bound of the unknown parameters and focus on minimizing the intrinsic
uncertainty term from the reward noise, i.e., ϕ̄T

π1
G(π1)

−1G(πe)G(π1)
−1ϕ̄π1

. Notice that, under the linear generalization
assumption, all discussions in Section 3.3 regarding the safety constraint still apply here. Therefore, this problem can be
similarly solved as in Section 3.3, via combining the cutting-plane method with the FW algorithm.

Besides, by noting that (15) is linear in ϕ̄T
πG(π)−1, it is straightforward to extend to studying the value difference V (π1)−

V (π0). Moreover, as in Swaminathan et al. (2016) and Zhu & Kveton (2022), the PI estimator and the discussions above
can be extended to the contextual setup in a straightforward manner.
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B.4. Doubly robust estimator for MAB and CMAB

Besides IPW and DM, the doubly robust (DR) estimator is another popular OPE estimator, both in bandits (Dudı́k et al.,
2014) and in reinforcement learning (Shi et al., 2021). We analyze the DR estimator in the MAB setup, and the CMAB
case is similar. Let V̂DM be a consistent DM-type estimator. The DR value estimator (Tsiatis, 2007) is define as

V̂DR(π1;De) =
∑
t

π1(At)

πe(At)
(Rt − V̂DM (π1;De)) + V̂DM (π1;De).

Due to the complex structure, it is well-known that its finite-sample variance does not yield a tractable form as IPW and
DM do, and therefore people commonly focus on its asymptotic variance (Tsiatis, 2007)

T × AsmypVar
(
V̂DR(π1;De))

)
=

∑
a∈[K]

π2
1(a)

πe(a)
σ2
a + varAt∼πe

[π1(At)

πe(At)

(
rAt

− V (π1)
)]

=
∑

a∈[K]

π2
1(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
1(a)

πe(a)

(
ra − V (π1)

)2 − 0.

Compared with the form of IPW, one can find that the only difference is that the r2a in the second term is replaced by(
ra − V (π1)

)2
, which is also related with the unknown parameters. Therefore, a tractable optimization objective can be

formed by considering the upper bounds as

argmin
πe

∑
a∈[K]

π2
1(a)

πe(a)
.

The other discussions on the safety constraint and the optimization for IPW can then be directly applied here. Similar
results can be established for V (π1)− V (π0), by noting the additivity.

B.5. Alternative objective function with side information for IPW

For MAB with IPW (similar arguments below apply for CMAB), recall that we derived the following form for the overall
variance:

T × var
(
V̂IPW (π1;De)− V̂IPW (π0;De)

)
=

∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a −

(
V (π1)− V (π0)

)2
,

Since either σa, ra, or V (π1) − V (π0) is known, this objective is intractable to directly optimize. From the worst-case
point of view, we relax them using the upper bounds and optimize the surrogate objective∑

a∈[K]

π2
∆(a)

πe(a)
.

The advantage of this surrogate objective is that, for any instances, we can provide decent performance guarantee. However,
the downside is such an objective might be conservative. In particular, even with side information (dataset D0 or posterior
distribution Q over instance) available, our utilization of this information is limited (since the corresponding guarantee
would be high-probability or Bayesian).

We discuss alternative surrogate optimization objectives in this section. With the posterior distribution Q, it is easy to see
that the objective, which is known as the Bayes risk (Brown & Gajek, 1990), can be formulated as

EQ

{ ∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a −

(
V (π1)− V (π0)

)2}
=

∑
a∈[K]

π2
∆(a)

πe(a)
EQσ

2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
EQr

2
a − EQ

(
V (π1)− V (π0)

)2
=

∑
a∈[K]

π2
∆(a)

πe(a)
(EQσ

2
a + EQr

2
a)− EQ

(
V (π1)− V (π0)

)2
,
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(b) T = 200,K = 20, σ = 2.

Figure 5: Experiment results for CMAB under other combinations of setting parameters.
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Figure 6: Experiment results for LB under other combinations of setting parameters.

which shares similar form with the one in the main text. Therefore, all discussions can be extended.

Regarding the frequentist way, we can utilize D0 to construct upper confidence bounds for the unknown terms, and the
final performance guarantee would be a high-probability statement.

C. Additional Experiment Details and Results
C.1. Additional experiment details

In this section, we introduce more details of the experiment setup used in our simulation study. The configuration for
CMAB is almost the same with that for MAB introduced in the main text, except for that we generate for every context
independently. For linear bandits, we following Kazerouni et al. (2016) to make sure xT

i θ
∗ is positive for all arms when

sampling the feature vectors. To generate the policies π0 and π1, we follow a similar design with MAB, except for that we
first sample θ̃ from the multivariate normal and then generate π1(a) (or π0(a)) proportional to xT

a θ̃.

C.2. Additional simulation experiments

In this section, we repeat the simulation experiments in the main text under a variety of parameter combinations to study
the robustness of our findings. See Figure 5 for results on CMAB and Figure 6 for results on LB. Overall, the main findings
are consistent with those in the main text.

C.3. Experiments on the MNIST dataset

In this section, we conduct two experiments on the MNIST dataset (Deng, 2012). In this dataset, every arm is an (vector-
ized) image of a digit between 0 and 9,

CMAB. The first experiment focuses on contextual bandits. As standard in the literature (Dudı́k et al., 2014), we adapt
a classification task to a CMAB problem. Specifically, in every trail, we randomly pick 100 images as our contexts,
with their probability sampled from Dirichlet(1100). The K = 10 arms correspond to the 10 digits, and only the arm
corresponding to the one on the image returns reward 1. All the other arms return reward 0. The two policies π0 and π1 are
two classifier trained with 1000 randomly sampled data points, one using the decision tree and the other using multi-class
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logistic regression. We define the one with higher accuracy as π1 when H1 is true, and as π0 when H0 is true. We aim to
collect T = 1000 data points.

This setup aims to mimic a common application: we have two policies trained using logged data and with different
functional form assumptions, so a direct comparison is unfair and may suffer from model misspecification. Therefore,
one typically utilizes IPW (which is guaranteed to be unbiased under minimal assumptions) to compare these two policies.

Linear bandits. In the second experiment, we closely follow Zhu & Kveton (2022) to study the performance on linear
bandits. In every trail, we randomly pick one digit as the correct answer, and we assign reward 1 to the images correspond-
ing to this correct digit. K = 100 arms are randomly chosen. We set σ = 1, |D0| = 100 and T = 100. θ∗ is fitted from
the whole dataset.

Results. Results aggregated over 2000 random seeds are presented in Figure 4. The superior performance of SEPEC
and other findings are largely consistent with our simulation experiments. In particularly, for linear bandits, the cost of
satisfying the safety constraint is negligible, which is consistent with the findings in Zhu & Kveton (2022). Besides,
regarding the power under linear bandits, we observe that SEPEC is even slightly better than its non-safe version, though
the difference is not statistically significant. A closer look into the intermediate results tell that this is mainly due to that
the FW is an iterative algorithm and the convergence situation might slightly vary due to numerical reasons.

D. Proofs
D.1. Proof of Lemma 1

Proof. First, recall that

T × ν(πe; r, {σa}) = T × var
(
V̂IPW (π1;De)− V̂IPW (π0;De)

)
=

∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a −

(
V (π1)− V (π0)

)2

.

Let W =
∑

a |π∆(a)|. We have π∗
e(a) = |π∆(a)|/W . Therefore

T × ν(π∗
e ; r, {σa})

=
∑

a∈[K]

π2
∆(a)

|π∆(a)|/W
σ2
a +

∑
a∈[K]

π2
∆(a)

|π∆(a)|/W
r2a − c

=
∑

a∈[K]

|π∆(a)|W (σ2
a + r2a)−

(
V (π1)− V (π0)

)2

,

which implies

ν(π∗
e ; r, {σa}) =

1

T

[∑
a

|π∆(a)| ×
∑

a∈[K]

|π∆(a)|(σ2
a + r2a)−

(
V (π1)− V (π0)

)2]

D.2. Proof of Theorem 1

Proof. First, recall that

T × ν(πe; r, {σa}) = T × var
(
V̂IPW (π1;De)− V̂IPW (π0;De)

)
=

∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a − c,

where c =
(
V (π1)− V (π0)

)2

is independent with πe.
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Denote EQ(r
2
a) ≡ r2Q and EQ(σ

2(a)) ≡ σ2
Q. Therefore, for any πe ∈ Π, we have

T × EQ

[
ν(π∗

e ; r, {σa})− ν(πe; r, {σa})
]

= EQ

[ ∑
a∈[K]

π2
∆(a)

π∗
e(a)

σ2
a +

∑
a∈[K]

π2
∆(a)

π∗
e(a)

r2a −
∑

a∈[K]

π2
∆(a)

πe(a)
σ2
a −

∑
a∈[K]

π2
∆(a)

πe(a)
r2a

]
=

[ ∑
a∈[K]

π2
∆(a)

π∗
e(a)

−
∑

a∈[K]

π2
∆(a)

πe(a)

]
×

(
σ2
a + r2a

)
≤ 0,

where the last inequality is due to that, by design, π∗
e is the minimizer of

∑
a∈[K]

π2
∆(a)

πe(a)
within the class of safe policies.

To prove the minimax optimality, we first show that, for any policy πe, max(r,σa)∈I ν(πe; r, σa) is achieved when r = 1
and σa ≡ σ. To see this, we exam

T × ν(πe; r, {σa})− T × ν(πe;1, {σ, . . . , σ})

=
[ ∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a − (V (π1)− V (π0))

2
]

−
[ ∑
a∈[K]

π2
∆(a)

πe(a)
σ2 +

∑
a∈[K]

π2
∆(a)

πe(a)
12 − 02

]
=

∑
a∈[K]

π2
∆(a)

πe(a)
(σ2

a − σ2) +
∑

a∈[K]

π2
∆(a)

πe(a)
(r2a − 1)− (V (π1)− V (π0))

2

≤ 0.

Therefore, we have

T × max
(r,σa)∈I

ν(πe; r, σa) =
∑

a∈[K]

π2
∆(a)

πe(a)
(σ2 + 1)

Notice that π∗
e , by design, is the minimizer of this objective. Therefore, we have that π∗

e is minimax optimal, i.e.,
max(r,σa)∈I ν(π∗

e ; r, σa) = minπe∈Π max(r,σa)∈I ν(πe; r, σa).

D.3. Proof of Theorem 2

Proof. Denote G(πe) =
∑

x∈A πe(x)xx
T . We first note that

T × νπe;D0) = T × ϕ̄T
∆π(TG(πe) +ΦT

0 Φ0)
−1ϕ̄∆π = ϕ̄T

∆π(G(πe) + T−1ΦT
0 Φ0)

−1ϕ̄∆π → ϕ̄T
∆πG(πe)

−1ϕ̄∆π,

when T goes to infinity. Besides, we note the following relationship

T × ν∗(πe;D0) = T × varΦ∼πe

(
V̂DM (π1;DΦ ∪ D0)− V̂DM (π0;DΦ ∪ D0)

)
= EΦ∼πe

[
ϕ̄T

∆π(T
−1ΦTΦ+ T−1ΦT

0 Φ0)
−1ϕ̄∆π

]
.

Since the rows of Φ are i.i.d., by the strong law of large numbers, we know T−1ΦTΦ
a.s.→ G(πe), and hence T−1ΦTΦ+

T−1ΦT
0 Φ0

a.s.→ G(πe). Therefore, by the continuous mapping theorem, we have (T−1ΦTΦ + T−1ΦT
0 Φ0)

−1 a.s.→
G(πe)

−1 and also ϕ̄T
∆π

[
T−1ΦTΦ + T−1ΦT

0 Φ0

]−1
ϕ̄∆π

a.s.→ ϕ̄T
∆πG(πe)

−1ϕ̄∆π . Finally, from the random matrix the-
ory for the tail bounds on the eignevalues of random matrix with i.i.d. rows (Vershynin, 2010), we know the uniformly
integrable condition can be satisfied and hence we conclude with

EΦ∼πe

[
ϕ̄T

∆π

[
T−1ΦTΦ+ T−1ΦT

0 Φ0

]−1
ϕ̄∆π

]
→ ϕ̄T

∆πG(πe)
−1ϕ̄∆π
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D.4. Counter-example

In this section, we argue that there does not exist a policy πe that dominates all other policies across all problem instances,
when we use the IPW estimator.

Suppose π1 ̸= π0. For any policy πe, we can always construct an instance (r, {σa}) and a policy b′, such that

ν(πe; r, {σa}) > ν(π′
e; r, {σa}).

To see this, note that

T ×
[
ν(πe; r, {σa})− ν(π′

e; r, {σa})
]
=

∑
a∈[K]

π2
∆(a)

πe(a)
σ2
a +

∑
a∈[K]

π2
∆(a)

πe(a)
r2a −

∑
a∈[K]

π2
∆(a)

b′(a)
σ2
a −

∑
a∈[K]

π2
∆(a)

b′(a)
r2a.

By setting ra ≡ 0, we get

T ×
[
ν(πe; r, {σa})− ν(π′

e; r, {σa})
]
=

∑
a∈[K]

( 1

πe(a)
− 1

b′(a)

)
π2
∆(a)σ

2
a.

Since π1 ̸= π0, there are at least two arms a′ and a′′ where the two policies differ. By design, we know πe(a
′) and

πe(a
′′) are both positive. A counter-example can hence be designed by setting σ′

a = 0, σa′′ = 1, b′(a′) = 0.5πe(a
′),

b′(a′′) = 0.5πe(a
′) + πe(a

′′) and keeping πe(a) = b′(a) on the other arms. In other words, we move more budgets to the
arm of high variance. More precisely, we have

T ×
[
ν(πe; r, {σa})− ν(π′

e; r, {σa})
]

= 0 +
( 1

πe(a′)
− 1

b′(a′)

)
π2
∆(a

′)σ2
a′ +

( 1

πe(a′′)
− 1

b′(a′′)

)
π2
∆(a

′′)σ2
a′′

=
( 1

πe(a′′)
− 1

0.5πe(a′) + πe(a′′)

)
π2
∆(a

′′)σ2
a′′

> 0.

D.5. Convexity of the objectives and constraints

For the sake of completeness, we show in this section that the objectives and constraints considered in this paper are all
convex. Regarding the objective of IPW, we note the relationship that

α
∑

a∈[K]

π2
∆(a)

πe(a)
+ (1− α)

∑
a∈[K]

π2
∆(a)

π′
e(a)

≥
∑

a∈[K]

π2
∆(a)

απe(a) + (1− α)π′
e(a)

,

due to the inequality

α
1

πe(a)
+ (1− α)

1

π′
e(a)

≥ 1

απe(a) + (1− α)π′
e(a)

,∀a ∈ [K],

which stems from the convexity of f(x) = 1/x. The same arguments hold for CMAB with IPW.

Regarding the objective of linear bandits with DM,

ϕ̄T
∆π(T

∑
x∈A

πe(x)xx
T +ΦT

0 Φ0)
−1ϕ̄∆π,

we notice that
∑

x∈A πe(x)xx
T is linear in πe and the matrix inverse operator is a convex function. Therefore, their

composition is still convex.

Regarding the constraint, notice that, for every single instance, the constraint is a linear one and hence convex. The overall
feasible set is the intersection of these convex sets, and hence is convex.


